

SCOTT A. THOMPSON Executive Director

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

October 29, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re: Alternate Source Demonstration for Lithium –Bottom Ash Pond Public Service Company of Oklahoma Northeastern Power Station Rogers County Solid Waste Permit No. none

Dear Ms. Parker-Witt:

On July 8, 2019, DEQ denied the alternate source demonstration (ASD) for lithium in the Bottom Ash Pond (BAP) that was submitted by AEP/Public Service Company of Oklahoma Northeastern Power Station (NPS) to demonstrate that a source other than the coal combustion residuals (CCR) unit caused the lithium statistically significant level (SSL) detected in monitoring well SP-10. DEQ stated in the letter that if additional information was attained to support a revised ASD, DEQ would re-evaluate the revised ASD.

On September 13, 2019, NPS submitted a revised ASD that addressed concerns DEQ had with the ASD which proposed naturally occurring concentrations of lithium in groundwater are the source of the SSL in SP-10.

In the revised ASD, NPS questioned DEQ's statement in the July 8, 2019 letter that the lithium concentration in monitoring well SP-5R was "not elevated". To clarify, DEQ's meaning of elevated level in the July 8, 2019 letter meant the concentration of lithium detected in SP-5R was not elevated when compared to lithium levels in the lower zone as measured in SP-6, SP-7 and SP-10. Similarly lithium in SP-8, which is screened in the lower zone, was not elevated leading DEQ to question the conceptual model which proposes the clay mineral in lower zone shales is the source of elevated lithium.

NPS sampled and analyzed the sediment, leachate and pore water in the BAP to compare to the data collected from SP-10. The results showed lithium in the sediment leachate and pore water measured 1 μ g/L and 3 μ g/L, respectively, compared to 286 μ g/L measured in SP-10 on March 14, 2019. The lithium concentration of the sluice water (5.87 μ g/L) entering the BAP was also much lower than that in SP-10. DEQ agrees that the low concentration of lithium in the BAP as well as the different water chemistry as depicted in the Piper diagram furthers the proposal that the BAP is not a direct source of the lithium SSL in SP-10.

 \mathbf{c}

Ms. Jill Parker-Witt, P.E. American Electric Power October 29, 2019 Page 2 of 2

DEQ reviewed the additional information concerning SP-5R and SP-8 provided in the revised ASD. DEQ accepts that the elevated lithium concentration detected in SP-10 may be produced from the shale lenses within the screened interval of SP-10.

The new data presented in both ASDs depicts a new conceptual model that still does not completely fit with all of the groundwater sampling data. Please contact DEQ to arrange a time to discuss modifying the groundwater monitoring network.

DEQ accepts the revised ASD as submitted. The BAP may return to assessment monitoring in accordance with OAC 252:517-9-6(g)(3)(B). NPS must include the revised ASD in the annual groundwater monitoring and corrective action report required by OAC 252:517-9-1(e).

If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely,

Hillary Young, P.

Chief Engineer Land Protection Division

HY/ckh

American Electric Power 502 North Allen Avenue Shreveport, LA 71101 AEP.com

September 11, 2019

Via U.S. and electronic mail

Ms. Hillary Young Oklahoma Department of Environmental Quality ("ODEQ") 707 North Robinson, P.O. Box 1677 Oklahoma City, OK 73101-1677

Re: Alternate Source Demonstration ("ASD") for lithium- Bottom Ash Pond Public Service Company of Oklahoma Northeastern Power Station (NPS)

Dear Ms. Young,

PSO received ODEQ's correspondence dated July 8, 2019 communicating that ODEQ could not conclude that NPS's bottom ash pond ("BAP") was not the source of lithium detected in the groundwater above the Groundwater Protective Standard (GWPS) based on the data presented. We appreciate ODEQ's consideration of PSO's ASD and understand that at this time, ODEQ has not approved the ASD. ODEQ's correspondence identified possible deficiencies in the ASD that could be developed further and ODEQ inferred that it would reconsider the ASD in light of additional information. PSO would like to provide clarification as well as additional data and information for ODEQ's reconsideration that an alternate source exists for lithium other than the BAP.

This letter will present the following lines of evidence in support of the existence of naturally occurring concentrations of groundwater lithium at the Site:

- Upgradient wells contain higher lithium concentrations than EPA's Regional Screening Levels (0.04 mg/L)
- Upgradient well SP-5R contains higher concentrations of lithium than upgradient well SP-4, even though SP-5R is farther from the BAP than SP-4
- Detection of a higher lithium concentration in the mineral formation (76 mg/kg) than in the BAP solids (15 mg/kg)
- Detection of a lower lithium concentration in the BAP sluiced water and BAP pore water than in the groundwater
- Leachability of the BAP sediments produced a lithium concentration equal to the method detection level (0.001 mg/L)
- The water chemistries of the BAP sediment, pore water, and pond water are similar but they are very different from SP-10's water chemistry, indicating the waters are not from the same source
- The spatial distribution of lithium in the groundwater indicates there is an increasing lithium concentration with depth and distance from the BAP, which does not conform to the principles of contaminate transport

A. Clarification of ASD submittal

After reviewing ODEQ's letter, PSO realized certain information in the ASD may not have been as evident and would benefit from further clarification. Specifically, PSO would like to provide additional clarification and information to address certain statements made by ODEQ in their letter.

The paragraph and statements for which PSO will provide further clarification are on page 2 of ODEQ's July 8, 2019 letter:

Elevated lithium concentrations were detected in down gradient monitoring well SP-10; however, *lithium was not detected in elevated levels in upgradient, monitoring well SP - 5R* even though *boring logs from SP-5R show the monitoring well contains interbeds of dark limey shale within the screened interval.* Also SP-8, *located near SP-10, and*

screened across a lower zone shale exhibits low concentrations of lithium. If the lithium at SP-10 was due to the presence of shale lenses within the screened interval of SP-10, then both SP-5R and SP-8 should exhibit elevated levels of lithium. The conceptual model that NPS proposed does not fit the actual ground water sampling data. [emphasis added]

First, PSO would like to provide context to the statement: "...lithium was not detected in elevated levels in upgradient monitoring well SP-5R..." PSO is not certain what lithium concentration ODEQ is using but in the ASD PSO relies on EPA's Regional Screening level (RSL, 4-2019) for lithium which is 0.04 mg/L that supersedes the former EPA Region 3 (RBC Table), Region 6 (HHMSSL Table), and 9 (PRG Table) (see attached table). SP-5R is located approximately 2,000 feet upgradient (77 yrs travel time, given the estimated groundwater velocity of 0.071 ft/day or 26 ft/yr) from the BAP. During the collection of groundwater background data, SP-5R had lithium concentrations that ranged from 0.100 mg/L to 0.163 mg/L. Additionally during the collection of background data, SP-4 (located 100 feet upgradient of the BAP) had lithium concentrations that ranged from 0.0697 mg/l to 0.136 mg/L, less than that found in SP-5R. The lithium concentrations in these wells are 1.75 to 4 times greater than EPA's RSL. Therefore, PSO interprets the naturally occurring lithium concentrations in these upgradient, background wells to be "elevated" as compared to the EPA's RSL. The presence of "elevated" lithium in the upgradient wells, which has produced a GWPS of 0.15 mg/L (3.75 times the EPA's RLS), particularly with greater concentrations of lithium detected farther from the BAP, supports the conclusion that lithium is naturally occurring within the groundwater at the site.

ODEQ continues with the phrase: "...even though boring logs from SP-5R show that the monitoring well contains interbeds of dark limey shale within the screened interval." SP-5R was drilled initially to a depth of 35 ft but did not produce water therefore the well was re-drilled to a total depth of 75 feet with a screen interval of 34-75 ft bgs. [Top of sand pack at 31 ft bgs]. Moisture was encountered around 61 feet. The boring logs for SP-5R show the limey shale present at 4ft -12 ft bgs and then again from 30-35 ft bgs. The re-drilled log also indicates that SP-5R's screen interval contains very little limey shale and there is no mention in the re-drilled

log that the frequency of limey shale layers increasing with depth. The SP-5R boring log differs to the boring log for SP-10 that states that the frequency of shale layers does appear to increase with depth. Laboratory analysis of the limey shale material shows that it contains 76 mg/kg lithium (solids expressed in mg/kg; groundwater expressed as mg/L).

Therefore, lower groundwater lithium concentrations in SP-5R (ranging from 0.100 mg/L to 0.163 mg/L) can be expected with the presence of less lithium containing material within the screened interval of SP-5R than those concentrations detected in SP-10 (ranging from 0.278 mg/L to 0.329 mg/L) which was observed to have more lithium containing material. Even though it is not possible to identify the actual location where groundwater encounters the limey shale, this evidence further verifies that lithium resides in the geological formation and the lithium concentrations in groundwater vary based on the amount of mineral content of the formation within the screened intervals of the wells.

Finally, ODEQ states, "SP-8, located near SP-10, and screened across a lower zone shale exhibits low concentrations of lithium." SP-8 is located approximately 750 feet from SP-10 and is "nested" with SP-11. SP-10 is "nested" with SP-9. See figure below.

Since SP-8 is not within the CCR groundwater well network, SP-8 is not sampled on a regular basis. The available concentrations of lithium detected in SP-8 are listed below.

	Sample Date	Li (mg/l)
	2	
SP-8	11/03/16	0.337
SP-8	5/18/2017	0.128
SP-8	6/15/2017	0.0295*
SP-8	6/27/2017	0.0179*
SP-8	7/12/2017	0.0359*
SP-8	3/14/2019	0.780

The "lower concentrations" of lithium (denoted in the table by an asterisk) occurred during a time period when samples were collected temporally close together (12-28 days) only allowing enough time for groundwater to travel less than 2 feet through the lithology (given a groundwater velocity of 0.071 ft/day). The variation of groundwater lithium concentrations in SP-8 is attributed to the time allotted for the dissolution of lithium from the solid formation material into the groundwater. The longer the period between sampling events results in detecting higher lithium concentrations in SP-8 than those detected in SP-10, which is part of the CCR monitoring well network and is sampled more regularly.

As mentioned above, SP-8 (screen interval 59-71 ft bgs) is nested with SP-11(screen interval is 16-19 ft bgs) and these wells can be used to compare the lithium concentrations in the upper and lower groundwater bearing zones. Samples collected from these nested wells on 3/14/19 show the lithium concentrations in SP-11 (the shallower well) as 0.094 mg/L and in SP-8 (the deeper well) as 0.780 mg/L.

As noted above, SP-10 (screen interval of 40-50 ft bgs) is nested with SP-9 (screen interval of 65-75 ft. bgs). SP-9 is also not within the groundwater monitoring well network so it is not sampled on a regular basis. However, samples collected from SPs 9 and 10 on 3/14-15/19 show

that the shallower well SP-10 contained 0.286 mg/L lithium and the deeper well SP-9 contained 2.75 mg/L in the groundwater.

Because wells SPs 6 thru 9 were logged by reviewing the cuttings, the ability to accurately identify the lithology is limited. Therefore, borings BAP-B1 (total depth of 186 ft bgs) and BAP-B2 (total depth of 90 ft bgs) were advanced to clearly identify the vertical lithologies, which were presented in the ASD. BAP-B2 was located within 150 feet from SP-8 and screened between 59-71 ft bgs (which is the same screen interval of SP-8). Unfractured limestone was observed with alternating limestone and shale, not a uniform shale unit as described from SP-8's cuttings. The BAP-B1 boring demonstrates that limestone with interbedded clay material extends to 100 ft bgs at which point a shale unit was encountered.

Based on the principles of contaminate hydrogeology, the predominate transport mechanism is advection, where solutes are transported along with groundwater in the direction of decreasing hydraulic gradient. Additionally, solutes are transported through diffusion, where a solute in water moves from an area of greater concentration towards an area of less concentration, as long as a concentration gradient exists, even if the groundwater is not moving. Therefore, a release from a unit would produce a more concentrated zone of lithium closer to the source, and the concentration would decreased with distance. The extremely low groundwater flow velocity and low effective porosity at the Site would produce this type of contaminate distribution with higher concentrations of lithium in wells that have their screen interval set at the elevation closer to that of the BAP's bottom, if a release of lithium had occurred. However, the lithium concentration detected in the shallower zone (in wells SP 10 and 11) is less than that found in the deeper zone, (SPs 8 and 9).

Even though the deeper screened wells SP-6 (60-70 ft bgs) and SP-7 (70-80 ft bgs) are not nested with shallower screened wells SPs 1 and 2 (both at 24-35 ft bgs), they also provide evidence that the spatial distribution of groundwater lithium concentrations do not reflect the principles of contaminate transport. During the collection of the background data, the lithium concentration in shallow well SP-1 ranged from 0.003 mg/L to 0.009 mg/L and in SP-2 ranged from 0.05 mg/L to 0.11 mg/L. These concentrations are three (3) orders of magnitude lower than the lithium

concentrations detected in the deeper wells SP-6 (1.55 mg/L and 1.89 mg/L) and SP-7 (2.02 mg/L and 3.83 mg/L).

Additionally well MW-8D, which is located approximately 300 feet south and side gradient to groundwater flow from the BAP and 900 feet upgradient from the fly ash landfill, has a screen interval (50-60 ft bgs) which is approximately the same elevation as SP-10 screen interval. The soil boring for MW- 8D indicates that the shale beds become thicker after 29 ft bgs. Since MW-8D is located much farther from the BAP than SP-10, PSO expected that MW-8D's lithium concentration would be less than SP-10 even if a release from the BAP had occurred. However, the lithium concentrations detected in MW-8D during the collection of background data, ranged from 1.07-1.44 mg/L, which is an order of magnitude greater than what has been detected in SP-10.

All this spatially distributed data demonstrates that the shallow groundwater zones contain less lithium than the deeper zones and provides further support that the BAP is not the source of lithium detected in the groundwater monitoring well network.

B. New Information

ODEQ also stated that "NPS did not sample and analyze the sediment in the BAP for lithium or other constituents to compare that data to the data collected in SP-10." Therefore, PSO recently collected a sediment sample from the bottom of the BAP near SP-10. The sediment was evaluated using EPA test method 1312/6010B for the leachability of the sediment and EPA test method 6010B for the contents of the pore water. The results indicated that the sediment leached 0.001 mg/L lithium and the pore water contained 0.003 mg/L lithium. These concentrations are two (2) orders of magnitude below the concentrations of lithium detected in SP-10. See attached laboratory report. Additionally, the total lithium detected in the bottom ash solids was 15 mg/kg, which is much less than the lithium detected in the lithological minerals (78 mg/kg). The differences in these concentration also supports that the BAP is not the source of lithium detected within the groundwater monitoring well network. This new information was added to the piper diagrams presented in the ASD and demonstrates that the water chemistries of the BAP

sediment, pore water, and pond water are similar but they are very different from SP-10 water chemistry, indicating the waters are not from the same source.

These lines of evidence support the conclusion that the groundwater lithium concentrations are not due to a release from the BAP. The spatially distributed lithium concentrations detected within the groundwater monitoring well network demonstrate a natural variation in the groundwater more associated with a release of lithium from the minerals within the lithological shale lenses that are present within the screened intervals of the monitoring wells.

Based on these additional clarifications and the new information provided in this letter, PSO requests that ODEQ reconsider the agencies⁷ conclusion that "the conceptual model that NPS proposed does not fit the actual groundwater sampling data."

Please do not hesitate to contact me if you have any questions or would like to discuss. I can be reached by email at: jcparker-witt@aep.com or by phone at: (318) 673-3816.

Sincerely, ar

Jill Parker-Witt, P.E. AEP, Engineer Principle

Attachments

SCOTT A THOMPSON Executive Director

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

July 8, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re: Alternate Source Demonstration for Lithium –Bottom Ash Pond Public Service Company of Oklahoma Northeastern Power Station Rogers County Solid Waste Permit No. none

Dear Ms. Parker-Witt:

Monitoring Well SP-10 is currently in the assessment monitoring program. Lithium was detected in SP-10 at concentrations of 0.245 mg/L on May 30, 2018 and 0.242 mg/L on July 30, 2018. A statistically significant level (SSL) was determined, on January 8, 2019, when the lower confidence limit (LCL) for lithium (0.263 mg/L) exceeded the groundwater protection standard (0.15 mg/L). Oklahoma Administrative Code (OAC) 252:517-9-6(g)(3)(B) allows AEP/Public Service Company of Oklahoma Northeastern Power Station (NPS) to demonstrate that a source other than the coal combustion residuals (CCR) unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

On March 12, 2019, by email, DEQ approved a 30-day extension for submittal of the alternate source demonstration (ASD) so that NPS could receive sample analyses from the lab and to gather additional information on the Bandera shale formation from analyses of cores from two (2) new boreholes drilled at the site. On May 1, 2019, the Department of Environmental Quality (DEQ) received, by email, an ASD for lithium in monitoring well SP-10 from NPS. The ASD was presented to DEQ by NPS in a meeting on May 29, 2019. DEQ requested revised figures and cross-sections that were presented during the meeting. A revised Figure 4 and Figure 12 were received by email on June 4, 2019. The cross-sections were received by email on June 5, 2019.

The ASD asserts that the statistically significant level (SSL) exceeding the groundwater protection standards is a natural variation in groundwater quality due to the release of lithium from the clay minerals within the shale lens underlying the Bottom Ash Pond (BAP) and is not due to a release from the BAP itself. Additionally, NPS contends that the low concentration of lithium in the surface water in the BAP and limited transport from the BAP to the screened interval in SP-10 do not support a release.

Ms. Jill Parker-Witt, P.E. American Electric Power July 8, 2019 Page 2 of 2

DEQ reviewed the ASD and made the following determination:

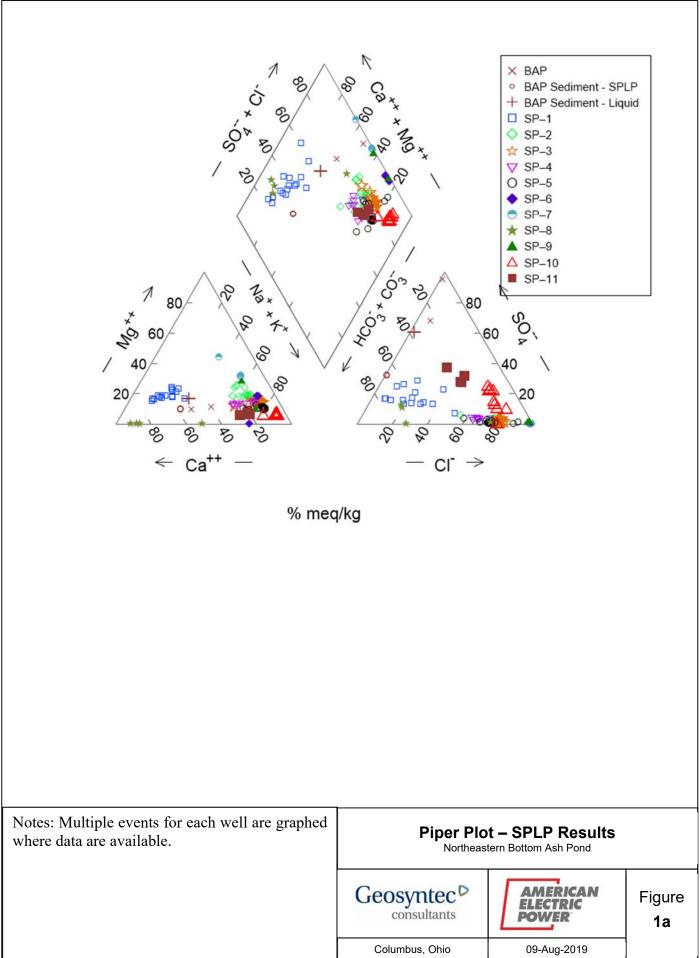
Elevated lithium concentrations were detected in downgradient monitoring well SP-10; however, lithium was not detected in elevated levels in upgradient monitoring well SP-5R even though boring logs from SP-5R show the monitoring well contains interbeds of dark limey shale within the screened interval. Also, SP-8, located near SP-10, and screened across a lower zone shale exhibits low concentrations of lithium. If the lithium at SP-10 was due to the presence of shale lenses within the screened interval of SP-10, then both SP-5R and SP-8 should exhibit elevated levels of lithium. The conceptual model that NPS proposed does not fit the actual groundwater sampling data.

NPS collected and analyzed a surface water sample from the BAP for comparison to data collected from SP-10 to support the claim that unless the BAP is directly connected to SP-10 through a fracture in the limestone, it is unlikely to affect the lithium concentration detected in SP-10. NPS did not sample and analyze the sediment in the BAP for lithium or other constituents to compare that data to the data collected from SP-10. The surface water sample may have a lower concentration of lithium than water that percolates through the sediment in the BAP and potentially reaches SP-10. DEQ does not believe enough data was presented to accept NPS's conclusion that the lithium at SP-10 was not due to a release from the BAP.

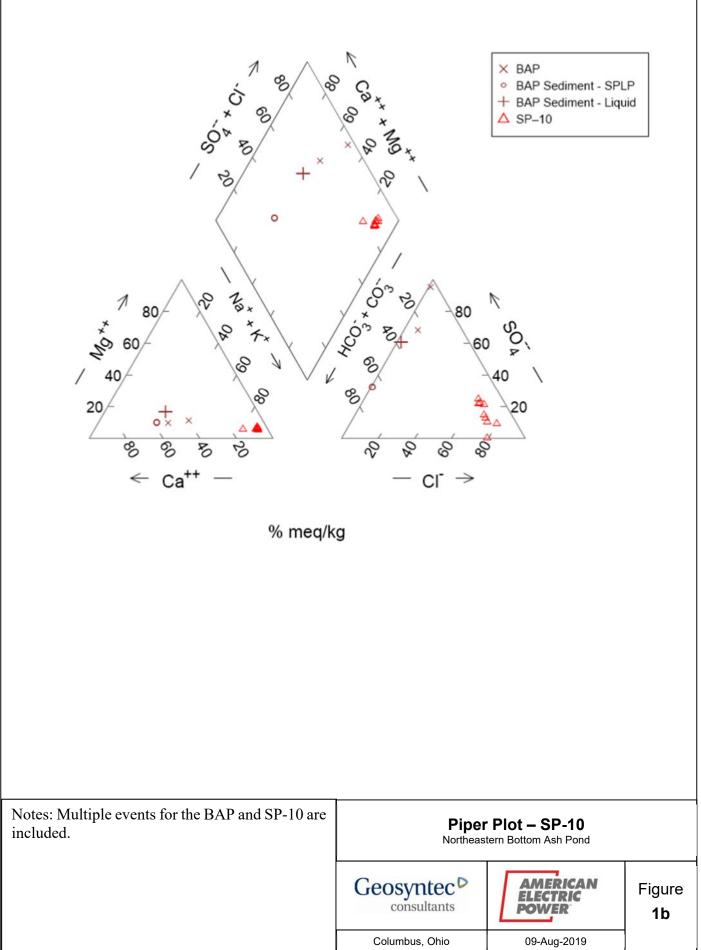
Should additional information be attained to support a revised ASD, DEQ will re-evaluate such a submittal. NPS is now required by OAC 252:517-9-6(g)(4) to initiate the assessment of corrective measures (ACM) as required by OAC 252:517-9-7. Please submit the proposed ACM plan and schedule for analyzing the lithium release and developing corrective action to address the release within ninety (90) days of receipt of this letter. Assessment monitoring for the BAP will continue.

If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely,


Hillary Young, P.E.

