MITCHELL LANDFILL RUN-ON AND RUN-OFF CONTROL SYSTEM PLAN

Prepared for:

KENTUCKY POWER COMPANY d/b/a AMERICAN ELECTRIC POWER SERVICE CORPORATION 1 Riverside Plaza Columbus, Ohio 43215

Prepared By:

CIVIL & ENVIRONMENTAL CONSULTANTS, INC. 5899 Montclair Blvd Cincinnati, OH 45150 (513) 985-0226

CEC Project 195-858

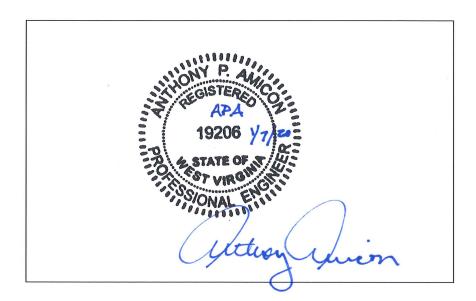
INITIAL PLAN PREPARED: October 2016 Revision No. 1 January 2020

TABLE OF CONTENTS

ENGINEER'S VERIFICATION STATEMENT	i
1.0 INTRODUCTION	1
2.0 RUN-ON CONTROLS	3
2.1 RUN-ON CONTROL OUTSIDE THE LANDFILL FOOTPRINT	3
2.1.1 Stormwater Channel and Culvert Design	4
2.1.2 Sediment Pond Design	5
2.2 RUN-ON CONTROL INSIDE THE LANDFILL FOOTPRINT	6
3.0 RUN-OFF CONTROLS	8
3.1 PERIMETER CONTAINMENT BERMS	8
3.2 LEACHATE COLLECTION SYSTEM	8
3.3 LEACHATE CONVEYANCE FEATURES	9
3.4 LEACHATE STORAGE POND 1	1
3.5 WASTE FILLING OPERATIONS 1	2
4.0 PLAN REVIEW AND CHANGES IN FACILITY CONFIGURATION	3

LIST OF APPENDICES

Appendix A – Plan Review Log


Appendix B – Supporting Calculations Section 1 - Run-On Control Feature Supporting Calculations Section 2 - Run-Off Control Feature Supporting Calculations

Appendix C – Supporting Figures

\\Svr-cinci\projects\2019\195-858\-Final Documents\R - 195-858 Mitchell LF Runoff-Runon Control Plan 1-2020.docx

ENGINEER'S VERIFICATION STATEMENT

I hereby verify that the contents of this Run-On and Run-Off Control System Plan for the Mitchell Landfill owned by the Kentucky Power Company doing business as (d/b/a) American Electric Power Service Corporation meets the requirements of Federal Regulations Title 40, Part 257.81.

Anthony P. Amicon, P.E. - Principal Civil & Environmental Consultants, Inc.

1.0 INTRODUCTION

The Mitchell landfill (ML) is owned and operated by Kentucky Power Company, doing business as (d/b/a) American Electric Power Service Corporation (AEP). The landfill is located along Gatts Ridge Road (Marshall County Road 72), approximately 2 miles north of the intersection with County Road 74 (about 2 miles due east of the Mitchell Power Generation Plant) in Marshall County, West Virginia. The ML is regulated by the West Virginia Department of Environmental Protection (WVDEP) under Solid Waste Permit No. WV0116742, allowing construction and operation of the landfill.

Overall, ML has a maximum disposal capacity of about 10 million cubic yards for excess Coal Combustion Residuals (CCR) produced from the Mitchell Power Generating Plant that is not beneficially reused. The landfill boundary comprises about 169.6 acres with CCR being placed within a footprint of 57.6 acres. Construction of ML was initiated in 2013 and operation of the landfill began in May of 2014.

The United States Environmental Protection Agency (USEPA) established a Rule for CCR waste units, which has been published in the Federal Register and is an extension of the current Code Federal Rules (CFR) Title 40, Part 257 (Rule §257). In accordance with §257.81, the ML is required to prepare a Run-On and Run-Off Control System Plan (Plan) by October 17, 2016. The Plan is to be included with the facility's Operating Record and periodically updated as required by § 257.105(g)(3). As such, in order to comply with §257.81, AEP has contracted Civil & Environmental Consultants, Inc. (CEC) to update the Plan to include recent site modifications and the most recent construction activities. This Plan addresses the following requirements of Rule §257.81:

- A run-on control system to prevent flow onto the active portion of the CCR Unit during the peak discharge from a 24-hour, 25-year storm; and,
- A run-off control system from the active portion of the CCR Unit to collect and control at least the water volume resulting from a 24-hour, 25-year storm. Run-off from the active portion of the CCR Unit must be handled in accordance with the surface water requirements under §257.3-3.

Since the ML is an operating facility, this Plan describes the existing run-on and run-off control features as well as those planned as part of future phase construction. Generally, run-on control features address collection and conveyance features associated with non-contact stormwater (i.e., liquid <u>not</u> coming in contact with the waste). Run-off control features address collection, conveyance, and treatment features for contact stormwater (i.e., liquid coming in contact with the waste).

This Plan summarizes the run-on and run-off control features and provides supporting calculations and figures. Note that the supporting calculations and figures are similar to those submitted as part of the permit application process for the currently approved Solid Waste/National Pollutant Discharge Elimination System (NPDES) Permit from the WVDEP associated with the ML.

This Plan has been revised in January 2020 to reflect alterations to the run-on and run-off control features at ML since the initial Plan prepared in October 2016. The permanent sediment pond referred to herein as the North Pond was eliminated from the design. A new permanent sediment pond referred to herein as the East Pond near an Excess Soil Disposal Area was designed and constructed to replace the North Pond. All of the stormwater conveyance features for the North Pond were redesigned to route stormwater to the East Pond. All references to the North Pond in the Plan narrative have been removed and are shown with a strikethrough. The Plan Review Log in Appendix A has been revised to reference this Plan update. The Sediment Pond Calculations in Appendix B, have been revised to denote the North Pond calculations are "Not Applicable." New HydroCAD calculations for the East Pond have been included at the end of the Sediment Pond Calculations in Appendix B. Additionally, the Plan drawings have been revised to eliminate the North Pond and show the location of the East Pond and associated stormwater conveyance features. Additionally, this Plan was revised to include recent changes (e.g., January 2019) to the Leachate Collection System.

2.0 RUN-ON CONTROLS

2.1 RUN-ON CONTROL OUTSIDE THE LANDFILL FOOTPRINT

Run-on control outside of the landfill footprint generally consist of stormwater surface controls, which prevent stormwater falling outside of the landfill footprint from running onto the active portions of the landfill. These stormwater surface controls have been developed in accordance with the Design and Construction Requirements contained in the WVDEP Solid Waste Regulations and meet the requirement for the ML NPDES Permit.

These stormwater surface controls are constructed in phases associated with landfill development. The ML has been subdivided into numbered phases (Phases 1 through 5) reflecting the order in which each partial area of the landfill will be constructed and filled. ML is currently placing waste in Phase 2 with Phase 3 base liner construction completed. As the landfill operations progress, a subsequent phase of the landfill is prepared and constructed. Sediment basin(s) and other associated surface water/erosion control structures (cover, diversion berms, channels, ditches, etc.) are then constructed as part of the phase development. A General Phasing Plan (Drawing No. 12-30110-13 in Appendix C) depicts an overview of the landfill sequencing. Drawing Nos. 12-30110-21 through 12-30110-26 in Appendix C provide detail regarding the individual phase development.

During operation of the landfill, regular maintenance and inspection of these structures is performed to ensure proper control of surface water and eroded sediments. Other standard operating procedures associated with control of surface water and eroded sediments are implemented on a regular as-needed basis and include:

- Construction of containment berms;
- Inspection of control structures;
- Maintenance and repair of channels and structures;
- Removal of accumulated sediment in sediment ponds;
- Placement of temporary and permanent protective cover and establishment of cover vegetation;

- Minimizing active fill areas within the phase;
- Installation and maintenance of silt fence and inlet protection; and,
- General best management practices as define in the Soil Erosion and Sediment Control Plan for the project.

A description of specific criteria used in the design of the stormwater surface controls, specifically stormwater channels, culverts, and sediment ponds, is included below.

2.1.1 Stormwater Channel and Culvert Design

Existing and/or future permanent drainage channels collect and convey non-contact water to three permanent sediment ponds. The surface water channels are designed such that the stormwater volumes and peak flows were calculated using the "Soil-Cover Complex" methodology presented in Soil Conservation Service Technical Release No. 55 ("TR-55", SCS 1986). Site soils were classified as Hydrologic Soil Groups "B" and "C", and all land covers were assumed to be in "good" condition. Since over 95% of the site consists of "C" type soils, type "C" soils curve numbers were used throughout the calculations. Times-of-concentration were computed using the "segmental" method in TR-55. Peak discharge factors were obtained from tables in TR-55.

The hydrologic design basis for surface water collection and conveyance structures is the 25-year, 24-hour storm. This design storm event is applicable to the site runoff collection channels and culverts. The Federal Highway Administration Hydraulic Engineering Circular No. 15 (HEC-15) was used as a guideline for channel linings and maximum velocities for drainage ditches. The 2-year, 24-hour; 10-year, 24-hour; 25-year, 24-hour; 50-year, 24-hour; 100-year, 24-hour storms were used to calculate the runoff detention volume, the flood storage volume, freeboard, and the emergency spillway discharge, respectively, for the South, West, and East Sediment Ponds.

The rainfall intensities at the location of the ML applicable to the design of surface water structures were obtained from the United States Department of Commerce, Weather Bureau, Technical Paper No. 40, Rainfall Frequency Atlas of the United States, for Marshall County, West Virginia. The historical rainfall distribution for each 2-hour storm is based on the Soil Conservation Service (SCS) Type II rainfall distribution. Antecedent Moisture Condition II - Normal was assumed for design.

Several existing or future culverts are associated with ML development. Riprap outlet protection is used to prevent erosion at each culvert. Refer to Drawing Nos. 12-30110-18, 12-30110-21 through 12-30110-28, 12-30110-40, 12-30110-41, 12-30110-44, and 12-30110-45 in Appendix C for the locations, sizes, and outlet protection specifics for the culverts.

Supporting calculations showing size and capacity for the channels and culverts using the abovedescribed methodology (i.e., 24-hour, 25-years storm event) are presented in Appendix B of this Plan.

2.1.2 Sediment Pond Design

Three permanent (all constructed) sediment ponds are associated with ML development. The primary sediment pond (South Pond) is located at the south end of the landfill and at the downstream end of the valley. The two other permanent sediment ponds (East and West Ponds) are located east and west of the landfill waste limits. These structures are used to collect stormwater and control sediment.

Current and future sediment ponds have been designed with outlet structures that control the discharge of stormwater through the basins. Each sediment control structure has sediment capacity of 0.125 acre-feet for each acre of disturbed area in the structures watershed. In addition to the sediment capacity, the sediment control structures have a detention capacity to store a 2-year, 24-hour frequency storm. The detained stormwater is then released through a non-clogging dewatering skimmer device that allows the stored volume of water to be evacuated within a 7-day to 8-day period.

The structures provide a combination of principal and emergency spillways that safely discharge the 25-year, 24-hour storm without overtopping of the structure. The structures are designed to

ensure no outflow through the emergency spillway during the passage of a 10-year, 24-hour frequency storm.

During the design storm, each structure provides a minimum difference in elevation of 1 foot between the crest of the principal spillway and the crest of the emergency spillway. Additionally, a minimum difference in elevation of 1 foot of freeboard is provided between the maximum design flow elevation in the emergency spillway and the top of the embankment.

Supporting calculations used to size the sediment ponds using the above-described methodology (i.e., 24-hour, 25-years storm event) are presented in Appendix B of this Plan. Refer to Drawings in Appendix C for the locations, design grades, and details associated with the Sediment Ponds and supporting structures.

2.2 RUN-ON CONTROL INSIDE THE LANDFILL FOOTPRINT

Active waste operations will continue at the ML until final design grades are reached. As waste placement reaches the planned exterior grades of the landfill throughout the planned operation of the facility, the waste will be covered with a protective cover system or cap constructed with the on-site soils. Details related to the cap are shown on Drawing No. 12-30110-48 in Appendix C and specifics for the cover soils are described below.

The permanent cover for the ML will consist of a 2-foot thick layer of compacted cohesive soil meeting a minimum permeability of 1 x 10^{-6} cm/sec. Selected natural soils and highly weathered bedrock will meet this criteria. The recompacted soils and bedrock samples tested achieved permeability values ranging between $1x10^{-5}$ cm/sec to $1x10^{-7}$ cm/sec (compacted to 95% of the Standard Proctor).

Lime, fertilizer and mulch will be provided as necessary to promote vegetative growth within the top 6 inches of the cover. The natural soil cover material will be generated from excavations required to achieve the landfill liner, sediment ponds, Leachate Storage Pond, and haul road grades.

Similar to the run-on control features, stormwater control features atop of the permanent cover (i.e., benches, downchutes, etc.) have a hydrologic design basis of the 25-year, 24-hour storm event. Refer to the supporting calculations in Appendix B of this Plan for design calculations associated with the run-on control features within the landfill footprint.

3.0 **RUN-OFF CONTROLS**

3.1 PERIMETER CONTAINMENT BERMS

Generally, the working surface of the active landfill remains relatively level with the active fill area being sloped towards the interior of the landfill, such that the successive waste fill lifts increase the elevation within the phase. This is accomplished by constructing a containment berm at the planned exterior limits of the interim or final slope of the phase followed by placement of successive waste fill lifts within the phase until the approximate top of the containment berm is reached. This process is continued by shifting the outside edge of each subsequent containment berm to create a maximum exterior slope of 3 horizontal to 1 vertical (3H:1V) until the design grade of the phase is reached. These containment berms serve the purpose to separate run-off (contact water) from flowing outside of the waste placement area.

The initial containment berm for waste placement, positioned at the toe of the first three phases in the valley bottom, has a minimum height of 10 feet, a crest width of 6 feet and side slopes of 3H:1V or flatter on the exterior side. The initial containment berm for Phase 4 will be increased to 15 feet in height. Subsequent containment berms have a maximum height of 5 feet and a crest width of 6 feet. The internal and external slopes have a minimum 2H:1V and 3H:1V, respectively.

3.2 LEACHATE COLLECTION SYSTEM

Contaminated runoff ("contact water") is collected as part of the leachate collection system and is conveyed to the Leachate Storage Pond via the vertical chimney drains, the leachate collection system, and associated lift station. The surface of the active fill area is sloped towards the interior of the landfill, graded to minimize ponding of water, and directs excess surface water to chimney drain locations.

The Hydrologic Evaluation of Landfill Performance (HELP) model was used to calculate the average daily leachate flow and the average annual leachate volume for the ML. The average daily

Civil & Environmental Consultants, Inc.

leachate flow for the ML, as estimated by the HELP model, is 560 gallons per acre per day for active landfill operation areas, and 180 gallons per acre per day after landfill closure.

The maximum average annual leachate volume will occur when a majority of the site is closed and a portion of the landfill remains active, and can be computed assuming the maximum area of the active phase is 15 acres with the remaining 42.6 acres of landfill area being closed. Using the above estimated daily leachate flows for active and closed conditions, the maximum average annual leachate volume for the entire 57.6-acre lined landfill area is expected to be 6,000,000 gallons per year. These volume estimates are based on steady-state flow conditions. Supporting calculations are contained in Appendix B of this Plan.

Note that the HELP Model calculations included in Appendix B include evaluations where the peak precipitation event is 4.44 inches, which corresponds to the 24-hour, 25-year storm event. Therefore, design aspects of ML which rely on the above described leachate generation estimates are designed for the 24-hour, 25-year storm event per §257.81. Drawing Nos. 12-30110-15 and 12-30110-16 in Appendix C identify the location of the leachate collection system.

3.3 LEACHATE CONVEYANCE FEATURES

The leachate collection system consists of three main components:

- <u>Geocomposite Drainage Net (GDN) [Phases 1 and 2 only]</u> comprised of an HDPE geonet with nonwoven, needle-punched geotextiles heat-bonded to its upper and lower surfaces. GDN covers the entire bottom of the landfill within Phases 1 and 2 and collects and conveys leachate to pipe/aggregate envelopes located along the landfill side slopes and valley axes.
- <u>Granular Drainage Material</u> constructed atop the GDN [Phases 1 and 2] or atop of a cushion geotextile [Phases 3 and 4] with a minimum thickness of 18-inches across the bottom of the landfill (within the main valley axis).
- <u>Leachate collection system piping</u> –comprised of perforated HDPE pipes, non-calcareous, free draining aggregate, and a nonwoven, needle-punched geotextile. The leachate collection system piping collects and conveys leachate out of the landfill via gravity flow and into a lift station for conveyance to the Leachate Storage Pond.

For Phases 1 and 2, GDN was selected as the primary leachate collection/conveyance layer due to its reduced thickness (results in additional landfill airspace), ease of installation (as compared to an aggregate layer), and high hydraulic conductivity (minimizes development of leachate head atop the composite liner). The GDN also acts as a cushion layer to protect the PVC geomembrane from damage during protective cover placement. Coarse aggregate envelopes the leachate collection pipes to provide high hydraulic conductivity. A non-carbonate stone is used to prevent degradation of the collection envelope over time. HDPE pipe was specified to withstand the landfill loads while being compatible with the anticipated leachate. The leachate collection system piping was also designed with cleanouts to facilitate maintenance.

