STATISTICAL ANALYSIS SUMMARY BOTTOM ASH POND Mitchell Plant Moundsville, West Virginia

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

engineers | scientists | innovators

941 Chatham Lane Suite 103 Columbus, Ohio 43221

January 8, 2019

CHA8473

TABLE OF CONTENTS

SECTION :	l Execu	tive Summary	1
SECTION 2	2 Botton	m Ash Pond Evaluation	2-1
2.1	Data V	Validation & QA/QC	2-1
2.2	Statist	tical Analysis	2-1
	2.2.1	Establishment of GWPSs	2-1
	2.2.2	Evaluation of Potential Appendix IV SSLs	2-2
	2.2.3	Evaluation of Potential Appendix III SSIs	2-2
2.3	Concl	usions	2-3
SECTION 3	3 Refere	ences	3-1

LIST OF TABLES

Table 1	Groundwater Data Summary
Table 2	Groundwater Protection Standards
Table 3	Appendix III Data Summary

LIST OF ATTACHMENTS

Attachment A Certification by Qualified Professional Engineer
Attachment B Statistical Analysis Output

LIST OF ACRONYMS AND ABBREVIATIONS

AEP American Electric Power

BAP Bottom Ash Pond

CCR Coal Combustion Residuals

CCV Continuing Calibration Verification

CFR Code of Federal Regulations

GWPS Groundwater Protection Standard

LCL Lower Confidence Limit

LFB Laboratory Fortified Blanks

LRB Laboratory Reagent Blanks

MCL Maximum Contaminant Level

NELAP National Environmental Laboratory Accreditation Program

QA Quality Assurance

QC Quality Control

RSL Regional Screening Level

SSI Statistically Significant Increase

SSL Statistically Significant Level

TDS Total Dissolved Solids

UPL Upper Prediction Limit

USEPA United States Environmental Protection Agency

UTL Upper Tolerance Limit

SECTION 1

EXECUTIVE SUMMARY

In accordance with the United States Environmental Protection Agency's (USEPA's) regulations regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (40 CFR 257.90-257.98, "CCR rule"), groundwater monitoring has been conducted at the Bottom Ash Pond (BAP), an existing CCR unit at the Mitchell Power Plant located in Moundsville, West Virginia.

Based on detection monitoring conducted in 2017, statistically significant increases (SSIs) over background were concluded for boron, calcium, chloride, and total dissolved solids (TDS) at the BAP. An alternate source was not identified at the time, so two assessment monitoring events were conducted at the BAP in 2018, in accordance with 40 CFR 257.95.

Groundwater data underwent several validation tests, including those for completeness, sample tracking accuracy, transcription errors, and consistent use of measurement units. No data quality issues were identified which would impact the usability of the data.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. Groundwater protection standards (GWPSs) were established for the Appendix IV parameters. Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether Appendix IV parameters were present at a statistically significant level (SSL) above the GWPS. No SSLs were identified, but Appendix III concentrations for boron, calcium, chloride, sulfate, and TDS remained above background. Thus, either the unit will remain in assessment monitoring or an alternative source demonstration will be conducted to evaluate if the unit can return to detection monitoring. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A.

SECTION 2

BOTTOM ASH POND EVALUATION

2.1 Data Validation & QA/QC

During the assessment monitoring program, two sets of samples were collected for analysis from each upgradient and downgradient well to meet the requirements of 40 CFR 257.95(b) and 257.95(d)(1). Samples from both sampling events were analyzed for the Appendix III and Appendix IV parameters. A summary of data collected during assessment monitoring may be found in Table 1.

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program (NELAP). Quality assurance and quality control (QA/QC) samples completed by the analytical laboratory included the use of laboratory reagent blanks (LRBs), continuing calibration verification (CCV) samples, and laboratory fortified blanks (LFBs).

The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.5 statistics software. The export file was checked against the analytical data for transcription errors and completeness. No QA/QC issues were noted which would impact data usability.

2.2 Statistical Analysis

Statistical analyses for the BAP were conducted in accordance with the January 2017 *Statistical Analysis Plan* (AEP, 2017), except where noted below. Time series plots and results for all completed statistical tests are provided in Attachment B.

The data obtained to meet the requirements of 40 CFR 257.95(b) and 257.95(d)(1) were screened for potential outliers. No outliers were identified. Outliers identified from the background and detection monitoring events conducted through January 2018 were summarized in a previous report (Geosyntec, 2018).

2.2.1 Establishment of GWPSs

A GWPS was established for each Appendix IV parameter in accordance with 40 CFR 257.95(h) and the *Statistical Analysis Plan* (AEP, 2017). The established GWPS was determined to be the greater value of the background concentration and the maximum contaminant level (MCL) or regional screening level (RSL) for each Appendix IV parameter. To determine background concentrations, an upper tolerance limit (UTL) was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events.

Generally, tolerance limits were calculated parametrically with 95% coverage and 95% confidence. Non-parametric tolerance limits were calculated for cadmium, fluoride, mercury, selenium, and thallium due to apparent non-normal distributions. Tolerance limits and the final GWPSs are summarized in Table 2.

2.2.2 Evaluation of Potential Appendix IV SSLs

A confidence interval was constructed for each Appendix IV parameter at each compliance well. Confidence limits were generally calculated parametrically ($\alpha = 0.01$); however, non-parametric confidence limits were calculated in some cases (e.g., when the data did not appear to be normally distributed or when the non-detect frequency was too high). An SSL was concluded if the lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). Calculated confidence limits are shown in Attachment B.

No SSLs were identified at the Mitchell BAP.

2.2.3 Evaluation of Potential Appendix III SSIs

The CCR rule allows CCR units to move from assessment monitoring to detection monitoring if all Appendix III and Appendix IV parameters were at or below background levels for two consecutive sampling events [40 CFR 257.95(e)]. Since no Appendix IV SSLs were identified, Appendix III results were analyzed to assess whether concentrations of Appendix III parameters at the compliance wells exceeded background concentrations.

Prediction limits were calculated for the Appendix III parameters to represent background values. As described in the January 2018 *Statistical Analysis Summary* report (Geosyntec, 2018), intrawell tests were used to evaluate potential SSIs for fluoride and sulfate, whereas interwell tests were used to evaluate potential SSIs for boron, calcium, chloride, pH, and TDS.

Prediction limits for the interwell tests were recalculated using data collected during the 2018 assessment monitoring events. Twelve data points (i.e., two samples from six background wells) were added to the background dataset for each interwell test. New data were tested for outliers prior to being added to the background dataset. The updated prediction limits were calculated for a one-of-two retesting procedure, as during detection monitoring. The values of the updated prediction limits were similar to the values of the prediction limits calculated during detection monitoring. The revised prediction limits were used to evaluate potential SSIs for boron, calcium, chloride, pH, and TDS.

For the intrawell tests, limited data made it possible to add only two data points (i.e., two samples from each compliance well) to each background dataset. Because two sample results are insufficient to compare against the existing background dataset, the prediction limits were not updated for the intrawell tests at this time. The prediction limits calculated during detection monitoring were used to evaluate potential SSIs for fluoride and sulfate.

Data collected during the second assessment monitoring event from each compliance well were compared to the prediction limits to evaluate SSIs. The results from this event and the prediction limits are summarized in Table 3. The following exceedances of the upper prediction limits (UPLs) were noted:

- Boron concentrations exceeded the interwell UPL of 1.36 mg/L at MW-1505 (8.00 mg/L for both events), MW-1506 (5.73 mg/L and 5.91 mg/L), MW-1507 (10.4 mg/L and 9.29 mg/L), MW-1509 (6.81 mg/L and 6.97 mg/L), and MW-1510 (10.3 mg/L and 9.13 mg/L).
- Calcium concentrations exceeded the interwell UPL of 241 mg/L at MW-1505 (282 mg/L and 274 mg/L), MW-1506 (275 mg/L and 270 mg/L), MW-1507 (296 mg/L and 272 mg/L), MW-1509 (272 mg/L and 279 mg/L), and MW-1510 (292 mg/L and 268 mg/L).
- Chloride concentrations exceeded the interwell UPL of 238 mg/L at MW-1505 (289 mg/L and 284 mg/L), MW-1506 (382 mg/L and 369 mg/L), MW-1507 (400 mg/L and 331 mg/L), MW-1509 (324 mg/L and 323 mg/L), and MW-1510 (322 mg/L and 334 mg/L).
- Sulfate concentrations exceeded the intrawell UPL of 351 mg/L at MW-1505 (401 mg/L and 383 mg/L), the intrawell UPL of 345 mg/L at MW-1506 (347 mg/L and 349 mg/L), the intrawell UPL of 450 mg/L at MW-1509 (488 mg/L and 465 mg/L), and the intrawell UPL of 399 mg/L at MW-1510 (428 mg/L).
- TDS concentrations exceeded the interwell UPL of 1193 mg/L at MW-1505 (1220 mg/L and 1520 mg/L), MW-1506 (1300 mg/L and 1590 mg/L), MW-1507 (1390 mg/L and 1430 mg/L), MW-1509 (1390 mg/L and 1540 mg/L), and MW-1510 (1290 mg/L and 1550 mg/L).

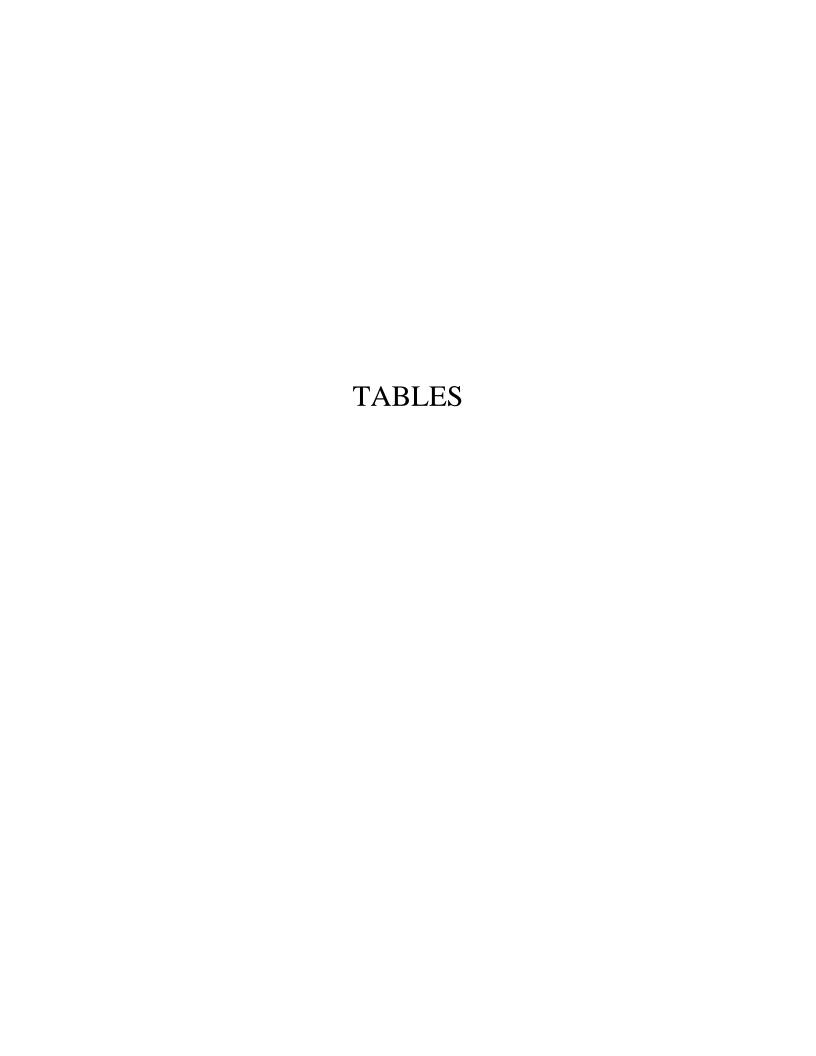
Based on these results, concentrations of Appendix III parameters exceeded background levels at compliance wells at the Mitchell BAP during assessment monitoring. As a result, the Mitchell BAP CCR unit will remain in assessment monitoring.