Hillary Young, P.E. Chief Engineer Land Protection Division


HY/ckh

Regional Screening Level (RSL) Summary Table (TR=1E-06, HQ=1) April 2019

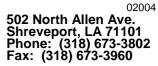
				-		c =	= cancer; r	A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; W = TEF = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 10X c SL; SSL v	alues are based on	DAF=1; m =	ceiling	limit exceede	, d; s = C	Sat exceed	ded.		appnoa,				
	Toxicity a	and Cher	nical-specific	Information				Contaminant						Screeni	ing Level	s			Protection of Risk-based		Water SSL MCL-based
SFO	e IUR e R	D _o	RfC _i	e o			C _{sat}			Resident Soi	i	Industrial Soil	F	Resident Air	r Ind	dustrial Air	Tapwater	MCL	SSL		SSL
mg/kg-day) ⁻¹	y (ug/m ³) ⁻¹ y (mg/k	g-day) y	/ (mg/m ³) y	y I mutagen	n GIABS	ABS _d	(mg/kg)	Analyte	CAS No.	(mg/kg)	key	(mg/kg)	key	(ug/m ³)	key	(ug/m ³)	key (ug/L) key	(ug/L)	(mg/kg)	key	(mg/kg)
	4.0	E-04 F			1	0.1		Hexamethylphosphoramide	680-31-9	2.5E+01	n	3.3E+02	n				8.0E+00 n		1.8E-03	n	
	0.01	E+00 F	7.0E-01	IV	1	0.1	1.4E+02	Hexane, N-	110-54-3 124-04-9	6.1E+02	ns	2.5E+03 1.6E+06		7.3E+02	n	3.1E+03	n 1.5E+03 n 4.0E+04 n		1.0E+01 9.9E+00	n	
9.5E-03			9 4.0E-04 F	v	1	0.1		Hexanedioic Acid Hexanol, 1-,2-ethyl- (2-Ethyl-1-hexanol)	104-76-7	1.3E+05 7.3E+01	nm c*	3.4E+00	nm c	4.2E-01	n	1.8E+00	n 8.3E-01 n		9.9E+00	n	
0.02 00			3.0E-02		1		3.3E+03	Hexanone, 2-	591-78-6	2.0E+02	n	1.3E+03		3.1E+01			n 3.8E+01 n		8.8E-03	n	
		E-02			1	0.1		Hexazinone	51235-04-2	2.1E+03	n	2.7E+04	n				6.4E+02 n		3.0E-01	n	
		E-02			1	0.1		Hexythiazox	78587-05-0	1.6E+03	n	2.1E+04	n				1.1E+02 n		5.0E-01	n	
3.0E+00	1./I I 4.9E-03 I	E-02 () 3.0E-05 F	> \/	1	0.1	1 15+05	Hydramethylnon Hydrazine	67485-29-4 302-01-2	1.1E+03 3.2E-02	n c*	1.4E+04 1.4E-01	n c*	5.7E-04	c*	2.5E-03	3.4E+02 n c* 1.1E-03 c*		1.2E+05 2.2E-07	n c*	
	I 4.9E-03 I		J.0Ľ=03 ľ	v	1		1.12.03	Hydrazine Sulfate	10034-93-2	2.3E-02		1.1E+00	c	5.7E-04			c 2.6E-02 c		2.201	U	
			2.0E-02	IV	1			Hydrogen Chloride	7647-01-0	2.8E+07		1.2E+08		2.1E+01			n 4.2E+01 n				
	4.0	E-02 (1.4E-02 C		1			Hydrogen Fluoride	7664-39-3	3.1E+03	n	4.7E+04	n	1.5E+01		6.1E+01	n 2.8E+01 n				
6.0E-02	D (0)	E-02 F	2.0E-03	IV	1	0.1		Hydrogen Sulfide	7783-06-4 123-31-9	2.8E+06 9.0E+00	nm	1.2E+07 3.8E+01	nm	2.1E+00	n	8.8E+00	n 4.2E+00 n 1.3E+00 c		8.7E-04		
		E-02 F E-03 (, ,		1	0.1		Hydroquinone Imazalil	35554-44-0	9.0E+00 8.9E+00	с с*	3.8E+01 3.8E+01	с с*				1.3E+00 c 9.0E-01 c*		8.7E-04 1.5E-02	с с*	
0.1E-02		E-03 C			1	0.1		Imazaquin	81335-37-7	1.6E+04	n		nm				4.9E+03 n		2.4E+01	n	
		E+00 0)		1	0.1		Imazethapyr	81335-77-5		nm		nm				4.7E+04 n		4.1E+01	n	
	1.0	E-02 A	1		1			lodine	7553-56-2	7.8E+02	n	1.2E+04	n				2.0E+02 n		1.2E+01	n	
		E-02			1	0.1		lprodione	36734-19-7	2.5E+03	n	3.3E+04	n				7.4E+02 n		2.2E-01	n	
		E-01 F	,	V	1		1.05.04	Iron Jackutzi Alachal	7439-89-6	5.5E+04	n	8.2E+05	nm				1.4E+04 n		3.5E+02	n	
9.5E-04		E-01	2.0E+00 (2	1	0.1	1.0E+04	Isobutyl Alcohol	78-83-1 78-59-1	2.3E+04 5.7E+02	ns c*	3.5E+05 2.4E+03	s c*	2.1E+03	n	8.8E+03	5.9E+03 n n 7.8E+01 c*		1.2E+00 2.6E-02	n c*	
0.02-04		E-02	2.02.00 0	V	1	0.1		Isopropalin	33820-53-0	1.2E+03	n	1.8E+04	n	2.12.00		0.02.00	4.0E+01 n		9.2E-01	n	
	2.08	E+00 F	2.0E-01 F	P V	1		1.1E+05	Isopropanol	67-63-0	5.6E+03	n	2.4E+04	n	2.1E+02	n	8.8E+02	n 4.1E+02 n		8.4E-02	n	
	1.0	E-01			1	0.1		Isopropyl Methyl Phosphonic Acid	1832-54-8	6.3E+03	n	8.2E+04	n				2.0E+03 n		4.3E-01	n	
	5.0	E-02	2.05.04		1	0.1		lsoxaben	82558-50-7		n	4.1E+04	n	0.45.00		1 05.00	7.3E+02 n		2.0E+00	n	
	0.01	E-03 (3.0E-01 A	A V	1	0.1		JP-7 Lactofen	E1737665 77501-63-4	4.3E+08 5.1E+02	nm n	1.8E+09 6.6E+03	nm n	3.1E+02	n	1.3E+03	n 6.3E+02 n 1.0E+02 n		4.6E+00	n	
		E-03 C			1	0.1		Lactonitrile	78-97-7	1.3E+01	n	1.6E+03	n				4.0E+02 n		8.1E-04	n	
		E-05 F	- >		1			Lanthanum	7439-91-0	3.9E+00	n	5.8E+01	n				1.0E+00 n				
		E-05 F			1	0.1		Lanthanum Acetate Hydrate	100587-90-4	1.3E+00	n	1.7E+01	n				4.2E-01 n				
		E-05 F			1			Lanthanum Chloride Heptahydrate	10025-84-0	1.5E+00	n	2.2E+01	n				3.7E-01 n				
		<u>E-05</u> F E-05 F			1			Lanthanum Chloride, Anhydrous	10099-58-8 10277-43-7	2.2E+00	n	3.3E+01	n				5.7E-01 n				
	1.0	=-05 F	•		1			Lead Compounds	10277-43-7	1.3E+00	n	1.9E+01	n				3.2E-01 n				
8.5E-03	C 1.2E-05 C				1			~Lead Phosphate	7446-27-7	8.2E+01	с	3.8E+02	с	2.3E-01	с	1.0E+00	c 9.1E+00 c				
	C 1.2E-05 C				1	0.1		~Lead acetate	301-04-2	6.4E+01	С	2.7E+02	С	2.3E-01	С	1.0E+00	c 9.2E+00 c		1.8E-03	С	
					1			~Lead and Compounds	7439-92-1	4.0E+02	G	8.0E+02	G	1.5E-01	G		1.5E+01 G	15			1.4E+01
8.5E-03	C 1.2E-05 C	=-07	1	V	1	0.1	2.45.00	~Lead subacetate	1335-32-6 78-00-2	6.4E+01	С	2.7E+02 1.2E-01	c n	2.3E-01	C	1.0E+00	c 9.2E+00 c		2.0E-03 4.7E-06	C	
		=-07 =-06 F))	V	1		2.4E+00 3.8E+02		541-25-3	7.8E-03 3.9E-01	n n	5.8E+00	n				1.3E-03 n 9.0E-02 n		4.7E-06 3.8E-05	n n	
		E-03 ()		1	0.1	0.02.02	Linuron	330-55-2	4.9E+02	n	6.3E+03	n				1.3E+02 n		1.1E-01	n	
		E-03 F)		1			Lithium	7439-93-2	1.6E+02	n	2.3E+03	n				4.0E+01 n		1.2E+01	n	
		E-04			1	0.1		MCPA	94-74-6	3.2E+01	n	4.1E+02	n				7.5E+00 n		2.0E-03	n	
		E-03 ()		1	0.1		MCPB MCPP	94-81-5	2.8E+02	n	3.6E+03	n				6.5E+01 n		2.6E-02	n	
		E-03 E-02			1	0.1		MCPP Malathion	93-65-2 121-75-5	6.3E+01 1.3E+03	n n	8.2E+02 1.6E+04	n n				1.6E+01 n 3.9E+02 n		4.7E-03 1.0E-01	n n	
			7.0E-04 (2	1	0.1		Malation Maleic Anhydride	108-31-6	6.3E+03	n	8.0E+04	n	7.3E-01	n	3.1E+00	n 1.9E+03 n		3.8E-01	n	
	5.0	E-01			1	0.1		Maleic Hydrazide	123-33-1	3.2E+04	n	4.1E+05	nm				1.0E+04 n		2.1E+00	n	
		E-04 F			1	0.1		Malononitrile	109-77-3	6.3E+00	n	8.2E+01	n				2.0E+00 n		4.1E-04	n	
		E-02 H	1		1	0.1		Mancozeb Maneb	8018-01-7 12427-38-2	1.9E+03 3.2E+02	n	2.5E+04 4.1E+03	n				5.4E+02 n 9.8E+01 n	-	7.6E-01 1.4E-01	n n	
			5.0E-05	1	1	0.1		Maneb Manganese (Diet)	12427-38-2 7439-96-5	3.2E+02	n	4.1E+03	n				9.6E+01 h		1.4E-01	n	
			5.0E-05		0.04			Manganese (Diet) Manganese (Non-diet)	7439-96-5	1.8E+03	n	2.6E+04	n	5.2E-02	n	2.2E-01	n 4.3E+02 n		2.8E+01	n	
	9.0	E-05 H			1	0.1		Mephosfolan	950-10-7	5.7E+00	n	7.4E+01	n				1.8E+00 n		2.6E-03	n	
		E-02			1	0.1		Mepiquat Chloride	24307-26-4	1.9E+03	n		n				6.0E+02 n		2.0E-01	n	
1.1E-02	P 4.0	E-03 F	,		1	0.1		Mercaptobenzothiazole, 2-	149-30-4	4.9E+01	C**	2.1E+02	C*				6.3E+00 c*		1.8E-02	C*	
	3.0	=-04	3.0E-04 (3	0.07			Mercury Compounds ~Mercuric Chloride (and other Mercury salts)	7487-94-7	2.3E+01	n	3.5E+02	n	3.1E-01	n	1 3E+00	n 5.7E+00 n	2			
	3.0	04	3.0E-04 C		1		3.1E+00	~Mercury (elemental)	7439-97-6	1.1E+01	ns		ns	3.1E-01 3.1E-01		1.3E+00 1.3E+00	n 6.3E-01 n	2	3.3E-02	n	1.0E-01
		E-04			1			~Methyl Mercury	22967-92-6	7.8E+00	n	1.2E+02	n				2.0E+00 n		1.4E+01	n	
		E-05			1	0.1		~Phenylmercuric Acetate	62-38-4	5.1E+00	n	6.6E+01	n				1.6E+00 n		5.0E-04	n	
		E-05		V	1	0.4		Merphos	150-50-5	2.3E+00	n	3.5E+01	n				6.0E-01 n		5.9E-02	n	
		E-04 C E-02 I)		1	0.1		Merphos Oxide Metalaxyl	78-48-8 57837-19-1	6.3E+00 3.8E+03	n n	8.2E+01 4.9E+04	n				2.8E-01 n 1.2E+03 n		1.4E-03 3.3E-01	n n	
		=-02 E-04	3.0E-02 F	> V	1	0.1	4.6E+03	Metalaxyi Methacrylonitrile	57837-19-1 126-98-7	3.8E+03 7.5E+00	n	4.9E+04 1.0E+02	n n	3.1E+01	n	1.3E+02	n 1.9E+03 n		3.3E-01 4.3E-04	n	
		E-05	5.0L-02 I		1	0.1		Methamidophos	10265-92-6	3.2E+00	n	4.1E+01	n	0.12.01			1.0E+00 n		2.1E-04	n	
	2.08	E+00	2.0E+01	IV	1		1.1E+05	Methanol	67-56-1	1.2E+05	s	1.2E+06		2.1E+04	n	8.8E+04	n 2.0E+04 n		4.1E+00	n	
	1.5	E-03 (1	0.1		Methidathion	950-37-8	9.5E+01	n	1.2E+03	n				2.9E+01 n		7.1E-03	n	
		E-02			1	0.1		Methomyl	16752-77-5	1.6E+03	n	2.1E+04	n				5.0E+02 n		1.1E-01	n	
4.9E-02	C 1.4E-05 C	- 00			1	0.1		Methoxy-5-nitroaniline, 2-	99-59-2	1.1E+01	с	4.7E+01	с	2.0E-01	С	8.8E-01	c 1.5E+00 c	10	5.3E-04	С	0.05.00
		E-03 F	9 1.0E-03 F		1	0.1	1 2E±05	Methoxychlor Methoxyethanol Acetate, 2-	72-43-5 110-49-6	3.2E+02 1.1E+02	n	4.1E+03 5.1E+02	n n	1.0E+00	n	4.4E+00	3.7E+01 n n 2.1E+00 n	40	2.0E+00 4.2E-04	n n	2.2E+00
			2.0E-03		1			Methoxyethanol Acetate, 2- Methoxyethanol, 2-	110-49-6	1.1E+02 3.3E+02	n n			1.0E+00 2.1E+01			n 2.1E+00 n n 2.9E+01 n		4.2E-04 5.9E-03	n n	

l info: path, date revised,

al info: path, date revised, .

Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960


Report ID : 40115 Date Received : 07/12/2019	Co	ontact: Jill	P - Environmenta Parker-Witt 18) 673-3816	al (JP-W)	Shreveport, LA 71101 Fax: (318) 673-3960							
AEP Sample ID : 226939 Cust Sample ID: Sediment Sample Desc.: BAP Sediment	Loc	I Date: 07/ cation: NE	10/2019 BAP Sediment S	ample	By: BW Matrix: Liquid							
SPLP (226939)			1									
Parameter	Value	Unit		I./Conc.	Method	Analysis Date/Time Cod						
Aluminum	0.777	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Antimony	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Arsenic	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Barium	0.352	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Beryllium	< 0.001	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Boron	0.389	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Cadmium	< 0.001	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Calcium	24.3	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Chromium	< 0.001	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Cobalt	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Copper	0.004	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Iron	0.1	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Lead	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Lithium	0.001	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Magnesium	2.44	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Manganese	0.01	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Molybdenum	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Nickel	< 0.025	mg/L	0.025	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Potassium	0.703	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Selenium	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Silver	< 0.001	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Sodium	14.9	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Strontium	0.327	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Thallium	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Tin	0.011	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					
Titanium	0.012	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB					

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 1 of 6

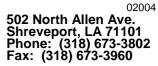
Analysis Report

Report ID : 40115 Date Received: 07/12/2019	C	ontact: J	SEP - Environme lill Parker-Witt 318) 673-3816	ental (JP-W)	Address: 502 N. Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960						
Vanadium	0.023	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45		JDB			
Zinc	0.067	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45		JDB			
Water (226939)											
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech			
Alkalinity, Bicarbonate	101.24	mg/L	5	1	SM 2320 B-2011	08/06/2019 15:30	H1	JTD			
Alkalinity, Carbonate	< 5	mg/L	5	1	SM 2320 B-2011	08/06/2019 15:30	H1	JTD			
Alkalinity, Total	101.24	mg/L	5	1	SM 2320 B-2011	08/06/2019 15:30	H1	JTD			
Chloride	0.839	mg/L	0.219	1	EPA 300.0	08/04/2019 5:20		GB			
Fluoride	0.458	mg/L	0.083	1	EPA 300.0	08/04/2019 5:20		GB			
Sulfate	38	mg/L	0.140	1	EPA 300.0	08/04/2019 5:20		GB			

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960


Report ID : 40115 Date Received: 07/12/2019	Co P	ntact: Jill F hone: (318	3) 673-3816	ntal (JP-W)	Shreveport, LA 71101 Fax: (318) 673-3960						
AEP Sample ID : 226940 Cust Sample ID: Liquid portion Sample Desc.: BAP Sediment	Collected Date: 07/10/2019 Location: NE BAP Sediment Sample				By: BW Matrix: Liquid						
Metals (226940)	T										
Parameter	Value	Unit	Det. Limit		Method	Analysis Date/Time Codes					
Aluminum	0.076	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Antimony	< 0.005	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Arsenic	< 0.005	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Barium	0.083	mg/L	0.001	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Beryllium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Boron	0.754	mg/L	0.01	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Cadmium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Calcium	85.7	mg/L	0.01	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Chromium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Cobalt	< 0.005	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Copper	0.004	mg/L	0.001	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Iron	< 0.01	mg/L	0.01	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Lead	< 0.005	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Lithium	0.003	mg/L	0.001	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Magnesium	17.4	mg/L	0.01	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Manganese	0.032	mg/L	0.001	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Molybdenum	0.027	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Nickel	< 0.025	mg/L	0.025	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Potassium	6.94	mg/L	0.01	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Selenium	0.005	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Silver	< 0.001	mg/L	0.001	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Sodium	99.9	mg/L	0.01	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Strontium	1.22	mg/L	0.001	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Thallium	< 0.005	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Tin	< 0.005	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB				
Titanium	< 0.005	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB				

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 3 of 6

Analysis Report

Report ID : 40115 Date Received: 07/12/2019	C	ontact: Jil	EP - Environme Il Parker-Witt 18) 673-3816	ental (JP-W)	Address: 502 N. Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960					
Vanadium	0.006	mg/L	0.001	1	EPA 6010B 1996	07/25/2019 21:37		JDB		
Zinc	< 0.005	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37		JDB		
Water (226940)										
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech		
Alkalinity, Bicarbonate	399.2	mg/L	5	1	SM 2320 B-2011	08/06/2019 15:30	H1	JTD		
Alkalinity, Carbonate	< 5	mg/L	5	1	SM 2320 B-2011	08/06/2019 15:30	H1	JTD		
Alkalinity, Total	399.2	mg/L	5	1	SM 2320 B-2011	08/06/2019 15:30	H1	JTD		
Chloride	14	mg/L	0.219	1	EPA 300.0	08/04/2019 5:58		GB		
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	08/04/2019 5:58		GB		
Sulfate	514	mg/L	0.140	1:10	EPA 300.0	08/04/2019 6:16		GB		

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Analysis Report

02004 502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report Date Re	ID : 40115 eceived: 07/12/2019	Company: Contact: Phone:		er-Witt	n Avenue LA 71101 960							
		* Ouality			ntrol Data ne as reported		results					
		<u> </u>	Blank		Standard	j		Spike		Surrogate	Duplicate %	,
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value ⁺	* Recovery*	%	% Recovery	Difference	Tech
8/6/2019	Alkalinity, Total			50	50.84	101.7		-				JTD
8/6/2019	Alkalinity, Total	227498	<5	50	52.62	105.2	50	47.14	94.3		2.5	JTD
7/25/2019	Aluminum	227041.1	<0.005	2	2.0229733	101.1	2	2.2242	111.2		0.0	JDB
7/25/2019	Aluminum	226939.1	<0.005	2	2.0229733	101.1	2	2.071639	103.6		0.4	JDB
7/25/2019	Antimony	227041.1	<0.005	0.8	0.8092462	101.2	0.8	0.7671843	95.9		0.5	JDB
7/25/2019	Antimony	226939.1	<0.005	0.8	0.8092462	101.2	0.8	0.8159776	102.0		0.2	JDB
7/25/2019	Arsenic	227041.1	<0.005	0.8	0.8086795	101.1	0.8	0.7758421	97.0		0.0	JDB
7/25/2019	Arsenic	226939.1	<0.005	0.8	0.8086795	101.1	0.8	0.8086275	101.1		0.1	JDB
7/25/2019	Barium	226939.1	<0.001	0.2	0.2080557	104.0	0.2	0.209543	104.8		0.1	JDB
7/25/2019	Barium	227041.1	<0.05	0.2	0.2080557	104.0	0.2	0.1829767	91.5		0.4	JDB
7/25/2019	Beryllium	226939.1	<0.001	0.2	0.2122779	106.1	0.2	0.2142832	107.1		0.3	JDB
7/25/2019	Beryllium	227041.1	<0.001	0.2	0.2122779	106.1	0.2	0.1992329	99.6		0.4	JDB
7/25/2019	Boron	226939.1	<0.01	0.3	0.2995651	99.9	0.3	0.2984183	99.5		0.7	JDB
7/25/2019	Boron	227041.1	<0.5	0.3	0.2995651	99.9	0.3	0.2855333	95.2		0.5	JDB
7/25/2019	Cadmium	227041.1	<0.001	0.2	0.2069934	103.5	0.2	0.1836838	91.8		0.6	JDB
7/25/2019	Cadmium	226939.1	<0.001	0.2	0.2069934	103.5	0.2	0.2061243	103.1		0.5	JDB
7/25/2019	Calcium	226939.1	<0.01	1	1.0087505	100.9	1	1.0243667	102.4		0.9	JDB
7/25/2019	Chromium	226939.1	<0.001	0.4	0.4116387	102.9	0.4	0.4125529	103.1		0.4	JDB
7/25/2019	Chromium	227041.1	<0.001	0.4	0.4116387	102.9	0.4	0.3867339	96.7		0.3	JDB
7/25/2019	Cobalt	226939.1	<0.005	0.2	0.2043482	102.2	0.2	0.2054714	102.7		0.4	JDB
7/25/2019	Cobalt	227041.1	<0.005	0.2	0.2043482	102.2	0.2	0.1839347	92.0		0.4	JDB
7/25/2019	Copper	227041.1	<0.001	0.3	0.3066399	102.2	0.3	0.2963301	98.8		0.1	JDB
7/25/2019	Copper	226939.1	<0.001	0.3	0.3066399	102.2	0.3	0.3109092	103.6		0.1	JDB
7/25/2019	Iron	227041.1	<0.5	3	3.1158893	103.9	150	159.28837	106.2		0.8	JDB
7/25/2019	Iron	226939.1	<0.01	3	3.1158893	103.9	3	3.1231158	104.1		1.0	JDB
7/25/2019	Lead	226939.1	<0.005	1	1.0430644	104.3	1	1.0416574	104.2		0.4	JDB
7/25/2019	Lead	227041.1	<0.005	1	1.0430644	104.3	1	0.9320653	93.2		0.6	JDB
7/25/2019	Lithium	227041.1	<0.001	0.2	0.2119096	106.0	0.2	0.2353987	117.7		0.1	JDB
7/25/2019	Lithium	226939.1	<0.001	0.2	0.2119096	106.0	0.2	0.2163799	108.2		0.4	JDB
7/25/2019	Magnesium	226939.1	<0.01	2	2.0868175	104.3	2	2.0877567	104.4		0.2	JDB
7/25/2019	Magnesium	227041.1	<0.5	2	2.0868175	104.3	2	1.9791333	99.0		0.6	JDB
7/25/2019	Manganese	227041.1	<0.001	0.2	0.2072869	103.6	0.2	0.16684	83.4		0.7	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 5 of 6

Analysis Report

Report Date Re	ID : 40115 eceived: 07/12/2019	Contact:		er-Witt	ntal (JP-W)	Address: 502 N. Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960						
7/25/2019	Manganese	226939.1	<0.001	0.2	0.2072869	103.6	0.2	0.2077536	103.9	0.2	JDB	
7/25/2019	Molybdenum	226939.1	< 0.005	0.2	0.2067657	103.4	0.2	0.2076129	103.8	0.4	JDB	
7/25/2019	Molybdenum	227041.1	< 0.005	0.2	0.2067657	103.4	0.2	0.197727	98.9	0.5	JDB	
7/25/2019	Nickel	227041.1	<0.025	0.5	0.5192594	103.9	0.5	0.46183	92.4	0.6	JDB	
7/25/2019	Nickel	226939.1	<0.025	0.5	0.5192594	103.9	0.5	0.5209379	104.2	0.6	JDB	
7/25/2019	Potassium	226939.1	<0.01	10	9.3692109	93.7	10	9.4631223	94.6	0.2	JDB	
7/25/2019	Potassium	227041.1	<0.01	10	9.3692109	93.7	10	11.11754	111.2	0.3	JDB	
7/25/2019	Selenium	227041.1	<0.005	2	1.9998495	100.0	2	1.991203	99.6	0.7	JDB	
7/25/2019	Selenium	226939.1	<0.005	2	1.9998495	100.0	2	1.9816300	99.1	0.8	JDB	
7/25/2019	Silver	227041.1	<0.001	0.075	0.0712930	95.1	0.075	0.0708639	94.5	0.2	JDB	
7/25/2019	Silver	226939.1	<0.001	0.075	0.0712930	95.1	0.075	0.0714285	95.2	0.1	JDB	
7/25/2019	Sodium	226939.1	<0.01	3	3.1384831	104.6	3	2.4693667	82.3	0.1	JDB	
7/25/2019	Sodium	227041.1	<0.5	3	3.1384831	104.6	3	2.3746333	79.2	0.0	JDB	
7/25/2019	Strontium	226939.1	<0.001	0.2	0.2059899	103.0	0.2	0.2081687	104.1	0.4	JDB	
7/25/2019	Thallium	226939.1	<0.005	0.4	0.4152040	103.8	0.4	0.4171124	104.3	0.0	JDB	
7/25/2019	Thallium	227041.1	<0.005	0.4	0.4152040	103.8	0.4	0.3682771	92.1	1.2	JDB	
7/25/2019	Tin	226939.1	<0.005	0.7	0.6995446	99.9	0.7	0.6930628	99.0	0.2	JDB	
7/25/2019	Tin	227041.1	<0.005	0.7	0.6995446	99.9	0.7	0.644164	92.0	0.2	JDB	
7/25/2019	Titanium	227041.1	<0.005	0.2	0.2109341	105.5	0.2	0.2098874	104.9	0.2	JDB	
7/25/2019	Titanium	226939.1	<0.005	0.2	0.2109341	105.5	0.2	0.2124567	106.2	0.1	JDB	
7/25/2019	Vanadium	226939.1	<0.001	0.3	0.3076519	102.6	0.3	0.3104754	103.5	0.4	JDB	
7/25/2019	Vanadium	227041.1	<0.001	0.3	0.3076519	102.6	0.3	0.2997157	99.9	0.6	JDB	
7/25/2019	Zinc	226939.1	<0.005	0.2	0.2091679	104.6	0.2	0.2081374	104.1	0.3	JDB	
7/25/2019	Zinc	227041.1	<0.005	0.2	0.2091679	104.6	0.2	0.1851907	92.6	0.1	JDB	

On 7/30/2019, Jill asked for us to add Chloride, Fluoride, and Sulfate.

Code Code Description

H1 Sample analysis performed past holding time

Samhill Quality Assurance Officer

08-Aug-19 Report Date

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 6 of 6

Relinquished by:	Relinquished by:	m ll.l	Special Instructions/QC Requirements & Comments:	 Dresonvation Head: 1= los 2= HCI: 3= H2SO4: 4=HNO3: 5=NaOH: 6= Other						BAP Sediment	Sample Identification	Sampler(s): BRYAN (SHLTE	Project Name: NE BAP Sediment sample Contact Name: Bryan White Contact Phone: 8-719-0873	Contacts:	SUZ N. Allen Ave. Shreveport , LA 71101	Shreveport Chemical Laboratory (SCL)
Company:	Company:	Company:		NO3: 5=NaOH: 6= Other				_	708 7-15-19	-7-10-19 1600 grab	Sample Sample Sample (C=Comp, Date Time G=Grab)		Analysis Turnaround Time (In Calendar Days) -			
Date/Time:	Date/Time:	Date/Time:	Submit results to Jill Parker-Witt	· F= filter in field				_		ater 1L	Sample Type C=Comp, G=Grab) Matrix Cont		(in Calendar Days) -	0	Program: Coa	Chain c
Received in Laboratory by:	Received by:	Received by:		Ĩ				 		×	Sampler(s) Ini			ite Contact:	Coal Combustion Residuals (CCR)	Chain of Custody Record
Date/Time:	Date/Time:	Date/Time:								SPLP on the sediment particles, also run Li analysis of pore water	Sample Specific Notes:		5/10/2	Date: For Lab Use Only: COC/Order #:		JOB 7-15-19

SHREVEPORT CHEMICAL LABORATORY	SHRLVEPORT CHEMICAL LABORATORY
	PROJECT REHREVEPORT LA 71101
Shreveport, LA 71101	P: RED S: OUT 1: 42
Phone 318-673-3802 FAX 318-673-3960	MICO 4500 V
FAX 319-073-3900	
	12735472159314 24571 1300 TDIVES LANARA JUL 12.08:36:33.2019
Container Type	Delivery Type
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS FEDEX US Mail Walk in Shuttle
Other Box	Other
Oliont 12	Tracking #
Client Bryan White	Sample Matrix
Received By 570	DGA PCB Oil Water Oil Soil
Received Date <u>7/12/19</u> Open Date	Solid Liquid Other
Container Temp Read	Project I.D
Correction Factor	
Corrected Tomp	Were samples received on ice? YES NO
67.6	- 20
Did container arrive in good condition?	(YES) NO
Was sample documentation received?	VES NO
Was documentation filled out properly?	(YES) NO Date and fime for collection not
	Sthell Silled
Were samples labeled properly?	VES NO
Were correct containers used?	MES NO
Were the pH's of samples appropriately checked?	YES NOWA
· · · · · · · · · · · · · · · · · · ·	
Total number of sample containers	
•	
Was any corrective action taken?	NO Person Contacted Jill Perkure 1.).44
	Date & Time 7-12-19 1520
Comments Informed J:11 that	No Date and time was
	Said she would contact the
Samphi and get that intor ,	nation JDB 7-12-19

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Location: Northeastern Station

BA Sluice Water A

Water Analysis

Report Date: 2/25/2019

Sample Number: 190503-001		Date Co	llected:	02/11/2	019 13:10	Da	ate Received: 2/13/2019
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.60 ug/L		0.5	0.1	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Arsenic, As	3.96 ug/L		0.5	0.2	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Barium, Ba	583 ug/L		0.5	0.1	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.2 ug/L	J	0.5	0.1	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.08 ug/L	J	0.2	0.05	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	6.87 ug/L		1	0.2	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	1.41 ug/L		0.2	0.1	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Lead, Pb	1.46 ug/L		0.5	0.1	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	20.7 ug/L		10	2	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Selenium, Se	4.8 ug/L		1	0.2	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.5 ug/L	U	2	0.5	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Boron, B	0.778 mg/L		0.02	0.005	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	98.4 mg/L		0.1	0.02	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Iron, Fe	2.14 mg/L		0.05	0.01	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00587 mg/L		0.001	0.00005	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Magnesium, Mg	16.3 mg/L		0.05	0.01	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Sodium, Na	106 mg/L		0.2	0.05	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Manganese, Mn	15.5 ug/L		0.5	0.1	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Potassium, K	5.90 mg/L		0.2	0.05	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Strontium, Sr	1.24 mg/L		0.001	0.0002	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4

BA Sluice Water B

Sample Number: 190503-002		Date Co	llected:	02/11/2	2019 13:10	Da	ate Received: 2/13/2019
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Alkalinity, as CaCO3	156 mg/L		10	3	GES	02/15/2019 13:38	SM 2320B-2011
Bromide, Br	0.3 mg/L	J	0.5	0.1	CRJ	02/20/2019 22:21	EPA 300.1-1997, Rev. 1.0
Chloride, Cl	27.2 mg/L		0.1	0.03	CRJ	02/20/2019 22:21	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.42 mg/L		0.2	0.04	CRJ	02/20/2019 22:21	EPA 300.1-1997, Rev. 1.0
Residue, Filterable, TDS	726 mg/L		40	10	KAL	02/18/2019	SM 2540C-2011
Sulfate, SO4	351 mg/L		10	2	CRJ	02/20/2019 21:12	EPA 300.1-1997, Rev. 1.0

Location: Northeastern Station

Report Date: 4/9/2019

SP-10 -20190314

Sample Number: 190984-004

Date Collected: 03/14/2019 15:45

Date Received: 3/19/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	5.10 ug/L		4	0.8	СТК	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Arsenic, As	4.45 ug/L		4	1	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Barium, Ba	6780 ug/L		4	0.8	СТК	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.8 ug/L	U	4	0.8	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.4 ug/L	U	2	0.4	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	2300 ug/L		8	2	СТК	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	25.8 ug/L		2	0.8	СТК	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Lead, Pb	54.5 ug/L		4	0.8	СТК	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	95.3 ug/L		80	20	СТК	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 1 ug/L	U	8	1	СТК	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 4 ug/L	U	20	4	СТК	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Boron, B	1.14 mg/L		0.2	0.04	СТК	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	127 mg/L		0.8	0.1	СТК	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.286 mg/L		0.008	0.0004	СТК	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Magnesium, Mg	51.5 mg/L		0.4	0.08	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Sodium, Na	1320 mg/L		2	0.4	СТК	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Potassium, K	14.0 mg/L		2	0.4	СТК	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Strontium, Sr	17.8 mg/L		0.008	0.001	СТК	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Alkalinity, as CaCO3	520 mg/L		10	3	GES	03/21/2019 10:40	SM 2320B-2011
Bromide, Br	8.37 mg/L		1	0.2	CRJ	04/04/2019 17:49	EPA 300.1-1997, Rev. 1.0
Chloride, Cl	1970 mg/L		2	0.6	CRJ	04/04/2019 17:24	EPA 300.1-1997, Rev. 1.0
Fluoride, F	6.90 mg/L		0.3	0.07	CRJ	04/04/2019 17:49	EPA 300.1-1997, Rev. 1.0
Residue, Filterable, TDS	4230 mg/L		80	20	KAL	03/20/2019	SM 2540C-2011
Sulfate, SO4	16.3 mg/L		2	0.3	CRJ	04/04/2019 17:49	EPA 300.1-1997, Rev. 1.0

SP-10 Dissolved -20190314

HNO3 was added to the dissolved metals sample upon arrival.

Sample Number:	190984-004A		Date Co	llected:	03/14/2019 15:45		Date Received: 3/19/2019		
Parameter	Res	ult Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method	
Iron, Fe	0.	08 mg/L	J	0.4	0.08	СТК	04/05/2019 20:37	EPA 200.8-1994, Rev. 5.4	
Manganese, Mn	33	6.6 ug/L		4	0.8	СТК	04/05/2019 20:37	EPA 200.8-1994, Rev. 5.4	

HNO3 was added to the dissolved metals sample upon arrival.

Report Date: 4/9/2019

SP-9 -20190315

Acid was added tot the metals sample upon

arrival.

Sample Number: 190984-013		Date Coll	ected:	03/15/2	2019 10:20	Date Received: 3/19/2019		
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method	
Antimony, Sb	2.25 ug/L		2	0.4	СТК	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4	
Arsenic, As	9.33 ug/L		2	0.6	СТК	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4	
Barium, Ba	686 ug/L		2	0.4	СТК	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4	
Beryllium, Be	< 2 ug/L	U	10	2	СТК	04/08/2019 16:27	EPA 200.8-1994, Rev. 5.4	
Cadmium, Cd	5.12 ug/L		1	0.2	СТК	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4	
Chromium, Cr	22.9 ug/L		4	0.8	СТК	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4	
Cobalt, Co	16.4 ug/L		1	0.4	СТК	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4	
Lead, Pb	22.8 ug/L		10	2	СТК	04/08/2019 16:27	EPA 200.8-1994, Rev. 5.4	
Molybdenum, Mo	< 8 ug/L	U	40	8	СТК	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4	
Selenium, Se	10.7 ug/L		4	0.6	СТК	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4	
Thallium, Tl	< 10 ug/L	U	50	10	СТК	04/08/2019 16:27	EPA 200.8-1994, Rev. 5.4	
Boron, B	1.76 mg/L		0.1	0.02	СТК	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4	
Calcium, Ca	2980 mg/L		0.4	0.06	СТК	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4	
Lithium, Li	2.75 mg/L		0.02	0.001	СТК	04/08/2019 16:27	EPA 200.8-1994, Rev. 5.4	
Magnesium, Mg	1280 mg/L		0.2	0.04	СТК	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4	
Sodium, Na	17400 mg/L		1	0.2	СТК	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4	
Potassium, K	53.7 mg/L		1	0.2	СТК	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4	
Strontium, Sr	264 mg/L		80.0	0.01	СТК	04/08/2019 16:17	EPA 200.8-1994, Rev. 5.4	
Alkalinity, as CaCO3	918 mg/L		10	3	GES	03/21/2019 10:40	SM 2320B-2011	
Bromide, Br	110 mg/L		5	1	CRJ	04/05/2019 02:31	EPA 300.1-1997, Rev. 1.0	
Chloride, Cl	27200 mg/L		50	20	CRJ	04/05/2019 00:01	EPA 300.1-1997, Rev. 1.0	
Fluoride, F	1.88 mg/L		2	0.4	CRJ	04/05/2019 02:31	EPA 300.1-1997, Rev. 1.0	
Residue, Filterable, TDS	44400 mg/L		400	100	KAL	03/20/2019	SM 2540C-2011	
Sample was analyzed with 5mL (2	20x dilution) but the	e residue weig	ght still e	exceeds 0	.2000g. Sample	e will not be re-analyzed	l. Sdw032519	
Sulfate, SO4	613 mg/L		10	2	CRJ	04/05/2019 02:31	EPA 300.1-1997, Rev. 1.0	

Acid was added tot the metals sample upon arrival.