For Phases 3 and 4, a geotextile cushion was installed directly above the PVC geomembrane to protect it from damage during leachate collection material placement. Bottom ash material serves as the primary leachate collection/conveyance layer in the leachate management system for the Phase 3 and 4 landfill valley bottom and side slopes areas. Additionally, leachate collection pipes enveloped with aggregate provide a flow path for leachate to be conveyed from the facility. HDPE pipe was specified to withstand the landfill loads while being compatible with the anticipated leachate. The leachate collection system piping was also designed with cleanouts to facilitate maintenance.

Leachate and contaminated stormwater (stormwater that has come in contact with waste) is collected by the leachate conveyance features and conveyed to a lift station. The lift station structure receives leachate via gravity flow from the landfill and transfers the leachate via a force main to the Leachate Storage Pond. The lift station structure is sealed and lined to prevent leakage and leachate pipes located outside of the landfill limits of waste are comprised of dual walled pipes. The capacity of the pump station is established based on the anticipated peak leachate flow rates from the leachate collection system and the operational efficiency requirements of the selected pump(s). The pump station structure is lined and the associated force main is comprised of a dual walled HDPE pipe. The pump station is equipped with an automated control system to operate the pumps, provide alerts to the operator and monitor the leachate volumes pumped to the storage pond. The emergency overflow for the lift station is directed to a pipe that bypasses the South Pond and discharges to an unnamed tributary to Fish Creek.

The location and design details for the lift station and Leachate Storage Pond are included on Drawing Nos. 12-30110-15, 12-30110-16, 12-30110-45, 12-30110-47, and 12-30110-50, and DR-4 in Appendix C.

3.4 LEACHATE STORAGE POND

A Leachate Storage Pond has been established as part of the initial landfill construction and will remain in service throughout the operational life of the landfill and during the post-closure period. The Leachate Storage Pond is located at the high point of the valley ridge west of the landfill such that the pond bottom is well above the seasonal high groundwater at the site. This pond has a composite liner comprised of a 4-feet thick geologic isolation layer, a 45-mil polypropylene geomembrane constructed atop a geosynthetic clay liner (GCL). The maximum holding capacity of the Leachate Storage Pond is 6.9 acre-feet (ac-ft.). The design holding capacity is sufficient to contain the anticipated leachate volume for a 30-day period, as required by the West Virginia Solid Waste Regulations. The 30-day storage capacity is calculated using the average annual leachate volume of 6,000,000 gallons per year adjusted to 30 days to get a required storage capacity of 500,000 gallons (1.5 ac-ft.). In addition, the storage pond has excess holding capacity (about 5.4 ac-ft.) to store contact runoff generated from heavy precipitation events. The additional holding capacity, in excess of the 30-day storage capacity, allows for storage of leachate that is generated from a 100-year 24-hour storm applied over 15 acres of active disposal area draining to the leachate collection system.

The Leachate Storage Pond pool elevation is monitored and managed on a regular basis by the landfill operator. Leachate is removed from the storage pond on an as needed basis to maintain sufficient storage capacity. The leachate removed from the pond is beneficially reused (dust suppression within the landfill, moisture conditioning of fly ash to facilitate compaction or moisture conditioning of fly ash at the storage silo) or treated at the wastewater treatment bottom ash pond complex at the Mitchell Plant. No overflow discharge will occur from the pond except on an emergency basis. Design details for the Leachate Storage Pond are included on Drawings DR-4 and DR-5 in Appendix C.

3.5 WASTE FILLING OPERATIONS

Generally, waste materials are spread and graded in 12-inch thick loose lifts. If necessary, the material is moisture conditioned to prior to compaction. Each lift is compacted using a smooth drum vibratory roller to achieve an in-situ density of at least 95 percent of the maximum laboratory dry density as determined by ASTM D-698. The smooth drum roller has a minimum dynamic force of 500 pounds per linear inch and a static weight of 125 pounds per lineal inch. The compaction units shall travel at a speed not exceeding 2.5 miles per hour with a minimum of six passes. Each pass of the vibratory roller overlaps the adjacent pass. The compaction equipment, lift thickness and number of passes are subject to change based on verification that the in-place density of the waste is achieved using alternative methods. Within the distance of 8 feet from any structure, the use of the above-specified roller shall be discontinued and hand-operated compactors shall be used. In addition, the fly ash, bottom ash and gypsum is commingled in normal waste placement operational areas without any specified segregation.

To assure an environmentally sound operation, the ML site waste hauling procedures require the following:

- Trucks shall be tarped while traveling to and from the landfill;
- Trucks shall maintain posted speed limits; and
- Upon trucks leaving the landfill site on their return trip, the disposal contractor must make certain that the truck body and wheels are free of all ash and/or mud before entering roads. A truck washing facility may be established at the landfill site, if necessary, to safeguard against these conditions occurring.

4.0 PLAN REVIEW AND CHANGES IN FACILITY CONFIGURATION

In accordance with §257.81, this Run-On and Run-Off Control Plan shall be reviewed periodically, at a minimum of every 5 years. During such reviews, this Plan will be updated as needed to reflect the current design and operation of the ML. A Plan Review Log to record periodic Plan reviews and revisions is included in Appendix A.

APPENDIX A

PLAN REVIEW LOG

MITCHELL LANDFILL RUN-ON, RUN-OFF CONTROL PLAN

PLAN REVIEW LOG

Action	Performed by:	Date
Prepare Initial Run-On, Run-Off Control Plan	CEC	10/11/2016
Revision No. 1 – Elimination of North Sediment Pond and Addition of the East Sediment Pond; Updated Water balance Calculations	CEC	1/7/2020

Note:

1. In accordance with §257.81, this Run-On and Run-Off Control Plan shall be reviewed periodically, at a minimum of every 5 years.

APPENDIX B

SUPPORTING CALCULATIONS

APPENDIX B; SECTION 1

RUN-ON CONTROL FEATURE SUPPORTING CALCULATIONS

SURFACE WATER CONTROL CALCULATIONS

(Taken from the Solid Waste/NPDES Permit Application for the Mitchell Landfill)

SURFACE WATER CONTROL CALCULATIONS Original Permit Design

Note that Stormwater controls associated with the North Pond are now routed to the East Pond. Text revisions to the Surface Water Control Calculations have not been made. Instead a separate calculation brief for only those features near the East Pond was prepared and is presented immediately after this calculation brief.

SUB	JECT	Surface Wat	er Con	trol Structures			PROJ	IECT NO.		110-416		
	CABLE	33CSR1 3.16.c.4. Stormwater, Soil Erosion, and Sedimentation Control Plan										
-	JECT	American Ele							•			
LOCA	LOCATION Gatts Ridge Road, Marshall County, West Virginia							Ξ	1	OF	9	
MADE B		Y MTF	DATE	04/03/12	CHECKED BY	BY JDM		DATE	04	/03/1	2	

OBJECTIVE:

To design the proposed surface water control structures for the Mitchell Landfill which divert all stormwater runoff from the disturbed area to the South, West, and North Ponds. All calculations for the South, West and North Sedimentation Ponds can be found in the calculation entitled "Sediment Pond Design Calculations". The calculations for all surface water control structures satisfy the regulations for residual waste landfills as follows:

33CSR1 3.16.c.4.

An application to conduct transfer station activities must include a plan to manage surface storm water soil erosion and sedimentation control during the various phases of construction and operation on the permit area. Calculations indicating water guantities must be based on the twenty-five (25)-year, twenty-four (24)-hour storm event. The plan must include fully dimensioned diversion ditches and indicate length, gradient, and cross-section for configuration by reach and capacities for ditch volume by reach. Calculations that are necessary to support design and siting must be included in the plan.

The design is based upon accepted engineering design equations, methodologies and assumptions. Where applicable, design references have been made. Calculations have been performed using the software package, HydroCAD Version 10, Copyright 2012.

METHOD:

Peak flows have been estimated with SCS TR-55 by calculating the time of concentration (Tc) of each channel reach, the composite runoff curve number describing the reach's watershed and the total area of the reach's watershed. A computer software package entitled "HydroCAD" Version 10, Copyright 2012, was utilized to perform the SCS TR-55 calculations.

The rainfall values for this site are listed below. The United States Department of Commerce, Weather Bureau, Technical Paper No. 40, Rainfall Frequency Atlas of the United States, for Mitchell County, West Virginia, provided the estimated rainfall depths and is presented in "Sediment Ponds Design Calculations".

SUB	JECT	Surface Wat	er Con	trol Structures			PROJ	ECT NO.		110-416		
APPLI	CABLE	33CSR1 3.16	δ.c.4. S	tormwater, Soil Ei								
RU	JLE	Sedimentati	Sedimentation Control Plan									
PRO	JECT	American Ele		PAGE		•			~			
LOCA	LOCATION Gatts Ridge Road, Marshall County, West Virginia								2	OF		9
MADE E		MTF	DATE	04/03/12 СНЕСКЕД ВУ		JD	М	DATE	04	/03/12		

RA	INFALL DA	ГА
Frequency	Duration	Depth (in)
2 yr	24 hr	2.54
10 yr	24 hr	3.81
25 yr	24 hr	4.44
100 yr	24 hr	5.10

According to the TR-55 methods, times of concentration were estimated as the sum of sheet flow, shallow concentrated flow, and channel flow. Flow calculations utilized a Curve Number (CN) representative of the post construction surface conditions. Maximum sheet flow length used was 200 feet. Shallow concentrated flow time of concentration as estimated based upon the condition of the flow path.

This site is located in an area of hydrologic soil groups B & C. Since over 95 percent of the site consists of type C soils, hydrologic soil group C was used throughout. Based on the existing and proposed site conditions the following runoff coefficients have been determined and will be utilized.

CN DATA								
Description	CN							
Existing (Woods Grass Combination, Fair)	76							
Newly Graded Areas (Ditches)	91							
Landfill (50-75% Grass Cover, Fair)	91							
Impervious Areas (Paved Haul Road)	98							

Utilizing a series of downchutes, perimeter channels, pipe culverts, and basins, all stormwater runoff is directed to the South, West, or North Ponds. The outboard perimeter channels collect all runoff outside of the landfill limits, within clearing limits, and direct the stormwater into the sediment ponds. The perimeter channel and downchute then convey all runoff from within the drainage area to the sedimentation pond via a pipe culvert. The locations of the channels are shown within the permit documents.

	Civil & Environmental Consultants, Inc.											
SUB	JECT	Surface Wat	er Con	trol Structures			PROJ	IECT NO.		110-416		
APPLI	CABLE	33CSR1 3.16	6.c.4. S	tormwater, Soil Er								
RL	JLE	Sedimentation	Sedimentation Control Plan									
PRO	JECT	American Ele	ower – Mitchell La				2		0			
LOCA	LOCATION Gatts Ridge Road, Marshall County, West Virginia							Ē	3	OF	9	
	MADE E	зү МТГ	MTF DATE 04/03/12 CHECKED BY JD		М	DATE	04	/03/1	12			

CALCULATIONS:

With the peak discharge known for each channel, the channel cross section is sized and a channel lining material is selected (from the channel lining design options, included below). Flow properties within the channels are estimates from the HydroCAD output and hydrographs utilizing Manning's Equation (EQ. 1):

$$V = \frac{Q}{A} = 1.49 \frac{R^{2/3} \sqrt{S_f}}{n} = 1.49 \frac{\left[\frac{A}{WP}\right]^{2/3} \sqrt{S_f}}{n}$$

Where:
V = Velocity, fps
Q = Flowrate, cfs
A = Cross – Sectional area of flow, sf
R = Hydraulic Radius, ft
WP = Wetted Perimeter, ft
S_f = Slope of channel, ft / ft
n = Manning's roughness coefficient

See Local Drainage Map for the drainage areas utilized. "S" designation throughout HydroCAD reports and drainage maps are Sub-Areas. "R" designation throughout HydroCAD reports and tables are Channel designations. The tables below show the drainage watershed identification, length, inlet and outlet invert elevations, contributing area, and peak flow for each channel based on the 25-year/24-hour storm event:

SUB	JECT	Surface Wat	er Con		PROJ	IECT NO.		110-416				
APPLI	CABLE	33CSR1 3.16	33CSR1 3.16.c.4. Stormwater, Soil Erosion, and									
RL	JLE	Sedimentati	Sedimentation Control Plan									
PRO	JECT	American Ele				л	OF	9	•			
LOCA	ATION	Gatts Ridge		PAGE	Ē	4			9			
	MADE E	MADE BY MTF DATE 04/03/12 CHECKED BY J		JD	М	DATE	04	/03/1	2			

Civil & Environmental Consultants, Inc.

Channe	ls:								
	Drainage	Inv Eleva	ert tions	Length	Slope (%)	Drainage Area (acres)	Peak Flow (cfs)	Max. Velocity	(R)Riprap Class/ (G)Grout Class
Channel	Area ID	Inlet	Outlet	(ft)				(fps)	
South	CH-1	1205.0	1038.4	708	23.54	9.8	36.7	13.7	G-6
East	CH-2	1298.3	1170.5	1,402	9.12	2.4	11.6	5.1	R-6
East	CH-3	1298.7	1205.0	1,235	7.59	2.5	9.0	4.0	R-5
South	CH-4	1230.0	1040.0	772	24.61	6.0	29.8	13.2	G-6
South	CH-5	1224.0	1036.0	1,793	10.48	6.1	26.1	7.8	G-6
South	CH-6	1067.0	1037.0	1,028	2.92	35.7	171.4	6.6	R-7
South	CH-7	1222.6	1041.9	1,908	9.47	1.4	6.2	4.2	R-5
South	CH-9	1383.0	1050.0	1,368	24.34	33.3	96.7	14.1	G-6
North	CH-10	1301.0	1223.9	1,579	4.88	3.8	11.9	4.1	R-5
West	CH-11	1370.0	1130.0	683	35.16	13.9	51.6	16.4	G-7
North	CH-12	1301.0	1256.4	904	4.94	1.2	4.7	3.1	R-4
North	CH-13	1298.7	1255.0	846	5.17	2.7	13.2	3.8	R-5
North	CH-14	1380.0	1257.8	602	20.31	3.8	16.3	9.5	G-6
West	CH-15	1244.6	1224.8	876	2.26	3.8	15.8	3.0	R-4
West	CH-16	1253.6	1224.8	1,407	2.05	4.5	16.8	2.9	R-4
West	CH-17	1241.3	1226.5	780	1.89	4.1	13.0	2.7	R-3
West	CH-18	1233.2	1224.5	421	2.05	0.9	4.1	2.2	R-3
West	CH-19	1215.2	1201.0	175	8.11	27.9	100.9	11.9	G-6

For channel details and schedule, see details sheet of the Permit to Install application drawing set.

CH-8 has been eliminated.

SUBJ	JECT	Surface Wat	er Cont		PROJ	ECT NO.		110-416			
APPLIC	CABLE	33CSR1 3.16	6.c.4. St								
RU	LE	Sedimentation Control Plan									
PROJ	JECT	American Ele				-		•			
LOCA	LOCATION Gatts Ridge Road, Marshall County, West Virginia								5		9
MADE E		Y MTF	DATE	04/03/12	/12 СНЕСКЕД ВУ		М	DATE	04	/03/1	2

The riprap class was chosen dependent upon the velocity for lining of the channels. Channel lining sizes are provided in the following table:

CHANNEL	CHANNEL LININGS									
Riprap Class	D50 (in)									
R-3	3									
R-4	6									
R-5	9									
R-6	15									
R-7	18									

For channel slopes between 2% and 10%: $D50 = [q (S)^{1.5}/4.75(10)^{-3}]^{0.53}$

For channel slopes between 10% and 40%: $D50 = [q (S)^{0.58}/3.93(10)^{-2}]^{0.53}$

D50 = Particle size for which 50% (by weight) of the sample is finer, in. S = Bed slope, ft./ft.q = Unit discharge, ft3/s/ft

CHANNEL LININGS							
Grout Class	D50 (in)						
G-5	9						
G-6	15						
G-7	18						

For channel velocities below 7.5 fps, use G-5.

For channel velocities between 7.5 fps and 15 fps, use G-6. For channel velocities between 15 fps and 17.5 fps, use G-7.

SUB	JECT	Surface Wat	er Con	trol Structures			PROJ		11()-416	;	
APPLI	CABLE	33CSR1 3.16	6.c.4. St	tormwater, Soil E	rosion, and							
RU	JLE	Sedimentati	edimentation Control Plan									
PRO	JECT	American Electric Power – Mitchell Landfill							^			•
LOCATION		Gatts Ridge	Gatts Ridge Road, Marshall County, West Virginia						6	OF		9
	MADE BY MTF DATE 04/03/12 CHECKED BY JI					JD	М	DATE	04	/03/1	2	

Civil & Environmental Consultants, Inc.

Pipes:									
	Tributary to		Invert Elevations		Pipe Length Dia.		Drainage Area	Peak Flow	Max. Velocity
Pipe	Pond	Inlet	Outlet	(ft)	(in.)	Slope (%)	(acres)	(cfs)	(fps)
4	South	1036.0	1034.0	92.2	2-42	2.17	47.8	223.9	16.9
5	South	1045.0	1035.3	388.3	36	2.49	17.9	89.6	16.7
6	South	1070.0	1045.0	147.5	12	16.95	3.0	15.0	21.3
8	West	1218.0	1214.0	183.2	24	2.18	5.8	17.1	10.7
9	West	1223.9	1219.0	243.9	18	2.01	2.8	11.8	9.4
10	West	1217.0	1215.2	106.0	42	1.74	27.2	98.7	15.1
11	West	1220.0	1218.0	98.7	18	2.03	4.1	13.0	9.5
12	West	1218.0	1217.0	68.0	36	1.47	22.2	84.0	13.0
13	North	1240.0	1238.9	90.8	12	1.19	0.3	1.9	4.9
15	North	1247.4	1245.0	160.8	30	1.50	7.7	33.5	11.0
16	North	1248.0	1247.4	57.4	30	1.01	6.5	29.2	9.1

Pipes 1-3, 7 and 14 are shown within Sediment Pond Design Calculations.