2.3 <u>Conclusions</u>

Two assessment monitoring events were conducted in 2018 in accordance with the CCR Rule. The laboratory and field data were reviewed prior to statistical analysis, with no QA/QC issues identified that impacted data usability. A review of outliers identified no potential outliers in the 2018 data. GWPSs were established for the Appendix IV parameters. A confidence interval was constructed at each compliance well for each Appendix IV parameter; SSLs were concluded if the entire confidence interval exceeded the GWPS. No SSLs were identified.

The Appendix III results were evaluated to assess whether concentrations of Appendix III parameters exceeded background levels. Interwell tests were used to evaluate potential SSIs for boron, calcium, chloride, pH and TDS, and intrawell tests were used to evaluate potential SSIs for fluoride and sulfate. The prediction limits for the interwell tests were updated with additional data

collected from the background wells. Prediction limits were recalculated using a one-of-two retesting procedure. The prediction limits calculated during detection monitoring were used for the intrawell tests. Boron, calcium, chloride, sulfate, and TDS results exceeded background levels.


Based on this evaluation, the Mitchell BAP CCR unit will remain in assessment monitoring.

SECTION 3

REFERENCES

American Electric Power (AEP). 2017. Statistical Analysis Plan – Mitchell Plant. January 2017.

Geosyntec Consultants (Geosyntec). 2018. Statistical Analysis Summary – Bottom Ash Pond, Mitchell Plant, Moundsville, West Virginia. January 15, 2018.

Table 1 – Groundwater Data Summary Mitchell – Bottom Ash Pond

	Witchen Bottom Ashi Und														
		MW-1504 MW-1505		MW-	-1506	MW	-1507	MW-	-1508	MW	-1509	MW-1510			
Parameter	Unit	4/11/2018	8/22/2018	4/11/2018	8/22/2018	4/11/2018	8/22/2018	4/11/2018	8/21/2018	4/11/2018	8/21/2018	4/11/2018	8/21/2018	4/12/2018	8/21/2018
Antimony	μg/L	0.0200 J	0.0500 J	0.0300 J	0.0500 J	0.0300 J	0.0600	0.0700	0.0800	0.0400 J	0.0600	0.0300 J	0.0900	0.0300 J	0.0300 J
Arsenic	μg/L	0.360	0.280	0.440	0.380	0.730	0.460	1.67	0.470	1.04	0.440	0.420	0.330	0.420	0.370
Barium	μg/L	36.9	37.9	46.0	48.0	55.4	54.6	71.2	62.1	46.4	40.1	52.8	53.8	43.3	42.6
Beryllium	μg/L	0.00500 J	0.02 U	0.00600 J	0.00700 J	0.0210	0.0100 J	0.0620	0.0100 J	0.0400	0.0100 J	0.00500 J	0.02 U	0.0100 J	0.00800 J
Boron	mg/L	0.0630	0.0960	8.00	8.00	5.73	5.91	10.4	9.29	0.806	0.952	6.81	6.97	10.4	9.13
Cadmium	μg/L	0.0300	0.0300	0.0300	0.0300	0.0200 J	0.0200	0.0400	0.0300	0.0400	0.0400	0.0100 J	0.00800 J	0.00500 J	0.00600 J
Calcium	mg/L	204	230	282	274	275	270	296	272	229	219	272	279	292	268
Chloride	mg/L	83.6	91.9	289	284	382	369	400	331	200	204	324	323	322	334
Chromium	μg/L	0.562	0.331	1.16	1.40	2.01	2.47	21.3	2.00	1.40	0.691	0.657	0.777	27.4	5.64
Cobalt	μg/L	0.114	0.0930	0.151	0.257	0.476	0.581	1.45	0.426	1.03	0.678	0.215	0.132	0.217	0.383
Combined Radium	pCi/L	0.349	1.05	0.582	0.576	0.592	1.72	0.701	1.42	0.236	0.315	0.792	0.736	0.0940	1.24
Fluoride	mg/L	0.190	0.200	0.20 U	0.0200 J	0.02 U	0.0500 J	0.0600 J	0.0700	0.0800	0.0800	0.150	0.140	0.20 U	0.0900
Lead	μg/L	0.0520	0.0370	0.116	0.150	0.477	0.319	1.56	0.308	1.11	0.384	0.0620	0.0350	0.119	0.133
Lithium	mg/L	0.00400	0.00600	0.00500	0.00800	0.00900	0.0100	0.0120	0.0100	0.00800	0.00700	0.00900	0.0120	0.00600	0.0110
Mercury	μg/L	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.00600	0.00200 J	0.01 U	0.005 U	0.00200 J	0.005 U	0.00200 J	0.005 U
Molybdenum	μg/L	0.410	0.330	0.670	1.35	1.23	0.500	2.73	0.870	0.450	0.250	0.340	0.320	3.30	0.430
Selenium	μg/L	0.0400 J	0.0400 J	0.700	0.400	0.100	0.0900 J	0.300	0.0800 J	0.700	0.400	0.200	0.300	0.100	0.100
Total Dissolved Solids	mg/L	842	936	1220	1520	1300	1590	1390	1430	1050	1080	1390	1540	1290	1550
Sulfate	mg/L	291	372	401	383	347	349	347	323	302	313	488	465	398	428
Thallium	μg/L	0.0300 J	0.0300 J	0.0650	0.0700	0.0500 J	0.0500	0.0590	0.0500 J	0.0500 J	0.0300 J	0.0570	0.0300 J	0.0200 J	0.0100 J
рН	SU	6.98	7.34	7.02	7.33	7.08	7.40	6.93	7.23	6.90	7.17	6.92	7.24	6.95	7.30

Notes:

μg/L: micrograms per liter mg/L: milligrams per liter pCi/L: picocuries per liter

SU: standard unit

U: Parameter was not present in concentrations above method detection limit and is reported as the reporting limit

J: Estimated value. Parameter was detected in concentrations below the reporting limit

Table 2: Groundwater Protection Standards
Mitchell Plant - Bottom Ash Pond

Constituent Name	MCL	RSL	Background Limit
Antimony, Total (mg/L)	0.006		0.000091
Arsenic, Total (mg/L)	0.01		0.0018
Barium, Total (mg/L)	2		0.06
Beryllium, Total (mg/L)	0.004		0.000077
Cadmium, Total (mg/L)	0.005		0.00009
Chromium, Total (mg/L)	0.1		0.0024
Cobalt, Total (mg/L)	n/a	0.006	0.0032
Combined Radium, Total (pCi/L)	5		2.41
Fluoride, Total (mg/L)	4		0.25
Lead, Total (mg/L)	n/a	0.015	0.0046
Lithium, Total (mg/L)	n/a	0.04	0.016
Mercury, Total (mg/L)	0.002		0.000008
Molybdenum, Total (mg/L)	n/a	0.1	0.002
Selenium, Total (mg/L)	0.05		0.0009
Thallium, Total (mg/L)	0.002		0.00011

Notes:

Grey cell indicates calculated UTL is higher than MCL.

MCL = Maximum Contaminant Level

RSL = Regional Screening Level

Calculated UTL (Upper Tolerance Limit) represents site-specific background values.

The higher of the calculated UTL or MCL/RSL is used as the GWPS.

Table 3: Appendix III Data Evaluation Mitchell Plant - Bottom Ash Pond

Parameter	Units	Description	MW-1505		MW-1506		MW-1507		MW-1509		MW-1510			
rarameter	Omis	Description	4/11/2018	8/22/2018	4/11/2018	8/22/2018	4/11/2018	8/21/2018	4/11/2018	8/21/2018	4/12/2018	8/21/2018		
Boron m	mg/L	Interwell Background Value (UPL)					1	36						
DOIOII	IIIg/L	Assessment Monitoring Result	8.00	8.00	5.73	5.91	10.4	9.29	6.81	6.97	10.3	9.13		
Calcium	mg/L	Interwell Background Value (UPL)	241											
Calcium	mg/L	Assessment Monitoring Result	282	274	275	270	296	272	272	279	292	268		
Chloride mg	mg/L	Interwell Background Value (UPL)	nterwell Background Value (UPL) 238											
Cilioride	mg/L	Assessment Monitoring Result	289	284	382	369	400	331	324	323	322	334		
Fluoride	mg/L	Intrawell Background Value (UPL)	0.2	200	0.2	200	0.2	200	0.160		0.200			
Tuonae	mg/L	Assessment Monitoring Result	0.050	0.020	0.050	0.050	0.060	0.070	0.150	0.140	0.050	0.090		
		Interwell Background Value (UPL) 7.35												
pН	SU	Interwell Background Value (LPL)					6.	84						
		Assessment Monitoring Result	7.02	7.33	7.08	7.40	6.93	7.23	6.92	7.24	6.95	7.30		
Sulfate	mg/L	Intrawell Background Value (UPL)	3:	51	34	15	37	77	45	50	39	99		
Sulfate	IIIg/L	Assessment Monitoring Result	401	383	347	349	347	323	488	465	398	428		
Total Dissolved Solids	ma/I	Interwell Background Value (UPL)					11	93						
Total Dissolved Solids	mg/L	Assessment Monitoring Result	1220	1520	1300	1590	1390	1430	1390	1540	1290	1550		

Notes:

UPL: Upper prediction limit

LPL: Lower prediction limit

Bold values exceed the background value.

Background values are shaded gray.

Based on a 1-of-2 resampling, a statistically significant increase (SSI)

is only identified when both samples in the detection monitoring

ATTACHMENT A Certification by Qualified Professional Engineer

Certification by Qualified Professional Engineer

I certify that the selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Mitchell Bottom Ash Pond CCR management area and that the requirements of 40 CFR 257.93(f) have been met.

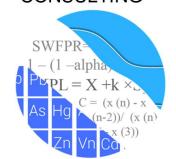
DAVID ANTHONY MILLER
Printed Name of Licensed Professional Engineer

Signature

22663

License Number

WEST VIRGINIA


Licensing State

01.08.19

Date

ATTACHMENT B Statistical Analysis Output

GROUNDWATER STATS CONSULTING

November 12, 2018

Geosyntec Consultants Attn: Ms. Allison Kreinberg 150 E. Wilson Bridge Rd., #232 Worthington, OH 43085

Dear Ms. Kreinberg,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the evaluation of groundwater data for American Electric Power Company's Mitchell Bottom Ash Pond. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the USEPA Unified Guidance (2009).

Sampling at each of the wells below began at Mitchell Bottom Ash Pond for the CCR program in 2016. The monitoring well network, as provided by Geosyntec Consultants, consists of the following: upgradient wells MW-1504 and MW-1508; and downgradient wells MW-1505, MW-1506, MW-1507, MW-1509 and MW-1510.

Data were sent electronically, and the statistical analysis was conducted according to the Statistical Analysis Plan and screening evaluation prepared by GSC and approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC.

The CCR program consists of the following constituents:

- Appendix III (Detection Monitoring) boron, calcium, chloride, fluoride, pH, sulfate, and TDS; and
- Appendix IV (Assessment Monitoring) antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium.

Time series plots for Appendix III and IV parameters are provided for all wells and constituents; and are used to evaluate concentrations over the entire record. Values in background which have previously been flagged as outliers may be seen in a lighter font and disconnected symbol on the graphs. Additionally, a summary of flagged values follows this letter.

Evaluation of Appendix III Parameters

Interwell prediction limits combined with a 1-of-2 resample plan were constructed for boron, calcium, chloride, pH, and TDS; and intrawell prediction limits combined with a 1-of-2 resample plan were constructed for fluoride and sulfate. The statistical method for applicable for each parameter was determined based on the results of the screening analysis performed in December 2017.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified and further research would be required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered a false positive result and, therefore, no further action is necessary. SSIs were noted for several of the Appendix III parameters and the results of those findings may be found in the Prediction Limit Summary tables following this letter.