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Muhael & Olling

Michael Ohlinger, Chemist Email msohlinger@aep.com Tel. Fax 614-836-4168 Aud

Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Location: Northeastern Station

SP-6

Water Analysis

Report Date: 6/14/2019

Sample Number:	191628-001		Date Co	llected:	05/07/2	019 14:10	Date Received: 5/10/2019		
Parameter	Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method	
Antimony, Sb	12.2	ug/L		2	0.4	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4	
Arsenic, As	2.06	ug/L		2	0.6	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4	
Barium, Ba	38100	ug/L		2	0.4	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4	
Beryllium, Be	< 0.4	ug/L	U	2	0.4	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4	
Cadmium, Cd	0.4	ug/L	J	1	0.2	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4	
Chromium, Cr	4	ug/L	J	4	0.8	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4	
Cobalt, Co	8.86	ug/L		1	0.4	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4	
Lead, Pb	1	ug/L	J	2	0.4	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4	
Molybdenum, Mo	75.8	ug/L		40	8	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4	
Selenium, Se	1	ug/L	J	4	0.6	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4	
Thallium, Tl	< 2	ug/L	U	10	2	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4	
Boron, B	1.59	mg/L		0.1	0.02	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4	
Calcium, Ca	1240	mg/L		0.4	0.06	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4	
Lithium, Li	1.55	mg/L		0.004	0.0002	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4	

SP-7

Sample Number: 191628-002

Date Collected: 05/07/2019 13:40

Date Received: 5/10/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	1.25	ug/L		0.5	0.1	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Arsenic, As	3.30	ug/L		0.5	0.2	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Barium, Ba	244000	ug/L		0.5	0.1	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.1	ug/L	U	0.5	0.1	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.05	ug/L	U	0.2	0.05	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.6	ug/L	J	1	0.2	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	1.95	ug/L		0.2	0.1	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Lead, Pb	1	ug/L	J	4	0.8	GES	06/10/2019 15:41	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	17.0	ug/L		10	2	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.2	ug/L	U	1	0.2	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 4	ug/L	U	20	4	GES	06/10/2019 15:41	EPA 200.8-1994, Rev. 5.4
Boron, B	1.33	mg/L		0.02	0.005	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	2470	mg/L		0.1	0.02	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Lithium, Li	2.02	mg/L		0.001	0.00005	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Chloride, Cl	30900	mg/L		50	20	CRJ	05/22/2019 15:34	EPA 300.1-1997, Rev. 1.0
Fluoride, F	1	mg/L	J	2	0.4	CRJ	05/21/2019 17:49	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	3	mg/L	J	10	2	CRJ	05/21/2019 17:49	EPA 300.1-1997, Rev. 1.0

Location: Northeastern Station

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Muhael & Ollingen

Michael Ohlinger, Chemist Email msohlinger@aep.com Fax 614-836-4168

Audinet 8-210-

Tel.

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Location: Northeastern Station

SP-6

Water Analysis

Report Date: 7/17/2019

Sample Number: 192191-001		Date Co	llected:	06/21/2	2019 14:30	Da	ate Received: 6/25/2019
Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	1 ug/L	J	2	0.4	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Arsenic, As	3.88 ug/L		2	0.6	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Barium, Ba	29600 ug/L		2	0.4	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.4 ug/L	U	2	0.4	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.4 ug/L	J	1	0.2	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	< 0.8 ug/L	U	4	0.8	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	4.88 ug/L		1	0.4	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.8 ug/L	J	2	0.4	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	9 ug/L	J	40	8	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Selenium, Se	1 ug/L	J	4	0.6	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 2 ug/L	U	10	2	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Boron, B	1.15 mg/L		0.1	0.02	DAM	07/15/2019 14:07	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	351 mg/L		0.3	0.04	DAM	07/15/2019 14:07	EPA 200.7-1994, Rev. 4.4
Lithium, Li	1.89 mg/L		0.03	0.009	DAM	07/15/2019 14:07	EPA 200.7-1994, Rev. 4.4

SP-7

Sample Number: 192191-002

Date Collected: 06/21/2019 14:50

Date Received: 6/25/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.8	ug/L	J	2	0.4	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Arsenic, As	9.77	ug/L		2	0.6	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Barium, Ba	292000	ug/L		2	0.4	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.4	ug/L	U	2	0.4	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.2	ug/L	U	1	0.2	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1	ug/L	J	4	0.8	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	2.85	ug/L		1	0.4	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Lead, Pb	< 0.4	ug/L	U	2	0.4	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	< 8	ug/L	U	40	8	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.6	ug/L	U	4	0.6	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 2	ug/L	U	10	2	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Boron, B	1.25	mg/L		0.1	0.02	DAM	07/15/2019 14:11	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	716	mg/L		0.3	0.04	DAM	07/15/2019 14:11	EPA 200.7-1994, Rev. 4.4
Lithium, Li	3.83	mg/L		0.03	0.009	DAM	07/15/2019 14:11	EPA 200.7-1994, Rev. 4.4
Chloride, Cl	30200	mg/L		50	20	CRJ	06/26/2019 17:51	EPA 300.1-1997, Rev. 1.0
Fluoride, F	1.72	mg/L		2	0.4	CRJ	06/26/2019 18:14	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	< 2	mg/L	U	10	2	CRJ	06/26/2019 18:14	EPA 300.1-1997, Rev. 1.0

Location: Northeastern Station

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Muhael & Ollingen

Michael Ohlinger, Chemist Email msohlinger@aep.com Fax 614-836-4168

Audinet 8-210-

Tel.

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Laboratory Report Number: L19012057

Dave Conover DOLAN LABORATORY 4001 Bixby Road Groveport, OH 43125

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories. Review and compilation of your report was completed by Microbac's Ohio Valley Division (OVD). If you have any questions, comments, or require further assistance regarding this report, please contact your service representative listed below.

Laboratory Contact: Stephanie Mossburg – Team Chemist/Data Specialist (740) 373-4071 Stephanie.Mossburg@microbac.com

I certify that all test results meet all of the requirements of the accrediting authority listed below. All results for soil samples are reported on a 'dry-weight' basis unless specified otherwise. Analytical results for water and wastes are reported on a 'as received' basis unless specified otherwise. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories. The reported results are related only to the samples analyzed as received.

This report was certified on February 07 2019

Jesei Buino

Leslie Bucina – Laboratory Manager

State of Origin: OH Accrediting Authority: N/A ID:OH00218 QAPP: Microbac OVD

Microbac Laboratories * Ohio Valley Division 158 Starlite Drive, Marietta, OH 45750 * T: (740) 373-4071 F: (740) 373-4835 * www.microbac.com

Lab Report #: L19012057 Lab Project #: 2490.001 Project Name: DOLAN LABS Lab Contact: Stephanie Mossburg

Record of Sample Receipt and Inspection

Comments/Discrepancies

This is the record of the shipment conditions and the inspection records for the samples received and reported as a sample delivery group (SDG). All of the samples were inspected and observed to conform to our receipt policies, except as noted below.

There were no discrepancies.

Discrepancy	Resolution

Coolers					
Cooler #	Temperature Gun	Temperature	COC #	Airbill #	Temp Required?
00115915	I	0.0		1Z5235750354470648	Х

Inspe	ction Checklist	
#	Question	Result
1	Were shipping coolers sealed?	Yes
2	Were custody seals intact?	NA
3	Were cooler temperatures in range of 0-6?	Yes
4	Was ice present?	Yes
5	Were COC's received/information complete/signed and dated?	Yes
6	Were sample containers intact and match COC?	Yes
7	Were sample labels intact and match COC?	Yes
8	Were the correct containers and volumes received?	Yes
9	Were samples received within EPA hold times?	Yes
10	Were correct preservatives used? (water only)	NA
11	Were pH ranges acceptable? (voa's excluded)	NA
12	Were VOA samples free of headspace (less than 6mm)?	NA

Microbac Laboratories • Ohio Valley Division 158 Starlite Drive, Marietta, OH 45750 • T: (740)373-4071 F: (740)373-4835 www.microbac.com

Lab Report #: L19012057 Lab Project #: 2490.001 Project Name: DOLAN LABS Lab Contact: Stephanie Mossburg

Samples Received			
Client ID	Laboratory ID	Date Collected	Date Received
190312-001	L19012057-01	01/28/2019 10:20	01/31/2019 10:58

Microbac Laboratories • Ohio Valley Division 158 Starlite Drive, Marietta, OH 45750 • T: (740)373-4071 F: (740)373-4835 www.microbac.com

Mie	crobac	La Pr	Lab Report #:L19012057Lab Project #:2490.001Project Name:DOLAN LABSLab Contact:Stephanie Mossburg							
		C	Certificate o	of Ana	lysis					
Sample #:	L19012057-01	PrePre	ep Method:	N/A		Instrument:	ICP-THERMO	1		
Client ID:	190312-001	Pre	ep Method:	3051A		Prep Date: (02/04/2019 07	:21		
Matrix:	Solidwaste	Analytic	al Method:	6010B		Cal Date: 02/05/2019 13:13				
Workgroup #:	WG694836		Analyst:	PDM		Run Date: 02/05/2019 17:20				
Collect Date:	01/28/2019 10:20		Dilution:	1		File ID:	T1.020519.172	2058		
Sample Tag:	01		Units:	mg/kg						
	Analyte		CAS #	ł	Result	Qual	RL	MDL		

7439-93-2

15.0

4.95

2.47

Page 1 of 1

Page 4

Lithium, Total

Microbac Laboratories Inc.

METHOD BLANK SUMMARY

Login Number:L19012057	Work Group: <u>WG694836</u>	
Blank File ID: <u>T1.020519.163605</u>	Blank Sample ID: <u>WG694609-03</u>	
Prep Date: <u>02/04/19 07:21</u>	Instrument ID: <u>ICP-THERMO1</u>	
Analyzed Date:02/05/19 16:36	Method: <u>6010B</u>	
Analyst:PDM	-	

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG694609-04	T1.020519.163905	02/05/19 16:39	01
190312-001	L19012057-01	T1.020519.172058	02/05/19 17:20	01

Report Name: BLANK_SUMMARY PDF File ID: 6292203 Report generated 02/06/2019 14:00

Microbac Laboratories Inc. METHOD BLANK REPORT

Login Number: <u>L19012057</u>	_Prep Date:02/04/19 07:	21 Sample ID: WG694609-03
Instrument ID: ICP-THERMO1	_ Run Date: <u>02/05/19 16:</u>	<u>36</u> Prep Method: <u>3051A</u>
File ID: <u>T1.020519.163605</u>	Analyst:PDM	Method: 6010B
Workgroup (AAB#): <u>WG694836</u>	Matrix: Soil	Units:mg/kg
Contract #:	Cal ID: <u>ICP-TH-05-FEB-19</u>	
		CF-IH-05-FEB-19

Analytes	MDL	RL	Concentration	Dilution	Qualifier
Lithium, Total	2.50	5.00	2.50	1	υ

MDL Method Detection Limit

RL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* |Analyte concentration| > RL

Report Name:BLANK PDF ID: 6292204 06-FEB-2019 14:00

Microbac Laboratories Inc. LABORATORY CONTROL SAMPLE (LCS)

Login Number: <u>L19012057</u>	Run Date:02	/05/2019	Sam	Sample ID: <u>WG694609-04</u>					
Instrument ID: <u>ICP-THERMO1</u>	Run Time:16	:39	Prep	Prep Method: <u>3051A</u>					
File ID: <u>T1.020519.163905</u>	Analyst:PD	м							
Workgroup (AAB#): <u>WG694836</u>	Matrix: <u>Sc</u>	il	Units:mg/kg						
QC Key: <u>STD</u> Lot#	: <u>STD91905</u>	_Cal ID: <u>IC</u>	<u>р-тн-05-</u>	FEB-19					
Analytes	Expecte	d Found	% Rec	LCS Limits	Q				
Lithium, Total	25.0	26.4	106	80 - 120					

LCS - Modified 03/06/2008 PDF File ID:6292205 Report generated: 02/06/2019 14:00

Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

Loginnum:L19012057	Cal ID: ICP-THERMO1 -	Worknum: WG694836
Instrument ID: <u>ICP-THERMO1</u>	Contract #:	Method: <u>6010B</u>
Parent ID: <u>WG694609-01</u>	File ID: <u>T1.020519.164201</u> Dil	:1 Matrix:SOLID
Sample ID: <u>WG694609-05 MS</u>		: <u>1</u> Units: <u>mg/kg</u>
Sample ID: <u>WG694609-06 MSD</u>		:1

Analyte	Parent	MS Spiked	MS Found	MS %Rec	MSD Spiked	MSD Found	MSD %Rec	%RPD	%Rec Limits	RPD Limit	Q
Lithium	9.64	19.0	26.1	86.3	18.2	28.8	105	10.2	80 - 120	20	

* FAILS %REC LIMIT

FAILS RPD LIMIT

NOTE: This is an internal quality control sample.

Microbac

Microbac Laboratories Inc. Ohio Valley Division Analyst List February 7, 2019

003 - Sturm Environmental 005 - ES LABORATORIES 007 - ALS LABORATORIES 010 - MICROBAC CHICAGOLAND ACG - ALEX C. GEDON ADG - APRIL D. GREENE ALS - ADRIANE L. STEED AT - Asa R. Timmons AWE - ANDREW W. ESSIG BLG - BRENDA L. GREENWALT CAS - Craig A. Smith CLC - CHRYS L. CRAWFORD CPD - CHAD P. DAVIS DIH - DEANNA I. HESSON DLP - DOROTHY L. PAYNE ECL - ERIC C. LAWSON EGS - EMILY G. SHILLING ERP - ERIN R. PORTER JDH - JUSTIN D. HESSON JDW - JAMES D. WRIGHT JLR - JIMMY L. RUSH JST - JOSHUA S. TAYLOR JWR - JOHN W. RICHARDS KAK - KATHY A. KIRBY KEH - Katelyn E. HOOVER KHR - KIM H. RHODES KMC - KAYLA M. CHEVALIER KRA - KATHY R. ALBERTSON KWD - KURTIS W. DECKER LSB - LESLIE S. BUCINA MAP - MARLA A. PORTER MMB - MAREN M. BEERY PDM - PIERCE D. MORRIS RLB - BOB BUCHANAN RNP - RICK N. PETTY SCB - SARAH C. BOGOLIN	006 - ALCOSAN LABORATORIES 008 - BENCHMARK LABORATORIES AC - AMBER R. CARMICHAEL ADC - ANTHONY D. CANTER ADW - ALICIA D. WALKER APH - ANDREW P. HOUT ATK - ALEX T. KLINTWORTH AZH - AFTER HOURS BRG - BRENDA R. GREGORY CEB - CHAD E. BARNES COR - Corporate IT CSH - CHRIS S. HILL DLB - DAVID L. BUMGARNER DSM - DAVID S. MOSSOR EEA - EMILY E. ALLEN EPT - ETHAN P. TIDD JAO - Jeff A. Ogle JDS - JARED D. SMITH JKP - JACQUELINE K. PARSONS JRH - JUSTIN R. HILL JTP - JOSHUA T. PEMBERTON JYH - JI Y. HU KEB - KATIE E. BARNES KFR - KARISSA F. REYNOLDS KKB - KERRI K. BUCK KMG - KALEN M. GANDOR KRP - KATHY R. PARSONS LLS - LARRY L. STEPHENS LSJ - LAURA S. JONES MES - MARY E. SCHILLING MRT - MICHELLE R. TAYLOR PIT - MICROBAC WARRENDALE RNM - Rene N. MILLER SLM - STEPHANIE L. MOSSBURG
RNP - RICK N. PETTY	SAV – SARAH A. VANDENBERG
SCB - SARAH C. BOGOLIN	SLM - STEPHANIE L. MOSSBURG
TB – TODD BOYLE	TMM - TAMMY M. MORRIS
VC – VICKI COLLIER	WTD - WADE T. DELONG
XXX - UNAVAILABLE OR SUBCONTRACT	

Microbac Laboratories Inc. List of Valid Qualifiers February 07, 2019

Qualkey: <u>STD_ND=U</u>

Qualifier	Description
*	Surrogate or spike compound out of range
+	Correlation coefficient for the MSA is less than 0.995
<	Result is less than the associated numerical value.
>	Result is greater than the associated numerical value.
A	See the report narrative
В	Analyte present in method blank
B1	Target analyte detected in method blank at or above the method reporting limit
B3	Target analyte detected in calibration blank at or above the method reporting limit
B4	The BOD unseeded dilution water blank exceeded 0.2 mg/L
С	Confirmed by GC/MS
CG	Confluent growth
CT1 DL	The cooler temperature at receipt exceeded regulatory guidance. Surrogate or spike compound was diluted out
E	Estimated concentration due to sample matrix interference
EDL	Elevated sample reporting limits, presence of non-target analytes
EMPC	Estimated Maximum Possible Concentration
F, S	Estimated result below quantitation limit; method of standard additions(MSA)
FL	Free Liguid
FP1	Did not ignite.
H1	Sample analysis performed past holding time.
I	Semiquantitative result (out of instrument calibration range)
J	The analyte was positively identified, but the quantitation was below the RL
J,B	Analyte detected in both the method blank and sample above the MDL.
J,CT1	Estimated. The cooler temperature at receipt exceeded the regulatory guidance.
J,H1	The analyte was positively identified, but the quantitation was below the RL. Sample analysis performed past holding time
J,P	Estimate; columns don't agree to within 40%
J,S	Estimated concentration; analyzed by method of standard addition (MSA)
L	Sample reporting limits elevated due to matrix interference
L1	The associated blank spike (LCS) recovery was above the laboratory acceptance limits.
L2 M	The associated blank spike (LCS) recovery was below the laboratory acceptance limits. Matrix effect; the concentration is an estimate due to matrix effect.
N	Tentatively identified compound(TIC)
NA	Not applicable
ND, S	Not detected; analyzed by method of standard addition (MSA)
ND,L	Not detected, sample reporting limit (RL) elevated due to interference
NÉ	Not found by library search
NFL	No free liquid
NI	Non-ignitable
NR	Analyte is not required to be analyzed
NS	Not spiked
Р	Concentrations >40% difference between the two GC columns
Q	One or more quality control criteria failed. See narrative.
QNS	Quantity of sample not sufficient to perform analysis
RA	Reanalysis confirms reported results
RE	Reanalysis confirms sample matrix interference
S SMI	Analyzed by method of standard addition (MSA)
SP	Sample matrix interference on surrogate Reported results are for spike compounds only
TIC	Library Search Compound
TNTC	Too numerous to count
U	Not detected at or above adjusted sample detection limit
U,CT1	Not detected. The cooler temperature at receipt exceeded regulatory guidance.
U,H1	Not detected; sample analysis performed past holding time.
ŰJ	Undetected; the MDL and RL are estimated due to quality control discrepancies.
W	Post-digestion spike for furnace AA out of control limits
Х	Exceeds regulatory limit
X, S	Exceeds regulatory limit; method of standard additions (MSA)
Y	This analyte is not on the laboratory's current scope of accreditation.
Z	Cannot be resolved from isomer - see below

Microbac

	Microbac		φ ()	Phone: 740-373-4071 Fax: 740-373-4835
<u>Contact Name:</u> Micha AEP [<u>Address:</u> 4001 Grove Additional Requirements:	Michael Ohlinger AEP Dolan Lab 4001 Bixby Rd. Groveport, OH 43125 ments:	Contact Phone #: Billing Contact #:	one #: (614) 836-4184 tact #: (614) 836-4221	Microbac Information: Customer #: Additional Labor;
Turn Around:	Routine	Project ID:		<u>Sampler:</u> Jason Blanton
Sample ID	Sample Description	Collected Date/Time	Analysis Requested	Grab/ Noof Comp Cont. Matrix & Preservative
190312-001	Northeastern Bottom Ash	1/28/2019 10:20 AM	Lithium	Grab 1 Solids/Soil Cold
			Microbac OVD	
Relinquished By:	I Jun ORLY	Date/Time: \/ 3ດ/ເຈີ ໄວ້ເວິດິM		221000132389 Time:
Received By:		Date/Time:	Alenda Alecesca	ime:

MICROBAC'

Cooler 102381____

COOLER TEMP >6° C LOG

	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6
SAMPLE ID	°C	°C	°C	°C	°c	°c
					and the second sec	
				\sim		
			∇c			
		Ch A	and the second sec			
			· · · · · · · · · · · · · · · · · · ·			
······································				·		
· · · · · · · · · · · · · · · · ·						
		· · · · · · · · · · · · · · · · · · ·				
			Eventions			
Lot # 10 A		pH	Exceptions			
Lot # 10 A SAMPLE ID	Bottle 1	pH Bottle 2	Exceptions Bottle 3	Bottle 4	Bottle 5	Bottle 6
	Bottle 1	· · · · · · · · · · · · · · · · · · ·		Bottle 4	Bottle 5	Bottle 6
	Bottle 1	· · · · · · · · · · · · · · · · · · ·		Bottle 4	Bottle 5	Bottle 6
	Bottle 1	· · · · · · · · · · · · · · · · · · ·		Bottle 4	Bottle 5	Bottle 6
	Bottle 1	· · · · · · · · · · · · · · · · · · ·		Bottle 4	Bottle 5	Bottle 6
	Bottle 1	· · · · · · · · · · · · · · · · · · ·		Bottle 4	Bottle 5	Bottle 6
	Bottle 1	· · · · · · · · · · · · · · · · · · ·		Bottle 4	Bottle 5	Bottle 6
	Bottle 1	· · · · · · · · · · · · · · · · · · ·		Bottle 4	Bottle 5	Bottle 6
	Bottle 1	· · · · · · · · · · · · · · · · · · ·		Bottle 4	Bottle 5	Bottle 6
	Bottle 1	· · · · · · · · · · · · · · · · · · ·		Bottle 4	Bottle 5	Bottle 6
	Bottle 1	Bottle 2		Bottle 4	Bottle 5	Bottle 6
	Bottle 1	Bottle 2		Bottle 4	Bottle 5	Bottle 6
	Bottle 1	Bottle 2		Bottle 4	Bottle 5	Bottle 6
	Bottle 1	Bottle 2		Bottle 4	Bottle 5	Bottle 6
		Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6
		Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6
		Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6
		Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6
		Bottle 2 DG PRESER EXCEP	Bottle 3	Bottle 4	Bottle 5	Bottle 6
		Bottle 2 DG PRESER EXCEP	Bottle 3		· · · · · · · · · · · · · · · · · · ·	
SAMPLE ID		Bottle 2 DG PRESER EXCEP	Bottle 3		Bottle 5	

Table 1: Groundwater Data Summary Northeastern Plant - Landfill

			MW-8D										
Parameter	Unit	1/25/2017	3/15/2017	4/24-4/27/2017	5/18/2017	6/15-6/16/2017	6/27-6/28/2017	7/12-7/13/2017	8/4/2017	8/17/2017	8/30/2017	9/13/2017	10/11/2017
							Background						Detection
Antimony	mg/L	<0.00093 U	0.00500	0.00256 J	0.00713	0.0203	0.00467 J	0.00328 J	0.00232 J	0.00794	0.00508	0.00378 J	-
Arsenic	mg/L	0.00700	<0.00105 U	0.00448 J	0.0103	0.0134	0.00178 J	0.00270 J	0.00430 J	0.00580	0.00952	0.00704	-
Barium	mg/L	1.17	1.66	2.32	7.14	7.37	5.29	3.72	1.90	2.38	3.86	4.51	-
Beryllium	mg/L	<0.00002 U	<0.00002 U	0.000120 J	0.000460 J	0.000740 J	0.0000800 J	0.000130 J	0.000170 J	0.000220 J	0.000750 J	0.000450 J	-
Boron	mg/L	1.31	1.29	1.28	1.27	1.34	1.29	1.36	1.35	1.35	1.36	1.36	1.32
Cadmium	mg/L	0.00100	0.00200	0.000930 J	0.00507	0.00826	0.00254	0.00141	0.000970 J	0.00139	0.00275	0.00182	-
Calcium	mg/L	446	417	376	529	861	416	381	416	450	586	479	445
Chloride	mg/L	12000	13200	11200	14600	10200	11200	11800	11800	11300	12300	12300	11600
Chromium	mg/L	0.00400	0.00100	<0.00023 U	0.00894	0.0154	0.000590 J	<0.00023 U	0.00102	0.00175	0.0143	0.00662	-
Cobalt	mg/L	<0.00014 U	<0.00014 U	0.00145 J	0.00592	0.0108	0.00385 J	0.00235 J	0.00265 J	0.00273 J	0.00653	0.00430 J	-
Combined Radium	pCi/L	7.48	4.66	5.29	5.58	5.37	-	-	9.67	6.39	5.98	-	-
Fluoride	mg/L	<0.083 U	<0.083 U	0.240 J	<0.083 U	<0.083 U	<0.083 U	<0.083 U	<0.083 U	<0.083 U	<0.083 U	<0.083 U	<0.083 U
Lead	mg/L	<0.00068 U	<0.00068 U	0.000900 J	0.00659	0.00560	0.00231 J	0.00214 J	0.00282 J	0.00217 J	0.00511	0.00289 J	-
Lithium	mg/L	1.44	1.10	1.07	1.30	1.22	1.14	1.19	1.08	1.12	1.19	1.23	-
Mercury	mg/L	<0.000005 U	<0.000005 U	0.0000100 J	0.0000220 J	0.0000250	0.0000120 J	0.0000150 J	0.0000120 J	<0.000005 U	0.0000290	0.0000300	-
Molybdenum	mg/L	<0.005 U	<0.005 U	0.000910 J	0.00243 J	0.00281 J	0.00120 J	0.00168 J	0.00190 J	0.00191 J	0.00340 J	0.00453 J	-
Selenium	mg/L	0.00600	<0.00099 U	0.00391 J	0.00370 J	0.00371 J	0.00134 J	0.00578	0.00603	0.00605	0.00474 J	0.00466 J	-
Total Dissolved Solids	mg/L	20800	19000	20800	22300	20100	21000	21100	22200	22400	23000	23000	21900
Sulfate	mg/L	144	72.0	58.0	112	122	116	128	113	103	112	126	300
Thallium	mg/L	<0.00086 U	<0.00086 U	<0.00086 U	<0.00086 U	<0.00086 U	<0.00086 U	<0.00086 U	<0.00086 U	<0.00086 U	<0.00086 U	<0.00086 U	_
pН	SU	7.10	-	7.34	-	7.21	7.04	7.15	6.98	6.94	6.99	6.89	6.90

Notes:

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL).

J: Estimated value. Parameter was detected in concentrations below the reporting limit

-: Not sampled

For statistical analysis, parameters which were not detected were replaced with the reporting limit.