SUB	JECT	Surface Wat	er Con	trol Structures			PROJ	ECT NO.		110-416		
APPLI	CABLE	33CSR1 3.16	δ.c.4. S	tormwater, Soil Er	rosion, and							
RL	JLE	Sedimentati	edimentation Control Plan									
PRO	JECT	T American Electric Power – Mitchell Landfill							-			•
LOCA	ATION	Gatts Ridge	Gatts Ridge Road, Marshall County, West Virginia						1	OF		9
	MADE B	MTF	MTF DATE 04/03/12 CHECKED BY JD							/03/1	2	

Civil & Environmental Consultants, Inc.

Pipe Outlet Protection:

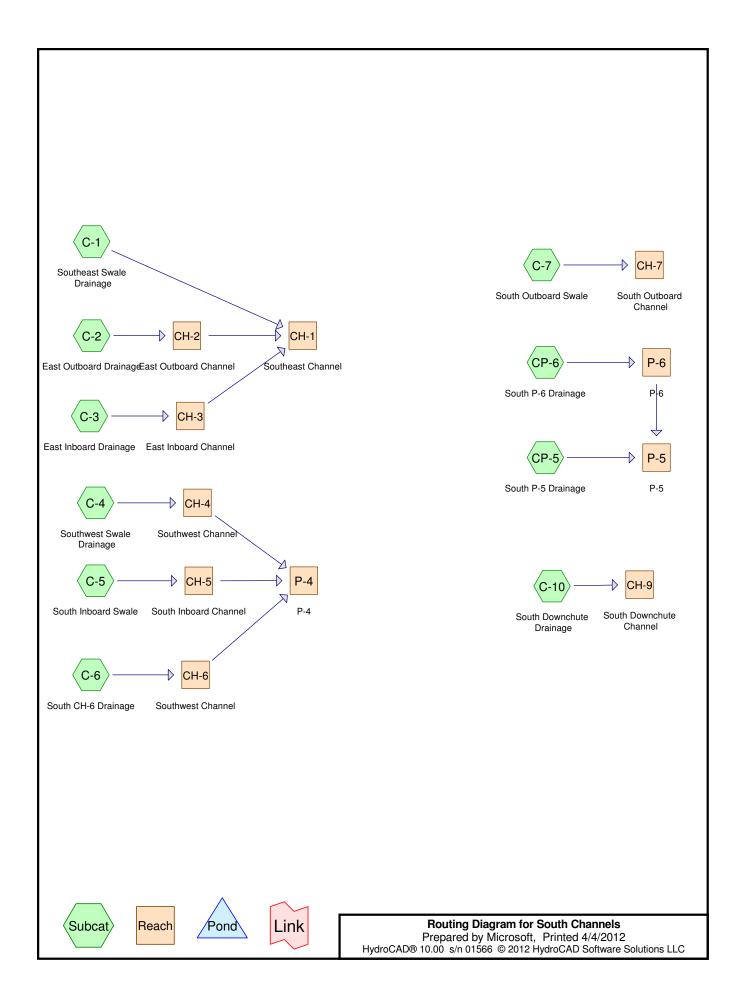
Pipe	Tributary to Pond	Pipe Dia. (in.)	Peak Flow (cfs)	Max. Velocity (fps)	Width Outlet (ft)	Width at End (ft)	Length (ft)	D50 (in)	(R)Riprap Class/ (G)Grout Class
1	South Outlet	48	205.09	16.3	12	44	40	18	G-7
4	South	2-42	223.9	16.9	10.5	48.5	45	24	G-7
5	South	36	89.6	16.7	9	33	30	15	G-6
7	West Outlet	36	88.4	12.5	9	23	20	9	R-5
8	West	24	17.1	10.7	6	17	15	6	R-4
10	West	42	98.7	15.1	10.5	33.5	30	15	G-6
13	North	12	1.9	4.9	3	6	5	6	R-4
14	North Outlet	24	13.2	4.2	6	12	10	6	R-4
15	North	30	29.2	9.1	7.5	22.5	20	6	R-4

CONCLUSIONS:

All surface water control structures were designed based on the drainage area, flow rate, channel slope, and channel lining based on the peak flows resulting from the 25-year, 24-hour storm event. Utilizing a series of surface water diversion berms, downchutes, perimeter channels, pipe culverts, and ponds all stormwater runoff from landfill will be directed to the three Sedimentation Ponds in order to control runoff as well as meet applicable regulations. All surface water channels will be lined with riprap, the type depending on flow velocity. See Drawings for the channel schedules and details. The Surface Water Channel Design HydroCAD output and hydrograph files are attached.

SUBJ	ECT	Surface Wat	er Cont	rol Structures			PROJ	ECT NO.		110-416		
APPLIC	ABLE	33CSR1 3.16	6.c.4. St	ormwater, Soil E	rosion, and							
RUL	E	Sedimentati										
PROJ	PROJECT American Electric Power – Mitchell Landfill								•		•	
LOCAT	TION	Gatts Ridge Road, Marshall County, West Virginia							8	OF	9	
	MADE B	Y MTF DATE 04/03/12 CHECKED BY JI					JDM		04	04/03/1		

REFERENCES:


- 1. United States Department of Commerce, Weather Bureau, Technical Paper No. 40, Rainfall Frequency Atlas of the United States, for Mitchell County, West Virginia.
- 2. National Resources Conservation Service, LINED WATERWAY OR OUTLET, September 2010. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs143_026310.pdf
- 3. HydroCAD Software Solutions LLC, HYDROCAD, Version 10, 2012, Computer Software Program.
- 4. U.S. Department of Transportation, Federal Highway Administration. Hydraulic Engineering Circular No. 15, Third Edition: Design of Roadside Channels with Flexible Linings.

SUB	JECT	Surface Wat	er Con	trol Structures			PROJECT NO.			110-416		
APPLI	CABLE	33CSR1 3.16	6.c.4. S	tormwater, Soil E	rosion, and							
RU	JLE	Sedimentati	on Con	trol Plan								
PRO	PROJECT American Electric Power – Mitchell Landfill								•		•	
LOCATION		Gatts Ridge	Gatts Ridge Road, Marshall County, West Virginia				PAGE		9	OF	9	
	MADE BY MTF DATE 04/03/12 CHECKED BY J						Μ	DATE	04	04/03/12		

<u>.</u> • 1

SURFACE WATER CHANNEL DESIGN HYDROCAD **OUTPUT AND HYDROGRAPH FILES**

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
10.934	91	(C-1, C-4)
7.508	94	(C-5, C-7)
4.902	94	Fallow, bare soil, HSG C (C-2, C-3)
53.604	91	Newly graded area, HSG C (C-6, CP-5, CP-6)
33.275	91	Urban industrial, 72% imp, HSG C (C-10)
110.223	91	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
91.781	HSG C	C-10, C-2, C-3, C-6, CP-5, CP-6
0.000	HSG D	
18.442	Other	C-1, C-4, C-5, C-7
110.223		TOTAL AREA

South Channels

0.000

0.000

Prepared by Microsoft	
HydroCAD® 10.00 s/n 01	566 © 2012 HydroCAD Software Solutions LLC

91.781

0.000

Printed 4/4/2012 Page 4

	Ground Covers (an nodes)													
	HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment						
_	(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers						
_	0.000	0.000	0.000	0.000	18.442	18.442		C-1,						
								C-4,						
								C-5, C-7						
	0.000	0.000	4.902	0.000	0.000	4.902	Fallow, bare soil	C-2, C-3						
	0.000	0.000	53.604	0.000	0.000	53.604	Newly graded area	C-6,						
								CP-5,						
								CP-6						
	0.000	0.000	33.275	0.000	0.000	33.275	Urban industrial, 72% imp	C-10						

18.442

110.223 TOTAL AREA

Ground Covers (all nodes)

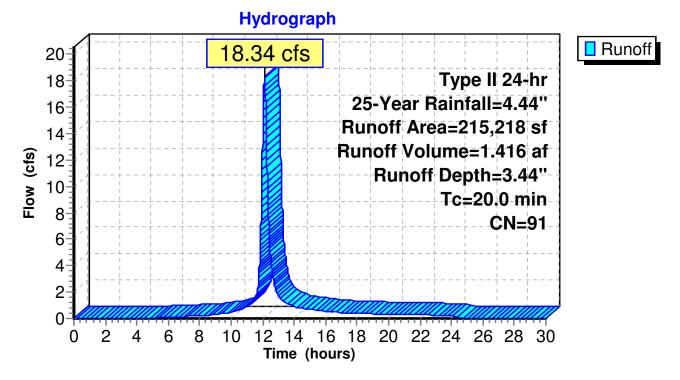
Pipe Listing (all nodes)

Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Diam/Width	Height	Inside-Fill
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
1	P-4	1,036.00	1,034.00	92.2	0.0217	0.013	42.0	0.0	0.0
2	P-5	1,045.00	1,035.33	388.2	0.0249	0.013	36.0	0.0	0.0
3	P-6	1,070.00	1,045.00	147.5	0.1695	0.013	12.0	0.0	0.0

South Channels Prepared by Microsoft HydroCAD® 10.00 s/n 01566 © 2012 HydroCAD Software So	Type II 24-hr 25-Year Rainfall=4.44" Printed 4/4/2012 Dutions LLC Page 6
Time span=0.00-30.00 hrs, dt= Runoff by SCS TR-20 me Reach routing by Dyn-Stor-Ind method - Po	ethod, UH=SCS
Subcatchment C-1: Southeast Swale Runoff Area=	215,218 sf 0.00% Impervious Runoff Depth=3.44" Tc=20.0 min CN=91 Runoff=18.34 cfs 1.416 af
Subcatchment C-10: South Downchute Runoff Area=1,4	49,459 sf 72.00% Impervious Runoff Depth=3.44" Tc=30.0 min CN=91 Runoff=97.39 cfs 9.539 af
Subcatchment C-2: East Outboard Runoff Area=	106,050 sf 0.00% Impervious Runoff Depth=3.76" Tc=10.0 min CN=94 Runoff=12.92 cfs 0.762 af
Subcatchment C-3: East Inboard Drainage Runoff Area=	107,478 sf 0.00% Impervious Runoff Depth=3.76" Tc=20.0 min CN=94 Runoff=9.74 cfs 0.772 af
Subcatchment C-4: Southwest Swale Runoff Area=	261,060 sf 0.00% Impervious Runoff Depth=3.44" Tc=10.0 min CN=91 Runoff=30.09 cfs 1.718 af
Subcatchment C-5: South Inboard Swale Runoff Area=	264,718 sf 0.00% Impervious Runoff Depth=3.76" Tc=15.0 min CN=94 Runoff=27.55 cfs 1.902 af
Subcatchment C-6: South CH-6 Drainage Runoff Area=1,	556,393 sf 0.00% Impervious Runoff Depth=3.44" Tc=10.0 min CN=91 Runoff=179.38 cfs 10.243 af
Subcatchment C-7: South Outboard Swale Runoff Area	=62,327 sf 0.00% Impervious Runoff Depth=3.76" Tc=10.0 min CN=94 Runoff=7.59 cfs 0.448 af
Subcatchment CP-5: South P-5 Drainage Runoff Area=	648,574 sf 0.00% Impervious Runoff Depth=3.44" Tc=10.0 min CN=91 Runoff=74.75 cfs 4.268 af
Subcatchment CP-6: South P-6 Drainage Runoff Area=	130,036 sf 0.00% Impervious Runoff Depth=3.44" Tc=10.0 min CN=91 Runoff=14.99 cfs 0.856 af
	0.67' Max Vel=13.70 fps Inflow=36.85 cfs 2.951 af Capacity=1,072.94 cfs Outflow=36.77 cfs 2.951 af
Reach CH-2: East Outboard Channel Avg. Flow Depth=	
Reach CH-3: East Inboard Channel Avg. Flow Depth	n=0.60' Max Vel=3.99 fps Inflow=9.74 cfs 0.772 af '/' Capacity=332.24 cfs Outflow=9.03 cfs 0.772 af
Reach CH-4: Southwest Channel Avg. Flow Depth=0	0.60' Max Vel=13.16 fps Inflow=30.09 cfs 1.718 af Capacity=1,097.00 cfs Outflow=29.84 cfs 1.718 af
Reach CH-5: South Inboard Channel Avg. Flow Depth=	
Reach CH-6: Southwest Channel Avg. Flow Depth=3.	Capacity=194.25 cis Outflow=26.10 cis 1.902 af 03' Max Vel=6.62 fps Inflow=179.38 cfs 10.243 af Capacity=307.58 cfs Outflow=171.40 cfs 10.243 af

South Channels Prepared by Microsoft HydroCAD® 10.00 s/n 01566 © 2012 HydroCAD Software Solutio	Type II 24-hr 25-Year Rainfall=4.44" Printed 4/4/2012 ons LLC Page 7
Reach CH-7: South Outboard Channel Avg. Flow Depth=0.5 n=0.055 L=1,908.0' S=0.0947 '/'	51' Max Vel=4.21 fps Inflow=7.59 cfs 0.448 af Capacity=96.11 cfs Outflow=6.20 cfs 0.448 af
Reach CH-9: South Downchute Avg. Flow Depth=0.99' n=0.040 L=1,368.0' S=0.2434 '/' Category	Max Vel=14.05 fps Inflow=97.39 cfs 9.539 af apacity=414.20 cfs Outflow=96.74 cfs 9.539 af
Reach P-4: P-4 Avg. Flow Depth=2.27' M 42.0" Round Pipe x 2.00 n=0.013 L=92.2' S=0.0217 '/' Capa	Aax Vel=16.93 fps Inflow=223.94 cfs 13.863 af acity=296.36 cfs Outflow=223.92 cfs 13.863 af
Reach P-5: P-5 Avg. Flow Depth=2.13' 36.0" Round Pipe n=0.013 L=388.2' S=0.0249 '/' Category	Max Vel=16.72 fps Inflow=89.72 cfs 5.124 af apacity=105.27 cfs Outflow=89.54 cfs 5.124 af
Reach P-6: P-6 Avg. Flow Depth=0.84' 12.0" Round Pipe n=0.013 L=147.5' S=0.1695 '/' C	Max Vel=21.29 fps Inflow=14.99 cfs 0.856 af Capacity=14.67 cfs Outflow=14.98 cfs 0.856 af
Total Runoff Area = 110.223 ac Runoff Volume	e = 31.926 af Average Runoff Depth = 3.48"

78.26% Pervious = 86.265 ac 21.74% Impervious = 23.958 ac

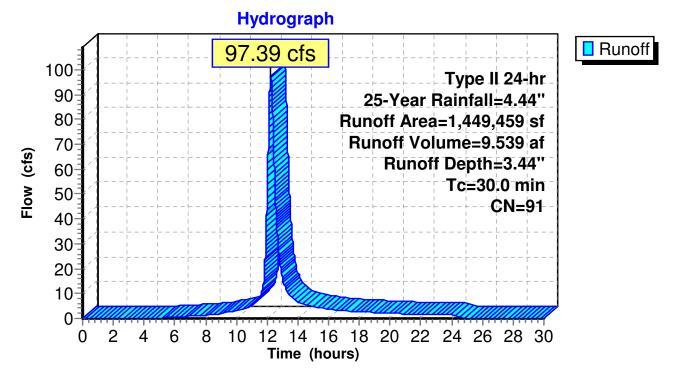

Summary for Subcatchment C-1: Southeast Swale Drainage

Runoff = 18.34 cfs @ 12.11 hrs, Volume= 1.416 af, Depth= 3.44"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

_	A	rea (sf)	CN [Description		
*	2	15,218	91			
	2	215,218 100.00% Pervious Area				a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	20.0				X /	Direct Entry,

Subcatchment C-1: Southeast Swale Drainage

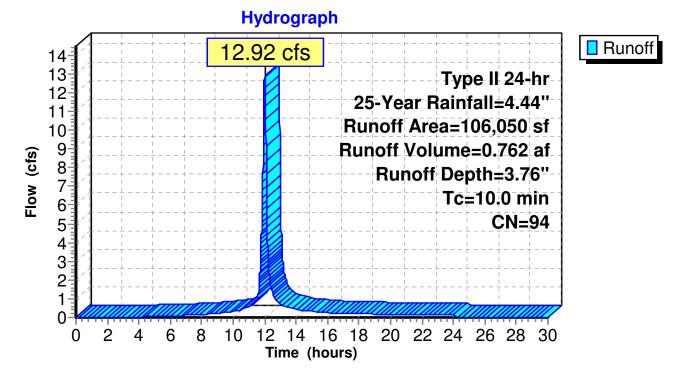

Summary for Subcatchment C-10: South Downchute Drainage

Runoff = 97.39 cfs @ 12.23 hrs, Volume= 9.539 af, Depth= 3.44"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