When a statistically significant increase is identified, the data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether data are statistically increasing, decreasing or stable. Several statistically significant decreasing trends were noted, but no statistically significant increasing trends were found except for sulfate in downgradient well MW_1509. The Trend Test Summary Table follows this letter.

<u>Appendix IV – Assessment Monitoring Program</u>

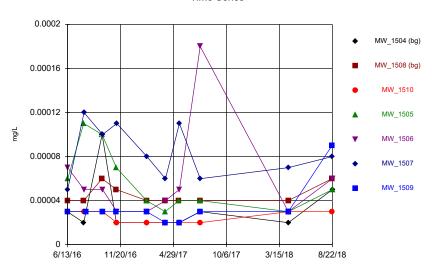
Evaluation of Appendix IV Parameters

Parametric tolerance limits were used to calculate background limits from pooled upgradient well data for Appendix IV parameters with a target of 95% confidence and 95% coverage to determine the Alternate Contaminant Level (ACL). The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. These limits were compared to the Maximum Contaminant Levels

(MCLs) and Regional Screening Levels (RSLs) in the Groundwater Protection Standards (GWPS) table following this letter to determine the highest limit for use as the GWPS in the Confidence Interval comparisons.

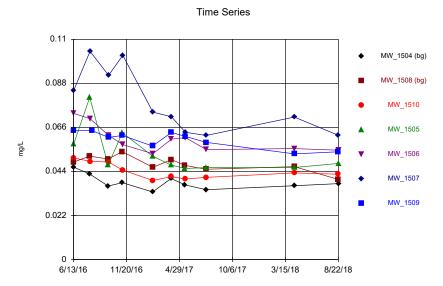
Confidence intervals were then constructed on downgradient wells for each of the Appendix IV parameters using the highest limit of either the MCL, RSL, or ACL as discussed above. Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard. No exceedances were noted at any of the downgradient wells. A summary of the confidence interval results follows this letter.

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Mitchell Bottom Ash Pond. If you have any questions or comments, please feel free to contact me.

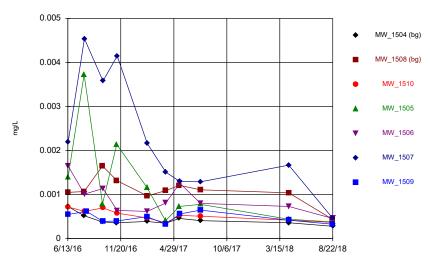

For Groundwater Stats Consulting,

Kristina Rayner

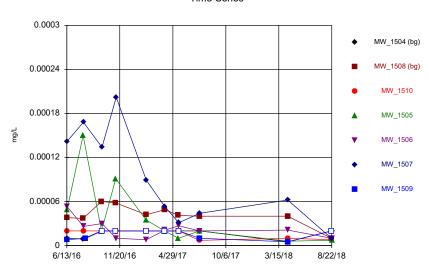
Kristina L. Rayner


Groundwater Statistician

Time Series

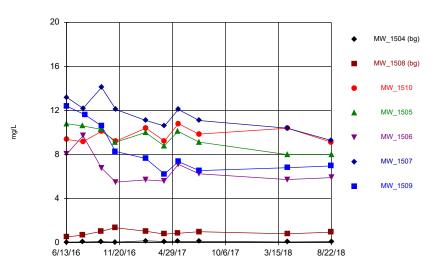

Constituent: Antimony, total Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Barium, Total Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Time Series

Constituent: Arsenic, Total Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells Mitchell BAP Client: Geosyntec Data: Mitchell BAP

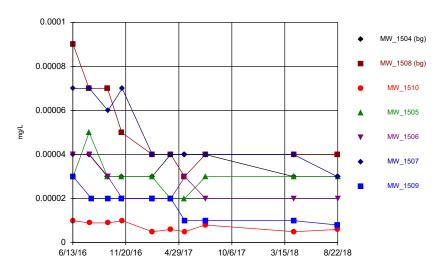

Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Beryllium, total Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

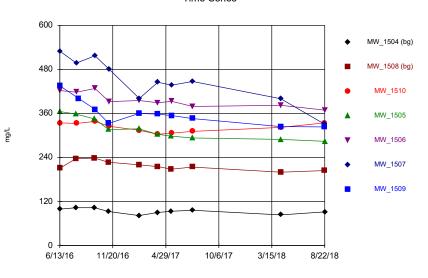
Time Series

Constituent: Boron, total Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells

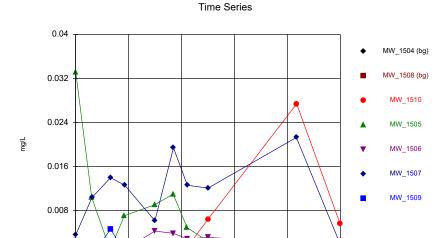

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

${\sf Sanitas^{\sf TM}} \ v. 9.6.11e \ {\sf Sanitas} \ {\sf software} \ {\sf utilized} \ {\sf by} \ {\sf Groundwater} \ {\sf Stats} \ {\sf Consulting}. \ {\sf UG}$

Time Series 400 MW_1504 (bg) MW_1508 (bg) 320 MW_1510 240 MW_1505 mg/L MW 1506 160 MW_1507 MW 1509 80 6/13/16 11/20/16 4/29/17 10/6/17 3/15/18 8/22/18


Constituent: Calcium, total Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Time Series


Constituent: Cadmium, total Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Chloride, total Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells

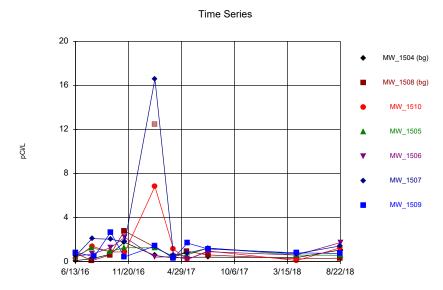
Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Chromium, total Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

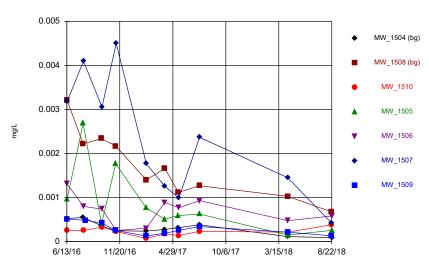
10/6/17

3/15/18

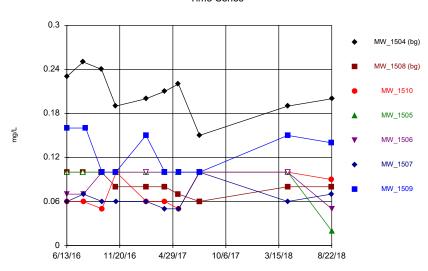

8/22/18

4/29/17

6/13/16

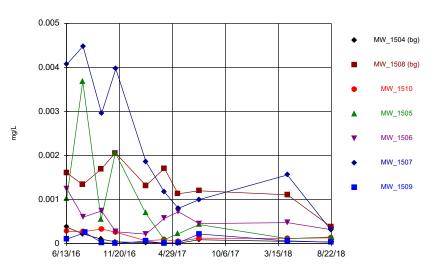

11/20/16

Constituent: Combined Radium 226 + 228 Analysis Run 11/11/2018 2:37 PM View: Time Series - All Well


Mitchell BAP Client: Geosyntec Data: Mitchell BAP

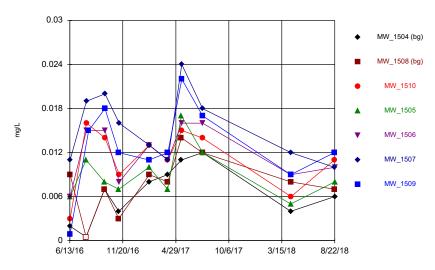
Time Series

Constituent: Cobalt, total Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells Mitchell BAP Client: Geosyntec Data: Mitchell BAP


Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

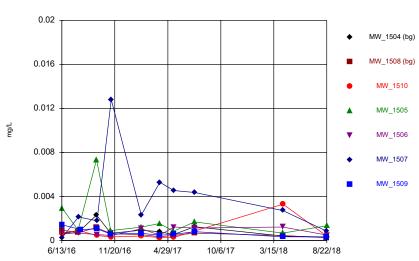
Constituent: Fluoride, total Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells

Mitchell BAP Client: Geosyntec Data: Mitchell BAP


Constituent: Lead, total Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells Mitchell BAP Client: Geosyntec Data: Mitchell BAP

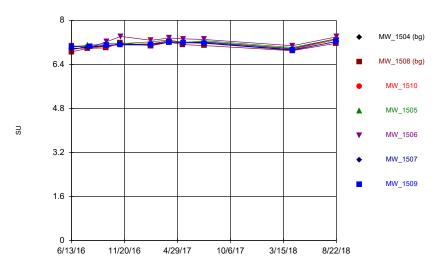
Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series 0.00003 MW_1504 (bg) MW_1508 (bg) 0.000024 MW_1510 0.000018 MW_1505 MW 1506 0.000012 MW_1507 MW 1509 0.000006 6/13/16 11/20/16 4/29/17 10/6/17 3/15/18 8/22/18

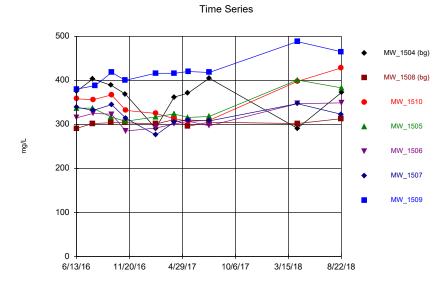

Constituent: Mercury, total Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Time Series

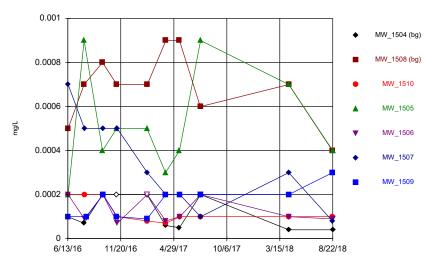
Constituent: Lithium, total Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells Mitchell BAP Client: Geosyntec Data: Mitchell BAP


Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG

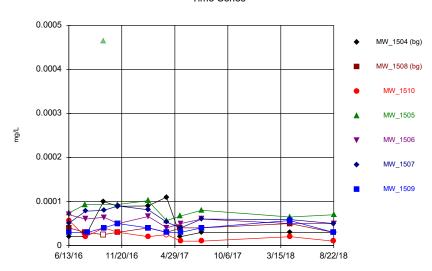
Constituent: Molybdenum, total Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells


Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Time Series

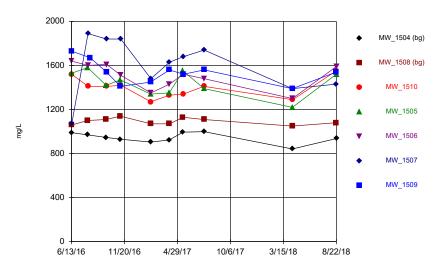

Constituent: pH, field Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Sulfate, total Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Time Series

Constituent: Selenium, Total Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells Mitchell BAP Client: Geosyntec Data: Mitchell BAP


Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

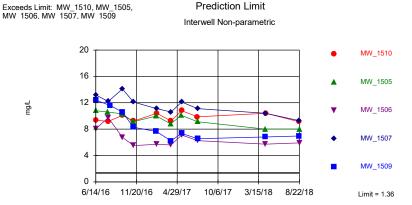
Constituent: Thallium, Total Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Time Series

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/11/2018 2:37 PM View: Time Series - All Wells