							SP-	-1						
Parameter	Unit	1/25/2017	3/13/2017	4/24-4/27/2017	5/18/2017	6/15-6/16/2017	6/27-6/28/2017	7/12-7/13/2017	8/4/2017	8/17/2017	8/30/2017	9/13/2017	9/20/2017	10/11/2017
							Background							Detection
Antimony	mg/L	0.005U*	0.005U*	0.00275J	0.00685	0.00114J	0.005U	0.00125J	0.005U	-	0.00209J	0.005U	0.005U	-
Arsenic	mg/L	0.005U*	0.005U*	0.00191J	0.00548	0.005U	0.005U	0.005U	0.00211J	-	0.00134J	0.005U	0.005U	-
Barium	mg/L	0.211	0.146	0.195	0.243	0.183	0.187	0.217	0.298	-	0.218	0.21	0.168	-
Beryllium	mg/L	0.001U*	0.001U*	0.0001J	0.00026J	0.00004J	0.001U	0.00009J	0.0001J	-	0.00014J	0.00009J	0.00005J	-
Boron	mg/L	0.298	0.186	0.202	0.284	0.242	0.232	0.287	0.299	-	0.25	0.369	0.331	0.35
Cadmium	mg/L	0.001U*	0.001U*	0.001U	0.00022J	0.001U	0.001U	0.001U	0.001U	-	0.001U	0.00008J	0.00011J	-
Calcium	mg/L	111	117	108	131	115	113	122	125	-	120	119	129	152
Chloride	mg/L	60	548	83	104	50	19	70	20	-	34	62	22	136
Chromium	mg/L	0.001U*	0.001U*	0.00084J	0.00255	0.001U	0.001U	0.00062J	0.00078J	-	0.00055J	0.00031J	0.001U	-
Cobalt	mg/L	0.005U*	0.005U*	0.00242J	0.00255J	0.00077J	0.00077J	0.00134J	0.00133J	-	0.00175J	0.00107J	0.00115J	-
Combined Radium	pCi/L	3.48	3.014	4.71	4.12	2.096	14.29	4.01	3.41	-	4.15	2.584	4.53	-
Fluoride	mg/L	1U*	4	1.02	1.3	0.6437J	0.582J	0.6283J	0.542J	-	0.581J	0.4042J	1U	1.4051
Lead	mg/L	0.005U*	0.005U*	0.00094J	0.00163J	0.005U	0.005U	0.00124J	0.00094J	-	0.005U	0.005U	0.005U	-
Lithium	mg/L	0.006	0.007	0.00789	0.00853	0.00407	0.00334	0.00395	0.00577	-	0.00468	0.00548	0.00318	-
Mercury	mg/L	0.000025U*	0.000025U*	0.000025U	0.000023J	0.000009J	0.000025U	0.000025U	0.000009J	-	0.000025U	0.000025U	0.000025U	-
Molybdenum	mg/L	0.011	0.016	0.01992	0.01677	0.00702	0.00642	0.00814	0.01996	-	0.01208	0.01465	0.00532	-
Selenium	mg/L	0.005U*	0.005U*	0.00485J	0.00651	0.00254J	0.00277J	0.00521	0.01196	-	0.00351J	0.00413J	0.005U	-
Total Dissolved Solids	mg/L	514	480	496	574	478	424	504	394	-	456	536	440	676
Sulfate	mg/L	66	30	60	60	48	48	56	52	-	59	54	62	58
Thallium	mg/L	0.002U*	0.002U*	0.002U	0.002U	0.002U	0.002U	0.00089J	0.002U	-	0.002U	0.002U	0.002U	-
pН	SU	7.52	-	7.56	-	9.34	11.09	9.84	8.72	7.94	7.73	8.19	7.33	7.36

Notes:

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Parameter was not present in concentrations above method detection limit and is reported as the reporting limit

*: Parameter was not present in concentrations above method detection limit and is reported as the method detection limit

J: Estimated value. Component was detected in concentrations below the reporting limit

-: Not sampled

							SP	-2						
Parameter	Unit	1/25/2017	3/13/2017	4/24-4/27/2017	5/18/2017	6/15-6/16/2017	6/27-6/28/2017	6/12-7/13/2017	8/4/2017	8/17/2017	8/30/2017	9/13/2017	9/20/2017	10/11/2017
							Background							Detection
Antimony	mg/L	0.005U*	0.005U*	0.00209J	0.00871	0.01134	0.00515	0.00474J	0.00351J	-	0.00295J	0.00267J	0.00264J	-
Arsenic	mg/L	0.011	0.005	0.00208J	0.00902	0.0055	0.0014J	0.00251J	0.00254J	-	0.00125J	0.00183J	0.00305J	-
Barium	mg/L	1.46	1.13	0.76	3.13	1.71	1.56	1.54	1.01	-	1.12	0.992	1.15	-
Beryllium	mg/L	0.001U*	0.001U*	0.00004J	0.00026J	0.00018J	0.00006J	0.00007J	0.00009J	-	0.00012J	0.00011J	0.0002J	-
Boron	mg/L	0.274	0.251	0.152	0.336	0.303	0.292	0.339	0.28	-	0.275	0.311	0.3	0.307
Cadmium	mg/L	0.001U*	0.001U*	0.001U	0.00018J	0.001U	0.001U	0.001U	0.00007J	-	0.001U	0.001U	0.00009J	-
Calcium	mg/L	108	82.6	62	117	108	98.5	111	147	-	86.8	91.8	129	91.9
Chloride	mg/L	607	37	527	1240	888	883	863	1064	-	1001	930	856	970
Chromium	mg/L	0.003	0.001	0.00024J	0.00287	0.00204	0.00129	0.00059J	0.00107	-	0.001U	0.001U	0.00346	-
Cobalt	mg/L	0.005U*	0.005U*	0.00087J	0.00277J	0.00251J	0.00182J	0.00123J	0.00108J	-	0.0008J	0.00087J	0.00255J	-
Combined Radium	pCi/L	6.89	9.96	8.98	26.48	22.16	-	-	16.34	-	14.48	14.89	-	-
Fluoride	mg/L	3	1	2.82	3	2.96	2.8408	3.581	2.788	-	4.0998	3.196	1.726	3.5881
Lead	mg/L	0.005U*	0.005U*	0.005U	0.00202J	0.005U	0.005U	0.00141J	0.005U	-	0.005U	0.005U	0.00091J	-
Lithium	mg/L	0.098	0.073	0.05305	0.111	0.103	0.09272	0.0961	0.09164	-	0.0931	0.09207	0.09111	-
Mercury	mg/L	0.000025U*	0.000025U*	0.000025U	0.000006J	0.000005J	0.000025U	0.000025U	0.000014J	-	0.000025U	0.000006J	0.000025U	-
Molybdenum	mg/L	0.019	0.023	0.02467	0.01163	0.02957	0.02962	0.03332	0.0394	-	0.03386	0.03761	0.03939	-
Selenium	mg/L	0.005U*	0.005U*	0.00204J	0.00616	0.03783	0.02241	0.02323	0.02336	-	0.01186	0.00987	0.00987	-
Total Dissolved Solids	mg/L	1786	1340	1242	2214	1912	1872	1846	2132	-	2192	1956	1778	2076
Sulfate	mg/L	21	70	27	15	61	58	58	57	-	47	43	37	41
Thallium	mg/L	0.002U*	0.002U*	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	-	0.002U	0.002U	0.002U	-
pН	SU	6.41	-	6.53	-	8.31	7.38	7.94	7.21	7.64	7.46	7.04	6.86	7.3

Notes:

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Parameter was not present in concentrations above method detection limit and is reported as the reporting limit

*: Parameter was not present in concentrations above method detection limit and is reported as the method detection limit

J: Estimated value. Component was detected in concentrations below the reporting limit

-: Not sampled

							Ş	SP-4						
Parameter	Unit	1/25/2017	3/15/2017	4/25-4/27/2017	5/18/2017	6/15-6/16/2017	6/27-6/28/2017	7/12-7/13/2017	8/4/2017	8/17/2017	8/30-8/31/2017	9/13/2017	9/20/2017	10/11/2017
							Backgroun	d						Detection
Antimony	mg/L	0.005U*	0.005U*	0.00136J	0.00204J	0.00174J	0.005U	0.00266J	0.00387J	0.005U	0.00245J	0.005U	0.0023J	-
Arsenic	mg/L	0.005U*	0.005U*	0.00172J	0.0055	0.00459J	0.00201J	0.01065	0.04498	0.01931	0.00913	0.01634	0.01395	-
Barium	mg/L	0.398	0.477	0.578	0.762	0.633	0.576	1.34	4.59	2.31	1.49	1.91	1.93	-
Beryllium	mg/L	0.001U*	0.001U*	0.00003J	0.00056J	0.00034J	0.00024J	0.00128	0.00497	0.00212	0.00126	0.00171	0.00177	-
Boron	mg/L	0.406	0.399	0.442	0.411	0.395	0.388	0.42	0.412	0.493	0.392	0.387	0.477	0.425
Cadmium	mg/L	0.001U*	0.001U*	0.0001J	0.00057J	0.001U	0.001U	0.00137	0.00655	0.00205	0.00166	0.00247	0.0019	-
Calcium	mg/L	57.7	67	58.8	296	118	110	648	1920	793	612	810	630	206
Chloride	mg/L	401	52	459	232	475	471	489	469	460	576	450	440	431
Chromium	mg/L	0.001U*	0.001U*	0.00064J	0.01073	0.00404	0.00298	0.02248	0.08415	0.04182	0.02581	0.03083	0.03455	-
Cobalt	mg/L	0.005U*	0.005U*	0.00101J	0.00549	0.00463J	0.00529	0.01064	0.04069	0.01786	0.01206	0.01771	0.01632	-
Combined Radium	pCi/L	4	3.57	2.566	6.37	4.18	9.64	5.79	4.04	6.71	8.09	5.92	-	-
Fluoride	mg/L	3	4	3.2	2.1	3.34	3.2489	3.863	3.078	3.049	4.086	3.199	1.747	3.7702
Lead	mg/L	0.005U*	0.005U*	0.005U	0.00365J	0.00139J	0.00096J	0.00847	0.03663	0.0107	0.00711	0.00892	0.0096	-
Lithium	mg/L	0.072	0.073	0.06973	0.07998	0.07422	0.07041	0.09243	0.136	0.111	0.0962	0.104	0.101	-
Mercury	mg/L	0.000025U*	0.000025U*	0.000025U	0.000015J	0.000025U	0.000025U	0.00001J	0.000058	0.00003	0.000021J	0.000029	0.000014J	-
Molybdenum	mg/L	0.005U*	0.005U*	0.0015J	0.00102J	0.00065J	0.00046J	0.005U	0.00503	0.00423J	0.00461J	0.00621	0.00702	-
Selenium	mg/L	0.005U*	0.005U*	0.005U	0.005U	0.00167J	0.005U	0.005U	0.00499J	0.00104J	0.00186J	0.00165J	0.005U	-
Total Dissolved Solids	mg/L	1122	1128	1128	846	1164	1388	1128	1150	1132	1400	1236	1208	1200
Sulfate	mg/L	37	38	41	50	36	37	36	50	75	74	88	90	78
Thallium	mg/L	0.002U*	0.002U*	0.00121J	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	-
pН	SU	7.72	-	6.96	-	8.25	8.1	8.05	7.66	7.82	7.61	7.71	7.17	7.44

Notes:

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Parameter was not present in concentrations above method detection limit and is reported as the reporting limit

*: Parameter was not present in concentrations above method detection limit and is reported as the method detection limit

J: Estimated value. Component was detected in concentrations below the reporting limit

-: Not sampled

Geosyntec Consultants, Inc.

							SP-5							
Parameter	Unit	1/25/2017	3/15/2017	4/25-4/27/2017	5/18/2017	6/15-6/16/2017	6/27-6/28/2017	/12-7/13/201	8/4/2017	8/17/2017	8/30/2017	9/13/2017	9/20/2017	10/11/2017
							Background							Detection
Antimony	mg/L	0.005U*	0.005U*	0.005U	0.005U	0.00202J	0.005U	0.005U	0.005U	0.00163J	0.005U	0.005U	0.005U	-
Arsenic	mg/L	0.012	0.013	0.01703	0.02942	0.0137	0.01265	0.01724	0.0216	0.01911	0.01947	0.02036	0.02077	-
Barium	mg/L	1.65	1.59	1.61	2.27	2.05	1.79	1.88	1.8	1.89	1.93	1.93	1.88	-
Beryllium	mg/L	0.001U*	0.001U*	0.00003J	0.00023J	0.00011J	0.00002J	0.00006J	0.00009J	0.00004J	0.00011J	0.0001J	0.00005J	-
Boron	mg/L	0.233	0.236	0.245	0.319	0.231	0.224	0.261	0.256	0.293	0.252	0.232	0.257	0.61
Cadmium	mg/L	0.001U*	0.001U*	0.001U	0.001U	0.001U	0.001U	0.001U	0.001U	0.001U	0.001U	0.00016J	0.001U	-
Calcium	mg/L	52.4	61.7	53.8	79.1	57.1	53	53.8	61.3	52	57.3	55.6	53.7	71
Chloride	mg/L	500	62	674	1834	607	636	640	638	661	652	644	729	630
Chromium	mg/L	0.001U*	0.001	0.00033J	0.00341	0.00142	0.0003J	0.0005J	0.00169	0.001U	0.00116	0.00062J	0.001U	-
Cobalt	mg/L	0.005U*	0.005U*	0.00088J	0.00232J	0.00144J	0.00101J	0.0011J	0.00132J	0.001J	0.0012J	0.001J	0.00097J	-
Combined Radium	pCi/L	10.09	9.65	10.27	15.3	10.27	15.84	12.21	11.6	10.95	12.47	10.62	10.5	-
Fluoride	mg/L	3	4	3.06	4	3	2.835	3.156	2.889	3.258	3.5698	2.797	1.535	3.7844
Lead	mg/L	0.005U*	0.005U*	0.005U	0.00236J	0.005U	0.00076J	0.0009J	0.00144J	0.005U	0.005U	0.005U	0.00106J	-
Lithium	mg/L	0.114	0.112	0.112	0.163	0.109	0.1	0.111	0.119	0.106	0.112	0.11	0.111	-
Mercury	mg/L	0.000025U*	0.000025U*	0.000016J	0.000025U	0.000016J	0.000025U	0.000025U	0.000015J	0.000025U	0.000009J	0.000025U	0.000025U	-
Molybdenum	mg/L	0.005U*	0.005U*	0.00116J	0.005U	0.005U	0.005U	0.005U	0.00127J	0.005U	0.005U	0.005U	0.005U	-
Selenium	mg/L	0.005U*	0.005U*	0.005U	0.005U	0.005U	0.005U	0.00114J	0.005U	0.005U	0.005U	0.005U	0.005U	-
Total Dissolved Solids	mg/L	1354	1420	1436	3008	1368	1156	1388	1372	1378	1424	1452	1312	1368
Sulfate	mg/L	10	10	9	8	7	8	7	8	6	7	6	6	5
Thallium	mg/L	0.002U*	0.002U*	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	-
pН	SU	7.99	-	7.54	-	8.28	8.22	8.18	7.86	8.19	7.69	8.43	7.44	7.52

Notes:

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Parameter was not present in concentrations above method detection limit and is reported as the reporting limit

*: Parameter was not present in concentrations above method detection limit and is reported as the method detection limit

J: Estimated value. Component was detected in concentrations below the reporting limit

-: Not sampled

						SP-10										SP-11					
Parameter	Unit	7/12-7/13/2017	8/4/2017	8/17/2017	8/30/2017	9/13/2017	9/20/2017	9/27/2017	10/4/2017	10/11/2017	7/12-7/13/2017	8/4/2017	8/17/2017	8/30/2017	9/13/2017	9/20/2017	9/27/2017	10/4/2017	10/11/2017	10/31/2017	11/8/2017
		Background Detection								Backgro	und				Detection						
Antimony	mg/L	0.00462J	0.00251J	0.005U	0.005U	0.005U	0.00116J	0.00157J	0.00127J	-	0.00943	0.0047J	0.005U	0.00429J	0.0024J	0.00773	0.00689	0.00444J	-	-	-
Arsenic	mg/L	0.005U	0.00243J	0.005U	0.00566	0.00942	0.01392	0.01531	0.0043J	-	0.00399J	0.00182J	0.005U	0.0012J	0.00366J	0.01214	0.0075	0.00847	-	-	-
Barium	mg/L	1.9	0.33	0.282	0.279	0.266	0.399	0.928	0.664	-	0.194	0.09874	0.08342	0.09307	0.108	0.24	0.269	0.347	-	-	-
Beryllium	mg/L	0.001U	0.00003J	0.001U	0.00006J	0.00007J	0.00003J	0.00004J	0.00003J	-	0.00022J	0.00007J	0.001U	0.00007J	0.00008J	0.00039J	0.00039J	0.00035J	-	-	-
Boron	mg/L	0.965	1.08	1.09	1.09	1.1	1.08	1.07	1.1	1.03	0.839	0.543	0.453	0.428	0.447	0.469	0.447	0.531	0.446	-	-
Cadmium	mg/L	0.001U	0.001U	0.001U	0.001U	0.001U	0.001U	0.001U	0.001U	-	0.0014	0.00044J	0.001U	0.00034J	0.00009J	0.0027	0.00301	0.00249	-	-	-
Calcium	mg/L	53	83.1	91.4	81.8	76.9	64.6	65.7	52.3	58.4	742	272	171	161	190	1220	1170	1110	479	-	-
Chloride	mg/L	1844	1616	1700	1932	1592	1946	1784	1553	1934	568	567	789	683	628	690	759	744	824	-	-
Chromium	mg/L	0.11	0.00244	0.001U	0.00109	0.00046J	0.00072J	0.00207	0.00036J	-	0.01852	0.00525	0.001U	0.00276	0.00257	0.0313	0.03271	0.02949	-	-	-
Cobalt	mg/L	0.00596	0.00474J	0.005U	0.00427J	0.00241J	0.00219J	0.00371J	0.00402J	-	0.00976	0.00652	0.005U	0.00385J	0.00321J	0.01462	0.01437	0.01199	-	-	-
Combined Radium	pCi/L	17.23	1.153	0.995	0.763	0.774	1.062	1.723	3.226	-	-	25.367	0.947	0.438	2.685	4.2	-	2.817	-	0.857	1.423
Fluoride	mg/L	6.502	1U	1U	10.2663	7.028	1U	5	5.11	7.3938	2.386	3.355	4.52	4.1325	3.359	2.016	3	2.9	4.4661	-	-
Lead	mg/L	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.00087J	-	0.00516	0.00201J	0.005U	0.00123J	0.005U	0.00816	0.00858	0.00705	-	-	-
Lithium	mg/L	0.278	0.284	0.317	0.306	0.315	0.292	0.329	0.279	-	0.04698	0.0877	0.08931	0.08933	0.105	0.13	0.129	0.146	-	-	-
Mercury	mg/L	0.000006J	0.000029	0.000027	0.000019J	0.000013J	0.000016J	0.000013J	0.000015J	-	0.000009J	0.000023J	0.000007J	0.000008J	0.000009J	0.000027	0.000048	0.000047	-	-	-
Molybdenum	mg/L	0.934	0.129	0.04543	0.03035	0.01628	0.01358	0.03593	0.02919	-	0.06127	0.06641	0.0515	0.04433	0.03616	0.0469	0.04861	0.04214	-	-	-
Selenium	mg/L	0.00567	0.00882	0.005U	0.00256J	0.00311J	0.00238J	0.00384J	0.005U	-	0.00595	0.00626	0.005U	0.00249J	0.00155J	0.00546	0.00747	0.00327J	-	-	-
Total Dissolved Solids	mg/L	3416	5142	5678	5264	5168	4424	4516	3660	4060	2880	3076	3308	2732	2420	2336	2428	2288	2322	-	-
Sulfate	mg/L	294	761	915	834	738	544	419	286	188	798	870	741	541	515	329	332	305	223	-	-
Thallium	mg/L	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	-	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	-	-	-
pН	SU	6.74	7.6	7.82	7.58	8.34	7.07	7.77	7.37	6.99	7.35	7.89	6.94	7.61	7.21	7.24	7.18	7.52	7.03	-	-

Notes:

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Parameter was not present in concentrations above method detection limit and is reported as the reporting limit

*: Parameter was not present in concentrations above method detection limit and is reported as the method detection limit

J: Estimated value. Component was detected in concentrations below the reporting limit

-: Not sampled

TABLE 2

NORTHEASTERN STATION 3 & 4 NON-HAZARDOUS INDUSTRIAL WASTE (NHIW) LANDFILL MONITORING WELL/PIEZOMETER CONSTRUCTION DETAILS

Well Number	Latitude	Longitude	Ground Surface Elevation	Top of Casing Elevation	Borehole Depth ft.bls	Date Installed	Screen Material	Well Diameter inches	Top of Screen Depth ft. bls	Top of Screen Elevation ft. msl	Bottom of Screen Depth ft. bls	Bottom of Screen Elevation ft. msl
MW-3D	36° 25' 00.14299"	95° 41' 44.01366"	627.66	630.65	60	2/21/2008	PVC	2	49.7	580.95	60	567.66
MW-6D	36° 24' 54.41869"	95° 41' 51.01306"	633.72	636.66	55	10/23/2008	PVC	2	44.92	591.74	55.22	578.50
MW-7D	36° 25' 06.30327"	95° 41' 47.03123"	623.74	626.46	55	10/22/2008	PVC	2	45.25	581.21	55.55	568.19
MW-8D	36° 25' 04.35228"	95° 42' 10.11303"	626.04	629.32	60	10/21/2008	PVC	2	<mark>49.95</mark>	<mark>579.37</mark>	<mark>60.25</mark>	<mark>565.79</mark>
MW-9D	36° 24' 50.88110"	95° 41' 54.22530"	633.90	637.04	60	4/6/2010	PVC	2	49.7	587.34	60	573.90
MW-15	36° 24' 48.0816"	95° 41' 56.4658"	634.34	637.71	71	2/23/2016	PVC	2	61.05	576.66	71.45	562.89

TABLE 2 NORTHEASTERN STATION 3 & 4 BOTTOM ASH POND MONITORING WELL/PIEZOMETER CONSTRUCTION DETAILS

Well Number	Latitude	Longitude	Ground Surface Elevation	Top of Casing Elevation	Borehole Depth ft.bls	Date Installed	Screen Material	Well Diameter inches	Top of Screen Depth ft. bls	Top of Screen Elevation ft. msl	Bottom of Screen Depth ft. bls	Bottom of Screen Elevation ft. msl
SP-1	36° 25' 03.77705"	95° 42' 14.44814"	618.26	621.26	35	4/5/2011	PVC	2	24.7	596.56	35	583.26
SP-2	36° 25' 06.44515"	95° 42' 26.73557"	614.49	617.49	35	4/5/2011	PVC	2	24.9	592.59	35.2	579.29
SP-3	36° 25' 23.91757"	95° 42' 27.02763"	618.02	621.02	35	4/5/2011	PVC	2	24.6	596.42	34.9	583.12
SP-4	36° 25' 23.73526"	95° 42' 06.38375"	636.16	639.16	35	4/6/2011	PVC	2	25	614.16	35.3	600.86
SP-5	36° 25' 43.92075"	95° 42' 14.32901"	628.17	631.17	35	4/6/2011	PVC	2	24.9	606.27	35.2	592.97
SP-5R*	36° 25' 43.92075"	95° 42' 14.32901"	628.17	631.17	75	4/11/2012	PVC	2	34.7	596.47	75	553.17
SP-6	36° 25' 08.5783"	95° 42' 05.0916"	638.08	641.35	71	3/3/2016	PVC	2	60.41	580.94	70.81	567.27
SP-7	36° 25' 05.8073"	95° 42' 17.9217"	613.39	616.84	81	3/7/2016	PVC	2	70.35	546.49	80.75	532.64
SP-8	36° 25' 11.8762"	95° 42' 32.2316"	611.51	614.89	71	3/8/2016	PVC	2	60.45	554.44	70.85	540.66
SP-9	36° 25' 19.3270"	95° 42' 34.0978"	614.00	617.24	75	3/10/2016	PVC	2	65.22	552.02	75.62	538.38

* SP-5R replaced SP-5

American Electric Power 502 North Allen Avenue Shreveport, LA 71101 AEP.com

May 1, 2019

Hillary Young, P.E. Oklahoma Department of Environmental Quality 707 N Robinson Oklahoma City, OK 73102

Subject: Northeastern Power Station 252:517 - Coal Combustion Residual Alternate Source Demonstration – Bottom Ash Pond

Dear Ms. Young:

In accordance with 252:517-9-6-(g)(3)(B) American Electric Power is submitting a report documenting the demonstration of an alternate source for the statistically significant level of lithium detected at the facility referenced above for your approval. This report has been certified by a qualitied professional engineer. This report is being submitted with in the required time frame which includes the 30 day extension granted by ODEQ in correspondence dated march 19, 2019.

Based on the alternate source demonstration the Bottom Ash Pond will continue to operate under the assessment monitoring program. This alternate source demonstration will be included in the annual 2019 groundwater monitoring and corrective action report in accordance with OAC 252:517-9-1(e).

If you have any questions regarding these submittals, you can contact me at 318-673-3816, or by email at jcparker-witt@aep.com.

Sincerely,

Jill Parker-Witt AEP Environmental Services

ALTERNATIVE SOURCE DEMONSTRATION REPORT STATE CCR RULE

Northeastern Power Station Bottom Ash Pond Oologah, Oklahoma

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

Geosyntec Consultants

engineers | scientists | innovators

941 Chatham Lane Suite 103 Columbus, OH 43221

April 24, 2019

CHA8462

TABLE OF CONTENTS

SECTION 1	Introduction and Summary	.1-1
1.1	CCR Rule Requirements	.1-1
1.2	Demonstration of Alternative Sources	.1-2
SECTION 2	Alternative Source Demonstration	2-1
2.1	Regional Geology	2-1
2.2	Site Geology	2-2
2.3	Site Hydrogeology	2-4
2.4	Site Geochemistry	2-4
	2.4.1 Lithium Distribution at the Site	2-6
2.5	Pond Chemistry	2-7
2.6	Proposed Alternative Source	.2-7
2.7	Sampling Requirements	2-7
SECTION 3	Conclusions and Recommendations	3-8
SECTION 4	References	.4-1

TABLES

Table 1	X-Ray Diffraction Analytical Results
Table 2	Cation Exchange Capacity and Total Lithium Analytical Results

FIGURES

Figure 1	Soil Boring and Monitoring Well Location Map
Figure 2	Water Level Time Series Graph
Figure 3	Schoeller Diagram
Figure 4	Piper Diagram – All Wells
Figure 5	Piper Diagrams – Individual Wells
Figure 6	Spatial Distribution of Groundwater Types
Figure 7	Sodium v. Well Screen Depth
Figure 8	Spatial Distribution of Lithium
Figure 9	Sodium v. Lithium Concentrations
Figure 10	Chloride v. Lithium Concentrations
Figure 11	Lithium v. Well Screen Depth
Figure 12	Cation Distribution
Figure 13	BAP Water Schoeller Diagram

ATTACHMENTS

Attachment A	Boring Logs
Attachment B	BAP-B1 Photolog
Attachment C	Mineralogical Analysis Laboratory Report
Attachment D	BAP Water Laboratory Analytical Data
Attachment E	Certification by a Qualified Professional Engineer

LIST OF ACRONYMS AND ABBREVIATIONS

- AEP American Electric Power
- ASD Alternative Source Demonstration
- ASL Alternate Screening Level
- BAP Bottom Ash Pond
- CCR Coal Combustion Residuals
- CEC Cation Exchange Capacity
- CFR Code of Federal Regulations
- EPRI Electric Power Research Institute
- GSC Groundwater Stats Consulting, LLC
- GWPS Groundwater Protection Standard
- LCL Lower Confidence Limit
- MCL Maximum Contaminant Level
- OAC Oklahoma Administrative Code
- ODEQ Oklahoma Department of Environmental Quality
- OGS Oklahoma Geological Survey
- QA Quality Assurance
- QC Quality Control
- SSL Statistically Significant Level
- UTL Upper Tolerance Limit
- USEPA United States Environmental Protection Agency
- XRD X-Ray Diffraction
- XRF X-Ray Fluorescence

SECTION 1

INTRODUCTION AND SUMMARY

The Northeastern Power Station has two regulated coal combustion residuals (CCR) management units, including the Bottom Ash Pond (BAP). In 2018, two assessment monitoring events were conducted at the BAP in accordance with OAC 252:517-9-6. The monitoring data were submitted to Groundwater Stats Consulting, LLC (GSC) for statistical analysis. Groundwater protection standards (GWPSs) were established for each Appendix IV parameter in accordance with United States Environmental Protection Agency's (USEPA) *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance* (Unified Guidance; USEPA, 2009). The established GWPSs were determined as the greater of the background concentration and the maximum contaminant level (MCL) or alternate screen level (ASL) for each Appendix IV parameter. To determine background concentrations, an upper tolerance limit (UTL) was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events.

Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether Appendix IV parameters were present at a statistically significant level (SSL) above the GWPS. An SSL was concluded if the lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). An SSL was identified for lithium at SP-10 at the BAP (Geosyntec, 2019). The LCL for lithium at SP-10 of 0.263 milligram/liter (mg/L) exceeded the GWPS of 0.15 mg/L.

1.1 <u>CCR Rule Requirements</u>

Oklahoma Department of Environmental Quality (ODEQ) regulations regarding assessment monitoring of CCR landfills and surface impoundments provide owners and operators with the option to make an alternative source demonstration when an SSL is identified (OAC 252:517-9-6(g)(3)(B)). An owner or operator may:

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer and submitted to DEQ for approval. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this Section...

Pursuant to OAC 252:517-9-6(g)(3)(B), Geosyntec Consultants, Inc. (Geosyntec) has prepared this Alternative Source Demonstration (ASD) report to document that the SSL identified for lithium should not be attributed to the BAP.

1.2 Demonstration of Alternative Sources

An evaluation was completed to assess possible alternative sources to which the identified SSL could be attributed. Alternative sources were identified amongst five types, based on methodology provided by EPRI (2017):

- ASD Type I: Sampling Causes;
- ASD Type II: Laboratory Causes;
- ASD Type III: Statistical Evaluation Causes;
- ASD Type IV: Natural Variation; and
- ASD Type V: Alternative Sources.

A demonstration was conducted to show that the SSL identified for lithium was based on a Type IV cause at SP-10 and not by a release from the BAP.

SECTION 2

ALTERNATIVE SOURCE DEMONSTRATION

In accordance with OAC 252:517-9-6(g)(3)(B), the owner or operator of a CCR unit has 90 days from the determination of an SSL to demonstrate that a source other than the CCR unit caused the SSL. On March 19, 2019 ODEQ granted a 30-day extension for completion of this demonstration. Initial review of site groundwater geochemistry, historical data, and laboratory QA/QC did not identify alternative sources due to Type I (sampling), Type II (laboratory), or Type III (statistical evaluation) issues. As described below, the SSL has been attributed to natural variation in the underlying geology and geochemistry, which are Type IV issues.

2.1 <u>Regional Geology</u>

The generalized stratigraphic column of the regional geology in the Site vicinity is summarized below:

Series	Group	Formation			
		Oolagah			
	Marmaton	Labette			
Desmoinesian		Fort Scott Limestone			
		Senora			
	Cherokee	Boggy			
		Savanna			

The Site is underlain by the Oologah Formation. The Oologah Formation is characterized as a dark gray argillaceous limestone with a small amount of fissile shale (Oakes et al., 1952). The limestone is typically dense to moderately crystalline, unjointed, and thinly to massively bedded. The Oologah Formation is approximately 80 to 100 feet thick and is subdivided into three members, the Altamont Limestone, the Bandera Shale, and the Pawnee Limestone (in descending order) as described below:

- Altamont Limestone. Grayish orange pink (5YR7/2) to medium gray (N5) limestone, mudstone, wackestones and locally packstones. The texture varies from thin and somewhat wavy to medium planar and is influenced by the presence of fossil algal material. The bedding of the upper portion of the member is typically thinner than the lower portion (Oklahoma Geological Survey [OGS], 2005). The thickness of the Altamont Limestone typically ranges from approximately 65 to 100 feet.
- Bandera Shale. Medium dark gray to dark gray, well-laminated to fissile shale. The member is approximately 2-feet thick about 13 miles south of the Site (OGS, 2005 and Woodruff, 1928).
- *Pawnee Limestone*. Medium gray, slightly wavy, thin to medium bedded limestone. The bedding is typically 2 to 4-inches thick but can reach 12 inches in thickness. The Pawnee

The Oologah Formation is underlain by the Labette Formation, a grayish-brown to dark gray, laminated clayshale. The clayshale contains some zones of weakly calcareous shale, and multiple horizons of sandy shale to sandstone. The thickness of the Labette Formation typically ranges from approximately 120 to 180 feet. A zone of alternating shale and sandstone (Peru Sandstone) or shale and limestone (Sageeyah Limestone) may be present near the top of the Labette Formation. This member (if present) does not typically contain fossils and varies in thickness up to 20 feet south of the Site (OGS, 2005).

The Labette Formation is underlain by the Fort Scott Formation which consists of three members, in descending order: the Higginsville Limestone; the Little Osage Shale; and the Blackjack Creek Limestone. The Fort Scott Formation limestone consists primarily of a light gray, thin to medium, wavy-bedded fossiliferous wackestone and mudstone (OGS, 2004).