Area (sf)	CN	Description							
1,449,459	91	1 Urban industrial, 72% imp, HSG C							
405,849		28.00% Pervious Area							
1,043,610		72.00% lm	pervious Ar	rea					
T . 1			0	Description					
Tc Lengt (min) (feet		,	Capacity (cfs)	Description					
	(II/	(1/380)	(015)						
30.0				Direct Entry,					

Subcatchment C-10: South Downchute Drainage

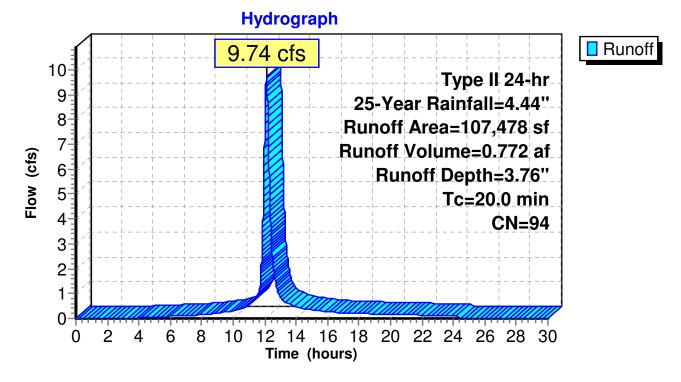

Summary for Subcatchment C-2: East Outboard Drainage

Runoff = 12.92 cfs @ 12.01 hrs, Volume= 0.762 af, Depth= 3.76"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

_	A	rea (sf)	CN E	Description							
*	1	06,050	94 F	94 Fallow, bare soil, HSG C							
	1	06,050	1	00.00% Pe	ervious Are	ea					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
_	10.0					Direct Entry,					

Subcatchment C-2: East Outboard Drainage

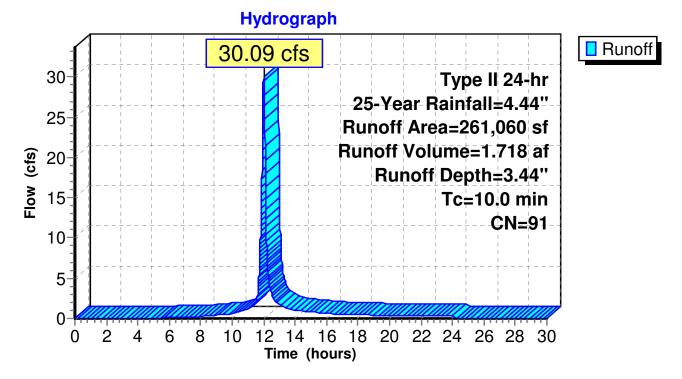

Summary for Subcatchment C-3: East Inboard Drainage

Runoff = 9.74 cfs @ 12.11 hrs, Volume= 0.772 af, Depth= 3.76"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

	Area (sf)	CN	CN Description							
*	107,478	94	94 Fallow, bare soil, HSG C							
	107,478		100.00% Pervious Area							
To (min)	- 3-	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
20.0					Direct Entry,					

Subcatchment C-3: East Inboard Drainage

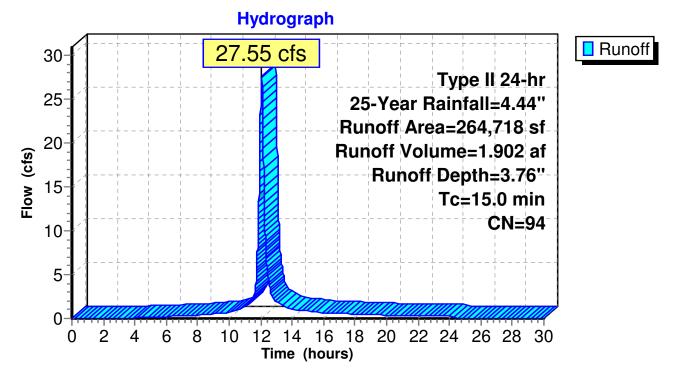

Summary for Subcatchment C-4: Southwest Swale Drainage

Runoff = 30.09 cfs @ 12.01 hrs, Volume= 1.718 af, Depth= 3.44"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

_	Α	rea (sf)	CN [Description		
*	2	61,060	91			
	2	61,060	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	10.0					Direct Entry,

Subcatchment C-4: Southwest Swale Drainage

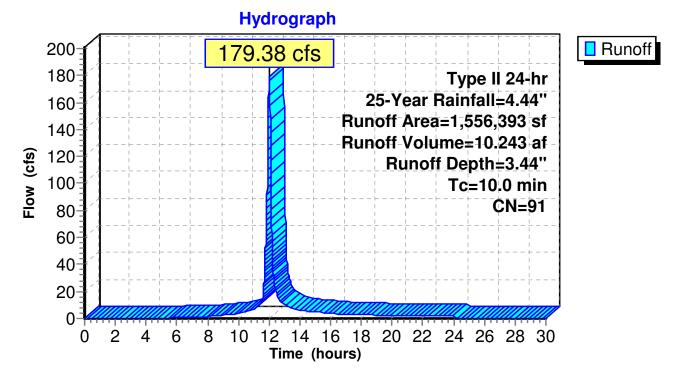

Summary for Subcatchment C-5: South Inboard Swale

Runoff = 27.55 cfs @ 12.06 hrs, Volume= 1.902 af, Depth= 3.76"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

A	rea (sf)	CN E	Description		
* 2	264,718	94			
2	264,718	1	00.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
15.0					Direct Entry,

Subcatchment C-5: South Inboard Swale

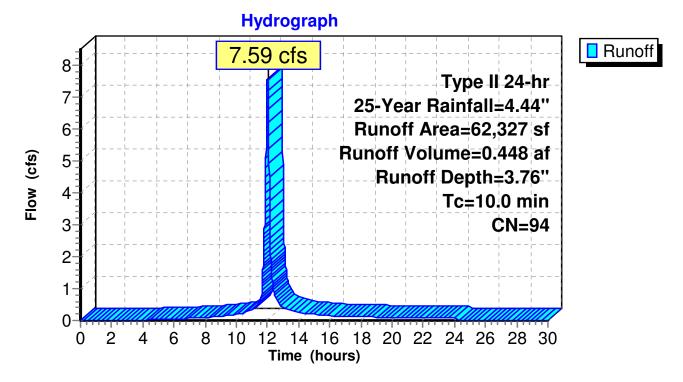

Summary for Subcatchment C-6: South CH-6 Drainage

Runoff = 179.38 cfs @ 12.01 hrs, Volume= 10.243 af, Depth= 3.44"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

Area	a (sf)	CN E	Description						
1,556	5,393	91 N	Newly graded area, HSG C						
1,556	6,393	1	100.00% Pervious Area						
Tc L (min)	_ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0			· · ·		Direct Entry,				

Subcatchment C-6: South CH-6 Drainage

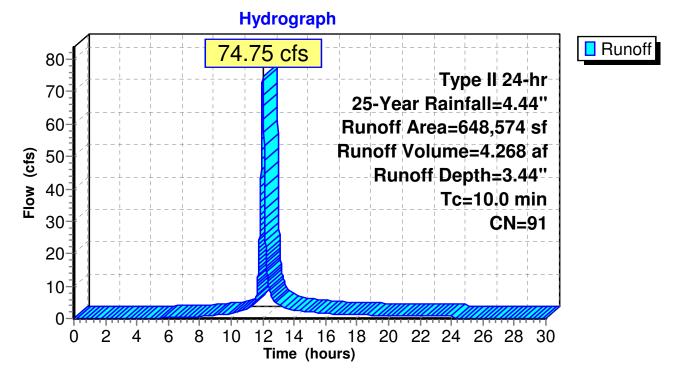


Summary for Subcatchment C-7: South Outboard Swale

Runoff = 7.59 cfs @ 12.01 hrs, Volume= 0.448 af, Depth= 3.76"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

_	A	rea (sf)	CN E	Description							
*		62,327	94								
	62,327 100.00% Pervious Area										
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
	10.0		Direct Entry,								
	Subcatchment C-7: South Outboard Swale										

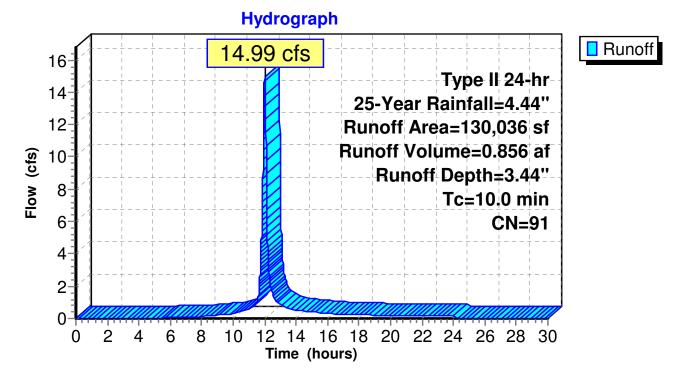

Summary for Subcatchment CP-5: South P-5 Drainage

Runoff = 74.75 cfs @ 12.01 hrs, Volume= 4.268 af, Depth= 3.44"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

Ar	ea (sf)	CN E	Description						
64	48,574	91 N	Newly graded area, HSG C						
64	48,574	1	100.00% Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment CP-5: South P-5 Drainage


Summary for Subcatchment CP-6: South P-6 Drainage

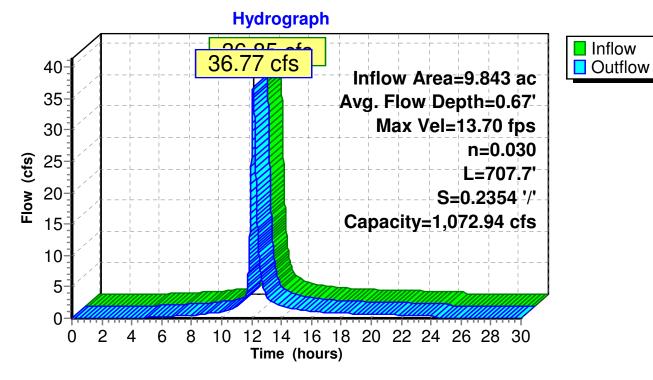
Runoff = 14.99 cfs @ 12.01 hrs, Volume= 0.856 af, Depth= 3.44"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

A	rea (sf)	CN	Description							
1	30,036	91	Newly graded area, HSG C							
1	30,036		100.00% Pervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment CP-6: South P-6 Drainage

Summary for Reach CH-1: Southeast Channel

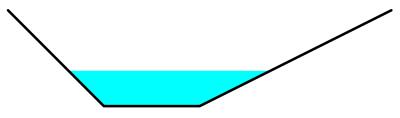

[62] Hint: Exceeded Reach CH-2 OUTLET depth by 34.59' @ 12.29 hrs [62] Hint: Exceeded Reach CH-3 OUTLET depth by 0.13' @ 12.02 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 13.70 fps, Min. Travel Time= 0.9 min Avg. Velocity = 4.08 fps, Avg. Travel Time= 2.9 min

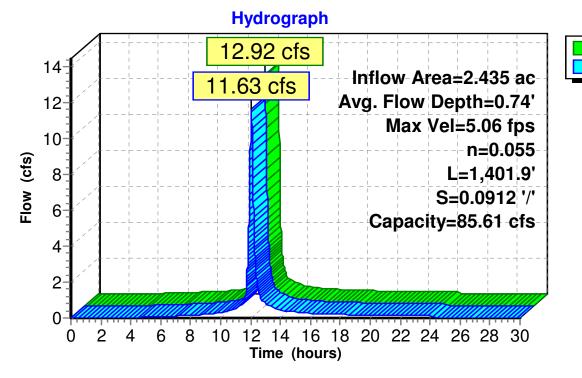
Peak Storage= 1,899 cf @ 12.11 hrs Average Depth at Peak Storage= 0.67' Bank-Full Depth= 3.00' Flow Area= 33.0 sf, Capacity= 1,072.94 cfs

2.00' x 3.00' deep channel, n= 0.030 Grouted Riprap Side Slope Z-value= 3.0 '/' Top Width= 20.00' Length= 707.7' Slope= 0.2354 '/' Inlet Invert= 1,204.98', Outlet Invert= 1,038.36'

Reach CH-1: Southeast Channel



Inflow Outflow


Summary for Reach CH-2: East Outboard Channel

Inflow Area = 2.435 ac, 0.00% Impervious, Inflow Depth = 3.76" for 25-Year event Inflow 12.92 cfs @ 12.01 hrs, Volume= 0.762 af = 11.63 cfs @ 12.05 hrs, Volume= Outflow 0.762 af, Atten= 10%, Lag= 2.6 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 5.06 fps, Min. Travel Time= 4.6 min Avg. Velocity = 1.27 fps, Avg. Travel Time= 18.4 min Peak Storage= 3,220 cf @ 12.05 hrs Average Depth at Peak Storage= 0.74' Bank-Full Depth= 2.00' Flow Area= 10.0 sf, Capacity= 85.61 cfs

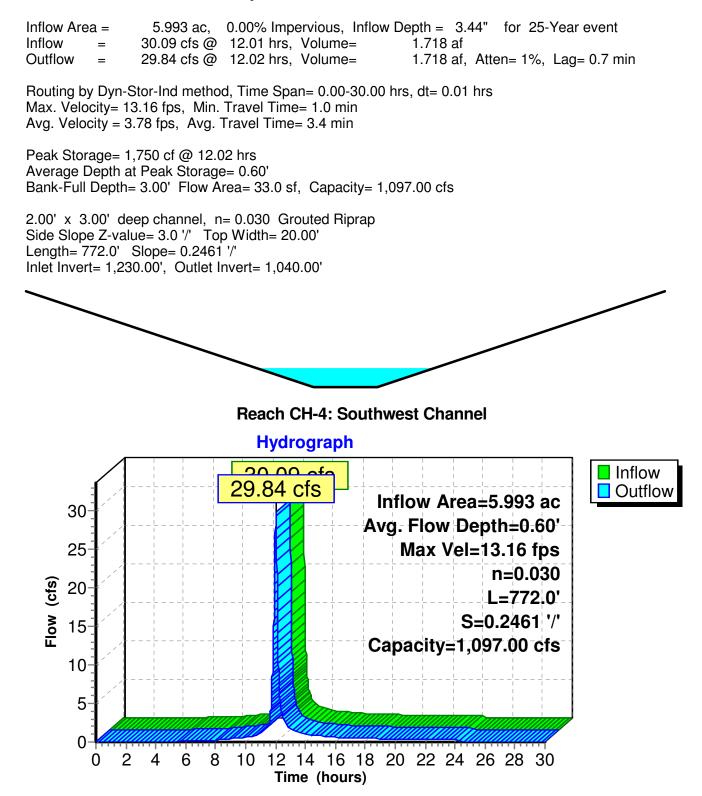
2.00' x 2.00' deep channel, n= 0.055 Rock Riprap Side Slope Z-value= 1.0 2.0 '/' Top Width= 8.00' Length= 1,401.9' Slope= 0.0912 '/' Inlet Invert= 1,298.32', Outlet Invert= 1,170.53'

Reach CH-2: East Outboard Channel

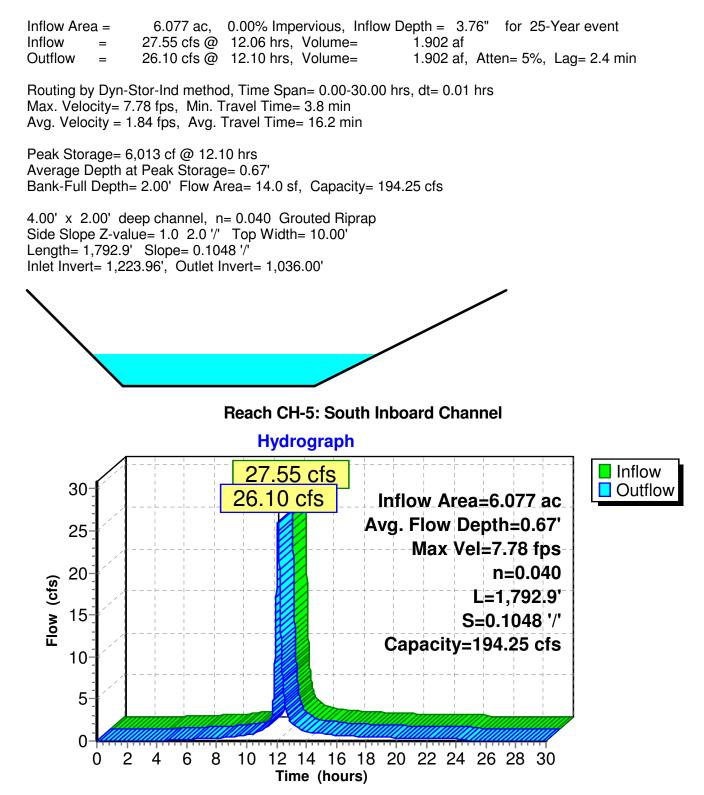
9.74 cfs @ 12.11 hrs, Volume=

Inflow Area = Inflow

=


Summary for Reach CH-3: East Inboard Channel

2.467 ac, 0.00% Impervious, Inflow Depth = 3.76" for 25-Year event


0.772 af

9.03 cfs @ 12.17 hrs, Volume= Outflow 0.772 af, Atten= 7%, Lag= 3.7 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 3.99 fps, Min. Travel Time= 5.2 min Avg. Velocity = 1.21 fps, Avg. Travel Time= 17.0 min Peak Storage= 2,796 cf @ 12.17 hrs Average Depth at Peak Storage= 0.60' Bank-Full Depth= 3.00' Flow Area= 33.0 sf, Capacity= 332.24 cfs 2.00' x 3.00' deep channel, n= 0.055 Rock Riprap Side Slope Z-value= 3.0 '/' Top Width= 20.00' Length= 1,235.0' Slope= 0.0759 '/' Inlet Invert= 1,298.69', Outlet Invert= 1,204.98' **Reach CH-3: East Inboard Channel Hydrograph** 9.74 cfs Inflow Outflow 9.03 cfs Inflow Area=2.467 ac 10-Avg. Flow Depth=0.60' 9 Max Vel=3.99 fps 8 n=0.055 7 Flow (cfs) L=1.235.0' 6 S=0.0759 '/'-5 Capacity=332.24 cfs 4 3 2 1 0 10 12 14 16 18 20 22 24 26 28 30 6 8 0 2 4 Time (hours)