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

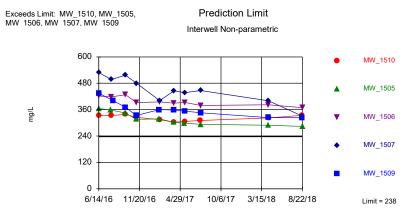

Interwell Prediction Limit Summary Table - Significant Results

		Mitchell	BAP Cli	ent: Geosyntec	Data: N	Mitchell BAP	Printed	11/11/20	18, 2:1	2 PM			
Constituent	Well	Upper Lim	. Lower Lim	n. Date	Observ.	Sig. Bg N	Bg Mear	n Std. De	v <u>%</u> NDs	ND Ac	j.Transform	<u>Alpha</u>	Method
Boron, total (mg/L)	MW_1510	1.36	n/a	8/21/2018	9.13	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
Boron, total (mg/L)	MW_1505	1.36	n/a	8/22/2018	8	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
Boron, total (mg/L)	MW_1506	1.36	n/a	8/22/2018	5.91	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
Boron, total (mg/L)	MW_1507	1.36	n/a	8/21/2018	9.29	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
Boron, total (mg/L)	MW_1509	1.36	n/a	8/21/2018	6.97	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
Calcium, total (mg/L)	MW_1510	241.2	n/a	8/21/2018	268	Yes 20	222.7	9.069	0	None	No	0.001504	Param 1 of 2
Calcium, total (mg/L)	MW_1505	241.2	n/a	8/22/2018	274	Yes 20	222.7	9.069	0	None	No	0.001504	Param 1 of 2
Calcium, total (mg/L)	MW_1506	241.2	n/a	8/22/2018	270	Yes 20	222.7	9.069	0	None	No	0.001504	Param 1 of 2
Calcium, total (mg/L)	MW_1507	241.2	n/a	8/21/2018	272	Yes 20	222.7	9.069	0	None	No	0.001504	Param 1 of 2
Calcium, total (mg/L)	MW_1509	241.2	n/a	8/21/2018	279	Yes 20	222.7	9.069	0	None	No	0.001504	Param 1 of 2
Chloride, total (mg/L)	MW_1510	238	n/a	8/21/2018	334	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
Chloride, total (mg/L)	MW_1505	238	n/a	8/22/2018	284	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
Chloride, total (mg/L)	MW_1506	238	n/a	8/22/2018	369	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
Chloride, total (mg/L)	MW_1507	238	n/a	8/21/2018	331	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
Chloride, total (mg/L)	MW_1509	238	n/a	8/21/2018	323	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
pH, field (SU)	MW_1506	7.352	6.838	8/22/2018	7.4	Yes 20	7.095	0.1256	0	None	No	0.000752	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW_1509	1193	n/a	8/21/2018	1540	Yes 20	1018	85.7	0	None	No	0.001504	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW_1510	1193	n/a	8/21/2018	1550	Yes 20	1018	85.7	0	None	No	0.001504	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW_1505	1193	n/a	8/22/2018	1520	Yes 20	1018	85.7	0	None	No	0.001504	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW_1506	1193	n/a	8/22/2018	1590	Yes 20	1018	85.7	0	None	No	0.001504	Param 1 of 2
Total Dissolved Solids (TDS) (mg/L)	MW 1507	1193	n/a	8/21/2018	1430	Yes 20	1018	85.7	0	None	No	0.001504	Param 1 of 2

Interwell Prediction Limit Summary Table - All Results

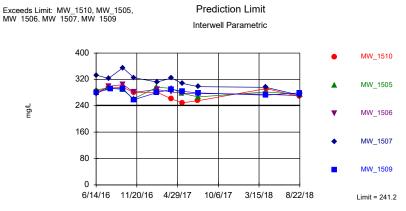
		Mitchell	BAP Clie	ent: Geosyntec	Data: I	Mitchell BAP	Printed	11/11/20	18, 2:1	2 PM			
Constituent	Well	Upper Lim	. Lower Lim	n. Date	Observ.	Sig. Bg N	Bg Mear	n Std. De	v <u>%NDs</u>	ND Ac	lj.Transform	<u>Alpha</u>	Method
Boron, total (mg/L)	MW_1505	1.36	n/a	8/22/2018	8	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
Boron, total (mg/L)	MW_1506	1.36	n/a	8/22/2018	5.91	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
Boron, total (mg/L)	MW_1507	1.36	n/a	8/21/2018	9.29	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
Boron, total (mg/L)	MW_1509	1.36	n/a	8/21/2018	6.97	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
Boron, total (mg/L)	MW_1510	1.36	n/a	8/21/2018	9.13	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
Calcium, total (mg/L)	MW_1505	241.2	n/a	8/22/2018	274	Yes 20	222.7	9.069	0	None	No	0.001504	Param 1 of 2
Calcium, total (mg/L)	MW_1506	241.2	n/a	8/22/2018	270	Yes 20	222.7	9.069	0	None	No	0.001504	Param 1 of 2
Calcium, total (mg/L)	MW_1507	241.2	n/a	8/21/2018	272	Yes 20	222.7	9.069	0	None	No	0.001504	Param 1 of 2
Calcium, total (mg/L)	MW_1509	241.2	n/a	8/21/2018	279	Yes 20	222.7	9.069	0	None	No	0.001504	Param 1 of 2
Calcium, total (mg/L)	MW_1510	241.2	n/a	8/21/2018	268	Yes 20	222.7	9.069	0	None	No	0.001504	Param 1 of 2
Chloride, total (mg/L)	MW_1505	238	n/a	8/22/2018	284	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
Chloride, total (mg/L)	MW_1506	238	n/a	8/22/2018	369	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
Chloride, total (mg/L)	MW_1507	238	n/a	8/21/2018	331	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
Chloride, total (mg/L)	MW_1509	238	n/a	8/21/2018	323	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
Chloride, total (mg/L)	MW_1510	238	n/a	8/21/2018	334	Yes 20	n/a	n/a	0	n/a	n/a	0.004024	NP (normality) 1 of 2
pH, field (SU)	MW_1505	7.352	6.838	8/22/2018	7.33	No 20	7.095	0.1256	0	None	No	0.000752	Param 1 of 2
pH, field (SU)	MW_1506	7.352	6.838	8/22/2018	7.4	Yes 20	7.095	0.1256	0	None	No	0.000752	Param 1 of 2
pH, field (SU)	MW_1507	7.352	6.838	8/21/2018	7.23	No 20	7.095	0.1256	0	None	No	0.000752	Param 1 of 2
pH, field (SU)	MW_1509	7.352	6.838	8/21/2018	7.24	No 20	7.095	0.1256	0	None	No	0.000752	Param 1 of 2
pH, field (SU)	MW_1510	7.352	6.838	8/21/2018	7.3	No 20	7.095	0.1256	0	None	No	0.000752	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW_1505	1193	n/a	8/22/2018	1520	Yes 20	1018	85.7	0	None	No	0.001504	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW_1506	1193	n/a	8/22/2018	1590	Yes 20	1018	85.7	0	None	No	0.001504	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW_1507	1193	n/a	8/21/2018	1430	Yes 20	1018	85.7	0	None	No	0.001504	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW_1509	1193	n/a	8/21/2018	1540	Yes 20	1018	85.7	0	None	No	0.001504	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW_1510	1193	n/a	8/21/2018	1550	Yes 20	1018	85.7	0	None	No	0.001504	Param 1 of 2

Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 20 background values. Annual per-constituent alpha = 0.004024 (1 of 2). Comparing 5 points to limit.

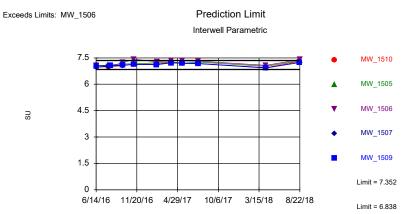
Constituent: Boron, total Analysis Run 11/11/2018 2:10 PM View: PLs - Interwell


Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 20 background values. Annual per-constituent alpha = 0.004024 (1 of 2). Comparing 5 points to limit.

Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=222.7, Std. Dev.=9.069, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9422, critical = 0.868. Kappa = 2.048 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001504. Comparing 5 points to limit.

Constituent: Calcium, total Analysis Run 11/11/2018 2:10 PM View: PLs - Interwell

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=7.095, Std. Dev.=0.1256, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9864, critical = 0.868. Kappa = 2.048 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.000752. Comparing 5 points to limit.

Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG

Exceeds Limit: MW_1510, MW_1505, MW 1506, MW 1507, MW 1509

Prediction Limit
Interwell Parametric

Background Data Summary: Mean=1018, Std. Dev.=85.7, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9477, critical = 0.868. Kappa = 2.048 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001504. Comparing 5 points to limit.

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/11/2018 2:10 PM View: PLs - Interwell Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Intrawell Prediction Limit Summary - Significant Results

Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 1/8/2019, 9:26 AM Constituent Well Upper Lim. Lower Lim. Date $\underline{\mathsf{Observ.}} \quad \underline{\mathsf{Sig.}} \, \underline{\mathsf{Bg}} \, \underline{\mathsf{N}} \quad \underline{\mathsf{Bg}} \, \underline{\mathsf{Mean}} \quad \underline{\mathsf{Std.}} \, \underline{\mathsf{Dev.}} \quad \underline{\mathsf{\%NDs}} \, \underline{\mathsf{ND}} \, \underline{\mathsf{AdjTransform}} \quad \underline{\mathsf{Alpha}}$ Method Sulfate, total (mg/L) MW_1510 399.1 n/a 8/21/2018 428 Yes 8 333.4 23.98 0 None No 0.001504 Param 1 of 2 383 Yes 8 321.6 10.56 0 None No Sulfate, total (mg/L) MW_1505 350.5 n/a 8/22/2018 0.001504 Param 1 of 2 345.4 n/a 8/22/2018 349 Yes 8 305.6 14.51 0 None No Sulfate, total (mg/L) MW_1506 0.001504 Param 1 of 2 465 Yes 8 407 15.64 0 None No 0.001504 Param 1 of 2 Sulfate, total (mg/L) MW_1509 449.9 n/a 8/21/2018

Intrawell Prediction Limit Summary - All Results

Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 1/8/2019, 9:26 AM Constituent Well Upper Lim. Lower Lim. Date Observ. Sig. Bg N Bg Mean Std. Dev. %NDs ND AdjTransform Alpha Method 0.2113 Param 1 of 2 Fluoride, total (mg/L) MW_1504 0.2984 n/a 8/22/2018 0.2 No 8 0.03182 0 None No 0.001504 Fluoride, total (mg/L) MW_1508 0.125 8/21/2018 0.08 No 8 0.08375 0.01506 0 0.001504 Param 1 of 2 n/a None No MW_1510 NP (normality) 1 of 2 Fluoride, total (mg/L) 0.2 8/21/2018 0.09 No 8 25 0.02144 n/a n/a n/a n/a n/a Fluoride, total (mg/L) MW_1505 0.2 n/a 8/22/2018 0.02 No 8 100 0.02144 NP (NDs) 1 of 2 n/a n/a n/a n/a MW_1506 NP (NDs) 1 of 2 Fluoride, total (mg/L) 0.2 n/a 8/22/2018 0.05 No 8 n/a n/a 75 n/a 0.02144 n/a Fluoride, total (mg/L) MW_1507 n/a 8/21/2018 n/a n/a NP (normality) 1 of 2 0.2 0.07 No 8 12.5 n/a n/a 0.02144 NP (normality) 1 of 2 Fluoride, total (mg/L) MW_1509 0.16 n/a n/a 8/21/2018 0.14 No 8 n/a 0 n/a 0.02144 n/a Sulfate, total (mg/L) MW_1504 468.9 8/22/2018 372 370.6 0 Param 1 of 2 n/a No 8 35.86 None No 0.001504 Sulfate, total (mg/L) MW_1508 318.3 8/21/2018 No 8 301.8 0 0.001504 Param 1 of 2 n/a 313 6.042 None No Sulfate, total (mg/L) MW_1510 399.1 8/21/2018 428 Yes 8 333.4 23.98 0 Param 1 of 2 n/a None No 0.001504 Sulfate, total (mg/L) MW_1505 350.5 321.6 Param 1 of 2 8/22/2018 383 Yes8 10.56 0 0.001504 n/a None No Sulfate, total (mg/L) MW_1506 345.4 n/a 8/22/2018 349 Yes 8 305.6 14.51 0 0.001504 Param 1 of 2 None No Sulfate, total (mg/L) MW_1507 376.9 n/a 8/21/2018 No 8 316.3 22.13 0 0.001504 Param 1 of 2 323 None No