2.2 <u>Site Geology</u>

According to the groundwater monitoring network report for the BAP (Terracon, 2017), the Site is underlain by a limestone unit from ground surface to approximately 30 to 50 feet below ground surface (ft bgs), with a shale unit underlying the limestone. The wells within the CCR compliance network (SP-1, SP-2, SP-4, SP-5R, SP-10, and SP-11) were selected to monitor the upper limestone unit, which was determined to contain the shallow aquifer at the site. Wells set at deeper intervals (SP-3, SP-6, SP-7, SP-8, SP-9) were not selected for inclusion in the CCR compliance monitoring well network, as they were believed to be screened within the lower shale unit.

A subsequent review of the boring logs for co-located wells SP-9 (shale) and SP-10 (limestone) indicates a discrepancy regarding the upper elevation of the limestone-shale interface. The SP-9 boring log identified shale with interbedded limestone beginning at approximately 40 ft bgs, whereas the SP-10 boring log identified limestone to approximately 51.5 ft bgs, with increasing frequency of interbedded shale at greater depths. The two borings were logged using cuttings, which can obscure lithologic changes. To clarify the site geology, Geosyntec advanced two additional borings at the Site in early 2019 (Figure 1). Boring BAP-B1 was advanced to a depth of 186 ft bgs.

Geologic Unit	Depth (ft bgs)	Elevation (ft amsl) ¹
Unconsolidated Soil	0 to 3	625.8 to 622.8
Limestone (Oologah Formation)	3 to 100	622.8 to 525.8
Shale (Labette Formation)	100 to 181	525.8 to 444.8
Limestone (Fort Scott Formation)	181 to 186	444.8 to 439.8

The following is a general summary of the geologic units encountered at BAP-B1:

Note: 1. ft amsl = feet above mean sea level

The boring log for BAP-B1 is provided in Attachment A and a photolog documenting the observed lithology is provided in Attachment B. Based on this and logs for other borings near the BAP, it appears that all wells near the BAP are set within the upper limestone unit. This limestone unit appears representative of the Oologah Formation and may be inclusive of the Altamont limestone member (upper portion of the Oologah Formation) and the Pawnee member (lower portion of the Oologah Formation). At several boring locations, thin horizons of shale were identified from elevations of approximately 25 to 75 ft bgs.

Boring BAP-B2 was advanced in the vicinity of SP-10 to relog that location and provide clarity regarding the geology of the well at the screened interval. The boring log for BAP-B2 is provided in Attachment A. A thin shale horizon was observed at 46 ft bgs, which is within the screened interval of SP-10.

Samples were collected from four intervals at boring BAP-B2 for laboratory analysis, as summarized below:

Sample Depth (ft bgs)	Sample ID	Description
32.0-32.4	SP-10-LOG-1	Upper limestone
46.0-47.0	SP-10-LOG-2	Shale lens within the screened interval of SP-10
46.0-47.0	SP-10-LOG-3	Limestone within screened interval of SP-10
72.0-72.4	SP-10-LOG-4	Limestone within the screened interval of SP-9

The samples were submitted to Mineralogy, Inc. (Tulsa, Oklahoma) for mineralogical analysis, including bulk analysis by X-ray diffraction (XRD), X-ray fluorescence (XRF), cation exchange capacity (CEC), and thin section petrography. A portion of each sample was submitted to Accurate Environmental Laboratories (Tulsa, Oklahoma) for acid digestion and analysis of total lithium by USEPA Method 6020A.

The XRD analysis confirmed that limestone is present at depths to at least 72 ft bgs, which is deeper than expected based on the previous monitoring well network report and boring logs. The analyses also confirmed the horizon observed at 46 ft bgs is a shale parting, with clay minerals including illite and smectite (Table 1). The mineralogy report is provided as Attachment C.

2.3 <u>Site Hydrogeology</u>

A review of groundwater conditions across the Site suggests that groundwater is not significantly present or laterally contiguous within the shallow limestone unit. Many of the wells in the vicinity of the BAP, including wells SP-2, SP-4, and SP-11 within the monitoring well network, typically have insufficient water for sampling (less than 0.5 feet of water in the well). Static water level measurements have shown significant variability between wells during each measurement event (typically on the order of approximately 30 feet), significant variation at individual wells over time, and inconsistent trend variation between wells over time. A time series graph illustrating groundwater elevation data over time shows chaotic fluctuations both within and between wells (Figure 2).

The petrographic analysis identified minimal porosity in the limestone fraction (Attachment C). Optical analysis of the sample collected at 32 ft bgs noted that porosity accounted for approximately 0.5-1.0% of the bulk volume of the sample. The deeper limestone samples collected at 46 ft bgs and 72 ft bgs were both described as non-porous. It was noted that the shale sample collected at 46 ft bgs had minor to trace amounts of micro-crack porosity. Thus, the geology at the site is generally non-porous, and indicates that there is little groundwater within the limestone.

These results suggest groundwater in the shallow limestone unit likely resides in discrete nonconnected and poorly defined features (i.e., joints, fractures, cavities, or bedding planes).

2.4 <u>Site Geochemistry</u>

A review of groundwater geochemistry at the Site generally supports the conceptual site model that groundwater in the shallow limestone unit resides in discrete, non-connected, and poorly defined features. Groundwater chemistry indicates different water types are present at the Site, as illustrated by the observed variability in both Schoeller and Piper diagrams (Figures 3 and 4, respectively). The Schoeller diagram illustrates data from one representative sampling event at each well, whereas the Piper plot depicts all available data over several sampling events. These different water types include calcium-carbonate, sodium-chloride, and sodium-chloride-sulfate groundwaters, as described below.

Groundwater in contact with limestone typically reaches equilibrium with carbonates such as calcite (CaCO₃) or dolomite [CaMg(CO₃)₂] due to relatively fast reaction kinetics. Equilibrium with carbonate minerals controls the concentration of calcium, alkalinity, and pH in the groundwater. This equilibrium results in a calcium-carbonate type groundwater signature, which is high in both calcium and carbonate. While all of the wells at the Site are believed to be screened in the upper limestone unit as described in Section 2.2, only SP-1 and SP-8 groundwater appears to represent calcium-carbonate type water (Figure 5). For instance, the presence of relatively high

magnesium at SP-1 suggests that dolomitic limestone is in close proximity to the well screen, whereas the low concentration of magnesium at SP-8 suggests the limestone is predominantly calcite near that well screen. There appears to be no hydraulic connection between these two wells, and no indications of mixing, which would be represented by similar magnesium concentrations at each well.

While carbonate is present in all the wells near the BAP, several of the wells appear to be dominated by a sodium-chloride type of water (SP-2, SP-3, SP-4, SP-5). Wells SP-6, SP-7, and SP-9 also are sodium-chloride type water; however, the concentration of total dissolved solids (TDS) concentrations are over an order of magnitude higher than SP2, SP-3, SP-4 and SP-5. The increase in TDS is the result of higher concentrations of sodium and chloride (Figure 3). These elevated sodium and chloride concentrations may indicate the presence of mineral salts in some parts of the aquifer. SP-10 and SP-11 are also sodium-chloride type waters, although they contain bicarbonate and sulfate anions as well (Figure 5).

This variability in groundwater chemistry suggests that the groundwater in the wells across the Site are not connected by a common aquifer. The different water types seem to be distributed randomly throughout the BAP unit, instead of being grouped according to physical location (Figure 6). On a constituent basis, sodium appears to correlate with the depth of the well screen interval, with higher concentrations detected at lower elevations (Figure 7). This suggests that the groundwater at locations with deeper screened intervals (i.e., SP-7, SP-9) may be influenced by the interbedded shale partings within the limestone, which generally become more prevalent at depth. The shale partings are a potential source of sodium, as shale contains clay fractions which can release sodium and other cations by ion exchange.

Mineralogical analysis of a sample from a shale lens at BAP-B2 (46 ft bgs) indicates that clay minerals such as illite and smectite comprised more than half of the sample material (Table 1). Smectite has a very high CEC, which includes a significant number of labile cations that populate its interlayer region. Additionally, this shale fraction has detectable levels of exchangeable cations (potassium and sodium), at higher concentrations than the limestone samples, suggesting that it is a source of cations to the groundwater (Table 2).

Some deeper wells (i.e., SP-8, SP-10) do not have high chloride concentrations as would be predicted based on the depth of their screened interval and the relationship noted above. This could be due to a lower prevalence of shale lenses within the screened interval at these locations compared to wells with higher chloride concentrations. The multiple types of groundwater and their limited relationship to spatial location or depth suggests that groundwater composition is highly variable at the site. This variability provides evidence that groundwater geochemistry at each well is influenced by localized geology (i.e., carbonate type, presence or absence of shale lenses) and indicates a lack of groundwater communication or mixing between wells.

2.4.1 Lithium Distribution at the Site

Lithium concentrations at the Site are also variable. While SP-10 has the highest lithium concentrations of the wells included in the monitoring network, other wells located near the BAP have significantly higher lithium concentrations (Figure 8). SP-9, which is co-located with SP-10 but screened approximately 20 feet deeper, has lithium concentrations which are approximately an order of magnitude higher. If lithium in groundwater was due to a release from the pond, we would expect to see higher concentrations at the shallower intervals closer to the source. Additionally, SP-6, which is east of the Pond also has concentrations that are much higher than those observed at SP-10.

Lithium at the Site appears to be correlated with the concentrations of major cations and anions, including sodium (Figure 9) and chloride (Figure 10). If lithium were elevated at a well due to a unique source (such as a release from the BAP), the ratio of lithium to other constituents would likely change due to differential mixing. However, the approximately linear relationship between lithium and other alkali metals, especially sodium and potassium, suggests that the lithium is a minor constituent of the saline source which is consistent across the Site.

As discussed in Section 2.4, the concentration of sodium is generally correlated with screen depth. A similar relationship is observed for lithium (Figure 11), with the same hypothesis that this increase in lithium with depth is due to the increasing frequency of shale lenses. Figure 12 compares the distribution of the exchangeable species in sample SP-10-LOG-2 with the concentration of the same group of cations in groundwater at SP-10. Based on their respective concentrations, calcium is preferentially taken up by exchange sites on clay minerals. This is apparent in the figure showing calcium occupying half the number of exchanges sites (upper graph), while dissolved calcium represents a relatively smaller fraction of the groundwater (lower graph). The clay's preference for calcium can be quantified using the values in Table 2. The ratio of exchangeable sodium to exchangeable calcium is 0.55/1, whereas the ratio of dissolved sodium to dissolved calcium in groundwater is 13/1, indicating a much higher proportion (factor of 24) of exchangeable calcium in the interlayer spaces than in the groundwater. The greater affinity for calcium in the interlayer region is mainly due to its divalent positive charge, whereas sodium and other alkali metals have a single positive charge.

Note that exchangeable cations were quantified for sodium, potassium, calcium and magnesium, whereas exchangeable lithium was too low to be detected by the standard laboratory method. Based on the slope of the relationship between lithium and sodium, the ratio of dissolved sodium to dissolved lithium is about 1400/1 (Figure 9). Using this ratio, exchangeable lithium is not likely to be present above the detection limit based on the concentration of exchangeable sodium observed (Table 2). While the laboratory results do not provide sufficient evidence for the release of lithium from the clay shale layers due to the relationship between the expected aqueous lithium concentration and the detection limit, total lithium was identified at a concentration of 76 mg/kg dry weight in the sample collected from the shale fraction at BAP-B2 (intended to serve as relogging for SP-10) and analyzed following total digestion.

The process by which groundwater reaches equilibrium with the host rock can be described in the following conceptual model. Recharge surface water coming into contact with limestone becomes enriched in calcium as the water equilibrates with calcite. The magnesium concentration will also increase during this process if dolomite is present. As limestone minerals equilibrate with the groundwater solution, dissolved calcium then interacts with clay minerals in the shale zones which results in calcium displacing sodium (or other alkali metals such as lithium and potassium) on exchange sites. The presence of lithium within the shale fraction at BAP-B2 provides evidence that this process is occurring within SP-10 groundwater.

2.5 <u>Pond Chemistry</u>

The BAP has much lower concentrations of lithium than those observed at SP-10, with one sample reporting an estimated lithium concentration of 0.00874 mg/L (Attachment D), which is approximately 20 times less than the GWPS for lithium of 0.15 mg/L. Additionally, a review of the chemistry of the BAP as compared to SP-10 groundwater chemistry illustrates that they have very different chemical compositions (Figure 13). This supports the hydrogeologic conceptual model presented in Section 2.3, which suggests that unless the Pond is directly connected to SP-10 through a fracture in the limestone, it is unlikely to affect groundwater chemistry at the well.

2.6 <u>Proposed Alternative Source</u>

The presence of naturally occurring lithium in shale lenses in the monitored zone, limited possibility of transport from the BAP to the screened interval at SP-10, and the low concentration of lithium in the pond suggest the BAP is not the source of lithium at SP-10. A review of the hydrogeology of the Site provides evidence that groundwater in the shallow limestone unit likely resides in discrete non-connected features such as joints or fractures instead of as a discrete aquifer. Thus, the groundwater composition at each well is likely controlled by its immediate geology. As discussed above, lithium appears to be naturally occurring at the Site and correlated with the shale lenses that are present with increasing frequency with depth. The release of lithium from the clay minerals within the shale lens located at 46 ft bgs within the screened interval of SP-10 is the likely source of lithium in groundwater at that location.

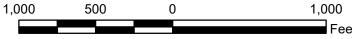
2.7 <u>Sampling Requirements</u>

As the ASD described above supports the position that the identified SSL is not due to a release from the BAP, the unit will remain in the assessment monitoring program. Groundwater at the unit will continue to be sampled for Appendix IV parameters on a semi-annual basis.

SECTION 3

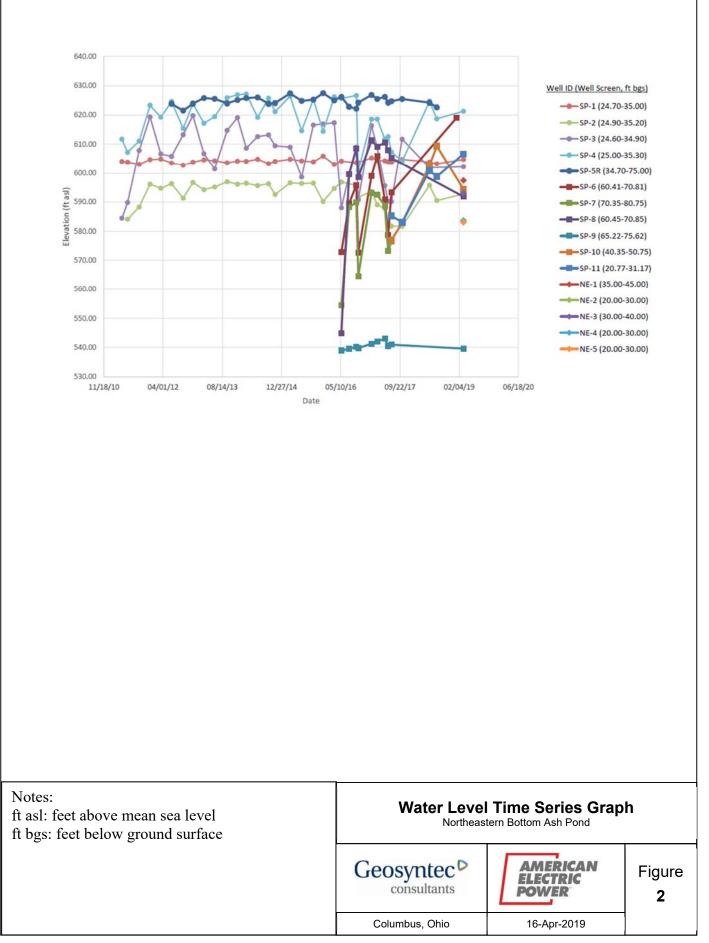
CONCLUSIONS AND RECOMMENDATIONS

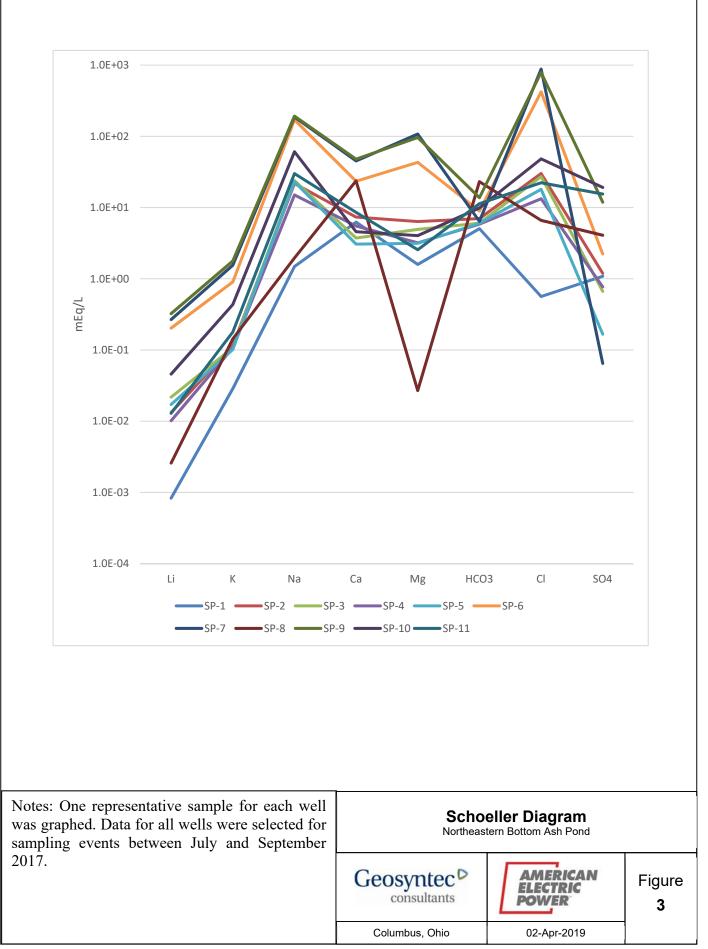
The preceding information serves as the ASD prepared in accordance with OAC 252:517-9-6(g)(3)(B) and supports the position that the SSL of lithium at SP-10 identified during assessment monitoring in 2018 was not due to a release from the BAP. The identified SSL was, instead, attributed to natural variation in the underlying lithology including the presence of shale lenses containing lithium within the screened interval at SP-10. Therefore, no further action is warranted, and the BAP will remain in the assessment monitoring program. Certification of this ASD by a qualified professional engineer is provided in Attachment E.

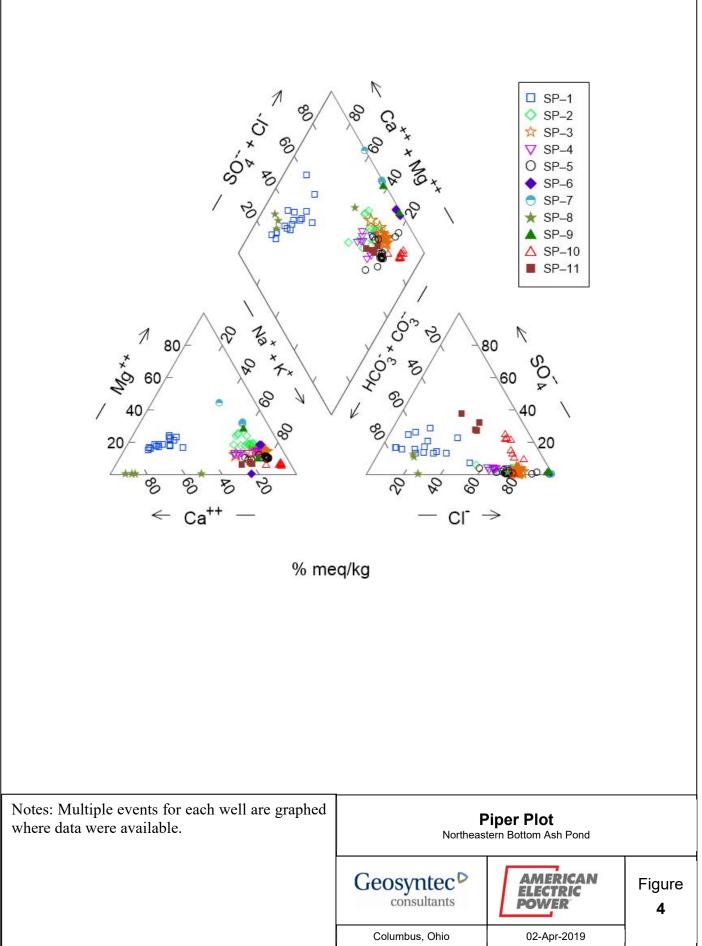

SECTION 4

REFERENCES

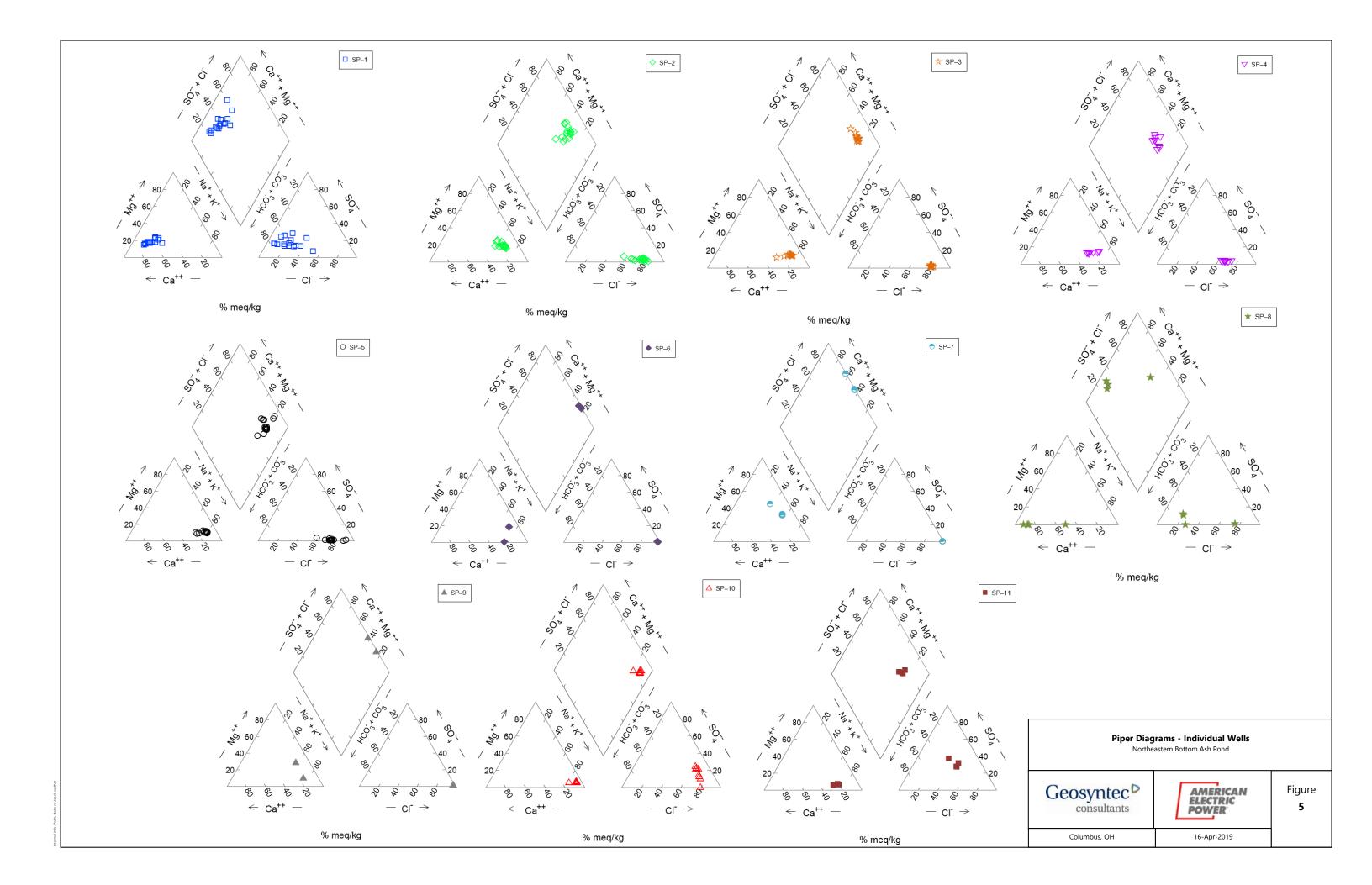
- AEP, 2017. Statistical Analysis Plan Northeastern Power Station, Oologah, Oklahoma. January.
- EPRI, 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites. 3002010920. October.
- Geosyntec Consultants, 2019. Statistical Analysis Summary Bottom Ash Pond Northeastern Power Station, Oologah, Oklahoma. Oologah, Oklahoma. January.
- Oakes, M.C., Dille, G.S., and Warren, J.H., 1952. Geology and Mineral Resources of Tulsa County, Oklahoma. *Okla. Geol. Survey. Bull.* 69.
- Oklahoma Geological Survey, 2004. *Geologic Map of the Sageeyah 7.5' Quadrangle, Rodgers County, Oklahoma.*
- Oklahoma Geologic Survey, 2005. Geologic Map of the Collinsville 7.5' Quadrangle, Rogers and Tulsa Counties, Oklahoma.
- Terracon, 2017. Report 1 Groundwater Monitoring Network for CCR Compliance. Public Service Company of Oklahoma Northeastern Station 3&4 Bottom Ash Pond. September.
- USEPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance. EPA 530/R-09/007. March.
- Woodruff, E.G. and Cooper, C.L. 1928. Oil and Gas in Oklahoma, Geology of Rogers County, *Okla. Geol. Survey Bull.* 40.


FIGURES

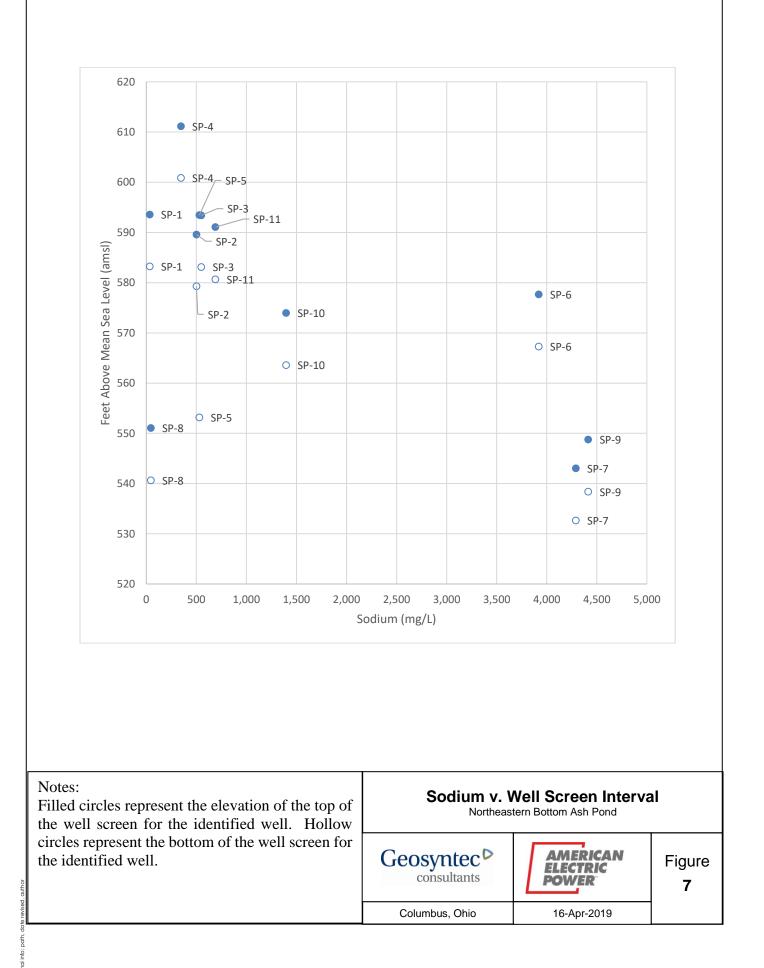


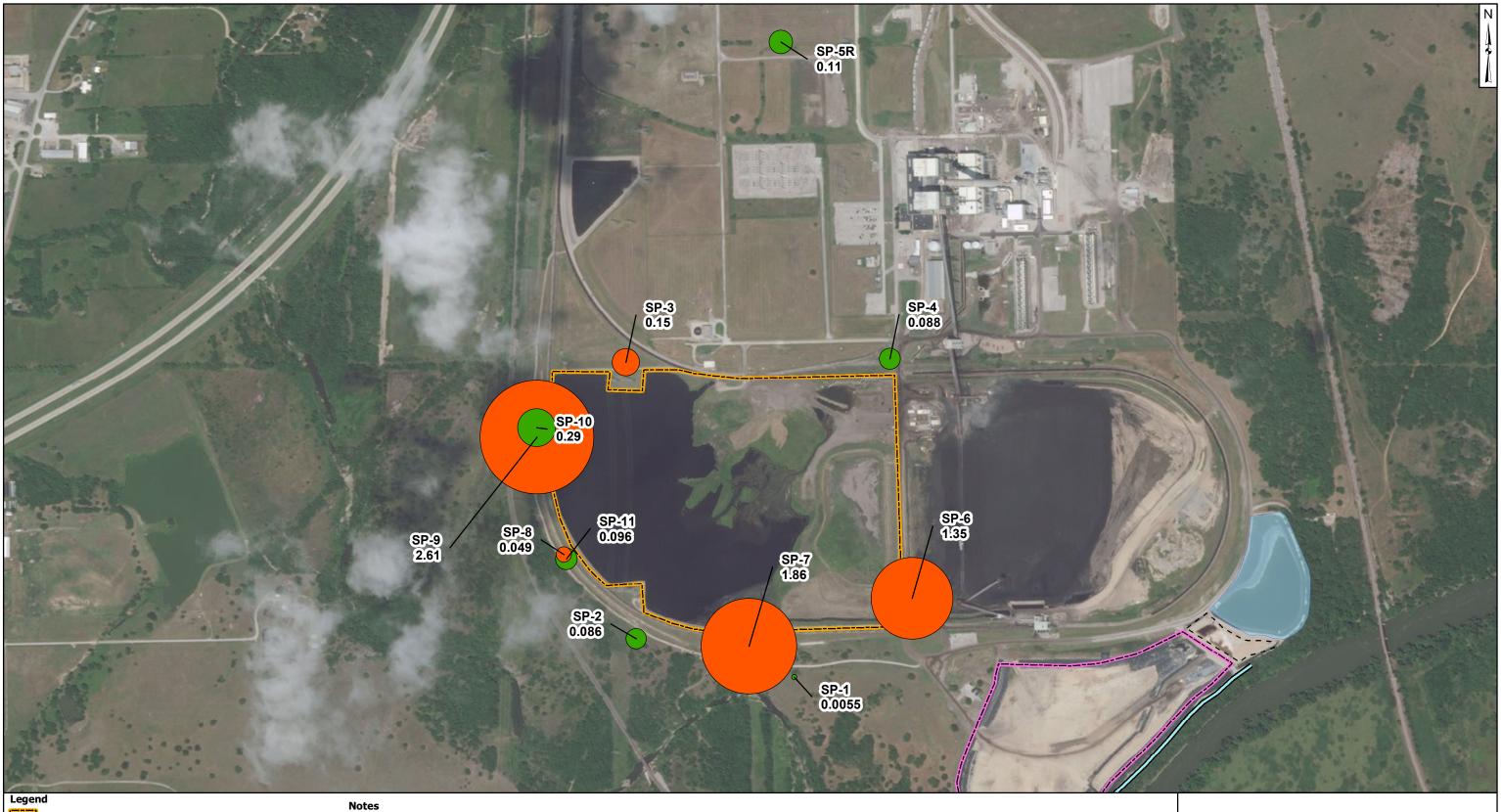

Columbus, Ohio

2019/04/17



rnal info: path, date revised,




il Info: path, date revised

P:\Projects\AEP\Groundwater Statistical Evaluation - CHA8423\Groundwater Mapping\GIS Files\MXD\Northeastern\2018\AEP-Northeastern_Brine2019.mxd. ARevezzo. 4/4/2019.