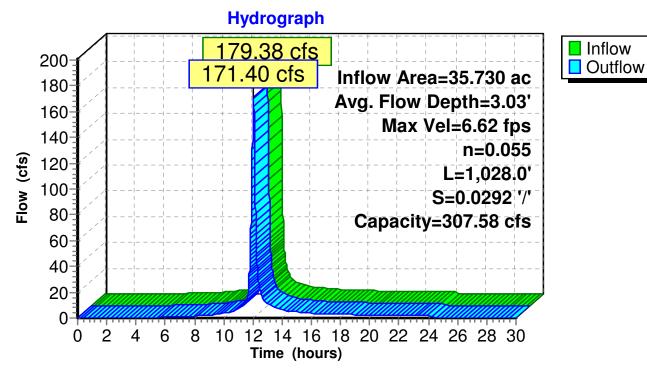
Summary for Reach CH-4: Southwest Channel

Summary for Reach CH-5: South Inboard Channel

Summary for Reach CH-6: Southwest Channel

 Inflow Area =
 35.730 ac,
 0.00% Impervious,
 Inflow Depth =
 3.44"
 for 25-Year event

 Inflow =
 179.38 cfs @
 12.01 hrs,
 Volume=
 10.243 af


 Outflow =
 171.40 cfs @
 12.04 hrs,
 Volume=
 10.243 af,

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 6.62 fps, Min. Travel Time= 2.6 min Avg. Velocity = 1.74 fps, Avg. Travel Time= 9.8 min

Peak Storage= 26,605 cf @ 12.04 hrs Average Depth at Peak Storage= 3.03' Bank-Full Depth= 4.00' Flow Area= 40.0 sf, Capacity= 307.58 cfs

4.00' x 4.00' deep channel, n= 0.055 Rock Riprap Side Slope Z-value= 2.0 1.0 '/' Top Width= 16.00' Length= 1,028.0' Slope= 0.0292 '/' Inlet Invert= 1,067.00', Outlet Invert= 1,037.00'

Reach CH-6: Southwest Channel

7.59 cfs @ 12.01 hrs, Volume=

Inflow Area =

=

Inflow

Summary for Reach CH-7: South Outboard Channel

1.431 ac, 0.00% Impervious, Inflow Depth = 3.76" for 25-Year event

0.448 af

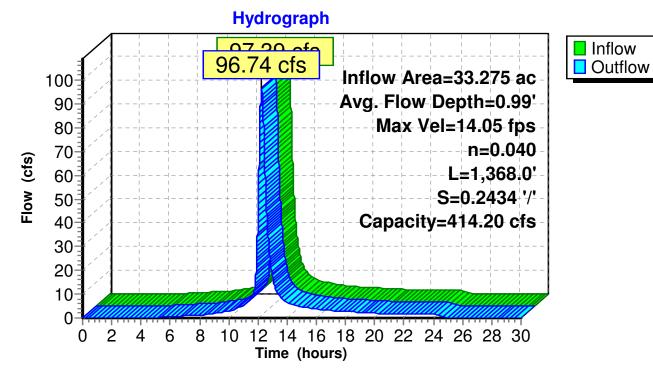
6.20 cfs @ 12.07 hrs, Volume= Outflow 0.448 af, Atten= 18%, Lag= 3.6 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 4.21 fps, Min. Travel Time= 7.6 min Avg. Velocity = 1.06 fps, Avg. Travel Time= 30.1 min Peak Storage= 2,810 cf @ 12.07 hrs Average Depth at Peak Storage= 0.51' Bank-Full Depth= 2.00' Flow Area= 11.0 sf, Capacity= 96.11 cfs 2.00' x 2.00' deep channel, n= 0.055 Rock Riprap Side Slope Z-value= 2.5 1.0 '/' Top Width= 9.00' Length= 1,908.0' Slope= 0.0947 '/' Inlet Invert= 1,222.59', Outlet Invert= 1,041.85' **Reach CH-7: South Outboard Channel Hydrograph** 7.59 cfs Inflow Outflow 8 Inflow Area=1,431 ac Avg. Flow Depth=0.51' 6.20 cfs 7. Max Vel=4.21 fps 6 n=0.055 ⁼low (cfs) 5 L=1.908.0' 4 S=0.0947 '/' Capacity=96.11 cfs 3 2 1 0 8 10 12 14 16 18 20 22 24 26 28 30 2 4 6 0 Time (hours)

Summary for Reach CH-9: South Downchute Channel

 Inflow Area =
 33.275 ac, 72.00% Impervious, Inflow Depth =
 3.44" for 25-Year event

 Inflow =
 97.39 cfs @
 12.23 hrs, Volume=
 9.539 af

 Outflow =
 96.74 cfs @
 12.25 hrs, Volume=
 9.539 af, Atten= 1%, Lag= 1.1 min

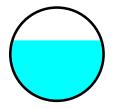

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 14.05 fps, Min. Travel Time= 1.6 min Avg. Velocity = 4.28 fps, Avg. Travel Time= 5.3 min

Peak Storage= 9,417 cf @ 12.25 hrs Average Depth at Peak Storage= 0.99' Bank-Full Depth= 2.00' Flow Area= 20.0 sf, Capacity= 414.20 cfs

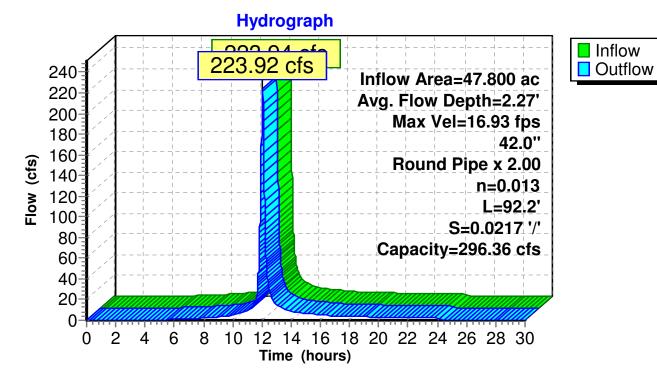
4.00' x 2.00' deep channel, n= 0.040 Grouted Riprap Side Slope Z-value= 3.0 '/' Top Width= 16.00' Length= 1,368.0' Slope= 0.2434 '/' Inlet Invert= 1,382.95', Outlet Invert= 1,050.03'

‡

Reach CH-9: South Downchute Channel


Summary for Reach P-4: P-4

[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach CH-5 OUTLET depth by 1.65' @ 12.03 hrs
[61] Hint: Exceeded Reach CH-6 outlet invert by 1.27' @ 12.04 hrs

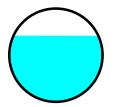

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 16.93 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.64 fps, Avg. Travel Time= 0.3 min

Peak Storage= 1,220 cf @ 12.04 hrs Average Depth at Peak Storage= 2.27' Bank-Full Depth= 3.50' Flow Area= 19.2 sf, Capacity= 296.36 cfs

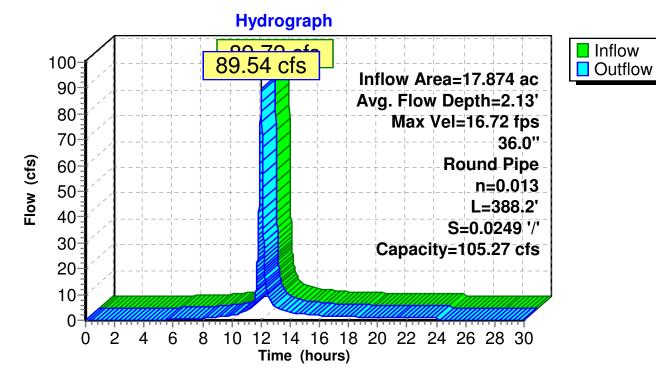
A factor of 2.00 has been applied to the storage and discharge capacity 42.0" Round Pipe n= 0.013 Length= 92.2' Slope= 0.0217 '/' Inlet Invert= 1,036.00', Outlet Invert= 1,034.00'

Reach P-4: P-4

Summary for Reach P-5: P-5


[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach P-6 OUTLET depth by 1.29' @ 12.02 hrs

Inflow Area =		17.874 ac,	0.00% Impervious,	Inflow Depth = 3.4	14" for 25-Year event
Inflow	=	89.72 cfs @	12.01 hrs, Volume	= 5.124 af	
Outflow	=	89.54 cfs @	12.02 hrs, Volume	= 5.124 af,	Atten= 0%, Lag= 0.3 min

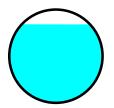

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 16.72 fps, Min. Travel Time= 0.4 min Avg. Velocity = 5.24 fps, Avg. Travel Time= 1.2 min

Peak Storage= 2,079 cf @ 12.02 hrs Average Depth at Peak Storage= 2.13' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 105.27 cfs

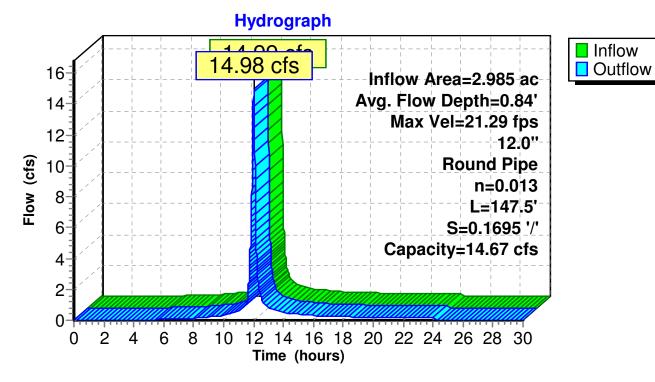
36.0" Round Pipe n= 0.013 Length= 388.2' Slope= 0.0249 '/' Inlet Invert= 1,045.00', Outlet Invert= 1,035.33'

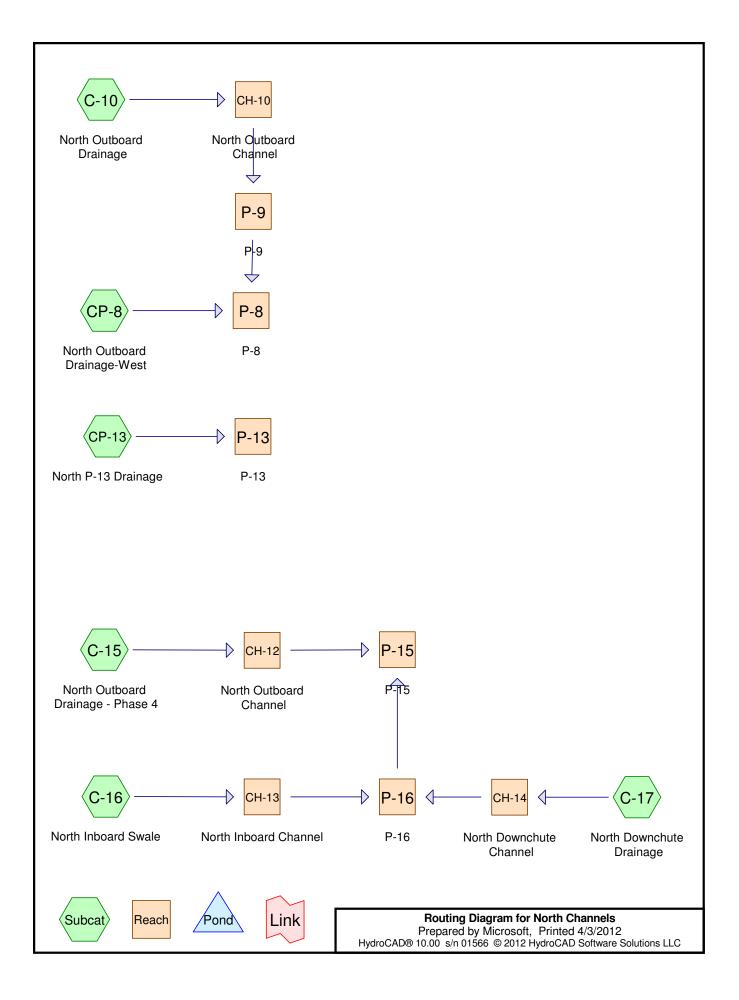
Reach P-5: P-5

Summary for Reach P-6: P-6


[52] Hint: Inlet/Outlet conditions not evaluated [55] Hint: Peak inflow is 102% of Manning's capacity

Inflow Area =		2.985 ac,	0.00% Impervious, I	nflow Depth = 3.44	for 25-Year event
Inflow	=	14.99 cfs @	12.01 hrs, Volume=	0.856 af	
Outflow	=	14.98 cfs @	12.01 hrs, Volume=	0.856 af, A	tten= 0%, Lag= 0.1 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 21.29 fps, Min. Travel Time= 0.1 min Avg. Velocity = 7.00 fps, Avg. Travel Time= 0.4 min


Peak Storage= 104 cf @ 12.01 hrs Average Depth at Peak Storage= 0.84' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 14.67 cfs

12.0" Round Pipe n= 0.013 Length= 147.5' Slope= 0.1695 '/' Inlet Invert= 1,070.00', Outlet Invert= 1,045.00'

Reach P-6: P-6

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
 ()		
2.677	94	(C-16)
3.825	91	(C-17)
5.544	91	Newly graded area, HSG C (C-10, C-15, CP-13, CP-8)
12.045	92	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
5.544	HSG C	C-10, C-15, CP-13, CP-8
0.000	HSG D	
6.501	Other	C-16, C-17
12.045		TOTAL AREA

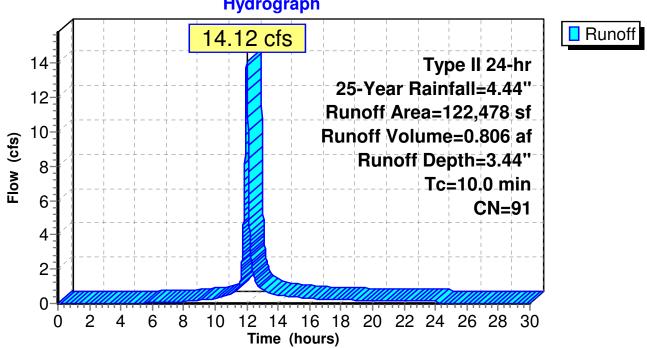
Ground Covers (all nodes)

_	HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
	0.000	0.000	0.000	0.000	6.501	6.501		C-16, C-17
	0.000	0.000	5.544	0.000	0.000	5.544	Newly graded area	C-10, C-15,
								CP-13, CP-8
	0.000	0.000	5.544	0.000	6.501	12.045	TOTAL AREA	

North Channels	
Prepared by Microsoft	
HydroCAD® 10.00 s/n 01566 © 2012 HydroCAD Software Solu	utions LLC

Pipe Listing (all nodes)

Lin	ne#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
	1	P-13	1,240.00	1,238.92	90.8	0.0119	0.013	12.0	0.0	0.0
	2	P-15	1,247.42	1,245.00	160.8	0.0150	0.013	30.0	0.0	0.0
	3	P-16	1,248.00	1,247.42	57.4	0.0101	0.013	30.0	0.0	0.0
	4	P-8	1,218.00	1,214.00	183.2	0.0218	0.013	24.0	0.0	0.0
	5	P-9	1,223.90	1,219.00	243.9	0.0201	0.013	18.0	0.0	0.0


North Channels Prepared by Microsoft HydroCAD® 10.00 s/n 01566 © 2012 HydroCAD Software Solutions LL	Type II 24-hr 25-Year Rainfall=4.44" Printed 4/3/2012 C Page 6
Time span=0.00-30.00 hrs, dt=0.01 hrs, Runoff by SCS TR-20 method, UH Reach routing by Dyn-Stor-Ind method - Pond routin	I=SCS
	f 0.00% Impervious Runoff Depth=3.44") min CN=91 Runoff=14.12 cfs 0.806 af
	f 0.00% Impervious Runoff Depth=3.44" .4 min CN=91 Runoff=5.11 cfs 0.347 af
Subcatchment C-16: North Inboard Swale Runoff Area=116,589 s Tc=10.0	f 0.00% Impervious Runoff Depth=3.76") min CN=94 Runoff=14.21 cfs 0.838 af
	f 0.00% Impervious Runoff Depth=3.44") min CN=91 Runoff=16.35 cfs 1.096 af
Subcatchment CP-13: North P-13 Drainage Runoff Area=14,236 s Tc=5	f 0.00% Impervious Runoff Depth=3.44" .0 min CN=91 Runoff=1.93 cfs 0.094 af
	f 0.00% Impervious Runoff Depth=3.44" .0 min CN=91 Runoff=6.01 cfs 0.343 af
Reach CH-10: North Outboard Channel Avg. Flow Depth=0.88' Ma n=0.055 L=1,579.0' S=0.0488 '/' Capac	
Reach CH-12: North Outboard Channel Avg. Flow Depth=0.53' M n=0.055 L=904.0' S=0.0494 '/' Capa	lax Vel=3.14 fps Inflow=5.11 cfs 0.347 af acity=63.00 cfs Outflow=4.71 cfs 0.347 af
Reach CH-13: North Inboard Channel Avg. Flow Depth=0.79' Ma n=0.055 L=846.0' S=0.0517 '/' Capacit	x Vel=3.83 fps Inflow=14.21 cfs 0.838 af y=274.13 cfs Outflow=13.15 cfs 0.838 af
č	x Vel=9.51 fps Inflow=16.35 cfs 1.096 af y=504.48 cfs Outflow=16.29 cfs 1.096 af
Reach P-13: P-13 Avg. Flow Depth=0.50' M 12.0" Round Pipe n=0.013 L=90.8' S=0.0119 '/' Cap	ax Vel=4.94 fps Inflow=1.93 cfs 0.094 af pacity=3.89 cfs Outflow=1.93 cfs 0.094 af
Reach P-15: P-15 Avg. Flow Depth=1.49' Max 30.0" Round Pipe n=0.013 L=160.8' S=0.0150 '/' Capac	Vel=10.97 fps Inflow=33.53 cfs 2.281 af ity=50.32 cfs Outflow=33.52 cfs 2.281 af
Reach P-16: P-16 Avg. Flow Depth=1.55' Ma 30.0" Round Pipe n=0.013 L=57.4' S=0.0101 '/' Capac	x Vel=9.11 fps Inflow=29.19 cfs 1.934 af ity=41.23 cfs Outflow=29.19 cfs 1.934 af
Reach P-8: P-8 Avg. Flow Depth=1.01' Max 24.0" Round Pipe n=0.013 L=183.2' S=0.0218 '/' Capac	Vel=10.70 fps Inflow=17.12 cfs 1.149 af ity=33.43 cfs Outflow=17.11 cfs 1.149 af
Reach P-9: P-9 Avg. Flow Depth=1.01' Ma 18.0" Round Pipe n=0.013 L=243.9' S=0.0201 '/' Capace	x Vel=9.35 fps Inflow=11.85 cfs 0.806 af ity=14.89 cfs Outflow=11.84 cfs 0.806 af
Total Runoff Area = 12.045 ac Runoff Volume = 3 100.00% Pervious = 12.	