465

Yes8

407

15.64

0

None No

0.001504

Param 1 of 2

Sulfate, total (mg/L)

MW_1509

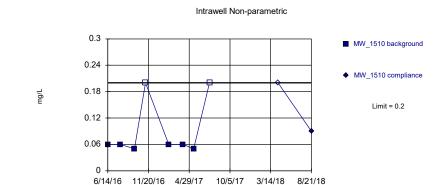
449.9

n/a

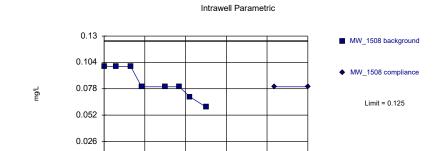
8/21/2018

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Within Limit


Background Data Summary: Mean=0.2113, Std. Dev.=0.03182, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9517, critical = 0.749. Kappa = 2.74 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.01504

Constituent: Fluoride, total Analysis Run 1/7/2019 7:40 PM View: PLs - Intrawell Mitchell BAP Client: Geosyntec Data: Mitchell BAP

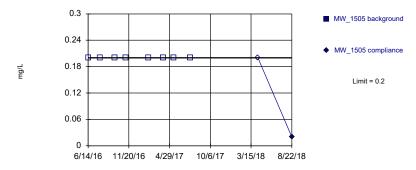

Prediction Limit

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

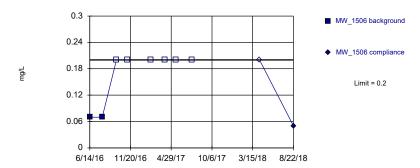
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. 25% NDs. Well-constituent pair annual alpha = 0.04242. Individual comparison alpha = 0.02144 (1 of 2).

Prediction Limit


Background Data Summary: Mean=0.08375, Std. Dev.=0.01506, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8711, critical = 0.749. Kappa = 2.74 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

6/14/16 11/20/16 4/29/17 10/5/17 3/14/18 8/21/18

Constituent: Fluoride, total Analysis Run 1/7/2019 7:40 PM View: PLs - Intrawell
Mitchell BAP Client: Geosyntec Data: Mitchell BAP


Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

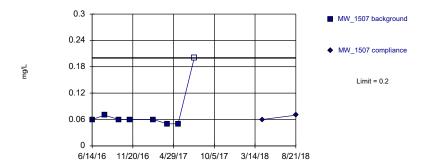
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 8) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.04242. Individual comparison alpha = 0.02144 (1 of 2).

Prediction Limit Within Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 8 background values. 75% NDs. Well-constituent pair annual alpha = 0.04242. Individual comparison alpha =

> Constituent: Fluoride, total Analysis Run 1/7/2019 7:40 PM View: PLs - Intrawell Mitchell BAP Client: Geosyntec Data: Mitchell BAP

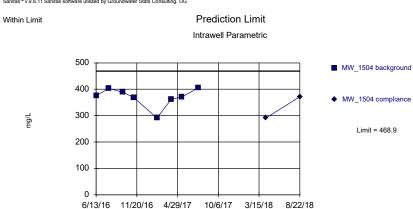
Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG


Prediction Limit Within Limit Intrawell Non-parametric 0.2 MW 1509 background 0.16 ♦ MW 1509 compliance 0.12 Limit = 0.16 0.08 0.04 6/14/16 11/20/16 4/29/17 10/5/17 3/14/18 8/21/18

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. Well-constituent pair annual alpha = 0.04242. Individual comparison alpha = 0.02144 (1 of 2).

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit


Intrawell Non-parametric

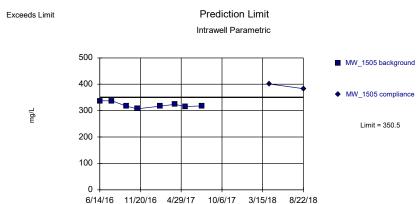
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 8 background values. 12.5% NDs. Well-constituent pair annual alpha = 0.04242. Individual comparison alpha = 0.02144 (1 of 2).

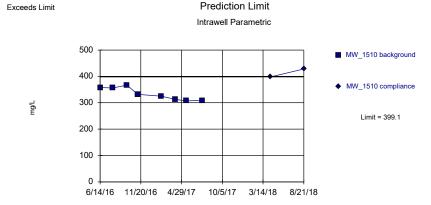
> Constituent: Fluoride, total Analysis Run 1/7/2019 7:40 PM View: PLs - Intrawell Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Background Data Summary: Mean=370.6, Std. Dev.=35.86, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8152, critical = 0.749. Kappa = 2.74 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha =

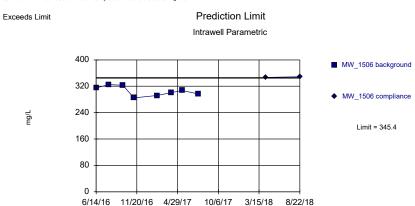
Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG




Background Data Summary: Mean=301.8, Std. Dev.=6.042, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9509, critical = 0.749. Kappa = 2.74 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.01504

Constituent: Sulfate, total Analysis Run 1/7/2019 7:40 PM View: PLs - Intrawell Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG


Background Data Summary: Mean=321.6, Std. Dev.=10.56, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8719, critical = 0.749. Kappa = 2.74 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Background Data Summary: Mean=333.4, Std. Dev.=23.98, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8854, critical = 0.749. Kappa = 2.74 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Constituent: Sulfate, total Analysis Run 1/7/2019 7:40 PM View: PLs - Intrawell Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Background Data Summary: Mean=305.6, Std. Dev.=14.51, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9536, critical = 0.749. Kappa = 2.74 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

80

0

Within Limit

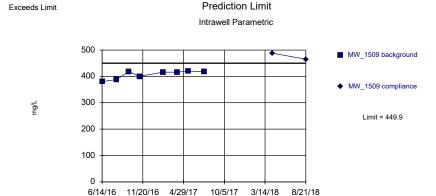
Intrawell Parametric

400
320

MW_1507 background

MW_1507 compliance

Limit = 376.9


Prediction Limit

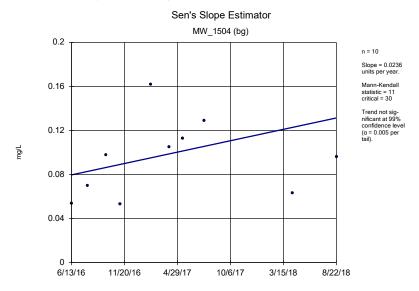
Background Data Summary: Mean=316.3, Std. Dev.=22.13, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9344, critical = 0.749. Kappa = 2.74 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.01504

6/14/16 11/20/16 4/29/17 10/5/17 3/14/18 8/21/18

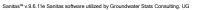
Constituent: Sulfate, total Analysis Run 1/7/2019 7:40 PM View: PLs - Intrawell Mitchell BAP Client: Geosyntec Data: Mitchell BAP

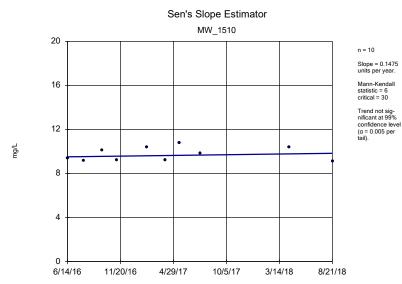
Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Background Data Summary: Mean=407, Std. Dev.=15.64, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.7926, critical = 0.749. Kappa = 2.74 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504.

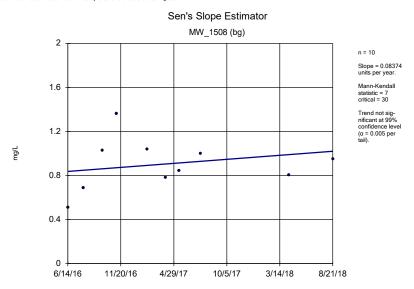

Constituent: Sulfate, total Analysis Run 1/7/2019 7:40 PM View: PLs - Intrawell Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Trend Test Summary Table - Significant Results

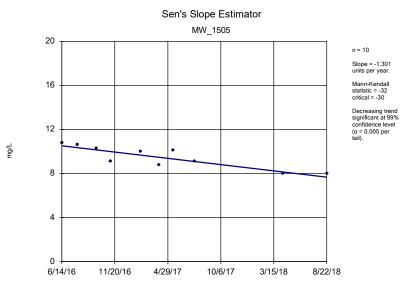

Mitchell BAP	Client: Geos	syntec Dat	a: Mitchell BAI	P Prin	ited 11/11	/2018, 2:	30 PM			
Well	Slope	Calc.	Critical	Sig.	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
MW_1505	-1.301	-32	-30	Yes	10	0	n/a	n/a	0.01	NP
MW_1507	-1.66	-33	-30	Yes	10	0	n/a	n/a	0.01	NP
MW_1509	-2.866	-31	-30	Yes	10	0	n/a	n/a	0.01	NP
MW_1507	-27.55	-35	-30	Yes	10	0	n/a	n/a	0.01	NP
MW_1505	-41.65	-43	-30	Yes	10	0	n/a	n/a	0.01	NP
MW_1506	-29.8	-33	-30	Yes	10	0	n/a	n/a	0.01	NP
MW_1507	-77.15	-33	-30	Yes	10	0	n/a	n/a	0.01	NP
MW_1509	-33.28	-37	-30	Yes	10	0	n/a	n/a	0.01	NP
MW_1509	38.88	33	30	Yes	10	0	n/a	n/a	0.01	NP
	Well MW_1505 MW_1507 MW_1509 MW_1507 MW_1505 MW_1506 MW_1507 MW_1509	Well Slope MW_1505 -1.301 MW_1507 -1.66 MW_1509 -2.866 MW_1507 -27.55 MW_1505 -41.65 MW_1506 -29.8 MW_1507 -77.15 MW_1509 -33.28	Well Slope Calc. MW_1505 -1.301 -32 MW_1507 -1.66 -33 MW_1509 -2.866 -31 MW_1507 -27.55 -35 MW_1505 -41.65 -43 MW_1506 -29.8 -33 MW_1507 -77.15 -33 MW_1509 -33.28 -37	Well Slope Calc. Critical MW_1505 -1.301 -32 -30 MW_1507 -1.66 -33 -30 MW_1509 -2.866 -31 -30 MW_1507 -27.55 -35 -30 MW_1505 -41.65 -43 -30 MW_1506 -29.8 -33 -30 MW_1507 -77.15 -33 -30 MW_1509 -33.28 -37 -30	Well Slope Calc. Critical Sig. MW_1505 -1.301 -32 -30 Yes MW_1507 -1.66 -33 -30 Yes MW_1509 -2.866 -31 -30 Yes MW_1507 -27.55 -35 -30 Yes MW_1505 -41.65 -43 -30 Yes MW_1506 -29.8 -33 -30 Yes MW_1507 -77.15 -33 -30 Yes MW_1509 -33.28 -37 -30 Yes	Well Slope Calc. Critical Sig. N MW_1505 -1.301 -32 -30 Yes 10 MW_1507 -1.66 -33 -30 Yes 10 MW_1509 -2.866 -31 -30 Yes 10 MW_1507 -27.55 -35 -30 Yes 10 MW_1505 -41.65 -43 -30 Yes 10 MW_1506 -29.8 -33 -30 Yes 10 MW_1507 -77.15 -33 -30 Yes 10 MW_1509 -33.28 -37 -30 Yes 10	Well Slope Calc. Critical Sig. N %NDs MW_1505 -1.301 -32 -30 Yes 10 0 MW_1507 -1.66 -33 -30 Yes 10 0 MW_1509 -2.866 -31 -30 Yes 10 0 MW_1507 -27.55 -35 -30 Yes 10 0 MW_1505 -41.65 -43 -30 Yes 10 0 MW_1506 -29.8 -33 -30 Yes 10 0 MW_1507 -77.15 -33 -30 Yes 10 0 MW_1509 -33.28 -37 -30 Yes 10 0	Well Slope Calc. Critical Sig. N %NDs Normality MW_1505 -1.301 -32 -30 Yes 10 0 n/a MW_1507 -1.66 -33 -30 Yes 10 0 n/a MW_1509 -2.866 -31 -30 Yes 10 0 n/a MW_1507 -27.55 -35 -30 Yes 10 0 n/a MW_1505 -41.65 -43 -30 Yes 10 0 n/a MW_1506 -29.8 -33 -30 Yes 10 0 n/a MW_1507 -77.15 -33 -30 Yes 10 0 n/a MW_1509 -33.28 -37 -30 Yes 10 0 n/a	Well Slope Calc. Critical Sig. N %NDs Normality Xform MW_1505 -1.301 -32 -30 Yes 10 0 n/a n/a MW_1507 -1.66 -33 -30 Yes 10 0 n/a n/a MW_1509 -2.866 -31 -30 Yes 10 0 n/a n/a MW_1507 -27.55 -35 -30 Yes 10 0 n/a n/a MW_1505 -41.65 -43 -30 Yes 10 0 n/a n/a MW_1506 -29.8 -33 -30 Yes 10 0 n/a n/a MW_1507 -77.15 -33 -30 Yes 10 0 n/a n/a MW_1509 -33.28 -37 -30 Yes 10 0 n/a n/a	Well Slope Calc. Critical Sig. N %NDs Normality Xform Alpha MW_1505 -1.301 -32 -30 Yes 10 0 n/a n/a 0.01 MW_1507 -1.66 -33 -30 Yes 10 0 n/a n/a 0.01 MW_1509 -2.866 -31 -30 Yes 10 0 n/a n/a 0.01 MW_1507 -27.55 -35 -30 Yes 10 0 n/a n/a 0.01 MW_1505 -41.65 -43 -30 Yes 10 0 n/a n/a 0.01 MW_1506 -29.8 -33 -30 Yes 10 0 n/a n/a 0.01 MW_1507 -77.15 -33 -30 Yes 10 0 n/a n/a 0.01 MW_1509 -33.28 -37 -30 Yes 10 0