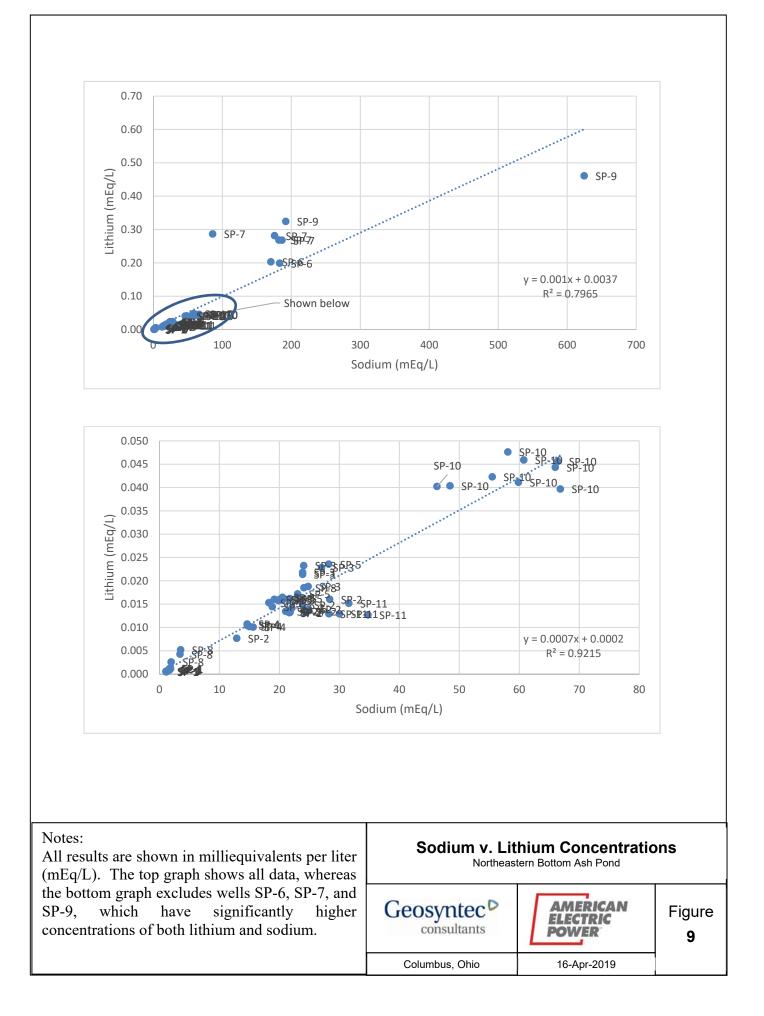
Bottom Ash Pond Landfill

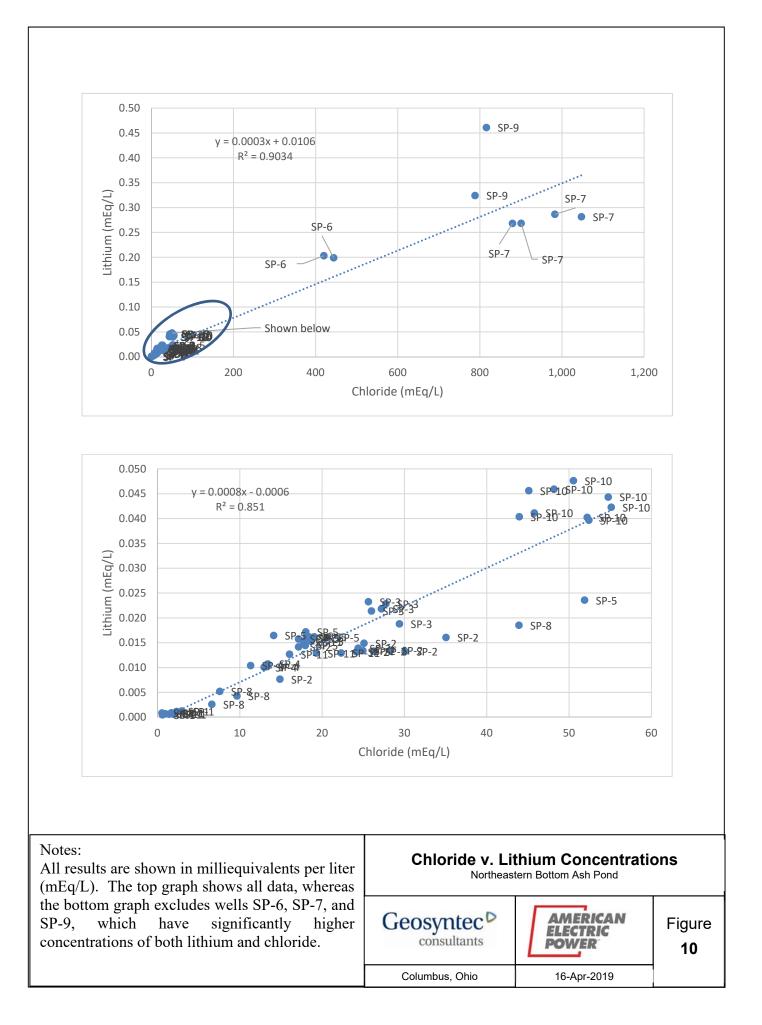
Slurry Wall

Notes - Monitoring well coordinates provided by AEP. - Site features based on information available in Groundwater Monitoring Network for CCR Compliance reports (Terracon, 2016). - Lithium concentrations shown are an average of available data. - Lithium concentrations shown in milligrams per liter (mg/L). - In-Network monitoring wells are indicated with green symbology. Out-of-Network monitoring wells are shown with orange symbology.

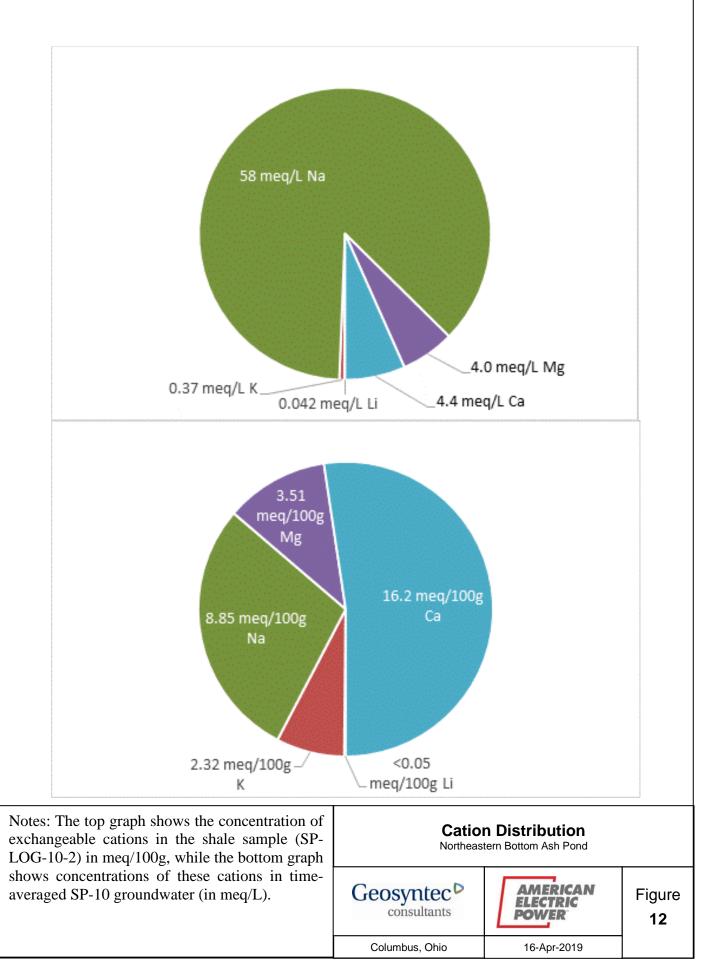
Spatial Distribution of Lithium

AEP Northeastern Power Plant - Bottom Ash Pond Oologah, Oklahoma

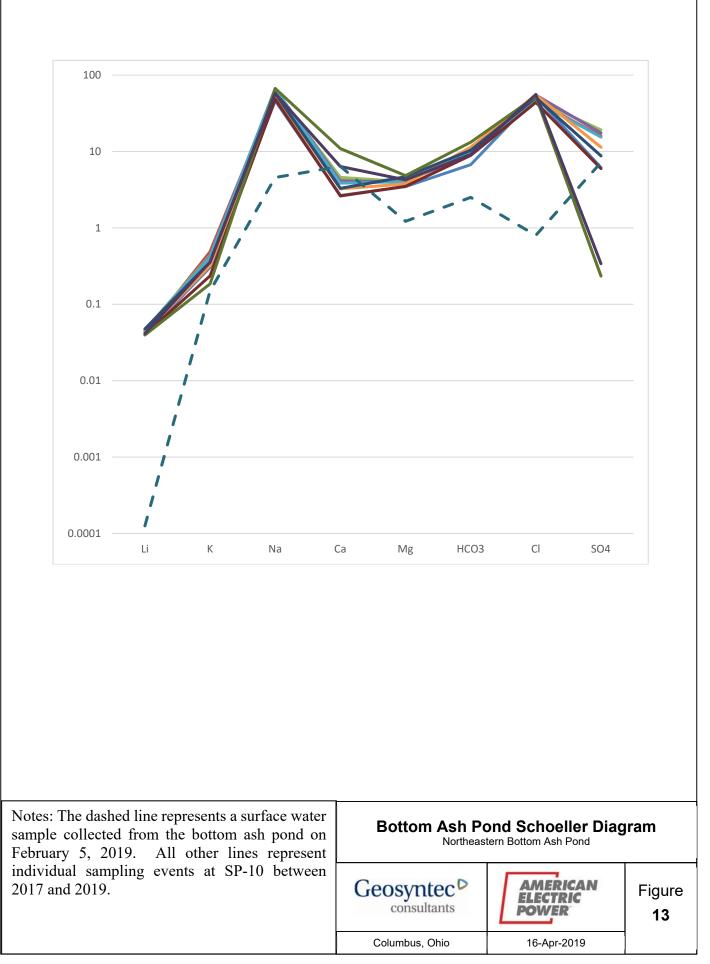

Geosy	ntec⊳
con	sultants


Figure

8


Columbus, Ohio

2019/04/16



nal info::path, date revis

TABLES

Table 1: X-Ray Diffraction Laboratory Analysis ResultsNortheastern Plant Bottom Ash Pond

Geosyntec Consultants

Sample ID	SP-10-LOG 1	SP-10-LOG 2	SP-10-LOG 4	SP-10-LOG 4
Depth (ft bgs)	32-32.4	46.0-47.0	46.0-47.0	72-72.4
Description	Upper Limestone	Shale within screened interval of SP-10	Limestone within screened interval of SP-10	Limestone within screened interval of SP-9
Quartz	1	20	3	6
Albite	ND	4	ND	ND
Microcline	ND	1	ND	ND
Calcite	95	2	93	91
Ferroan Dolomite	4	ND	ND	2
Siderite	ND	1	ND	ND
Pyrite	ND	5	1	ND
Kaolinite	ND	2	1	<0.5
Chlorite	ND	3	<0.5	ND
Illite/Mica	ND	38	1	1
Mixed-Layered Illite/Smectite	ND	24	1	<0.5
% Illite Layers in ML I/S	N/A	75	75	BDL

Notes:

Results are shown as percentage of the bulk material.

ND: not detected

N/A: not applicable

BDL: below detection limit

Geosyntec Consultants

Exchangeable Exchangeable Exchangeable Exchangeable Exchangeable Total Lithium Sample ID Sample Depth Description Lithium Calcium Magnesium Potassium Sodium (mg/kg dry wt) (mEq/100g) (mEq/100g) (mEq/100g) (mEq/100g) (mEq/100g) <10.0 SP-10-LOG-1 32.0-32.4' Upper limestone < 0.05 20 0.567 < 0.10 0.226 Shale lens within SP-10-LOG-2 46.0-47.0' screened interval 76 16.2 < 0.05 3.51 2.32 8.85 of SP-10 Limestone within SP-20-LOG-3 46.0-47.0' screened interval <10.0 < 0.05 21.6 0.642 0.250 0.896 of SP-10 Limestone within SP-10-LOG-4 <10.0 72.0-72.4' screened interval < 0.05 21.1 1.16 0.313 0.822 of SP-9

Table 2: Cation Exchange Capacity and Total Lithium AnalyticalNortheastern Plant Bottom Ash Pond

Notes:

mg/kg dry weight: milligram of lithium per kilogram dry weight of material mEq/100g: milliequivalent per 100 gram of material

ATTACHMENT A Boring Logs

Ceosyntec Consultants	Client: Project: Address:	American Electric I CHW8290 Oologah, OK	Power / Northeastern Plant	BORING LOG Boring No. BAP-B1 Page: 1 of 10	
Drilling Start Date:3/11/2019Drilling End Date:3/14/2019Drilling Company:GeotechnologyDrilling Method:HSA/Air RotaryDrilling Equipment:HSA/Air RotaryDriller:C. SteinerLogged By:M. Bizjack			3 ()		
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Date & Time	Blow Counts Recovery (ft) A N Value RQD (%)	SOIL/ROCK V	VISUAL DESCRIPTION	REMARKS	DEPTH (ft)
0 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	1.0 3.0 21% 5.0 100% 5.0 100% 5.0 96%	 non-plastic, some of moist. (1') LIMESTONE, s crystalline to fine-gibedding not apparer decomposed at frac (fractures-joints at 1 to 50°, tight to wide, filled, rough, wet), fd (1.8') Roots. (3') Wavy crinoid de 0.2 ft thick. (6') Moderately fract approximately 0.3-ft wavy bedding with c isolated chert interva 9.5, 10.3, and 11 ft) Wavy beds occur at fractures less weath (11') Changes to sl beds (N3), crinoid for the first of the first o	tures, intensely fractured 1.6 and 2.3 ft, sub horizontal surface oxidation and soil ossiliferous. bris layer at fractured interval tured and thickly bedded with thick intervals of darker rinoid debris abundant, al with chaotic bedding (at b, isolated other fossil debris.	Auger refusal. Boring offset 3 ft due to auger deflection. NQ2 core started at 1 ft bgs. Driller reported water loss and void encountered during run.	- 0 5 5
20 NOTES: Boring backfilled to su	rface with Port	Non-solid recovery f barrel slipping.	aotic fossil debris texture. from 16-16.25 ft due to core		20

Geosyntec consultants	Project:	American Electric Pov CHW8290 Oologah, OK	wer / Northeastern Plant	BORING LOG Boring No. BAP-B1 Page: 2 of 10	
Drilling Start Date:3/11/2019Drilling End Date:3/14/2019Drilling Company:GeotechnologyDrilling Method:HSA/Air RotaryDrilling Equipment:HSA/Air RotaryDriller:C. SteinerLogged By:M. Bizjack		B S I	Boring Diameter (in):		
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type Date & Time Date & Time	Recovery (ft) 1 N Value RQD (%)	SOIL/ROCK VIS	SUAL DESCRIPTION	REMARKS	DEPTH (ft)
	5.0 100% 5.0 100% 3.75 75% 5.0 100%	 (22.8' and 25') Approxi fractures associated with (22.8' and 25') Approxi fractures associated with (22.8' and 25') Approxi fractures associated with (27.5') Chaotic cherty I wavy bedding, tight 30' (27.7-31.8') Color char (N4-N3) and very dark algal/crinoid fossils abuthinly bedded. (31.8') Distinctive chert layer with associated d 31.8-31.9 ft, moderated (31.9-32.8') Significant to no healing/weatherir (32.8-33.4') Color char dark wavy bed, signific (32.9') Notable fossil d 	herty layer above wavy layer interbedded with dark ° fracture. nges to medium-dark gray gray, interbedded, undant, wavy bedding, ty, wavy, crinoid debris dark wavy bedding from ely fractured. t vertical fracture with little ng. nges to N3 below a thin cant vertical fractures. demineralized vug. to N5-N4 below wavy dark		- 20
40 NOTES: Boring backfilled to surf	ace with Portl	(39.2') Interval of thinl	N4 limestone at 39.2 ft. ly bedded limestone (N3)		- 40

Drilling Start Date:	sts innovators		Addr	ess:	Oologah, OK		Boring No. BAP-B1 Page: 3 of 10	
Drilling End Date: Drilling Company: Drilling Method: Drilling Equipment: Driller: Logged By:	3/11/2019 3/14/2019 Geotechn HSA/Air R HSA/Air R C. Steiner M. Bizjack	otary otary				Boring Diameter (in):		
DEPTH (ft) LITHOLOGY WATER LEVEL	BORING COMPLETION Sample Type		Blow counts Recovery (ft)	N Value RQD (%)	SOIL/ROCK V	'ISUAL DESCRIPTION	REMARKS	DEPTH (ft)
	СВ10 СВ10 СВ11 СВ11 СВ11 СВ11 СВ12 СВ13		4.9 5.0 5.0	91%	debris noted at 39.5 (41') Interval of fine fossil debris. (42.3') 0.1-ft thick in crinoid debris above (42.4') Grades from (N5-N4). (42.9') Color change dark gray (N4-N3). (43.8-45.15') Signifi healed with calcite, t (44.2-44.75') Interva shale/limestone. (46') Interbedded and calcareous shale, lin shale (N2) occur at trace to not present, shale beds, shale is (55.2-56') Shale is in sandstone and wav (56-56.5') Some mod fine sandstone. San (56.5-60.2') Same a above (N3). Strong s (N2), trace small crit	e-grained wackestone with hterval of fine sandstone with a thin shaly/wavy bed. a fine to crystalline limestone as to medium dark gray to cant fracture, vertical, mostly tight. al of thinly bedded gillaceous limestone and nestone is (N4-N3) and 0.5 to 1 ft intervals, fossils , core preferentially breaks at strong and not friable. hterbedded with fine ty bedded. ottled interbeds of shale and d in thin lenses, interbedded. rgillaceous limestone as shale layer at 58.4-58.6 ft noid fossils throughout. ed approximately vertical	Core broken in one place, likely mechanical.	40 - - - 45 - - 50 - - 55 - - 55 - - 55 - - 55 - - 55 - - 55 - - 55 - - 55 - - 55 - - 55 - - 55 - - 55 - - 55 - - 55 - - - 55 - - 55 - - 55 - - 55 - - 55 - - 55 - - 55 - - - 55 - - - 55 - - - - - - - - - - - - -

			onsulta ntists innov		>	1	Clien Proje Addre	ct:	American Electric F CHW8290 Oologah, OK	Power / Northeastern Plant	BO Boring No. Page:	RING LOG BAP-B1 4 of 10	
Drillin Drillin Drillin	:	Date: bany bd:	3/14/ Geot HSA/ It: HSA/ C. St	2019 echn ⁄Air R	otary	,				S ()			
DEPTH (ft)	ГІТНОГОСУ	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts BI	ft)	N Value RQD (%)	SOIL/ROCK V	ISUAL DESCRIPTION	REM	ARKS	DEPTH (ft)
60				CB14 CB15 CB16			5.0	100%	(61-77.4') Interbedd (N3) and calcareous to 0.4 ft thick, trace (62.4-62.6') Re-min (63.1-63.2') Re-min	Ind/shale lens interbedding. ed argillaceous limestone s shale (N2), shale layers 0.2 crinoid debris. eralized vertical fracture. eralized vug/fracture.	Core broken in o likely mechanical	ne place,	- 60 65 65
80				CB17				100%	(77.4-77.6') Sandy I (77.6-82.2') Limesto (N5), some fine san	imestone shell debris layer. one, strong, medium gray d, fossils absent.			- 80
N	OTES:	B	oring ba	ckfille	d to s	urfac	e with	n Port	land cement.				

engineers scie	onsultar entists innov	nts	>	P	Client Projec Addro	ct:	American Electric Power / CHW8290 Oologah, OK	Northeastern Plant	BO Boring No. Page:	RING LOG BAP-B1 5 of 10	
Drilling Start Date Drilling End Date Drilling Company Drilling Method: Drilling Equipmer Driller: Logged By:	: 3/14/2 :: Geote HSA/2	2019 echn Air R Air R einer	otary	,			Boring Sampl DTW I DTW J Groun	g Depth (ft): g Diameter (in): ling Method(s): During Drilling (ft): After Drilling (ft): nd Surface Elev. (ft): ion (X,Y): 2644286.3			
DEPTH (ft) LITHOLOGY WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	ft)	N Value RQD (%)	SOIL/ROCK VISUAL	DESCRIPTION	REM,	ARKS	DEPTH (ft)
		CB18 CB19 CB20 CB21			5.0	100% 100% 100%	(82.2-82.5') Interval of fine s gray to medium dark gray, th lenticular. (82.5-95.1') Sandy limeston beds, color generally unifo (83.9') Notable ammonite fo 1 cm), fossils largely abser (95.1') Grades into fine-grai color same as above (N4-N2 fossils and debris (crinoid a wackestone/packstone tex (95.9') Grades into shale (ca within argillaceous limeston abundant and calcareous, apparent (massive). (98.2-98.4') Interbedded fos	ne with some shaly orm (N4-N3). ossil (approximately nt otherwise. and brachiopod), ture. alcareous) matrix ne beds, fossils still bedding not			- 80

engineers scient	nsultants	D	Clien Proje Addr	ect:	American Electric F CHW8290 Oologah, OK	Power / Northeastern Plant	BORING Boring No. BAP- Page: 6 of 1	B1	
Drilling Start Date: Drilling End Date: Drilling Company: Drilling Method: Drilling Equipment: Driller: Logged By:	3/11/2019 3/14/2019 Geotechr HSA/Air F HSA/Air F C. Steine M. Bizjac	nology Rotary Rotary Rotary				3 ()	(ft): 625.8		
DEPTH (ft) LITHOLOGY WATER LEVEL	BORING COMPLETION Sample Type		Blow Counts Recovery (ft)	N Value RQD (%)	SOIL/ROCK V	'ISUAL DESCRIPTION	REMARKS	DEPTH (ft)	
	CB22	3	5.0 5.0 4.7 5.0	94% 98% 98% 98%	mudstone. (99.6-99.7') Wacke fossils, distinct conta (99.7') SHALE, moo (N2), massive, no di disintegration, unfra plane mechanical b small crinoids. (101') With trace bra some grayish brown waxy/greasy/soapy t (106') Sandy sedime broken. (116') Sandy sedime broken. (111') Pyrite largely (111') Pyrite largely (114.9 and 115.4') S possible artifact from (114.95 and 115.15 possible bryozoan sa (quartz). (116') Lacks fossils. (118.8 and 118.9') N	actured except for bedding preaks, pyritic with trace achiopod fossils observed, lenses, shale has rexture. ent present, friable when absent. Small intervals of fat clay, n drilling. ') Notable round/tube fossils, ediment and mineral filled			

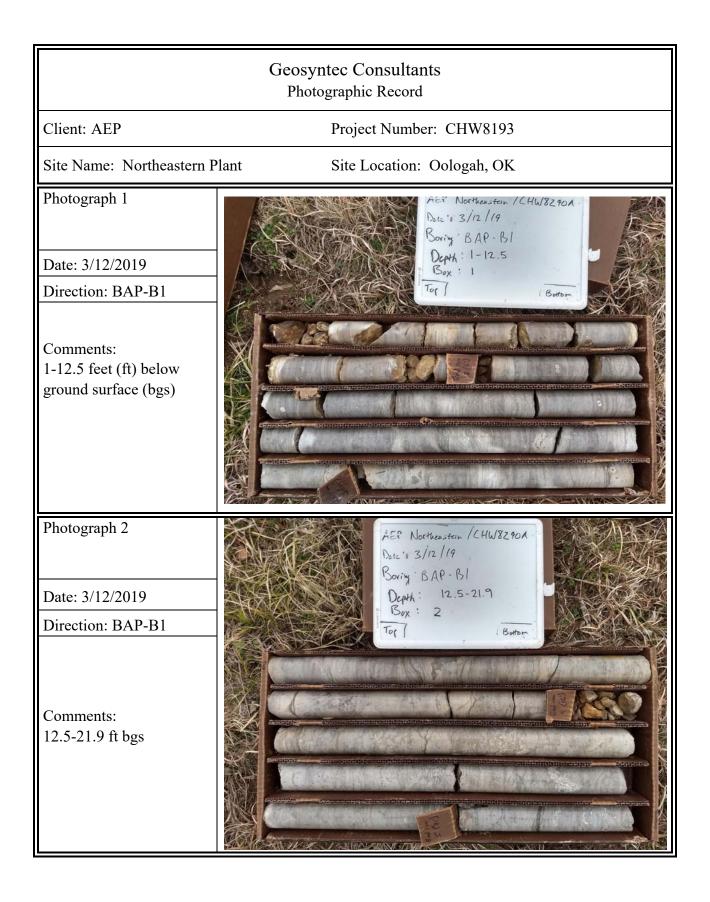
			onsulta ntists innov		>		Clien Proje Addr	ct:	American Electric F CHW8290 Oologah, OK	Power / Northeastern Plant	BO Boring No. Page:	RING LOG BAP-B1 7 of 10	
Drillin Drillin Drillin Drille	Drilling End Date: 3/14/2019 Drilling Company: Geotechnolog Drilling Method: HSA/Air Rotar Drilling Equipment: HSA/Air Rotar Driller: C. Steiner Logged By: M. Bizjack									Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Location (X,Y): 2644286.3			
DEPTH (ft)	ГІТНОГОСУ	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	ft)	N Value RQD (%)	SOIL/ROCK V	'ISUAL DESCRIPTION	REM.	ARKS	DEPTH (ft)
120-				CB26			5.0	100%	(119.1-119.2') Sand	dstone horizon.	End of 3/12/2015	9	- 120 -
- - 125 - - -				CB27			5.0	100%	(122.1-122.2') Fine horizon. (123.2') Color varie black/black/brownis bedded, planar.	s between grayish			- - - 125 -
- - 130 - -				CB28			5.0	100%	sand horizon, brow	nly bedded shaly fine n/grayish brown.			- - 130 - -
- 135 — -				CB29			5.0	93%	(grayish brown). (134.6-134.7') Hori:	rizon of fine sandstone zon of fine sandstone. d shale.			- - 135 -
- - 140-									(homogenous color (139.4-139.5') Fine	becomes less obvious r, black to grayish black).			- 140
	IOTES:	B	oring ba	ckfille	d to s	surfac	e with	n Port	land cement.				