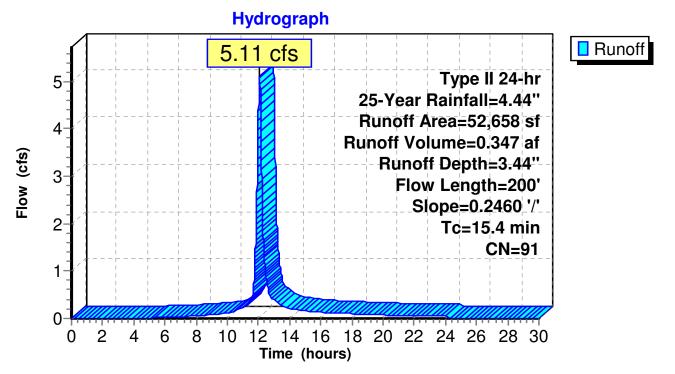
Runoff 14.12 cfs @ 12.01 hrs, Volume= 0.806 af, Depth= 3.44"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

_	A	rea (sf)	CN	N Description						
*	1	22,478	91	Newly graded area, HSG C						
	122,478 100.00% Pervious Area				ervious Are	ea				
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description				
	10.0					Direct Entry,				

Subcatchment C-10: North Outboard Drainage

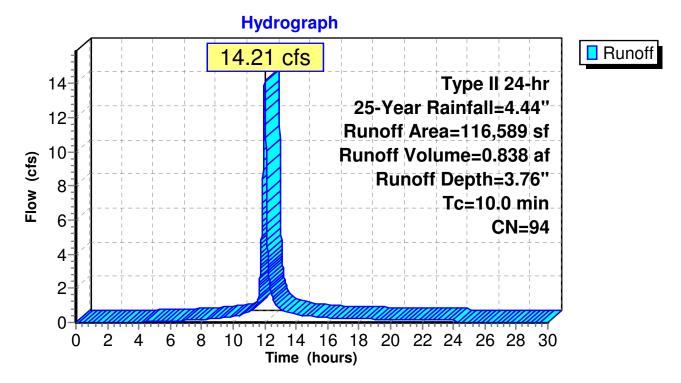
Hydrograph


Summary for Subcatchment C-15: North Outboard Drainage - Phase 4

Runoff = 5.11 cfs @ 12.07 hrs, Volume= 0.347 af, Depth= 3.44"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

A	rea (sf)	CN E	J Description						
	52,658	91 N	91 Newly graded area, HSG C						
	52,658	1	00.00% Pe	ervious Are	а				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
15.4	200	0.2460	0.22		Sheet Flow, Woods: Light underbrush	n= 0.400	P2= 2.54"		

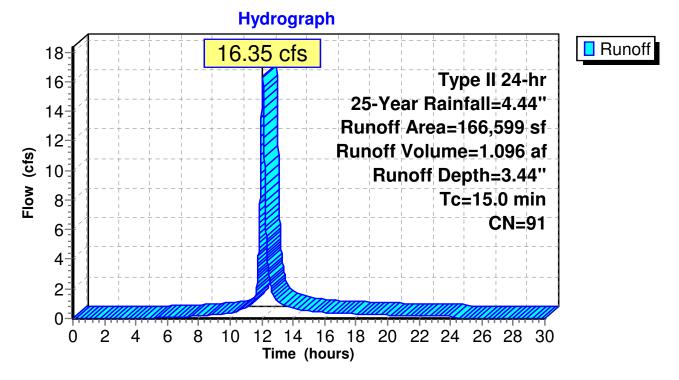


Summary for Subcatchment C-16: North Inboard Swale

Runoff = 14.21 cfs @ 12.01 hrs, Volume= 0.838 af, Depth= 3.76"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

	Are	a (sf)	CN D	escription					
*	116	6,589	94						
116,589 100.00% Pervious Area					ervious Are	a			
- (mi		_ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
10	D.0 Direct Entry,								
Subcatchment C-16: North Inboard Swale									

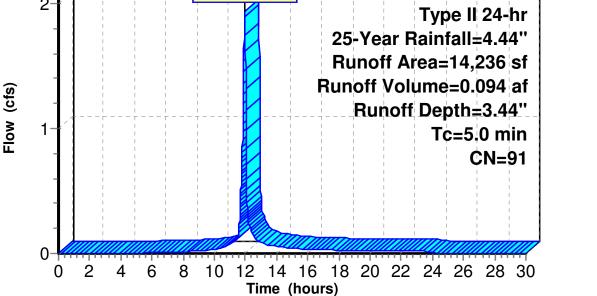

Summary for Subcatchment C-17: North Downchute Drainage

Runoff = 16.35 cfs @ 12.06 hrs, Volume= 1.096 af, Depth= 3.44"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

_	Α	rea (sf)	CN [Description		
*	1	66,599	91			
	166,599 100.00% Pervious Area			100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	15.0					Direct Entry,

Subcatchment C-17: North Downchute Drainage

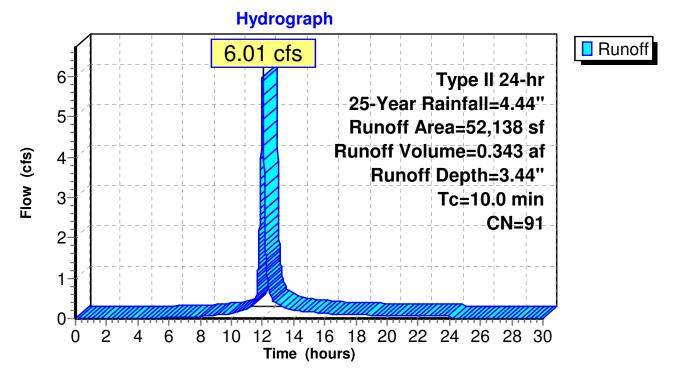


Summary for Subcatchment CP-13: North P-13 Drainage

Runoff = 1.93 cfs @ 11.96 hrs, Volume= 0.094 af, Depth= 3.44"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

Area (sf)	CN Description						
14,236	14,236 91 Newly graded area, HSG C						
14,236	100.00% Pervious Area						
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)						
5.0	Direct Entry,						
	Subcatchment CP-13: North P-13 Drainage						
	Hydrograph						
2 2 Type II 24-hr 25-Year Rainfall=4.44"							


Summary for Subcatchment CP-8: North Outboard Drainage-West

Runoff = 6.01 cfs @ 12.01 hrs, Volume= 0.343 af, Depth= 3.44"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

Ar	rea (sf)	CN	Description					
	52,138	91	91 Newly graded area, HSG C					
	52,138	38 100.00% Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
10.0					Direct Entry,			

Subcatchment CP-8: North Outboard Drainage-West

Summary for Reach CH-10: North Outboard Channel

 Inflow Area =
 2.812 ac,
 0.00% Impervious, Inflow Depth =
 3.44"
 for 25-Year event

 Inflow =
 14.12 cfs @
 12.01 hrs, Volume=
 0.806 af

 Outflow =
 11.85 cfs @
 12.07 hrs, Volume=
 0.806 af, Atten= 16%, Lag= 3.3 min

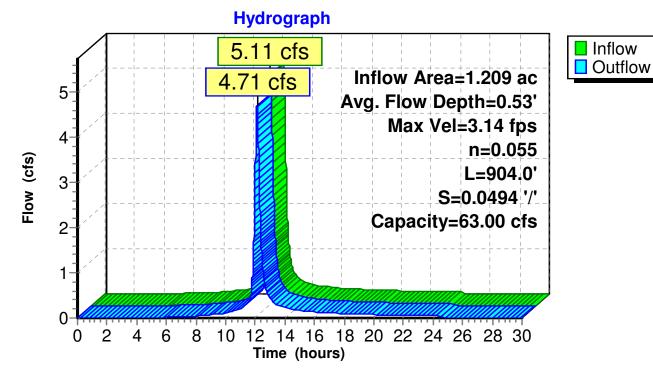
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 4.06 fps, Min. Travel Time= 6.5 min Avg. Velocity = 1.02 fps, Avg. Travel Time= 25.8 min

Peak Storage= 4,612 cf @ 12.07 hrs Average Depth at Peak Storage= 0.88' Bank-Full Depth= 2.00' Flow Area= 10.0 sf, Capacity= 62.66 cfs

2.00' x 2.00' deep channel, n= 0.055 Rock Riprap Side Slope Z-value= 2.0 1.0 '/' Top Width= 8.00' Length= 1,579.0' Slope= 0.0488 '/' Inlet Invert= 1,301.00', Outlet Invert= 1,223.90'

Reach CH-10: North Outboard Channel

Summary for Reach CH-12: North Outboard Channel


Inflow Area =1.209 ac, 0.00% Impervious, Inflow Depth = 3.44" for 25-Year eventInflow =5.11 cfs @12.07 hrs, Volume=0.347 afOutflow =4.71 cfs @12.12 hrs, Volume=0.347 af, Atten= 8%, Lag= 3.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 3.14 fps, Min. Travel Time= 4.8 min Avg. Velocity = 0.82 fps, Avg. Travel Time= 18.4 min

Peak Storage= 1,354 cf @ 12.12 hrs Average Depth at Peak Storage= 0.53' Bank-Full Depth= 2.00' Flow Area= 10.0 sf, Capacity= 63.00 cfs

2.00' x 2.00' deep channel, n= 0.055 Rock Riprap Side Slope Z-value= 2.0 1.0 '/' Top Width= 8.00' Length= 904.0' Slope= 0.0494 '/' Inlet Invert= 1,301.00', Outlet Invert= 1,256.38'

Reach CH-12: North Outboard Channel

Inflow Area =

Summary for Reach CH-13: North Inboard Channel

2.677 ac, 0.00% Impervious, Inflow Depth = 3.76" for 25-Year event

Inflow 14.21 cfs @ 12.01 hrs, Volume= 0.838 af = 13.15 cfs @ 12.05 hrs, Volume= Outflow 0.838 af, Atten= 7%, Lag= 2.2 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 3.83 fps, Min. Travel Time= 3.7 min Avg. Velocity = 1.09 fps, Avg. Travel Time= 12.9 min Peak Storage= 2,906 cf @ 12.05 hrs Average Depth at Peak Storage= 0.79' Bank-Full Depth= 3.00' Flow Area= 33.0 sf, Capacity= 274.13 cfs 2.00' x 3.00' deep channel, n= 0.055 Rock Riprap Side Slope Z-value= 3.0 '/' Top Width= 20.00' Length= 846.0' Slope= 0.0517 '/' Inlet Invert= 1,298.69', Outlet Invert= 1,254.99' **Reach CH-13: North Inboard Channel Hydrograph** 14.21 cfs Inflow Outflow Inflow Area=2.677 ac 13.15 cfs 14 Avg. Flow Depth=0.79' 12 Max Vel=3.83 fps n=0.055 10 ⁼low (cfs) L=846.0' 8 S=0.0517 '/' 6 Capacity=274.13 cfs 4 2 0 10 12 14 16 18 20 22 24 26 28 30 2 8 0 4 6 Time (hours)

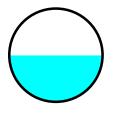
Summary for Reach CH-14: North Downchute Channel

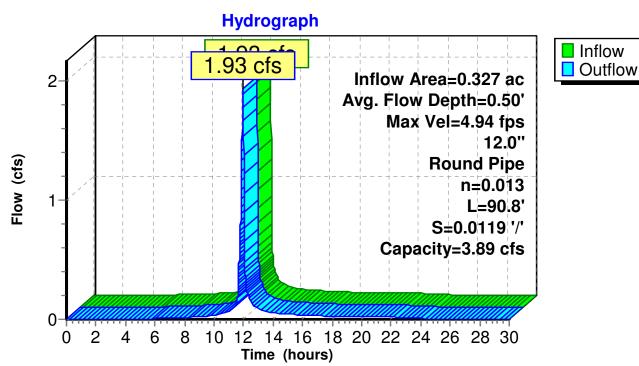
Inflow Area = 3.825 ac, 0.00% Impervious, Inflow Depth = 3.44" for 25-Year event Inflow = 16.35 cfs @ 12.06 hrs, Volume= 1.096 af Outflow = 16.29 cfs @ 12.08 hrs, Volume= 1.096 af, Atten= 0%, Lag= 0.7 min
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 9.51 fps, Min. Travel Time= 1.1 min Avg. Velocity = 2.47 fps, Avg. Travel Time= 4.1 min
Peak Storage= 1,031 cf @ 12.08 hrs Average Depth at Peak Storage= 0.34' Bank-Full Depth= 2.00' Flow Area= 20.0 sf, Capacity= 504.48 cfs
4.00' x 2.00' deep channel, n= 0.030 Grouted Riprap Side Slope Z-value= 3.0 '/' Top Width= 16.00' Length= 602.0' Slope= 0.2031 '/' Inlet Invert= 1,380.00', Outlet Invert= 1,257.75'
‡
Reach CH-14: North Downchute Channel
Hydrograph
18 16.29 cfs Inflow Area=3.825 ac 16 Avg. Flow Depth=0.34' 14 Max Vel=9.51 fps 12 n=0.030 10 L=602.0' 8 S=0.2031 '/' 0 2 4 6 0 2 4 6 10 0 2 2 0 2 4 6 10 0 2 2 10 0 2 2 10 0 2 2 10 0 2 2 10 0 2 2 10 0 2 2 10 0 2 2 10 0 2 2 10 0 2 2 10 12 14 16 10 12 14 16 10 12 14 16 10 12 14 16 10 12 14 16

Summary for Reach P-13: P-13

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.327 ac,
 0.00% Impervious,
 Inflow Depth =
 3.44"
 for
 25-Year event


 Inflow =
 1.93 cfs @
 11.96 hrs,
 Volume=
 0.094 af


 Outflow =
 1.93 cfs @
 11.96 hrs,
 Volume=
 0.094 af,

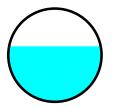
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 4.94 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.43 fps, Avg. Travel Time= 1.1 min

Peak Storage= 36 cf @ 11.96 hrs Average Depth at Peak Storage= 0.50' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.89 cfs

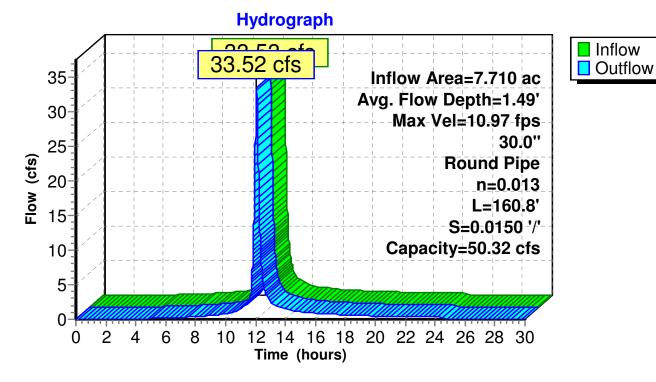
12.0" Round Pipe n= 0.013 Length= 90.8' Slope= 0.0119 '/' Inlet Invert= 1,240.00', Outlet Invert= 1,238.92'