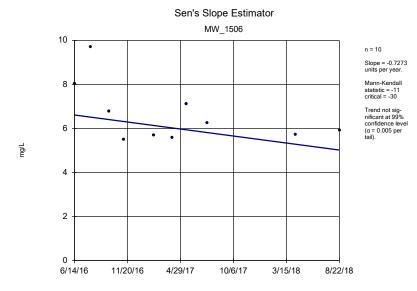

Trend Test Summary Table - All Results Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 11/11/2018, 2:30 PM

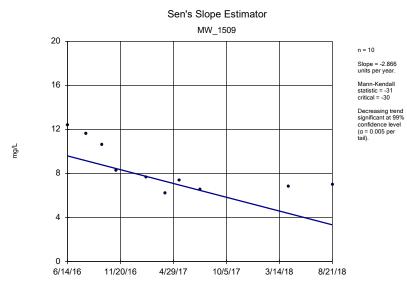
	Mitchell BAP	Client: Geos	syntec Da	ata: Mitchell BAF	P Prin	ted 11/11	/2018, 2:3	30 PM			
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	Xform	<u>Alpha</u>	Method
Boron, total (mg/L)	MW_1504 (bg)	0.0236	11	30	No	10	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW_1508 (bg)	0.08374	7	30	No	10	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW_1510	0.1475	6	30	No	10	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW_1505	-1.301	-32	-30	Yes	10	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW_1506	-0.7273	-11	-30	No	10	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW_1507	-1.66	-33	-30	Yes	10	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW_1509	-2.866	-31	-30	Yes	10	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW_1504 (bg)	3.942	6	30	No	10	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW_1508 (bg)	6.239	12	30	No	10	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW_1510	-14.75	-17	-30	No	10	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW_1505	-7.878	-13	-30	No	10	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW_1506	-8.69	-24	-30	No	10	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW_1507	-27.55	-35	-30	Yes	10	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW_1509	-3.959	-16	-30	No	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW_1504 (bg)	-6.065	-16	-30	No	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW_1508 (bg)	-17.1	-27	-30	No	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW_1510	-7.449	-12	-30	No	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW_1505	-41.65	-43	-30	Yes	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW_1506	-29.8	-33	-30	Yes	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW_1507	-77.15	-33	-30	Yes	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW_1509	-33.28	-37	-30	Yes	10	0	n/a	n/a	0.01	NP
pH, field (SU)	MW_1504 (bg)	0.1587	26	30	No	10	0	n/a	n/a	0.01	NP
pH, field (SU)	MW_1508 (bg)	0.0876	15	30	No	10	0	n/a	n/a	0.01	NP
pH, field (SU)	MW_1506	0.08941	14	30	No	10	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW_1504 (bg)	-14.8	-8	-30	No	10	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW_1508 (bg)	5.353	17	30	No	10	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW_1510	-28.08	-5	-30	No	10	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW_1505	11.41	7	30	No	10	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW_1506	13.67	9	30	No	10	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW_1509	38.88	33	30	Yes	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (m	MW_1504 (bg)	-42.26	-9	-30	No	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (m	MW_1508 (bg)	0	-1	-30	No	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (m	MW_1510	-39.25	-6	-30	No	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (m	MW_1505	-115.4	-13	-30	No	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (m	MW_1506	-130	-19	-30	No	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (m	MW_1507	-156	-12	-30	No	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (m	MW_1509	-86.9	-15	-30	No	10	0	n/a	n/a	0.01	NP



Constituent: Boron, total Analysis Run 11/11/2018 2:28 PM View: Trend Testing Mitchell BAP Client: Geosyntec Data: Mitchell BAP



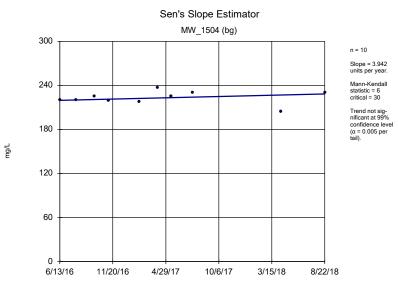

Constituent: Boron, total Analysis Run 11/11/2018 2:28 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP


Constituent: Boron, total Analysis Run 11/11/2018 2:28 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP

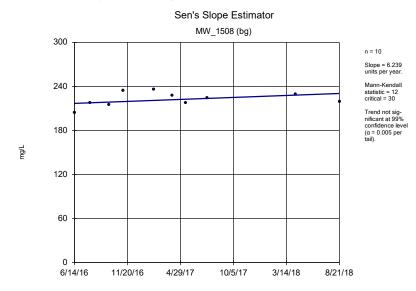
Constituent: Boron, total Analysis Run 11/11/2018 2:28 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP



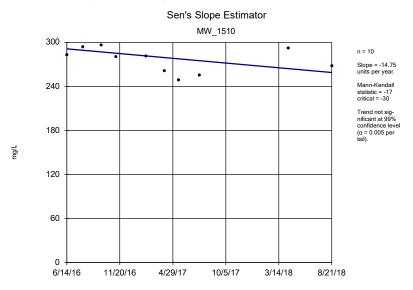
Constituent: Boron, total Analysis Run 11/11/2018 2:28 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP

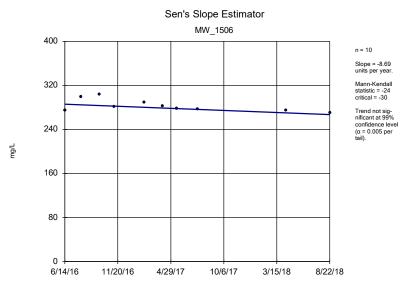


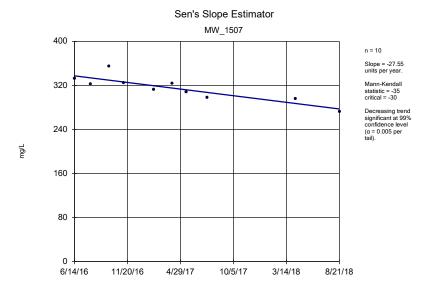
Constituent: Boron, total Analysis Run 11/11/2018 2:28 PM View: Trend Testing

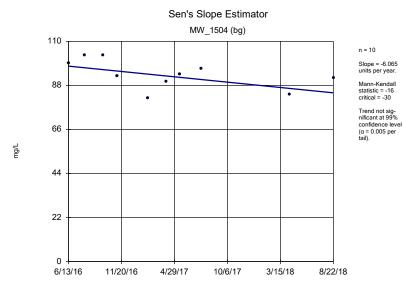

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

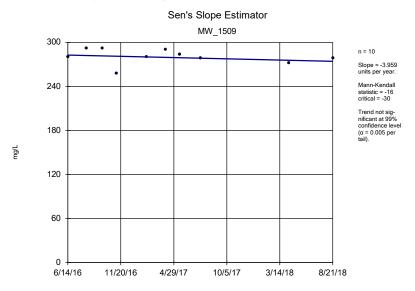
Constituent: Boron, total Analysis Run 11/11/2018 2:28 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP

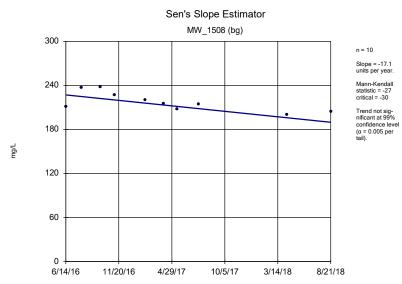

Constituent: Calcium, total Analysis Run 11/11/2018 2:28 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP

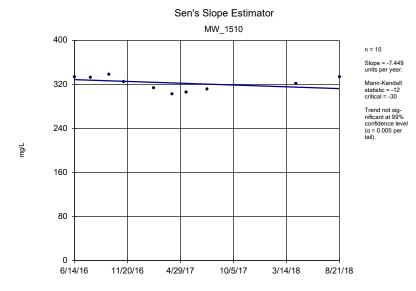

Constituent: Calcium, total Analysis Run 11/11/2018 2:28 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP


Constituent: Calcium, total Analysis Run 11/11/2018 2:28 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP

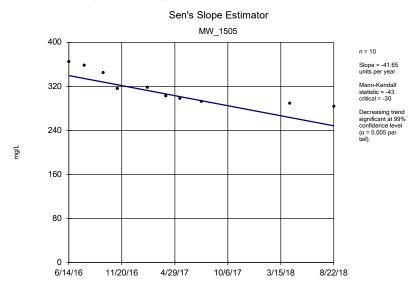

Constituent: Calcium, total Analysis Run 11/11/2018 2:28 PM View: Trend Testing Mitchell BAP Client: Geosyntec Data: Mitchell BAP

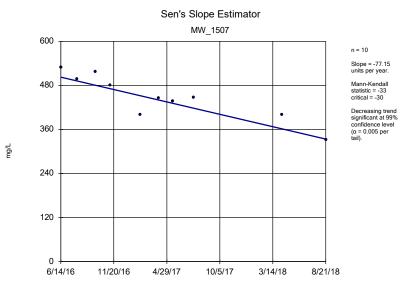

Constituent: Calcium, total Analysis Run 11/11/2018 2:28 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP