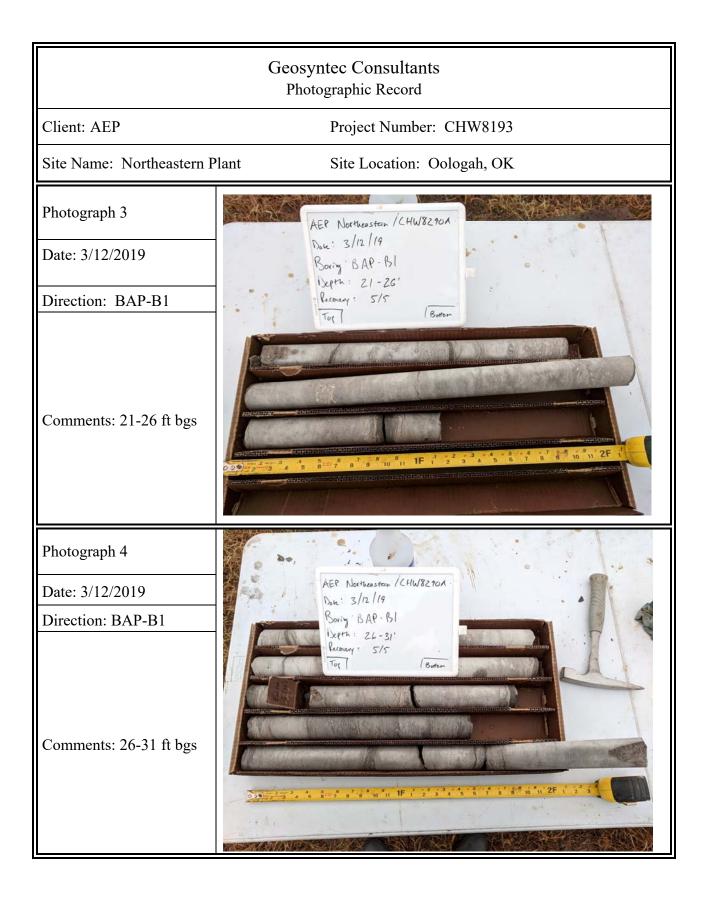
		CC		nts	>		Clien Proje Addro	ct:	American Electric F CHW8290 Oologah, OK	Power / Northeastern Plant	BO Boring No. Page:	RING LOG BAP-B1 8 of 10	
Drillir Drillir Drillir Drillir Drille	- · ·	Date: pany od:	: 3/14/ Geot HSA/ It: HSA/ C. St	2019 echn /Air R	•	,				Boring Diameter (in):			
DEPTH (ft)	ГІТНОГОЄУ	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	ft)	N Value RQD (%)	SOIL/ROCK V	ISUAL DESCRIPTION	REM/	ARKS	DEPTH (ft)
140 - - -				CB30			5.0	100%		e with pyrite nodule.			140
145 - - -				CB31			5.0	77%					145 - - -
150 - - -				CB32			5.0	81%	easily into small piec decomposed. (150.15-150.5') Inte (150.25') Thin bed c possible healed frac	nsely fractured shale. f re-mineralized calcite ture or bedding plane. of cross-bedded shaly			- 150 - - -
155 - - - - 160 -				CB33			5.0	74%	fractured (mechanic drilling process), sor (156.55-156.6') Thir	al breaks accentuated by			- 155 - - - - 160
	NOTES	: B	Soring ba	ckfille	d to s	urfac	e with	n Port					- 160

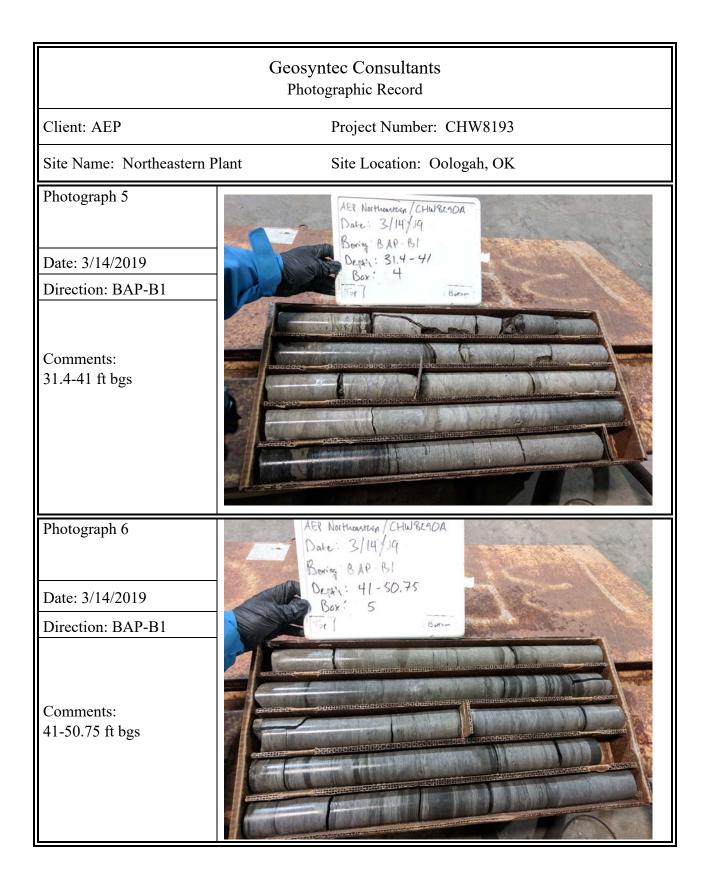
Geosyntec consultants	Client: Project: Address:	American Electric Power / Northeastern Plant CHW8290 Oologah, OK	BORING LOG Boring No. BAP-B1 Page: 9 of 10	
Drilling Start Date:3/11/2019Drilling End Date:3/14/2019Drilling Company:GeotechnoloDrilling Method:HSA/Air RotaDrilling Equipment:HSA/Air RotaDriller:C. SteinerLogged By:M. Bizjack	y	Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft): Location (X,Y): 2644286. 3		
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Type	Blow Counts Recovery (ft) 10 N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	REMARKS	DEPTH (ft)
160				- 160
CB34 CB34 CB34 CB35 CB35 CB35 CB35 CB36 CB36	5.0 96% 5.0 100% 5.0 99%	 (161) Other Horzons have brownshinde, occur at 1-2 ft intervals and are less than 0.1 ft thick. (161.7') Laminated shaly sandstone. (162.95-163.05') Layer of laminated shaly sandstone. (164.35-164.45') Thinly cross bedded shaly sandstone overlying shale bed with flame structures and a mollusk fossil. (165.5') 0.1-ft thick lens of laminated shaly sandstone. (166') Same shale as above, laminated shaly sandstone intervals. 		- - - 165 - - - 170 - -
175 - CB37 - CB37 - CB37 - 180	4.9 89%	(172.2-172.8') Fossiliferous sandy shale interval, fossils (crinoid, mollusk debris). (178.9') 0.5-inch pyritic nodule. (179.3') 0.5-inch pyritic nodule.	End of 3/13/2019	- 175 - - - 180

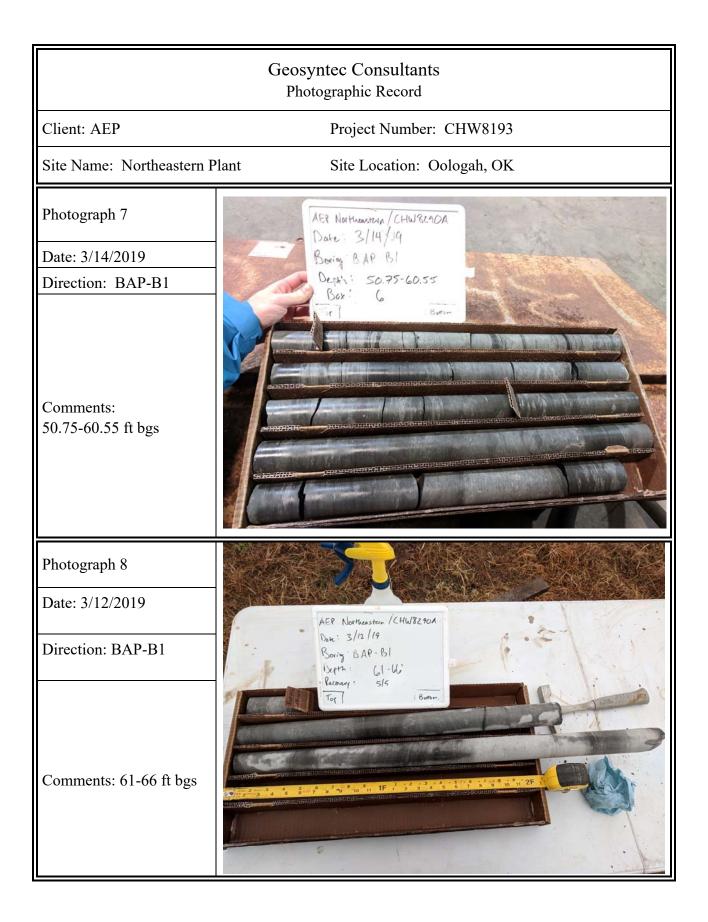
Geosynteo consultants	Address:	American Electric Power / Northeastern F CHW8290 Oologah, OK	Plant BORING LOG Boring No. BAP-B1 Page: 10 of 10
Drilling Start Date:3/11/201Drilling End Date:3/14/201Drilling Company:GeotechDrilling Method:HSA/AirDrilling Equipment:HSA/AirDriller:C. SteinLogged By:M. Bizja	9 nnology Rotary Rotary er	Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling DTW After Drilling (ft Ground Surface Elev Location (X,Y): 2644):
DEPTH (ft) LITHOLOGY WATER LEVEL BORING COMPLETION Sample Tvpe	Date & Time Blow Counts Recovery (ft) N Value ROD (%)	SOIL/ROCK VISUAL DESCRIPTION	REMARKS (1) HIdad
	38 5.0 1009	(180.1') Shaly SANDSTONE, fossiliferous, fine-grained, some limestone and shale thin interbeds/lenses, wavy/chaotic texture, pyritic moderately fractured (mechanical). (181') LIMESTONE, strong, brownish gray a grading through medium gray to light gray at base, microcrystalline, bedding chaotic to wa and medium bedded, no decomposition, no disintegration, unfractured to slightly fracture wavy bedding planes (mechanical joints), fossiliferous (crinoid, brachiopod, algae), wa bedding is more argillaceous than matrix. (186') Boring terminated.	c,
NOTES: Boring backfi	lled to surface with Por	tland cement	

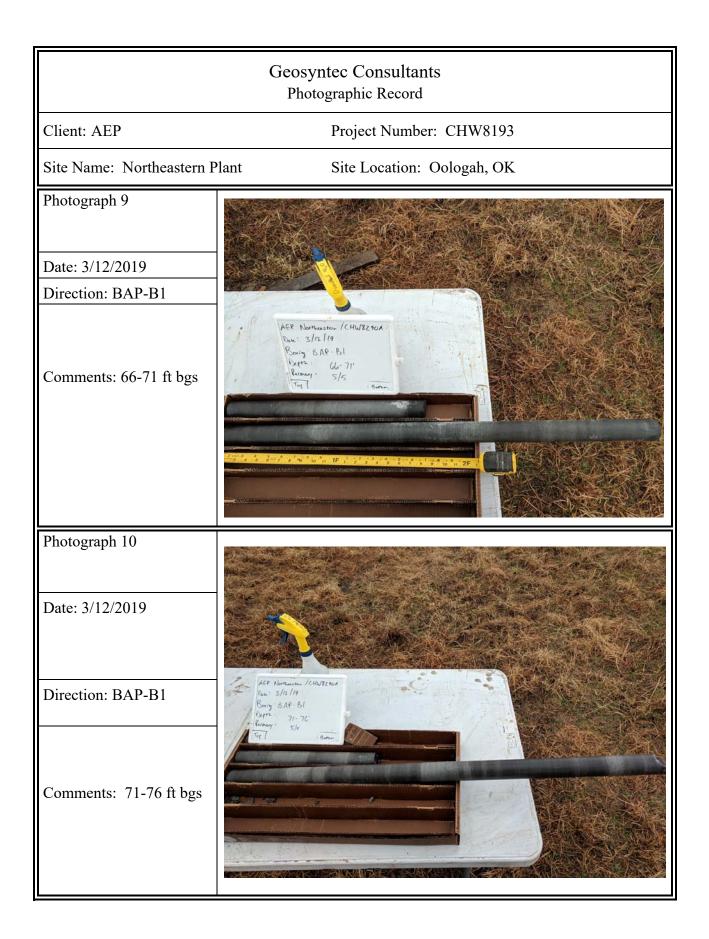
Drilling End Date:2/19/2019BoringDrilling Company:GeotechnologySampleDrilling Method:HSA/Air RotaryDTWDrilling Equipment:HSA/Air RotaryDTWDriller:C. SteinerGrour	brown, low plasticity n stained specks, ace (grass/roots).	ARKS
Image: State of the system Image: State of the system Image: State of the system SOIL/ROCK VISUAL Image: State of the system	brown, low plasticity n stained specks, ace (grass/roots).	
5 1.5 (0') LEAN CLAY (CL), dark to non-plastic, trace red iron stiff, moist, organics at surfation on plastic, trace red iron stiff, moist, organics at surfat	n stained specks, ace (grass/roots).	0
10 CB6 5.0 92% (10') Changes to slightly fra planes, mechanical fracture to medium bedded at the top crinoid pieces near dark war scattered throughout, pieces throughout. 15 CB7 5.0 92% (15') Very few fractures, all weathering at fractures. 20 20 20 5.0 92% 15') Very few fractures, all weathering at fractures.	ered through ck. ong, medium gray added with wavy sed at fractures, oderately fractured, y narrow, joints and valed, rough, surface / with HCI. nt, 0.05 foot). Actured along bedding as or joints, changes p of run, abundant vy beds and s of brachiopods SS refusal Begin coring with	NQ2 (3 inch) - 5 - 10 - 10 - 10 - 15 - 15 - 15 - 20

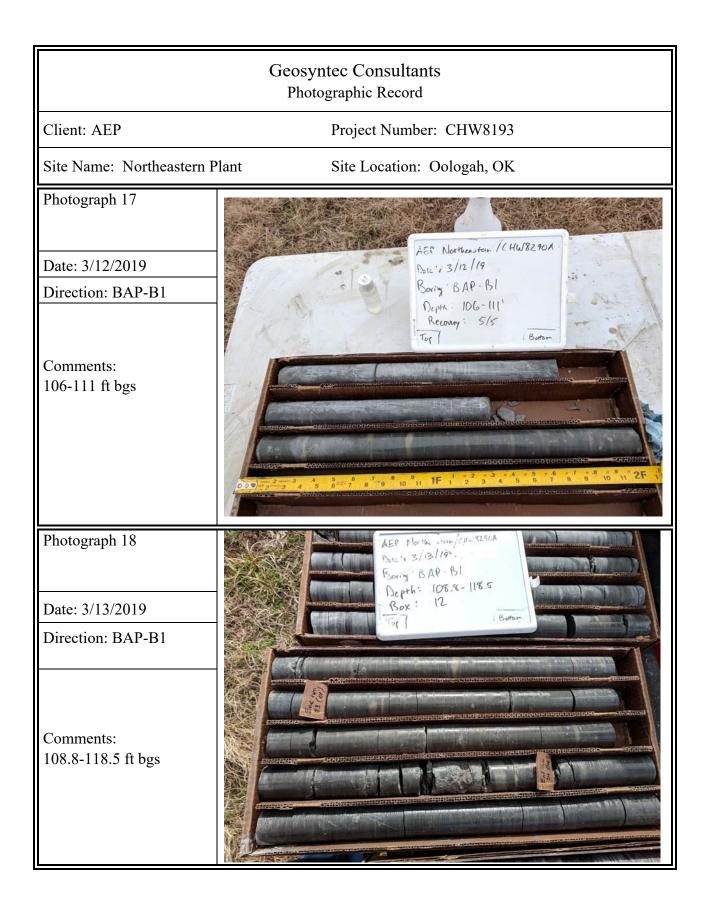

engineers sci	onsultar		>	F	Clien Proje Addre	ct:	American Electric I CHW8290 Oologah, OK	Power / Northeastern Plant	BORING LOG Boring No. BAP-B2 Page: 2 of 5	
Drilling Start Dat Drilling End Date Drilling Company Drilling Method: Drilling Equipme Driller: Logged By:	e: 2/19/2 /: Geote HSA//	2019 echno Air R Air R einer	otary otary	,				Boring Diameter (in):		
DEPTH (ft) LITHOLOGY WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	(t)	N Value RQD (%)	SOIL/ROCK V	ISUAL DESCRIPTION	REMARKS	DEPTH (ft)
		CB9 CB10 CB11			5.0	96% 100% 100%	 (25.6') Begin trace p mineral fill, vugs not (28') Prominent every 1-1.5 feet, thin wavy bedding. (30.5') Healed fractu quartz fill). (33.4') Changes to g wavy bedded, darke feet, intervals are th inch). (33.8') Color change (35') Changes to thi (37.5') Thicker secti 	darker bedding, wavy, 1-2 inch thick section of ure (possible pyrite and gray (N3/N2) intervals of thin r bedding at 33.4, 34, 34.6 icker (approximately 2-4 es to medium dark gray (N4).		20 25 30 30


Geosyntec Consultants							Clien Proje Addr	ct:	American Electric H CHW8290 Oologah, OK	Power / Northeastern Plant	BORING LC Boring No. BAP-B2 Page: 3 of 5	
Drillin Drillin Drillin Drillin Drille		Date: bany od:	2/19/ Geot HSA/ It: HSA/ C. St	2019 Techn /Air R	•	,				Boring Diameter (in):		
DEPTH (ft)	ГІТНОГОСУ	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	ft)	N Value RQD (%)	SOIL/ROCK V	'ISUAL DESCRIPTION	REMARKS	DEPTH (ft)
40				CB12			5.0	98%	drilling break along o	al fracture aggravated by Jarker wavy bedding plane, tal, slight weathering.		40
45 — - -		· · · · ·		CB13			5.0	83%	mottled in color (N5 debris), intensely fra (45.8') 1 inch shale, bedded, weak, follow inches of mottled lin approximately 2 inch (46.2') Grades back	e with obvious grains, more), abundant fossil (whole and actured (horizontal, joints). grayish black, friable, thinly ved by approximately 2 nestone, underlain by n section of same shale. into more uniform ghter (N3/N4) wavy beds,	Driller noted hydrocarbon od drilling water	or in - 45 - -
				CB14			5.0	85%	moderately fractured strong, breaks along strongly with HCI. (47.5') Possible con gray). (50') Darker limesto lighter gray sedimen fossils and debris, ir feet. Grayish black (and bedding planes.	d, abundant fossil debris, g darker bedding, still react cretion or fossil infill (light ne present with alternating its with chaotic texture, whole ntensely fractured from 50-51 N2) shaly limestone, joints edium dark gray (N4) and		- 50 - - -
55				CB15			5.0	96	(55') Crinoid/brachic			- 55 - - - - 60
	IOTES:											60


Geosyntec Consultants							Clien Proje Addr	ct:	American Electric I CHW8290 Oologah, OK	Power / Northeastern Plant	BO Boring No. Page:	RING LOG BAP-B2 4 of 5	
Drillin Drillin Drillin Drillin Drille		Date: bany bd:	2/19/	2019 echn Air R Air R einer	lotary lotary	/				Boring Diameter (in):			
DEPTH (ft)	ГІТНОГОСУ	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	f)	N Value RQD (%)	SOIL/ROCK V	'ISUAL DESCRIPTION	REM/	ARKS	DEPTH (ft)
60 				CB16 CB17 CB18 CB19			5.0	100%	 (65') Alternating limbrachiopod fossil. (67.8') Healed fractupossibly pyrite (3mn fossils (crinoid debriand have wavy bedd strongly with lighter on darker rock. (75') Same interbed 	estone and shale. Notable ure infilled with quartz h aperture) and shaly matrix. estone and shale, isolated s), limestone beds lighter ling in places, HCI reacts beds and picks out thin beds ded shale and argillaceous as are medium-very dark	Core broken in o	ne place	- 60 65 65 70 - 70 75
- - - 80-									gray, calcareous sh scattered fossils (cri	ales are grayish-black, noid debris).			- 80


	Geosyntec Consultants						Clien Proje Addr	ct:	American Electric I CHW8290 Oologah, OK	Power / Northeastern Plant	BO Boring No. Page:	RING LOG BAP-B2 5 of 5	
Drillin Drillin Drillin Drillin Driller	Drilling Start Date:2/18/2019Drilling End Date:2/19/2019Drilling Company:GeotechnologyDrilling Method:HSA/Air RotaryDrilling Equipment:HSA/Air RotaryDriller:C. SteinerLogged By:M. Bizjack									Boring Diameter (in):			
DEPTH (ft)	ГІТНОГОЄУ	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	ft)	N Value RQD (%)	SOIL/ROCK V	ISUAL DESCRIPTION	REM/	ARKS	DEPTH (ft)
				CB20			5.0	95%	(85') Same alternati thiny bedded shaly alternating with char limestones with char fossils.	is shale, light or dark gray y chaotically bedded, 0.5-1 tervals are generally thinner d 0.5-1 foot in size, isolated ng shale/limestone, dark lime/limey shale intervals otic paler (dark gray) otic bedding and often	Core broken in o	ne place	- 80 85
N N	IOTES:												


ATTACHMENT D BAP-B1 Photolog



	Geosyntec Consultants Photographic Record
Client: AEP	Project Number: CHW8193
Site Name: Northeastern F	Plant Site Location: Oologah, OK
Photograph 11	
Date: 3/12/2019	
Direction: BAP-B1	
Comments: 76-81 ft bgs	AF Mariane /Clubter Ar 3/4// Prove 3/5 Tro Tro Tro Tro Tro Tro Tro Tro
Photograph 12	
Date: 3/12/2019	The state of the state of
Direction: BAP-B1	
Comments: 81-86 ft bgs	AFF Skatemann (CHURCH) AFF Skatemannn (CHURCH) AFF Skatemann (CHURCH) AFF Skatemann (CHURCH) AFF S

Geosyntec Consultants Photographic Record							
Client: AEP	Project Number: CHW8193						
Site Name: Northeastern F	lant Site Location: Oologah, OK						
Photograph 13							
Date: 3/12/2019							
Direction: BAP-B1							
Comments: 86-91 ft bgs							
Photograph 14							
Date: 3/12/2019							
Direction: BAP-B1 Comments: 91-96ft bgs							

Geosyntec Consultants Photographic Record						
Client: AEP Project Number: CHW8193						
Site Name: Northeastern P	lant Site Location: Oologah, OK					
Photograph 19	AEP Northe atern/CHUIS240A Date is 3/13/19. Borry BAP-BI					
Date: 3/13/2019	Depth: 118.5-128.2					
Direction: BAP-B1	Box: 13					
Comments: 118.5-128.2 ft bgs						
Photograph 20	AEP Northe steen/CHUIS29CA Dete 10 3/13/179. Boring BAP-BI					
Date: 3/13/2019	Depth: 128.2-138					
Direction: BAP-B1	Box: 14 Botom					
Comments: 128.2-138 ft bgs						

Geosyntec Consultants Photographic Record						
Client: AEP	Project Number: CHW8193					
Site Name: Northeastern P	lant Site Location: Oologah, OK					
Photograph 21	AEP Northe steen/CHUIS24CA Date is 3/13/19. Boring BAP-BI					
Date: 3/13/2019	Depth: 138-148					
Direction: BAP-B1	Both Batter					
Comments: 138-148 ft bgs						
Photograph 22	AEP Northe stan/CHUIS24CA Date 1: 3/13/19:- Boring : BAP-BI					
Date: 3/13/2019	Depth: 146-158' Box: 16					
Direction: BAP-B1	E Batom					
Comments: 148-158 ft bgs						

Geosyntec Consultants Photographic Record							
Client: AEP	Project Number: CHW8193						
Site Name: Northeastern I	Plant Site Location: Oologah, OK						
Photograph 25							
Date: 3/13/2019							
Direction: BAP-B1							
Comments: 177-186 ft bgs							

ATTACHMENT C O kpgtcmji kecn'Cpcn{ uku'Ncdqtcvqty Report

CHA8462/10/01

Requested by: Alison Kreinberg Geosyntec Consultants

Mineralogy, Inc. Number 19051

Date: March 21, 2019

Submitted by:

3. Murph Twent

Timothy B. Murphy

Mineralogy, Inc. 3321 East 27th Street Tulsa, Oklahoma 74114 USA +1 (918) 744.8284

www.mineralogy-inc.com

Table of Contents

Conditions & Qualifications

Section I	Introduction		
	X-ray Diffraction Analysis		
Appendix I	X-ray Fluorescence		
	Cation Exchange Capacity		

Sample ID		Petrographic Data	Thin Section Images	
SP-10-LOG 1 (32-32.4')	19051-01	•	•_	
SP-10-LOG 2 (46')	19051-02	•	<u>•</u>	
SP-10-LOG 3 (46')	19051-03	•	<u>•</u>	
SP-10-LOG 4 (72-72.4')	19051-04	•_	<u>•</u>	

CONDITIONS AND QUALIFICATIONS

Mineralogy, Inc. will endeavor to provide accurate and reliable laboratory measurements of the samples provided by the client. The results of any x-ray diffraction, petrographic or core analysis test are necessarily influenced by the condition and selection of the samples to be analyzed. It should be recognized that geological samples are commonly heterogeneous and lack uniform properties. Mineralogical, geochemical and/or petrographic data obtained for a specific sample provides compositional data pertinent to that specific sampling location. Such "site-specific data" may fail to provide adequate characterization of the range of compositional variability possible within a given project area, thus the "projection" of these laboratory findings and values to adjoining, "untested" areas of the formation or project area is inherently risky, and exceeds the scope of the laboratory work request. Hence, Mineralogy, Inc. shall not assume any liability risk or responsibility for any loss or potential failure associated with the application of "site or sample-specific laboratory data" to "untested" areas of the formation or project area. Unless otherwise directed, the samples selected for analysis will be chosen to reflect a visually representative portion of the bulk sample submitted for analysis. Where provided, the interpretation of x-ray diffraction, petrographic or core analysis results constitutes the best geological judgment of Mineralogy, Inc., and is subject to the sampling limitations described above, and the detection limits inherent to semi-quantitative and/or qualitative mineralogical and microscopic analysis. Mineralogy, Inc. assumes no responsibility nor offers any guarantee of the productivity, suitability or performance of any oil or gas well, hydrocarbon recovery process, dimension stone, and/or ore material based upon the data or conclusions presented in this report.

Introduction

Four selected core intervals have been submitted for a combination of mineralogical, chemical, and petrographic analysis. The results of the x-ray diffraction mineralogical analysis are summarized in Table I. X-ray fluorescence chemical analysis data for these samples are presented in Table II. Results of the cation exchange capacity analysis (CEC) are summarized in Table III. The CEC results provide exchange capacities for a series of selected cation species, including: lithium, calcium, potassium, magnesium and sodium ions. The results of the thin section petrographic analysis are summarized in the individual thin section descriptions presented following Table III. The descriptive summaries include thin section photomicrographs that offer representative images of the micro-fabric for these core samples.

Sample ID	Mineralogy, Inc. No.	Analysis Requested
SP-10-LOG 1 (32-32.4')	19051-01	XRD / XRF / CEC / TSP
SP-10-LOG 2 (46')	19051-02	XRD / XRF / CEC / TSP
SP-10-LOG 3 (46')	19051-03	XRD / XRF / CEC / TSP
SP-10-LOG 4 (72-72.4')	19051-04	XRD / XRF / CEC / TSP

XRD = X-ray Diffraction | XRF = X-ray Fluorescence | CEC = Cation Exchange Capacity | TSP = Thin Section Petrography

X-ray Diffraction

Client:	Geosyntec Consultants	MI#:	19051
Project:	CHA8462/10/01	Date:	03/21/19
Location:	N/A	Method:	X-ray Diffraction

	Sample ID	SP-10-LOG 1	SP-10-LOG 2	SP-10-LOG 4	SP-10-LOG 4
	Depth (ft)	32-32.4	46	46	72-72.4
	MI#	19051-01	19051-02	19051-03	19051-04
Mineral C	onstituent		Relative Abu	undance (%)	
Qu	artz	1	20	3	6
Alt	pite	ND	4	ND	ND
Micro	ocline	ND	1	ND	ND
Cal	lcite	95	2	2 93	
Ferroan Dolomite		4	ND	ND	2
Siderite		ND	ND 1		ND
Pyrite		ND	5	1	ND
Као	linite	ND	2	1	<0.5
Chl	orite	ND	3	<0.5	ND
Illite/	Illite/Mica		38	1	1
Mixed-Layered Illite/Smectite		ND	24	1	<0.5
Total		100	100	100	100
% Illite Laye	ers in ML I/S		75%	75%	BDL

*ND = Not Detected BDL = Below Detection Limit

X-ray Fluorescence

Client:	Geosyntec Consultants	MI#:	19051
Project:	CHA8462/10/01	Date:	03/21/19
Location:	N/A	Method:	X-ray Fluorescence

	Sample ID	SP-10-LOG 1	SP-10-LOG 2	SP-10-LOG 4	SP-10-LOG 4
	Depth (ft)	32-32.4	46	46	72-72.4
	MI#	19051-01	19051-02	19051-03	19051-04
Comp	oound		Results ((mass %)	
Na	20	ND	0.1895	0.115	0.1679
Mg	gO	0.8658	0.8691	0.6868	1.2152
AI2	03	0.229	2.623	2.8345	1.8392
Si	02	1.8268	9.8542	11.7333	15.4175
P2	O5	0.1167	0.1167 0.2455 0.1844		0.1426
S		0.0281	0.5322	0.3903	0.1484
C		0.0366 0.0313 0.0366		0.0366	0.0309
K2	20	0.0729 0.5631		0.36	0.4304
Ca	aO	95.2326	80.3021	79.7826	78.3752
Tio	D2	ND	0.1647	0.0679	0.1096
Mi	١O	0.0797	0.1224	0.1512	0.1627
Fe2O3		0.7094	2.596	1.912	1.2662
Sr		0.5788	0.8884	0.922	0.3485
Y		ND	ND	ND 0.0116	
Ba	aO	0.0758	0.0597	0.056	0.0598

*ND = Not Detected

Cation Exchange Capacity

Client:	Geosyntec Consultants	MI#:	19051
Project:	CHA8462/10/01	Date:	03/21/19
Location:	N/A	Method:	C.E.C.

	Lithium		Calcium Ma		Magne	Magnesium		Potassium		lium	
	Results	PQL**	Results	PQL**	Results	PQL**	Results	PQL**	Results	PQL**	
Sample ID	(meg/	100g)	(meg/100g)		(meg/100g)		(meg/100g)		(meg/100g)		
SP-10-LOG 1	DDOI	0.05	00.0	0.400	0.507	0.400	DDOI	0.400	0.000	0.400	
32 - 32.4'	BPQL	0.05	20.0	0.100	0.567	0.100	BPQL	0.100	0.226	0.100	
SP-10-LOG 2	DDOI	0.05	10.0	0.400	0.54	0.400	0.00	0.400	0.05	0.400	
46'	BPQL	BPQL	0.05	16.2	0.100	3.51	0.100	2.32	0.100	8.85	0.100
SP-10-LOG 3	DDOI	0.05	01.0	0.400	0.040	0.400	0.050	0.400	0.000	0.400	
46'	BPQL (0.05	21.6	0.100	0.642	0.100	0.250	0.100	0.896	0.100	
SP-10-LOG 4	DDOI	0.05	01.4	0.400	1.40	0.400	0.040	0.400	0.000	0.400	
72 - 72.4'	BPQL	0.05	21.1	0.100	1.16	0.100	0.313	0.100	0.822	0.100	

Method Reference: 40 CFR 136, 261, Method for Chemical Analysis of Water and Waste EPA-600/4-79-020 March 1983

CEC Method Reference: Method of Soil Analysis, Chemical and Microbiological Properties, 2nd Ed.; American Society of Agronomy, linc.

Soil Science Society of America, Inc. page 160.