Reach P-13: P-13

Summary for Reach P-15: P-15


[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach P-16 OUTLET depth by 0.03' @ 12.26 hrs

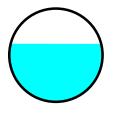
Inflow Area =		7.710 ac,	0.00% Impervious,	Inflow Depth = 3.5	55" for 25-Year event
Inflow	=	33.53 cfs @	12.07 hrs, Volume	= 2.281 af	
Outflow	=	33.52 cfs @	12.07 hrs, Volume	= 2.281 af,	Atten= 0%, Lag= 0.2 min

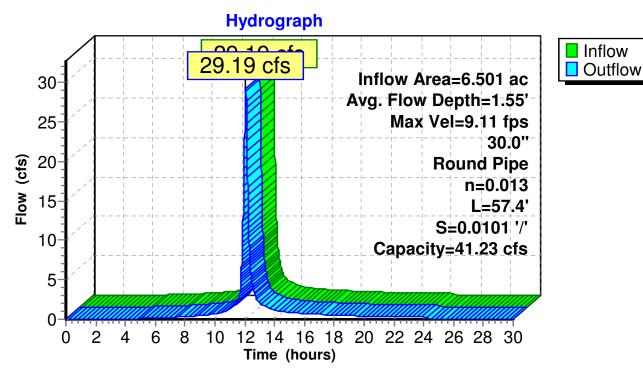

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 10.97 fps, Min. Travel Time= 0.2 min Avg. Velocity = 3.17 fps, Avg. Travel Time= 0.8 min

Peak Storage= 491 cf @ 12.07 hrs Average Depth at Peak Storage= 1.49' Bank-Full Depth= 2.50' Flow Area= 4.9 sf, Capacity= 50.32 cfs

30.0" Round Pipe n= 0.013 Length= 160.8' Slope= 0.0150 '/' Inlet Invert= 1,247.42', Outlet Invert= 1,245.00'

Reach P-15: P-15


Summary for Reach P-16: P-16


[52] Hint: Inlet/Outlet conditions not evaluated

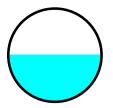
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 9.11 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.68 fps, Avg. Travel Time= 0.4 min

Peak Storage= 184 cf @ 12.06 hrs Average Depth at Peak Storage= 1.55' Bank-Full Depth= 2.50' Flow Area= 4.9 sf, Capacity= 41.23 cfs

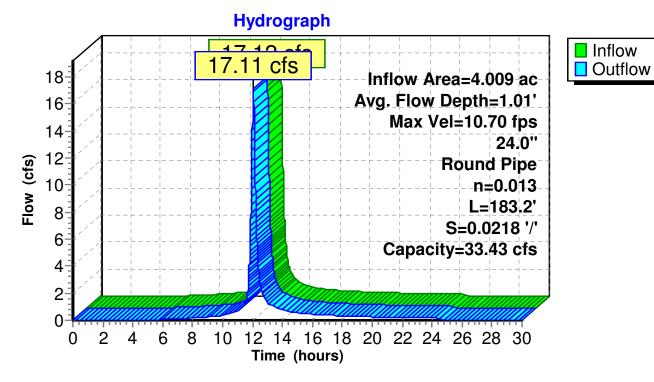
30.0" Round Pipe n= 0.013 Length= 57.4' Slope= 0.0101 '/' Inlet Invert= 1,248.00', Outlet Invert= 1,247.42'

Reach P-16: P-16

Summary for Reach P-8: P-8


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach P-9 outlet invert by 0.01' @ 12.05 hrs

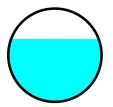
Inflow Area =		4.009 ac,	0.00% Impervious,	Inflow Depth = 3.4	4" for 25-Year event
Inflow	=	17.12 cfs @	12.05 hrs, Volume=	1.149 af	
Outflow	=	17.11 cfs @	12.05 hrs, Volume=	= 1.149 af,	Atten= 0%, Lag= 0.2 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 10.70 fps, Min. Travel Time= 0.3 min Avg. Velocity = 2.92 fps, Avg. Travel Time= 1.0 min

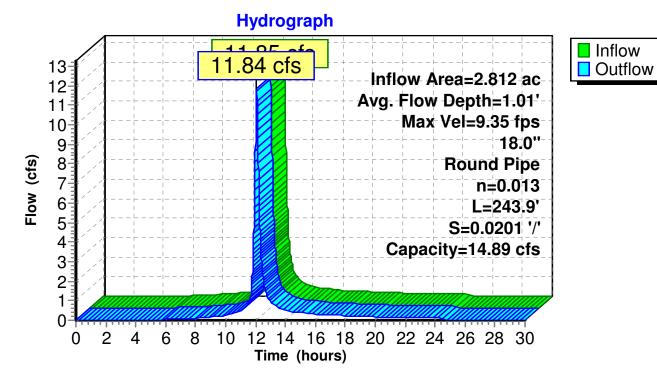
Peak Storage= 293 cf @ 12.05 hrs Average Depth at Peak Storage= 1.01' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 33.43 cfs

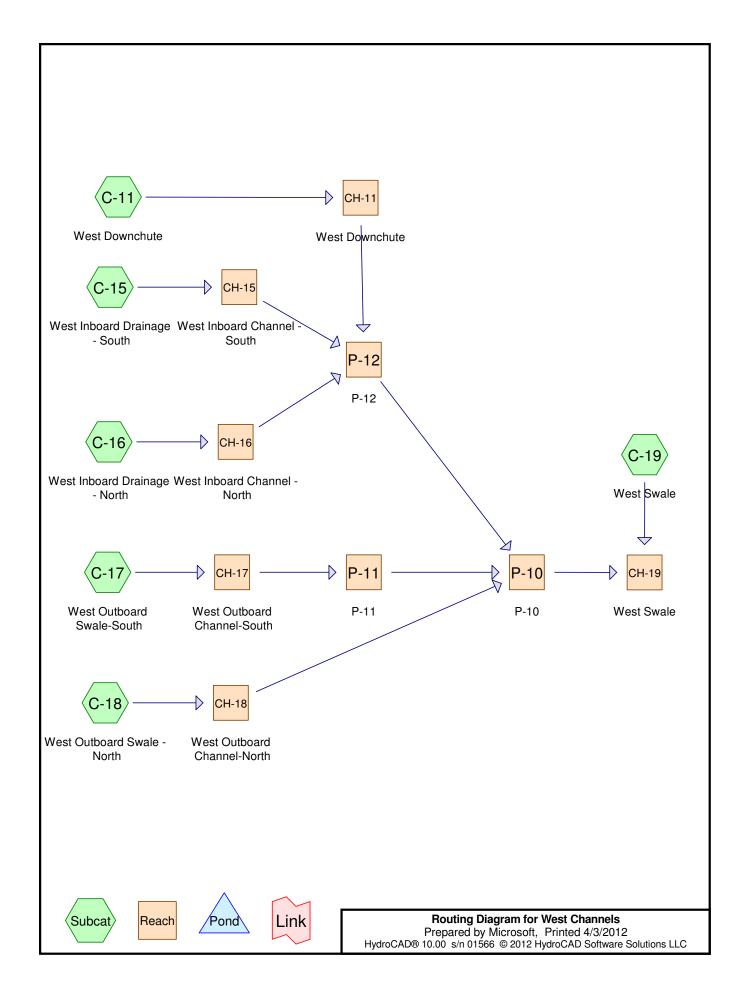
24.0" Round Pipe n= 0.013 Length= 183.2' Slope= 0.0218 '/' Inlet Invert= 1,218.00', Outlet Invert= 1,214.00'

Reach P-8: P-8


Summary for Reach P-9: P-9

[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach CH-10 OUTLET depth by 0.13' @ 12.08 hrs


Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 9.35 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.64 fps, Avg. Travel Time= 1.5 min


Peak Storage= 309 cf @ 12.07 hrs Average Depth at Peak Storage= 1.01' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 14.89 cfs

18.0" Round Pipe n= 0.013 Length= 243.9' Slope= 0.0201 '/' Inlet Invert= 1,223.90', Outlet Invert= 1,219.00'

Reach P-9: P-9

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
14.806	91	(C-11, C-18)
0.722	94	(C-19)
8.956	94	Fallow, bare soil, HSG C (C-15, C-16, C-17)
3.444	76	Woods/grass comb., Fair, HSG C (C-17)
27.928	90	TOTAL AREA

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
12.400	HSG C	C-15, C-16, C-17
0.000	HSG D	
15.528	Other	C-11, C-18, C-19
27.928		TOTAL AREA

West Channels

Prepared by Mic	rosoft		
HydroCAD® 10.00	s/n 01566	© 2012 HydroCAD	Software Solutions LLC

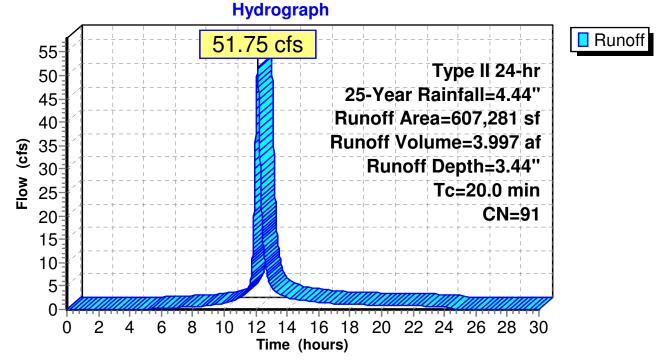
Printed 4/3/2012 Page 4

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchmer
0.000	0.000	0.000	0.000	15.528	15.528		C-11,
							C-18,
							C-19
0.000	0.000	8.956	0.000	0.000	8.956	Fallow, bare soil	C-15,
							C-16,
							C-17
0.000	0.000	3.444	0.000	0.000	3.444	Woods/grass comb., Fair	C-17
0.000	0.000	12.400	0.000	15.528	27.928	TOTAL AREA	

Pipe Listing (all nodes)

Lin	e#	Node	In-Invert	Out-Invert	Length	Slope	n	Diam/Width	Height	Inside-Fill
		Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
	1	P-10	1,217.00	1,215.16	106.0	0.0174	0.013	42.0	0.0	0.0
	2	P-11	1,220.00	1,218.00	98.7	0.0203	0.013	18.0	0.0	0.0
	3	P-12	1,218.00	1,217.00	68.0	0.0147	0.013	36.0	0.0	0.0

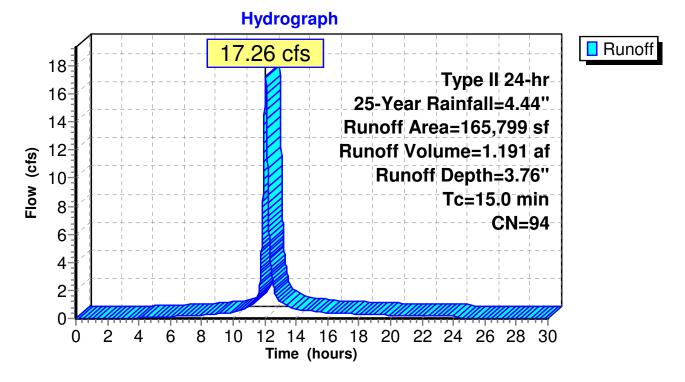

West Channels Prepared by Microsoft HydroCAD® 10.00 s/n 01566 © 2012 HydroCAD	Type II 24-hr 25-Year Rainfall=4.44"Printed 4/3/2012Software Solutions LLCPage 6
Runoff by SC	0.00 hrs, dt=0.01 hrs, 3001 points S TR-20 method, UH=SCS nethod - Pond routing by Dyn-Stor-Ind method
Subcatchment C-11: West Downchute	Runoff Area=607,281 sf 0.00% Impervious Runoff Depth=3.44" Tc=20.0 min CN=91 Runoff=51.75 cfs 3.997 af
Subcatchment C-15: West Inboard	Runoff Area=165,799 sf 0.00% Impervious Runoff Depth=3.76" Tc=15.0 min CN=94 Runoff=17.26 cfs 1.191 af
Subcatchment C-16: West Inboard	Runoff Area=193,911 sf 0.00% Impervious Runoff Depth=3.76" Tc=15.0 min CN=94 Runoff=20.18 cfs 1.393 af
Subcatchment C-17: West Outboard	Runoff Area=180,428 sf 0.00% Impervious Runoff Depth=2.33" Tc=10.0 min CN=79 Runoff=14.84 cfs 0.803 af
Subcatchment C-18: West Outboard Swale -	Runoff Area=37,647 sf 0.00% Impervious Runoff Depth=3.44" Tc=10.0 min CN=91 Runoff=4.34 cfs 0.248 af
Subcatchment C-19: West Swale	Runoff Area=31,468 sf 0.00% Impervious Runoff Depth=3.76" Tc=10.0 min CN=94 Runoff=3.83 cfs 0.226 af
	Flow Depth=0.55' Max Vel=16.43 fps Inflow=51.75 cfs 3.997 af S=0.3516 '/' Capacity=3,164.65 cfs Outflow=51.62 cfs 3.997 af
	Flow Depth=1.04' Max Vel=2.96 fps Inflow=17.26 cfs 1.191 af S=0.0226 '/' Capacity=181.34 cfs Outflow=15.75 cfs 1.191 af
	Flow Depth=1.09' Max Vel=2.90 fps Inflow=20.18 cfs 1.393 af S=0.0205 '/' Capacity=172.53 cfs Outflow=16.75 cfs 1.393 af
	Flow Depth=1.01' Max Vel=2.68 fps Inflow=14.84 cfs 0.803 af S=0.0189 '/' Capacity=311.13 cfs Outflow=13.01 cfs 0.803 af
	I. Flow Depth=0.63' Max Vel=2.21 fps Inflow=4.34 cfs 0.248 af 0' S=0.0205 '/' Capacity=40.60 cfs Outflow=4.09 cfs 0.248 af
	ow Depth=1.25' Max Vel=11.91 fps Inflow=100.94 cfs 7.858 af S=0.0811 '/' Capacity=278.74 cfs Outflow=100.92 cfs 7.858 af
	Flow Depth=2.25' Max Vel=15.10 fps Inflow=98.73 cfs 7.632 af S=0.0174 '/' Capacity=132.55 cfs Outflow=98.73 cfs 7.632 af
	Flow Depth=1.08' Max Vel=9.53 fps Inflow=13.01 cfs 0.803 af '' S=0.0203 '/' Capacity=14.95 cfs Outflow=13.01 cfs 0.803 af
	Flow Depth=2.58' Max Vel=13.04 fps Inflow=84.00 cfs 6.582 af ' S=0.0147 '/' Capacity=80.88 cfs Outflow=84.00 cfs 6.582 af
	Runoff Volume = 7.858 afAverage Runoff Depth = 3.38"0.00% Pervious = 27.928 ac0.00% Impervious = 0.000 ac

Summary for Subcatchment C-11: West Downchute

Runoff 51.75 cfs @ 12.11 hrs, Volume= 3.997 af, Depth= 3.44"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

_	Α	rea (sf)	CN [Description				
*	6	07,281	91					
	607,281		100.00% Pervious Area			a		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	20.0					Direct Entry,		
	Subcatchment C-11: West Downchute							

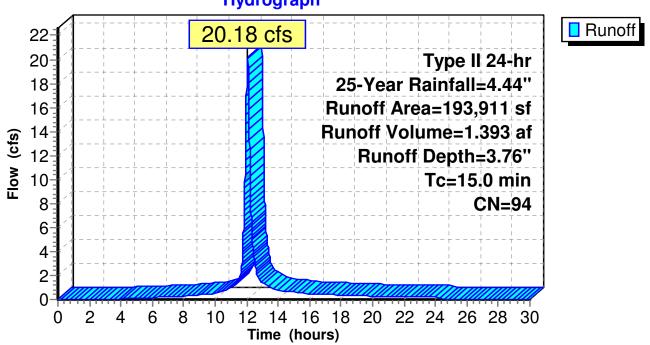

Summary for Subcatchment C-15: West Inboard Drainage - South

Runoff = 17.26 cfs @ 12.06 hrs, Volume= 1.191 af, Depth= 3.76"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

_	Α	rea (sf)	CN [Description		
*	1	65,799	94 F	allow, bare	e soil, HSG	G C
	1	65,799	1	00.00% Pe	ervious Are	ea
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	15.0					Direct Entry,

Subcatchment C-15: West Inboard Drainage - South


Summary for Subcatchment C-16: West Inboard Drainage - North

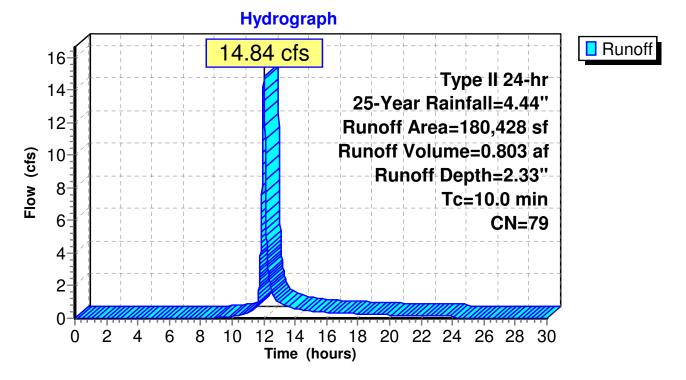
Runoff = 20.18 cfs @ 12.06 hrs, Volume= 1.393 af, Depth= 3.76"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