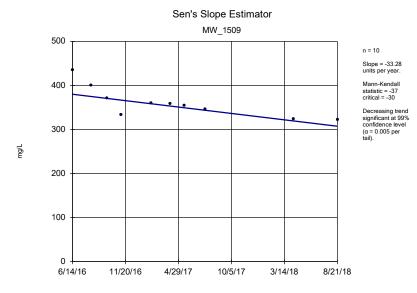

Constituent: Calcium, total Analysis Run 11/11/2018 2:29 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP

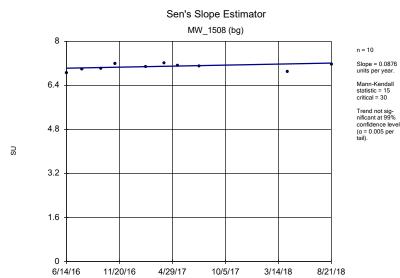

Constituent: Chloride, total Analysis Run 11/11/2018 2:29 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP

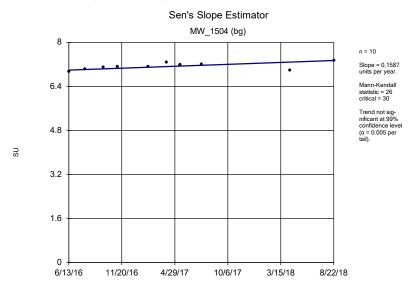

Constituent: Calcium, total Analysis Run 11/11/2018 2:29 PM View: Trend Testing Mitchell BAP Client: Geosyntec Data: Mitchell BAP

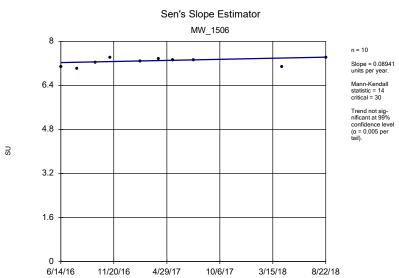

Constituent: Chloride, total Analysis Run 11/11/2018 2:29 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP

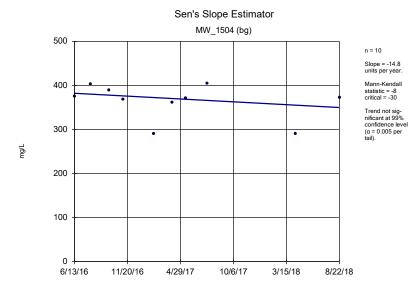

Constituent: Chloride, total Analysis Run 11/11/2018 2:29 PM View: Trend Testing Mitchell BAP Client: Geosyntec Data: Mitchell BAP

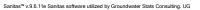

Constituent: Chloride, total Analysis Run 11/11/2018 2:29 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP

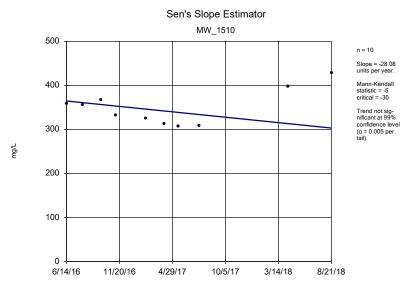

Constituent: Chloride, total Analysis Run 11/11/2018 2:29 PM View: Trend Testing Mitchell BAP Client: Geosyntec Data: Mitchell BAP


Constituent: Chloride, total Analysis Run 11/11/2018 2:29 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP

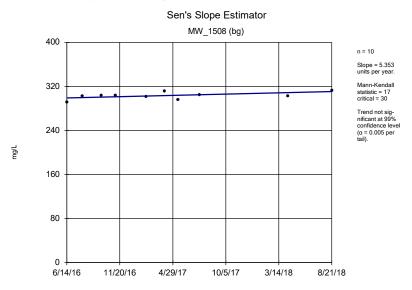

Constituent: Chloride, total Analysis Run 11/11/2018 2:29 PM View: Trend Testing Mitchell BAP Client: Geosyntec Data: Mitchell BAP


Constituent: pH, field Analysis Run 11/11/2018 2:29 PM View: Trend Testing Mitchell BAP Client: Geosyntec Data: Mitchell BAP

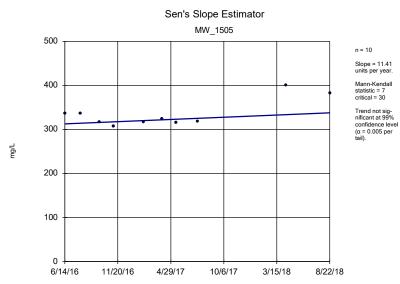

Constituent: pH, field Analysis Run 11/11/2018 2:29 PM View: Trend Testing Mitchell BAP Client: Geosyntec Data: Mitchell BAP

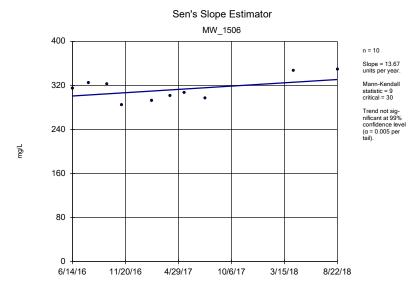


Constituent: pH, field Analysis Run 11/11/2018 2:29 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP

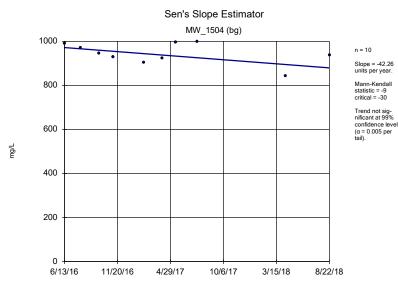


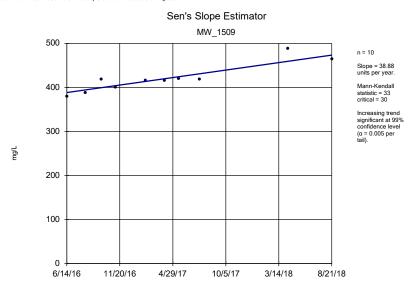
Constituent: Sulfate, total Analysis Run 11/11/2018 2:29 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP



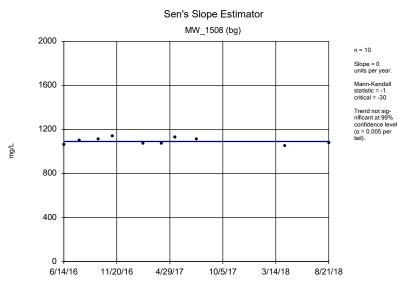

Constituent: Sulfate, total Analysis Run 11/11/2018 2:29 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Sulfate, total Analysis Run 11/11/2018 2:29 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP

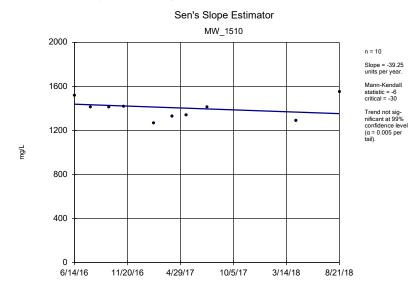

Constituent: Sulfate, total Analysis Run 11/11/2018 2:29 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP


Constituent: Sulfate, total Analysis Run 11/11/2018 2:29 PM View: Trend Testing

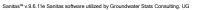
Mitchell BAP Client: Geosyntec Data: Mitchell BAP

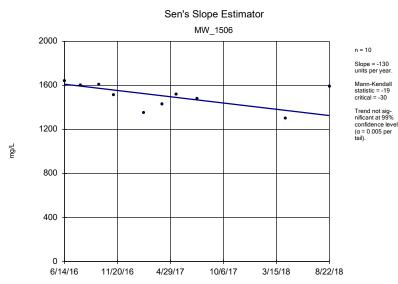


Constituent: Total Dissolved Solids [TDS] Analysis Run 11/11/2018 2:29 PM View: Trend Testing Mitchell BAP Client: Geosyntec Data: Mitchell BAP

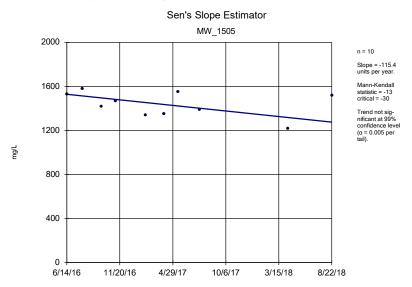


Constituent: Sulfate, total Analysis Run 11/11/2018 2:29 PM View: Trend Testing

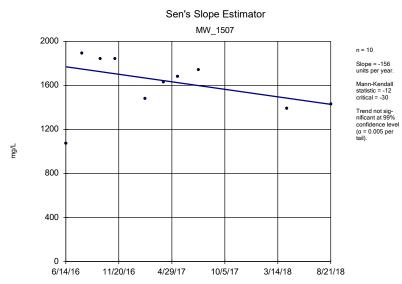

Mitchell BAP Client: Geosyntec Data: Mitchell BAP



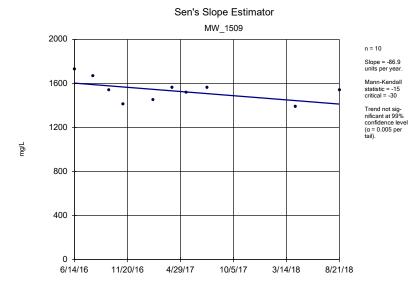
Constituent: Total Dissolved Solids [TDS] Analysis Run 11/11/2018 2:29 PM View: Trend Testing Mitchell BAP Client: Geosyntec Data: Mitchell BAP



Constituent: Total Dissolved Solids [TDS] Analysis Run 11/11/2018 2:29 PM View: Trend Testing
Mitchell BAP Client: Geosyntec Data: Mitchell BAP



Constituent: Total Dissolved Solids [TDS] Analysis Run 11/11/2018 2:29 PM View: Trend Testing Mitchell BAP Client: Geosyntec Data: Mitchell BAP



Constituent: Total Dissolved Solids [TDS] Analysis Run 11/11/2018 2:29 PM View: Trend Testing

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/11/2018 2:29 PM View: Trend Testing Mitchell BAP Client: Geosyntec Data: Mitchell BAP

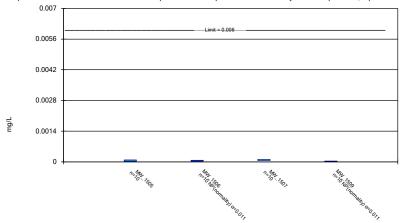
Constituent: Total Dissolved Solids [TDS] Analysis Run 11/11/2018 2:29 PM View: Trend Testing Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Upper Tolerance Limits

		Mitchell BAP	Cli	ent: Geosyntec	Data: Mitchell BA	AP Prin	ted 11/11	/2018, 2:18 PM		
Constituent	Well	Upper Lim.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Antimony, total (mg/L)	n/a	0.00009103	20	0.006085	0.001443	5	None	sqrt(x)	0.05	Inter
Arsenic, Total (mg/L)	n/a	0.001745	20	0.0007595	0.0004114	0	None	No	0.05	Inter
Barium, Total (mg/L)	n/a	0.05775	20	0.04322	0.006065	0	None	No	0.05	Inter
Beryllium, total (mg/L)	n/a	0.00007696	20	0.00002304	0.00002251	35	Cohen's	s No	0.05	Inter
Cadmium, total (mg/L)	n/a	0.00009	20	n/a	n/a	0	n/a	n/a	0.3585	NP Inter(normality)
Chromium, total (mg/L)	n/a	0.002346	20	0.0008811	0.0006116	0	None	No	0.05	Inter
Cobalt, total (mg/L)	n/a	0.003159	20	0.00101	0.0008968	0	None	No	0.05	Inter
Combined Radium 226 + 228 (pCi/L)	n/a	2.412	19	0.7433	0.3343	0	None	sqrt(x)	0.05	Inter
Fluoride, total (mg/L)	n/a	0.25	20	n/a	n/a	0	n/a	n/a	0.3585	NP Inter(normality)
Lead, total (mg/L)	n/a	0.004584	20	0.07481	0.0381	0	None	x^(1/3)	0.05	Inter
Lithium, total (mg/L)	n/a	0.01616	20	0.00705	0.003801	10	None	No	0.05	Inter
Mercury, total (mg/L)	n/a	8000000	20	n/a	n/a	65	n/a	n/a	0.3585	NP Inter(normality)
Molybdenum, total (mg/L)	n/a	0.001907	20	0.02624	0.007275	0	None	sqrt(x)	0.05	Inter
Selenium, Total (mg/L)	n/a	0.0009	20	n/a	n/a	15	n/a	n/a	0.3585	NP Inter(normality)
Thallium, Total (mg/L)	n/a	0.00011	20	n/a	n/a	5	n/a	n/a	0.3585	NP Inter(normality)