*CEC analysis provided by Accurate Laboratories & Training Center; Stillwater, OK

**PQL= Practical Quantitation Limit | BPQL = Below Practical Quantitation Limit

SP-10-LOG 1 (32-32.4'); MI#19051-01 Petrographic Data

This core interval is comprised of non-porous, partially recrystallized, slightly dolomitic, mollusk lime wackstone. Some characteristics of the limestone framework and micro-fabric are noted as follows:

- The limestone is extensively crystalized and exhibits a grain assemblage that includes recrystallized mollusk shells and gastropod fragments, undifferentiated skeletal debris (recrystallized skeletal grains partially to completely replaced with calcite spar and/or dolomite cement), foram tests, and ostracod fragments.
- The sedimentary fabric is burrow mottled and exhibits localized evidence of geopetal sheltering adjoining selected shell fragments. The sheltered portions of the limestone fabric exhibit contrasts in the matrix packing density & the distribution of some secondary cements within this interval.
- The groundmass of this sample is dominated by microcrystalline calcite. Portions of the matrix have been locally replaced with very finely crystalline calcite spar +/dolomite cement owing to aggrading neomorphism.
- Traces of microcrystalline chert cement are locally present as a late stage secondary cement occupying patches of sheltered inter-crystalline porosity that adjoin the mollusk shell fragments. The chert cement is visually estimated to account for <1% of the mineral volume in this interval.
- Porosity accounts for ~0.5-1.0% of the bulk volume. Void types include scattered secondary dissolution voids (associated with the dolomite-replaced mollusk shell fragments), and traces of inter-crystalline microporosity.

Mineral Constituents	Concentration (%)
Quartz	1
Calcite	95
Ferroan Dolomite	4


Mineralogical Data

Photo Tags

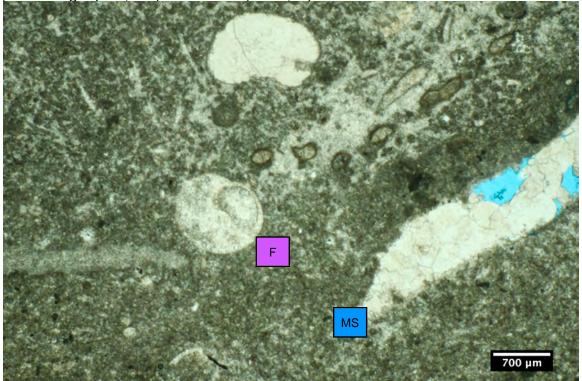
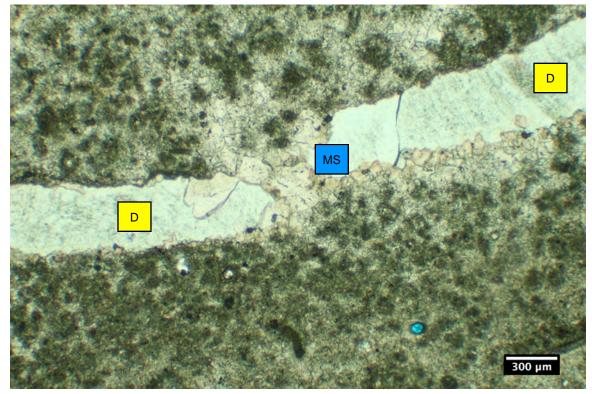
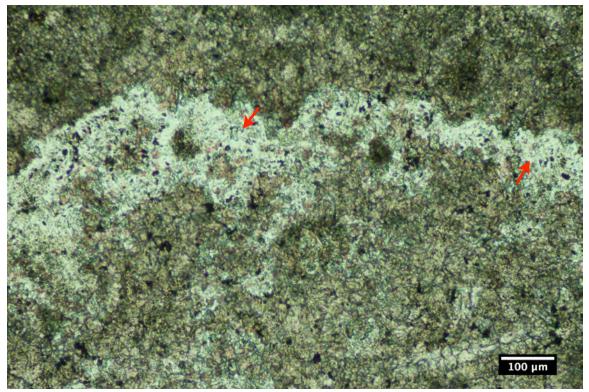

Calcite spar cement	CS
Dolomite	D
Mollusk shell fragments	MS
Foram test	F

Table of Contents

SP-10-LOG 1 (32-32.4'); MI#19051-01


1A. Mollusk shell fragments (MS) recrystallized and replaced with calcite spar (stained light pink; CS) + dolomite (white; D).


1B. Secondary intraparticle dissolution macroporosity (blue) associated with a leached mollusk shell fragment (MS). Recrystallized foram (?) test (F).

SP-10-LOG 1 (32-32.4'); MI#19051-01

1C. Dolomite replacement (D) within a re-crystallized mollusk shell fragment (MS).

1D. Chert cement (red arrows) replacing portions of the lime mud groundmass within this limestone sample.

SP-10-LOG 2 (46'); MI#19051-02 Petrographic Data

This core sample is characterized as a parallel-bedded, organic matter-rich, calcareous and fossiliferous, silty shale. The fabric and mineralogy of this core interval is noted as follows:

- The silty shale groundmass is densely packed & exhibits parallel-bedded lamina of organic matter-rich detrital clay interbedded with limestone skeletal fragments and lens-shaped concentrations of quartz-rich silt. The clay matrix fraction accounts for ~ 67% of the mineral volume & includes illite/mica, mixed-layered illite/smectite, kaolinite and chlorite.
- The silty shale is interbedded with clay matrix-rich skeletal lime wackstone. The
 interbedded limestone materials are burrow mottled, fossiliferous, and incorporate
 common lenses of organic-rich clay. The matrix materials locally drape the
 carbonate grains and fill intercrystalline voids of the limestone. Skeletal allochems
 include very poorly preserved mollusk shell fragments, calcareous algae plates, and
 foram tests. Most of the carbonate grains have been completely recrystallized and
 replaced with calcite spar cement.
- Burial compaction and deformation of the interbedded matrix materials has contributed to the development of pressure solution artifacts including low amplitude stylolites.
- Minor to trace amounts of micro-crack porosity are present within the organic-rich silty-shale materials. The fracture voids are parallel to bedding and likely represent artifacts related to fabric relaxation.

Mineral Constituents	Concentration (%)
Quartz	20
Albite	4
Microcline	1
Calcite	2
Siderite	1
Pyrite	5
Kaolinite	2
Chlorite	3
Illite/Mica	38
Mixed-Layered Illite/Smectite	24

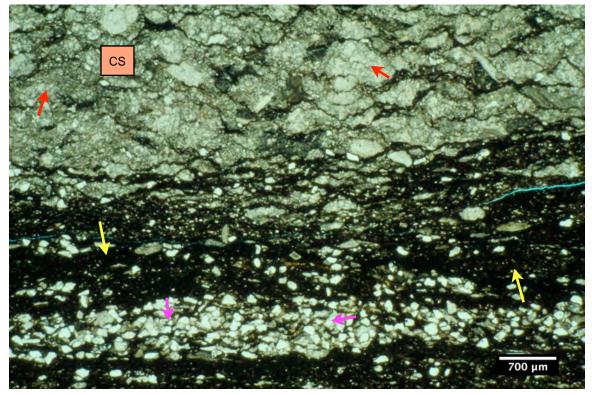
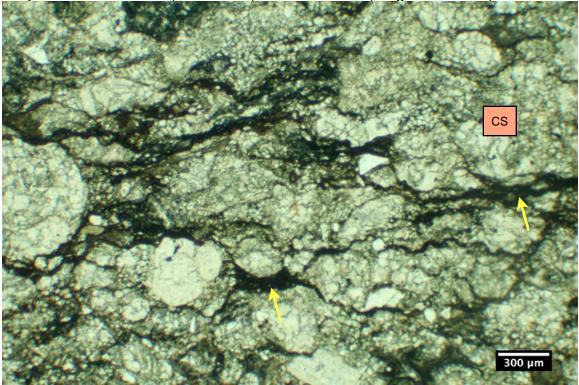
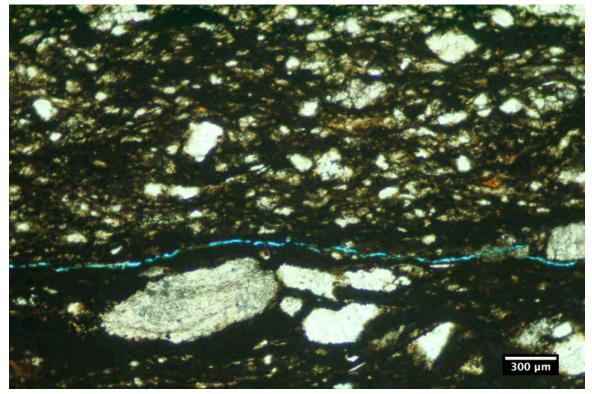
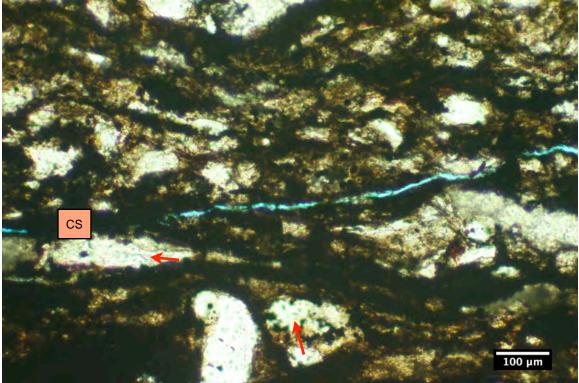

Mineralogical Data

Photo Tags


i nete lage	
Calcite spar cement	CS
Dolomite	D
Mollusk shell fragments	MS
Foram test	F

SP-10-LOG 2 (46'); MI#19051-02


2A. The silty shale (yellow arrows) is organic matter-rich & contains interbeds of recrystallized limestone (red arrows) & lenses of silt (magenta arrows).


2B. The limestone interbed is flaser-bedded & exhibits lenses of black-colored, organic-rich matrix (yellow arrows) draping the calcite crystals (CS).

SP-10-LOG 2 (46'); MI#19051-02

2C. Micro-crack (blue) attributed to fabric relaxation of the compressed shale. The clays are enriched with respect to illite & mixed-layered illite/smectite.

2D. Nearly all of the available intergranular space is choked with organic-rich detrital clay of carbonate cement (red arrows).

SP-10-LOG 3 (46'); MI#19051-03 Petrographic Data

This core sample is characterized as an organic matter and clay matrix-rich skeletal lime packstone. The limestone is non-porous and exhibits wavy or flaser bedding, with detrital clay matrix locally concentrated in the 'troughs' of the fabric. Clay lenses and lamina are locally deformed along low amplitude pressure solution seams.

- The limestone mineralogy is dominated by calcite (~93%), together with modest amounts of quartz (3%), pyrite (1%), and clay matrix minerals (~3%). The clay mineral suite for this sample includes a mix of illite/mica, mix-layered illite/smectite, kaolinite, and traces of chlorite.
- Skeletal allochems include: undifferentiated and locally recrystallized skeletal grains, mollusk shell fragments, foram tests, intraclasts (lime wackstone and lime mudstone), bryozoan fronds, gastropod fragments, and traces of quartz-rich silt and sand.
- Pyrite cement occurs as a common replacement for organic matter.

		D .
Minera	logical	Data

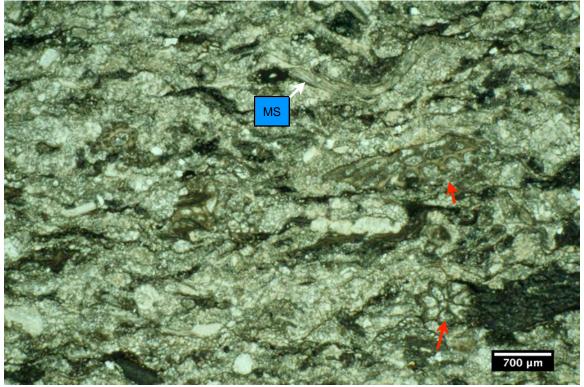
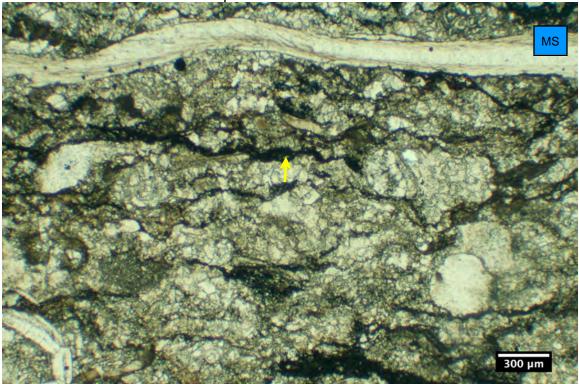
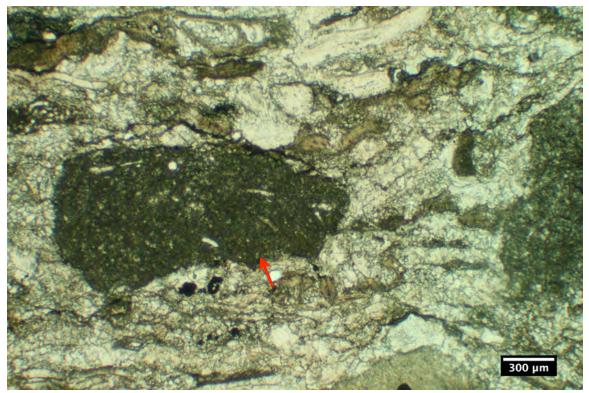

Mineral Constituents	Concentration (%)
Quartz	3
Calcite	93
Pyrite	1
Kaolinite	1
Chlorite	<0.5
Illite/Mica	1
Mixed-Layered Illite/Smectite	1

Photo	Tags
-------	------


Calcite spar cement	CS
Dolomite	D
Mollusk shell fragments	MS
Foram test	F

SP-10-LOG 3 (46'); MI#19051-03

3A. Bryozoan fronds (red arrows) + poorly preserved mollusk shell fragments (MS) in this flaser-bedded skeletal lime packstone.


3B. Mollusk shell fragment (MS) + undifferentiated & skeletal fragments. Note the mechanically deformed & compacted matrix lenses (yellow arrow).

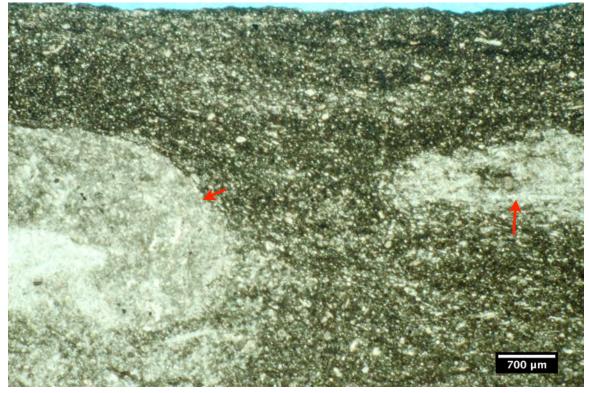
SP-10-LOG 3 (46'); MI#19051-03

3C. Intraclast of lime wackestone (red arrow). The limestone fabric is non-porous.

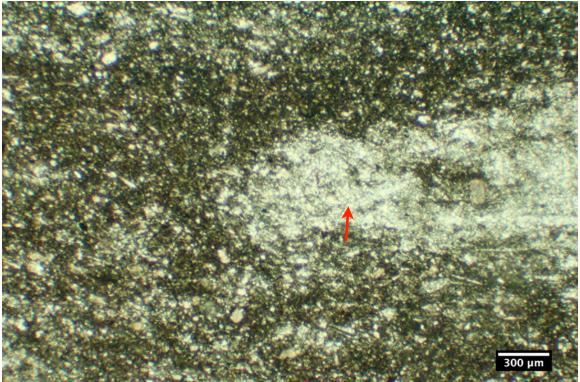
3D. Intraclast (red arrow) within this extensively recrystallized skeletal lime packstone.

SP-10-LOG 4 (72-72.4'); MI#19051-04 Petrographic Data

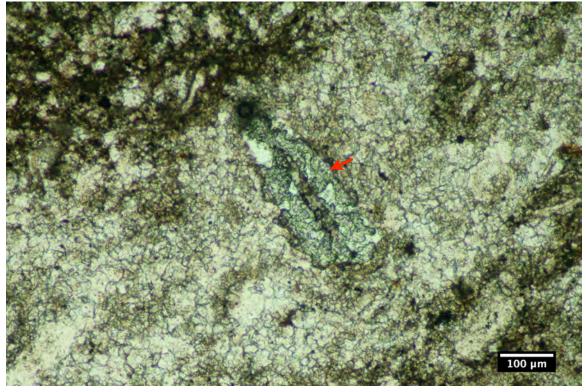
This core interval is comprised of densely-crystallized, burrow mottled, skeletal lime packstone/wackstone. The mineralogy and fabric properties for this sample are noted as follows:


- The sample fabric is parallel-bedded and burrow mottled. The skeletal grain assemblage is comprised of very poorly preserved and locally re-crystallized sponge spicules, calcareous algae plates, pelloids, and undifferentiated skeletal fragments.
- The limestone is locally interbedded with parallel bedded lamina of organic matterrich silty-shale.
- The mineralogy of the limestone is dominated by calcite (91%), coupled with significant amounts of quartz-rich silt and sand (~6%), ferroan dolomite (~2%), and clay matrix minerals (~1%). The XRD analysis of the clay matrix fraction indicates a mineralogy dominated by illite/mica coupled with minor to accessory amounts of mixed-layered illite/smectite and kaolinite.
- The limestone fabric is described as non-porous and extensively recrystallized. Very finely crystalline calcite spar and patches of dolomite cement are common replacements for skeletal grains present in this sample.

Mineral Constituents	Concentration (%)
Quartz	6
Calcite	91
Ferroan Dolomite	2
Kaolinite	<0.5
Illite/Mica	1
Mixed-Layered Illite/Smectite	<0.5


Photo Tags	
Calcite spar cement	CS
Dolomite	D
Mollusk shell fragments	MS
Foram test	F

SP-10-LOG 4 (72-72.4'); MI#19051-04


4A. Burrow molds (red arrows) within this sponge spicule-rich lime packstone/ wackestone.

4B. The groundmass of this sample is enriched with respect to lime mud & contains recrystallized skeletal fragments that include sponge fragments, calcareous algae, pelloids, and undifferentiated skeletal fragments.

SP-10-LOG 4 (72-72.4'); MI#19051-04

4C. A phosphatic bone fragment (red arrows) surrounded by recrystallized calcite spar cement.

4D. As in Figure 4C, with cross polarized light.

March 08, 2019 Client: Mineralogy Inc. 3321 East 27th Street Tulsa, OK 74114

Requested By: Kristopher Murphy

National Environmental Laboratory Accreditation Program Kansas CERT # E-10219

Sample Project Name:	19051			
Date Samples Received:	February 25, 2019	Time: 9:15	sample temp u	pon arrival at lab = 19°C
Matrix:	Solid			
Lab Log Numbers:	BB25007-01	BB25007-02	BB25007-	03 BB25007-04
Work Order:	BB25007			
Report #	BB25007-030819104	5		
EPA Lab ID#'s:	Stillwater OK00092	Tulsa OK00983	OKC OK00129	ICR OK 001
Oklahoma Certification:	Stillwater WasteWater, DEQ 8316/ Drinking Water, DEQ D9602			602
	Tulsa WasteWater, DI	EQ 9905 / Drinking	Water, DEQ D9901	
	Oklahoma City WasteWater DEQ 7202 / Drinking Water, DEQ D9937			
Kansas Certification:	Stillwater NELAP CERT # E-10219			
	Oklahoma City NELAP CERT # E-10414			
New Hampshire Cert.:	Oklahoma City Drinking Water NH ELAP Lab ID # 2072			
Texas Certification:	Stillwater Drinking Water NELAP CERT # T105704533-14-1			
Method Reference:	40 CFR 136, 141, and 261 Methods for Chemical Analysis of Water and Wastes EPA-600/4-79-020, March 1983. Test Methods for Evaluating Solid Wastes, SW-846, Final Update III. Standard Methods 1998 (20th Edition), Standard Methods 2005 (21st Edition) and Standard Methods 2011 (22nd Edition) for the Examination of Water and Wastewater.			
Analysis Reference:If qualifiers present in "Prep Info" or "Analysis Info", then analysis performe follows: @= Tulsa Lab and * = OKC Lab. If no qualifiers present, then analy performed at Stillwater Lab.				
	Accurate Environmen Stillwater lab meet all found in the report for	l requirements of NI	ELAP. Any exception	ons to this can be
	This report is to only be replicated in its entirety.			
	Accurate Environmen performed by Accurat		ol was followed for	any sampling

■ Stillwater, OK 74074

405-372-5300

■ Fax: 405-372-5396

<u>Sample:</u> <u>19051-01</u> Collection Type: Grab		Sample Time:	Location Code: 2/25/19 0:00		PWSID#: Lab Log# BB25007-01			
Method/Parameter	Test	Result	Notes	PQL#	Prep Info	Analysis Info		
Lithium (Li) EPA 6020A	Lithium	BPQL mg/kg dry		10.0	03/04/19 10:15 LF	03/06/19 11:26 LF		
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Calcium	20.0 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:17 RW		
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Magnesium	0.567 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:17 RW		
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Potassium	BPQL meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:17 RW		
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Sodium	0.226 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:17 RW		
<u>Sample: 19051-02</u>]	Location Code:		PWSID#:			
Collection Type: Grab		Sample Time:	2/25/19 0:00		Lab Log# BB	25007-02		
Method/Parameter	Test	Result	Notes	PQL#	Prep Info	Analysis Info		
Lithium (Li) EPA 6020A	Lithium	76.0 mg/kg dry		10.0	03/04/19 10:15 LF	03/06/19 11:30 LF		
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Calcium	16.2 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:21 RW		
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Magnesium	3.51 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:21 RW		
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Potassium	2.32 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:21 RW		
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Sodium	8.85 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:21 RW		
<u>Sample:</u> 19051-03]	Location Code:		PWSID#:			
Collection Type: Grab		Sample Time:	2/25/19 0:00		Lab Log# BB	25007-03		
Method/Parameter	Test	Result	Notes	PQL#	Prep Info	Analysis Info		
Lithium (Li) EPA 6020A	Lithium	BPQL mg/kg dry		10.0	03/04/19 10:15 LF	03/06/19 11:35 LF		
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Calcium	21.6 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:24 RW		
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Magnesium	0.642 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:24 RW		
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Potassium	0.250 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:24 RW		
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Sodium	0.896 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:24 RW		
<u>Sample: 19051-04</u>]	Location Code:		PWSID#:			
Collection Type: Grab		Sample Time:	2/25/19 0:00		Lab Log# BB	25007-04		
Method/Parameter	Test	Result	Notes	PQL#	Prep Info	Analysis Info		
	Lithium	BPQL mg/kg dry		10.0	03/04/19 10:15 LF	03/06/19 11:39 LF		
Lithium (Li) EPA 6020A				0.100	00/00/10 00 00 LT	02/01/10 12 20 DW		
Lithium (Li) EPA 6020A Exchangeable Cations EPA 9081 (No Cert. Avail.)	Calcium	21.1 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:28 RW		

505 S. Lowry Street ■ Stillwater, OK 74074 ■ 405-372-5300 ■ Fax: 405-372-5396

BB25007-0308191045

<u>Sample:</u>		Location Code:	PWSID#:				
Collection Type: Grab		Sample Time: 2/25/19 0:00			Lab Log# BB25007-04		
Method/Parameter	Test	Result	Notes	PQL#	Prep Info	Analysis Info	
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Potassium	0.313 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:28 RW	
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Sodium	0.822 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:28 RW	

Notes and Definitions

MCL Analyte concentration may exceed Maximum Contaminant Limit (MCL) for EPA Primary or Secondary Drinking Water Regulations.

Analyte concentration may exceed regulatory limit.

PQL Practical Quantitation Limit - the method reporting limit (MRL) adjusted for any dilutions or other changes made to the sample to deal with interferences/matrix effects

BPQL Below Practical Quantitation Limit (if applicable).

The "Prep Date" of the QC analysis coincides with the characters of the appropriate QC Lab ID. (Example: 19 A 02 15 - BLK = 2019, Jan 2, Batch #15 - Blank)

Lab Manager

Do Cu

Quality Control Data

Blank Data

QC Lab #	Test Group	Test	Result	PQL	Flags
19C0429-BLK1	Lithium (Li) EPA 6020A	Lithium	BPQL mg/kg dry	10.0	

Duplicate Sample Data

QC Lab #	Test Group	Test Name	Source	Dup Result	Samp Result	% RPD	RPD Limit	Flags
19B2864-DUP1	Exchangeable Cations EPA 9081 (No Cert. Avail.)	Calcium	BB25007-04	21.7	21.1	3	20	
19B2864-DUP1	Exchangeable Cations EPA 9081 (No Cert. Avail.)	Magnesium	BB25007-04	1.19	1.16	3	20	
19B2864-DUP1	Exchangeable Cations EPA 9081 (No Cert. Avail.)	Potassium	BB25007-04	0.318	0.313	2	20	
19B2864-DUP1	Exchangeable Cations EPA 9081 (No Cert. Avail.)	Sodium	BB25007-04	0.896	0.822	9	20	

Laboratory Control Sample Data

Lab QC#	Test Group	Test Name	LCS Result	Spike Level	Units	% Rec.	Control Limits	Flags
19C0429-BS1	Lithium (Li) EPA 6020A	Lithium	491	495.0	mg/kg dry	99	85 - 115	

Matrix Spike Data

QC	Lab #	Test Group	Test Name	Source Sample	Sample Result	Units	Spike Result	Spike Level	% Rec.	Acceptance Limits	Flags
19C	0429-MS1	Lithium (Li) EPA 6020A	Lithium	BB25007-04	5.29	mg/kg dry	484	478.7	100	85 - 115	

Matrix Spike Duplicate Data

QC Lab #	Test Group	Test Name	Sample Result	Spike Result	Spike Level	Units	% Rec.	Rec. Limits	% RPD	RPD Limit	Flags
19C0429-MSD1	Lithium (Li) EPA 6020A	Lithium	5.29	482	490.2	ng/kg dr	97	85-115	0.5	20	

■ Stillwater, OK 74074

405-372-5300

■ Fax: 405-372-5396

MI NUMBER

DATE REQUESTED:

Standard

PROJECT INFORMATION:

19051

BB25007	
DATE:	P.O.#
Feb 25, 2019	
BILL TO	÷
Mineralogy, Inc.	
3321 E 27th ST	
Tulsa, OK 74114	
mickala@mineralogy-inc.com	

kris@mineralogy-inc.com

M.I.#	SAMPLE ID	LOCATION	TYPE	ANALYSIS
- 01	19051-01			CEC
- 02	19051-02			CEC
- 03	19051-03			CEC
- 04	19051-04			CEC

No sample clate/time provded to Mineralogy.

PROJECT:

19051

19.5%

SPECIAL INSTRUCTIONS / COMMENTS

RELINQUISHED BY ChuStin Shaemake RECEIVED BY ut

DATE/TIME 2/25/19 DATE/TIME 2/25/19 0915

02/25/19

Accurate Labs 505 S. Lowry St. Stillwater, OK 74074 Attn: Dr. Ali Fazel

Re: C.E.C. analysis (MI#19051-01 - 19051-04)

Dr. Fazel:

Please provide C.E.C. + leachate analysis for the included samples. The standard protocol you've used for our samples in the past would be great (i.e., calcium, sodium, potassium, magnesium). Results can be sent to kris@mineralogy-inc.com. If you have any questions, please feel free to call or write. Thanks as always for the continued service.

Best regards,

Kristopher Murphy Mineralogy, Inc.

ATTACHMENT D

Bottom Ash Pond Water Laboratory Analytical Data

Location: Northeastern Station

Report Date: 2/12/2019

BAP Surface Water

Sample Number: 190407-003	B Date C	ollected:	02/05/201	9 12:30	Date Received:	2/6/2019
Parameter	Result Units	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.57 ug/L	0.10	0.020	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Arsenic, As	5.18 ug/L	0.10	0.030	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Barium, Ba	315 ug/L	0.10	0.020	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.245 ug/L	0.10	0.020	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.19 ug/L	0.050	0.010	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	647 ug/L	0.20	0.040	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	9.04 ug/L	0.050	0.020	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Lead, Pb	3.33 ug/L	0.10	0.020	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	26.7 ug/L	2.0	0.40	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Selenium, Se	4.5 ug/L	0.20	0.030	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.500 ug/L	0.50	0.10	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Boron, B	0.617 mg/L	0.0050	0.0009	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	128 mg/L	0.020	0.0030	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Iron, Fe	5.77 mg/L	0.010	0.0020	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00874 mg/L	0.0002	0.00001	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Magnesium, Mg	14.8 mg/L	0.010	0.0020	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Sodium, Na	105 mg/L	0.050	0.010	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Manganese, Mn	292 ug/L	0.10	0.020	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Potassium, K	5.85 mg/L	0.050	0.010	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Strontium, Sr	1.25 mg/L	0.0002	0.00003	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Alkalinity, as CaCO3	127 mg/L	10	3.0	GES	02/06/2019 16:44	SM 2320B-2011
Bromide, Br	< 0.500 mg/L	0.50	0.10	CRJ	02/06/2019 17:11	EPA 300.1-1997, Rev. 1.0
Surrogate is recovering above ac	ceptance limits due	to Chlorate	being in the	as-rec'd sample	9.	
Chloride, Cl Surrogate is recovering above ac	28.3 mg/L	0.10 to Chlorate	0.030	CRJ	02/06/2019 17:11	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.37 mg/L	0.15	0.035	CRJ	02/06/2019 17:11	EPA 300.1-1997, Rev. 1.0
Surrogate is recovering above ac	0					LI A 300.1-1337, Nev. 1.0
Residue, Filterable, TDS	694 mg/L	40	10	KAL	02/07/2019	SM 2540C-2011
Due to the reduced time allowed	for analysis per the	plant's requ	est, the sam	ples were dried	at 180*C. KAL020719	
Sulfate, SO4	345 mg/L	10	1.5	CRJ	02/06/2019 14:22	EPA 300.1-1997, Rev. 1.0

Report was reissued on 2/12/19 due to a reanalysis that occurred on alkalinity.

Michael & Ollinger

Michael Ohlinger, ChemistEmail msohlinger@aep.comTel.Fax 614-836-4168Aud

Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

ATTACHMENT E

Certification by Qualified Professional Engineer

CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected and above described alternative source demonstration is appropriate for evaluating the groundwater monitoring data for the Bottom Ash Pond CCR management area at the Northeastern Power Station and that the requirements of OAC 252:517-9-6(g)(3)(B) have been met.

Beth Ann Gross Printed Name of Licensed Professional Engineer

th an Su

Signature

Geosyntec Consultants 8217 Shoal Creek Blvd., Suite 200 Austin, TX 78757

Oklahoma Firm Certificate of Authorization No. 1996 Exp. 6/30/2020

18167 License Number Oklahoma Licensing State <u>4/24/2019</u> Date