Confidence Interval - All Results (No Significant Results) Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 11/11/2018, 2:34 PM

Antimony, total (mg/L) MW_1505 0.00008225 0.00003175 0.006 No 10 10 No 0.01 Antimony, total (mg/L) MW_1506 0.00007 0.00003 0.006 No 10 0 No 0.011 Antimony, total (mg/L) MW_1507 0.0001059 0.00006206 0.006 No 10 0 No 0.01 Antimony, total (mg/L) MW_1509 0.00003 0.00002 0.006 No 10 0 No 0.011 Arsenic, Total (mg/L) MW_1505 0.001934 0.0004216 0.01 No 10 0 sqrt(x) 0.01	Method Param. NP (normality) Param.
Antimony, total (mg/L) MW_1506 0.00007 0.00003 0.006 No 10 0 No 0.011 Antimony, total (mg/L) MW_1507 0.0001059 0.00006206 0.006 No 10 0 No 0.01 Antimony, total (mg/L) MW_1509 0.0003 0.00002 0.006 No 10 0 No 0.011 Arsenic, Total (mg/L) MW_1505 0.001934 0.0004216 0.01 No 10 0 sqrt(x) 0.01	NP (normality) Param.
Antimony, total (mg/L) MW_1507 0.0001059 0.00006206 0.006 No 10 0 No 0.01 Antimony, total (mg/L) MW_1509 0.00003 0.00002 0.006 No 10 0 No 0.011 Arsenic, Total (mg/L) MW_1505 0.001934 0.0004216 0.01 No 10 0 sqrt(x) 0.01	Param.
Antimony, total (mg/L) MW_1509 0.00003 0.00002 0.006 No 10 0 No 0.011 Arsenic, Total (mg/L) MW_1505 0.001934 0.0004216 0.01 No 10 0 sqrt(x) 0.01	
Arsenic, Total (mg/L) MW_1505 0.001934 0.0004216 0.01 No 10 0 sqrt(x) 0.01	ND (PL)
	NP (normality)
	Param.
Arsenic, Total (mg/L) MW_1506 0.001231 0.0005935 0.01 No 10 0 No 0.01	Param.
Arsenic, Total (mg/L) MW_1507 0.003494 0.001078 0.01 No 10 0 No 0.01	Param.
Arsenic, Total (mg/L) MW_1509 0.0005793 0.0003707 0.01 No 10 0 No 0.01	Param.
Barium, Total (mg/L) MW_1505 0.0633 0.0455 2 No 10 0 No 0.011	NP (normality)
Barium, Total (mg/L) MW_1506 0.06622 0.0541 2 No 10 0 No 0.01	Param.
Barium, Total (mg/L) MW_1507 0.09293 0.06433 2 No 10 0 No 0.01	Param.
Barium, Total (mg/L) MW_1509 0.06364 0.05608 2 No 10 0 No 0.01	Param.
Beryllium, total (mg/L) MW_1505 0.000091 0.000006 0.004 No 10 20 No 0.011	NP (Cohens/xfrm)
Beryllium, total (mg/L) MW_1506 0.00003432 0.00001088 0.004 No 10 0 No 0.01	Param.
	Param.
	NP (normality)
	NP (normality)
	NP (normality)
- · · · · · · · · · · · · · · · · · · ·	NP (normality)
- · · · · · · · · · · · · · · · · · · ·	Param.
	Param.
	Param.
- · · · · · · · · · · · · · · · · · · ·	Param.
- · · · · · · · · · · · · · · · · · · ·	Param.
- · · · · · · · · · · · · · · · · · · ·	Param.
	Param.
-	Param.
	Param.
-	NP (normality)
	Param.
	NP (normality)
	Param.
	NP (NDs)
	NP (normality)
- · · · · ·	
-	NP (normality)
	NP (normality)
	Param.
· · · · · · · · · · · · · · · · · · ·	Param.
· · · · · · · · · · · · · · · · · · ·	Param.
	Param.
-	Param.
· · · · · · · · · · · · · · · · · · ·	Param.
· · · · · · · · · · · · · · · · · · ·	Param.
· · · · · · · · · · · · · · · · · · ·	Param.
-	NP (normality)
-	NP (normality)
-	Param.
-	NP (NDs)
	Param.
	Param.
	Param.
	Param.
· · · ·	Param.
	NP (normality)
Selenium, Total (mg/L) MW_1507 0.0005199 0.0001561 0.05 No 10 0 No 0.01	Param.

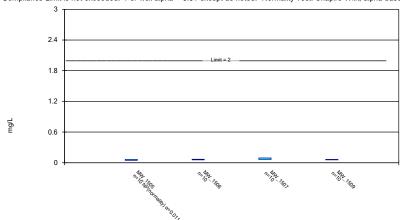

Page 2

Confidence Interval - All Results (No Significant Results) Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 11/11/2018, 2:34 PM

		Mitchell BAP	Client: Geosyntec Data: Mitchell BAP			AP Prir	nted 11/11/2	2018, 2:34 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Selenium, Total (mg/L)	MW_1509	0.0002	0.00009	0.05	No	10	0	No	0.011	NP (normality)
Thallium, Total (mg/L)	MW_1505	0.00009253	0.00006324	0.002	No	9	0	No	0.01	Param.
Thallium, Total (mg/L)	MW_1506	0.00006437	0.00004763	0.002	No	10	0	No	0.01	Param.
Thallium, Total (mg/L)	MW_1507	0.00007913	0.00004927	0.002	No	10	0	No	0.01	Param.
Thallium, Total (mg/L)	MW_1509	0.00005	0.00003	0.002	No	10	0	No	0.011	NP (normality)

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

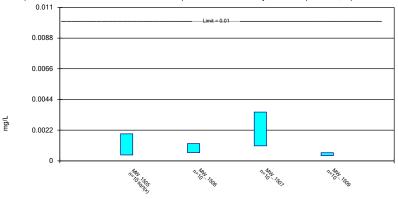

Constituent: Antimony, total Analysis Run 11/11/2018 2:32 PM View: Confidence Intervals - Appendix IV

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

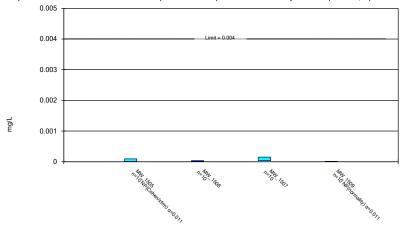


Constituent: Barium, Total Analysis Run 11/11/2018 2:32 PM View: Confidence Intervals - Appendix IV

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

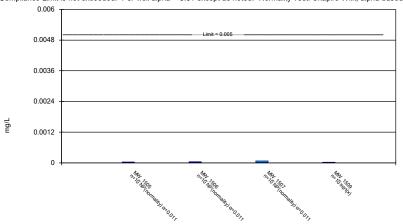
Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Arsenic, Total Analysis Run 11/11/2018 2:32 PM View: Confidence Intervals - Appendix IV

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

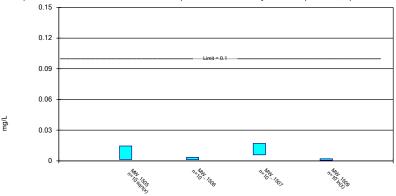
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Cadmium, total Analysis Run 11/11/2018 2:32 PM View: Confidence Intervals - Appendix IV

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

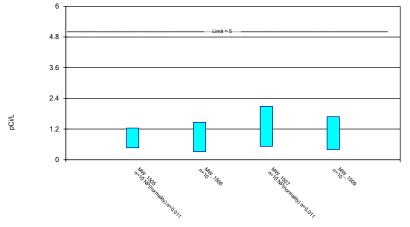
Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG


Parametric Confidence Interval

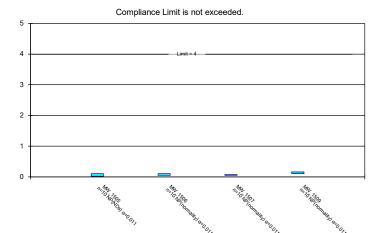
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Chromium, total Analysis Run 11/11/2018 2:32 PM View: Confidence Intervals - Appendix IV

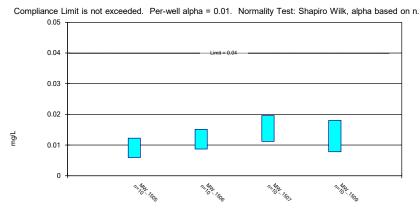
Mitchell BAP Client: Geosyntec Data: Mitchell BAP


Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

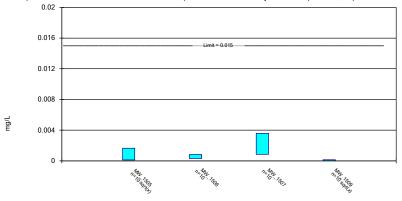
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Non-Parametric Confidence Interval



Constituent: Fluoride, total Analysis Run 11/11/2018 2:32 PM View: Confidence Intervals - Appendix IV

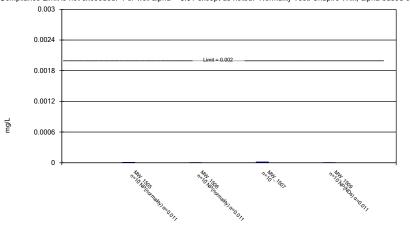
Mitchell BAP Client: Geosyntec Data: Mitchell BAP


Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric Confidence Interval

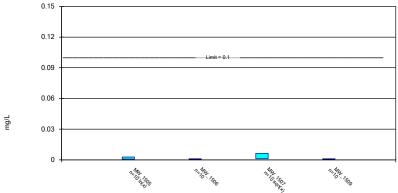
Parametric Confidence Interval

 $\label{eq:compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.$


Constituent: Lead, total Analysis Run 11/11/2018 2:32 PM View: Confidence Intervals - Appendix IV

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

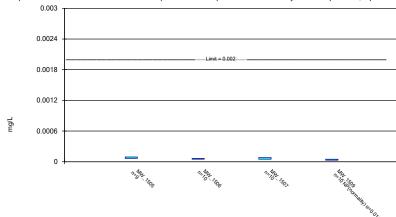
Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

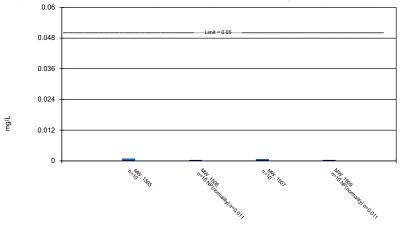

Constituent: Molybdenum, total Analysis Run 11/11/2018 2:33 PM View: Confidence Intervals - Appendix I

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Thallium, Total Analysis Run 11/11/2018 2:33 PM View: Confidence Intervals - Appendix IV

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.11e Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Selenium, Total Analysis Run 11/11/2018 2:33 PM View: Confidence Intervals - Appendix IV

Mitchell BAP Client: Geosyntec Data: Mitchell BAP