	A	rea (sf)	CN E	Description		
*	1	93,911	94 F	allow, bare	e soil, HSG	GC
	193,911		100.00% Pervious Are			ea
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	15.0					Direct Entry,

Subcatchment C-16: West Inboard Drainage - North

Hydrograph

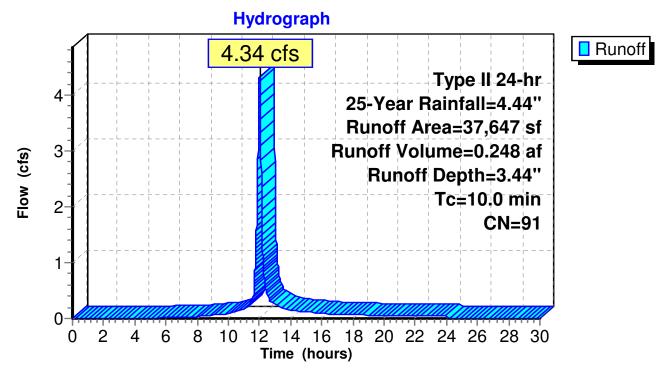

Summary for Subcatchment C-17: West Outboard Swale-South

Runoff = 14.84 cfs @ 12.02 hrs, Volume= 0.803 af, Depth= 2.33"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

	Area (sf)	CN	Description		
*	30,428	94	Fallow, bare	e soil, HSG	C
	150,000	76	Woods/gras	ss comb., F	Fair, HSG C
	180,428	79	Weighted A	verage	
	180,428		100.00% Pe	ervious Are	a
T (min	3-	Slope (ft/ft		Capacity (cfs)	Description
10.	0				Direct Entry,

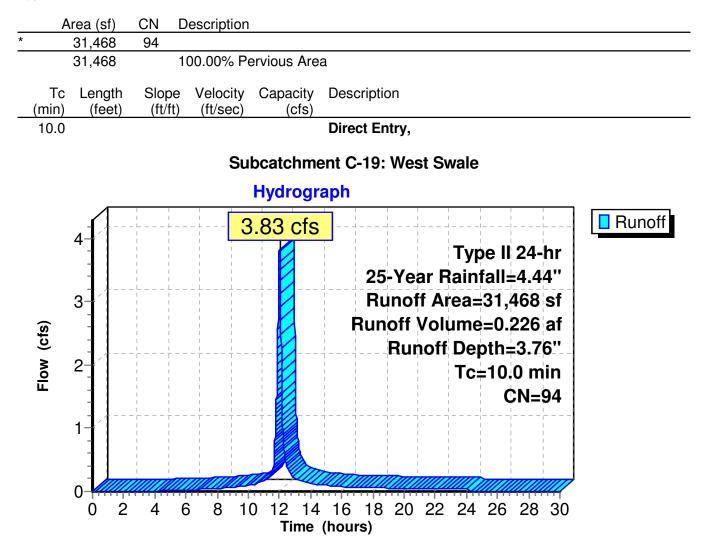
Subcatchment C-17: West Outboard Swale-South


Summary for Subcatchment C-18: West Outboard Swale - North

Runoff = 4.34 cfs @ 12.01 hrs, Volume= 0.248 af, Depth= 3.44"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

_	A	rea (sf)	CN	Description		
*		37,647	91			
		37,647		100.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
	10.0	· · · ·				Direct Entry,


Subcatchment C-18: West Outboard Swale - North

Summary for Subcatchment C-19: West Swale

Runoff = 3.83 cfs @ 12.01 hrs, Volume= 0.226 af, Depth= 3.76"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

51.75 cfs @ 12.11 hrs, Volume=

Inflow Area =

=

Inflow

Summary for Reach CH-11: West Downchute

13.941 ac, 0.00% Impervious, Inflow Depth = 3.44" for 25-Year event

3.997 af

Outflow 51.62 cfs @ 12.12 hrs, Volume= 3.997 af, Atten= 0%, Lag= 0.6 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 16.43 fps, Min. Travel Time= 0.7 min Avg. Velocity = 4.81 fps, Avg. Travel Time= 2.4 min Peak Storage= 2,144 cf @ 12.12 hrs Average Depth at Peak Storage= 0.55' Bank-Full Depth= 4.00' Flow Area= 64.0 sf, Capacity= 3,164.65 cfs 4.00' x 4.00' deep channel, n= 0.030 Grouted Riprap Side Slope Z-value= 3.0 '/' Top Width= 28.00' Length= 682.6' Slope= 0.3516 '/' Inlet Invert= 1,370.00', Outlet Invert= 1,130.00' **Reach CH-11: West Downchute** Hydrograph Inflow 51.62 cfs Outflow 55-Inflow Area=13.941 ac 50-Avg. Flow Depth=0.55' 45 Max Vel=16.43 fps 40 n=0.030 Flow (cfs) 35 L=682.6' 30 S=0.3516 '/' 25 Capacity=3,164.65 cfs 20 15 10 5 0 10 12 14 16 18 20 22 24 26 28 30 6 8 0 2 4

Time (hours)

17.26 cfs @ 12.06 hrs, Volume=

3.806 ac.

Inflow Area =

=

Inflow

Summary for Reach CH-15: West Inboard Channel - South

0.00% Impervious, Inflow Depth = 3.76" for 25-Year event

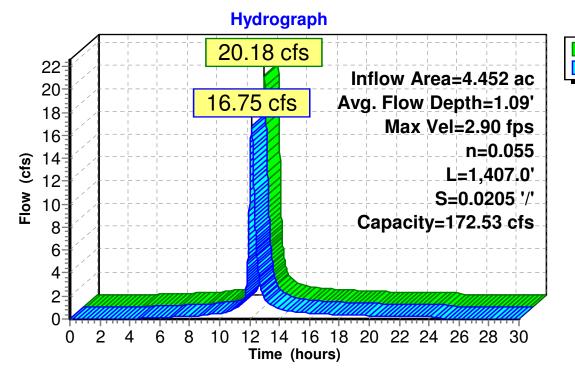
1.191 af

15.75 cfs @ 12.12 hrs, Volume= Outflow 1.191 af, Atten= 9%, Lag= 3.2 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 2.96 fps, Min. Travel Time= 4.9 min Avg. Velocity = 0.88 fps, Avg. Travel Time= 16.7 min Peak Storage= 4,668 cf @ 12.12 hrs Average Depth at Peak Storage= 1.04' Bank-Full Depth= 3.00' Flow Area= 33.0 sf, Capacity= 181.34 cfs 2.00' x 3.00' deep channel, n= 0.055 Rock Riprap Side Slope Z-value= 3.0 '/' Top Width= 20.00' Length= 876.4' Slope= 0.0226 '/' Inlet Invert= 1,244.62', Outlet Invert= 1,224.81' Reach CH-15: West Inboard Channel - South **Hydrograph** 17.26 cfs Inflow Outflow 18 Inflow Area=3.806 ac 15.75 cfs Avg. Flow Depth=1.04' 16 Max Vel=2.96 fps 14 n=0.055 12 ⁼low (cfs) L=876.4' 10 S=0.0226 '/' 8 Capacity=181.34 cfs 6 4 2 0 10 12 14 16 18 20 22 24 26 28 30 2 8 0 4 6 Time (hours)

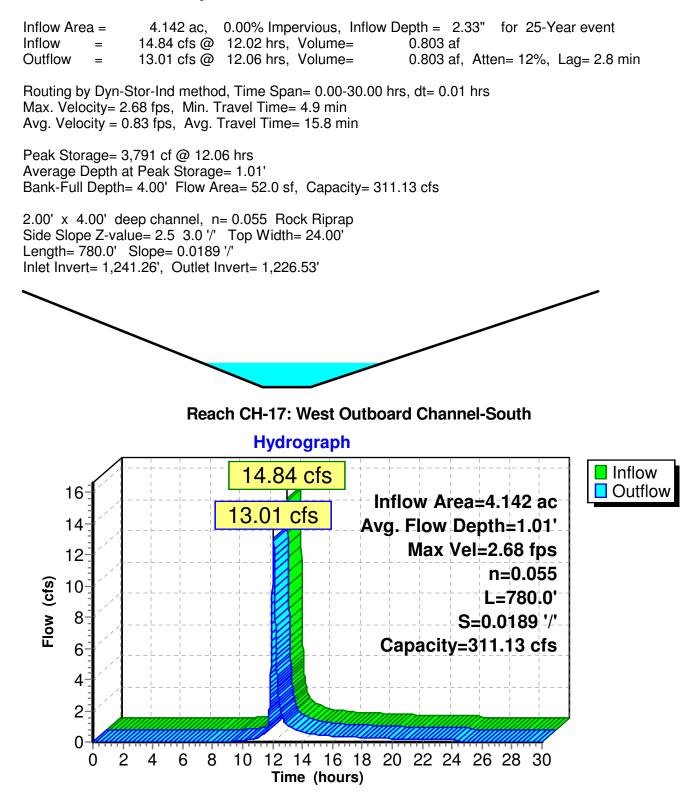
Inflow

Outflow

Summary for Reach CH-16: West Inboard Channel - North


Inflow Area = 4.452 ac, 0.00% Impervious, Inflow Depth = 3.76" for 25-Year event Inflow = 20.18 cfs @ 12.06 hrs, Volume= 1.393 af Outflow = 16.75 cfs @ 12.14 hrs, Volume= 1.393 af, Atten= 17%, Lag= 4.5 min Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 2.90 fps, Min. Travel Time= 8.1 min

Avg. Velocity = 0.87 fps, Avg. Travel Time= 27.1 min


Peak Storage= 8,141 cf @ 12.14 hrs Average Depth at Peak Storage= 1.09' Bank-Full Depth= 3.00' Flow Area= 33.0 sf, Capacity= 172.53 cfs

2.00' x 3.00' deep channel, n= 0.055 Rock Riprap Side Slope Z-value= 3.0 '/' Top Width= 20.00' Length= 1,407.0' Slope= 0.0205 '/' Inlet Invert= 1,253.60', Outlet Invert= 1,224.81'

Reach CH-16: West Inboard Channel - North

Summary for Reach CH-17: West Outboard Channel-South

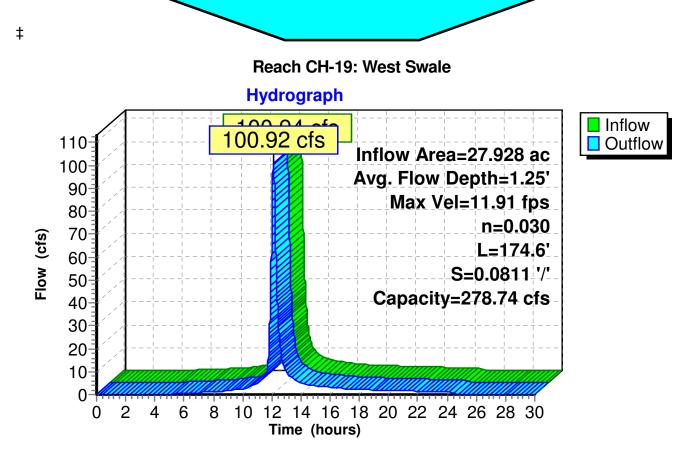
Summary for Reach CH-18: West Outboard Channel-North

Inflow Area = Inflow = Outflow =	4.34 cfs @ 12.01 hrs, Volum	, Inflow Depth = 3.44" for 25-Y e= 0.248 af e= 0.248 af, Atten= 6%, L	
Max. Velocity= 2.2	or-Ind method, Time Span= 0.00 1 fps, Min. Travel Time= 3.2 m 56 fps, Avg. Travel Time= 12.6	in	
	9 cf @ 12.04 hrs Peak Storage= 0.63' 2.00' Flow Area= 10.0 sf, Capa	acity= 40.60 cfs	
Side Slope Z-value Length= 421.0' S	p channel, n= 0.055 Rock Ripr == 2.0 1.0 '/' Top Width= 8.00' lope= 0.0205 '/' .15', Outlet Invert= 1,224.52'	ap	
\searrow			
	Reach CH-18: West	Outboard Channel-North	
	Hydrograp	bh	
	4.34 cfs		Inflow
	4.09 cfs	Inflow Area=0.864 ac	
4	<mark>4.09 cfs</mark>	Avg. Flow Depth=0.63	
	4.09 cfs		
(cts)	4.09 cfs	Avg. Flow Depth=0.63 Max Vel=2.21 fps n=0.055 L=421.0	
(cts)	4.09 cfs	Avg. Flow Depth=0.63' Max Vel=2.21 fps n=0.055 L=421.0' S=0.0205 '/	
w (cfs)	4.09 cfs	Avg. Flow Depth=0.63 Max Vel=2.21 fps n=0.055 L=421.0	
(cts)	4.09 cfs	Avg. Flow Depth=0.63' Max Vel=2.21 fps n=0.055 L=421.0' S=0.0205 '/	
(cts)	4.09 cfs	Avg. Flow Depth=0.63' Max Vel=2.21 fps n=0.055 L=421.0' S=0.0205 '/	

Summary for Reach CH-19: West Swale

[61] Hint: Exceeded Reach P-10 outlet invert by 1.25' @ 12.11 hrs

 Inflow Area =
 27.928 ac, 0.00% Impervious, Inflow Depth = 3.38" for 25-Year event


 Inflow =
 100.94 cfs @
 12.11 hrs, Volume=
 7.858 af

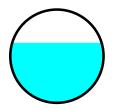
 Outflow =
 100.92 cfs @
 12.11 hrs, Volume=
 7.858 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 11.91 fps, Min. Travel Time= 0.2 min Avg. Velocity = 3.21 fps, Avg. Travel Time= 0.9 min

Peak Storage= 1,480 cf @ 12.11 hrs Average Depth at Peak Storage= 1.25' Bank-Full Depth= 2.00' Flow Area= 18.0 sf, Capacity= 278.74 cfs

3.00' x 2.00' deep channel, n= 0.030 Grouted Riprap Side Slope Z-value= 3.0 '/' Top Width= 15.00' Length= 174.6' Slope= 0.0811 '/' Inlet Invert= 1,215.16', Outlet Invert= 1,201.00'

Summary for Reach P-10: P-10


[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach P-11 OUTLET depth by 0.31' @ 12.16 hrs
[61] Hint: Exceeded Reach P-12 outlet invert by 2.25' @ 12.11 hrs

Inflow Area =27.205 ac,0.00% Impervious,Inflow Depth =3.37" for 25-Year eventInflow =98.73 cfs @12.11 hrs,Volume=7.632 afOutflow =98.73 cfs @12.11 hrs,Volume=7.632 af,Atten= 0%,Lag= 0.1 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 15.10 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.28 fps, Avg. Travel Time= 0.4 min

Peak Storage= 693 cf @ 12.11 hrs Average Depth at Peak Storage= 2.25' Bank-Full Depth= 3.50' Flow Area= 9.6 sf, Capacity= 132.55 cfs

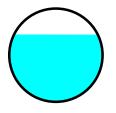
42.0" Round Pipe n= 0.013 Length= 106.0' Slope= 0.0174 '/' Inlet Invert= 1,217.00', Outlet Invert= 1,215.16'

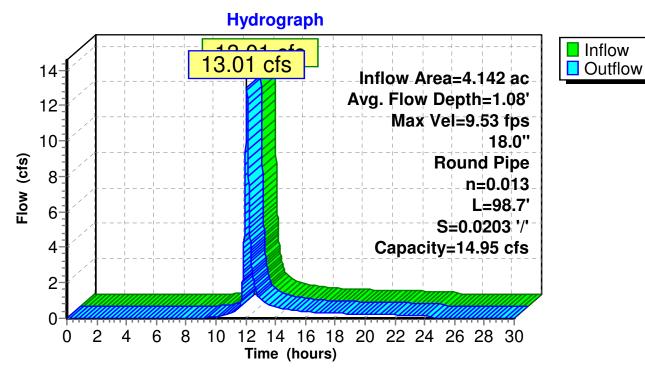
Reach P-10: P-10

Summary for Reach P-11: P-11

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 4.142 ac, 0.00% Impervious, Inflow Depth = 2.33" for 25-Year event


 Inflow =
 13.01 cfs @ 12.06 hrs, Volume=
 0.803 af

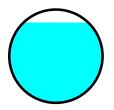

 Outflow =
 13.01 cfs @ 12.07 hrs, Volume=
 0.803 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 9.53 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.98 fps, Avg. Travel Time= 0.6 min

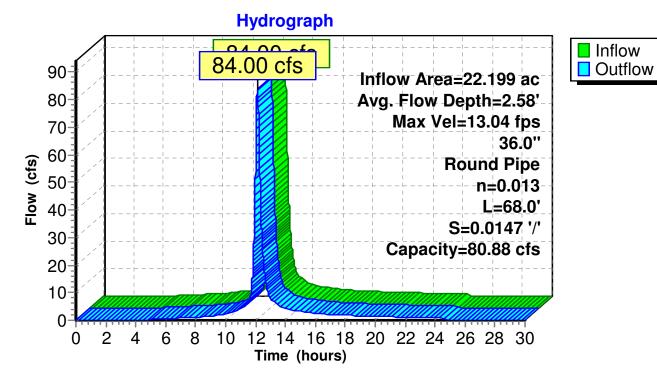
Peak Storage= 135 cf @ 12.07 hrs Average Depth at Peak Storage= 1.08' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 14.95 cfs

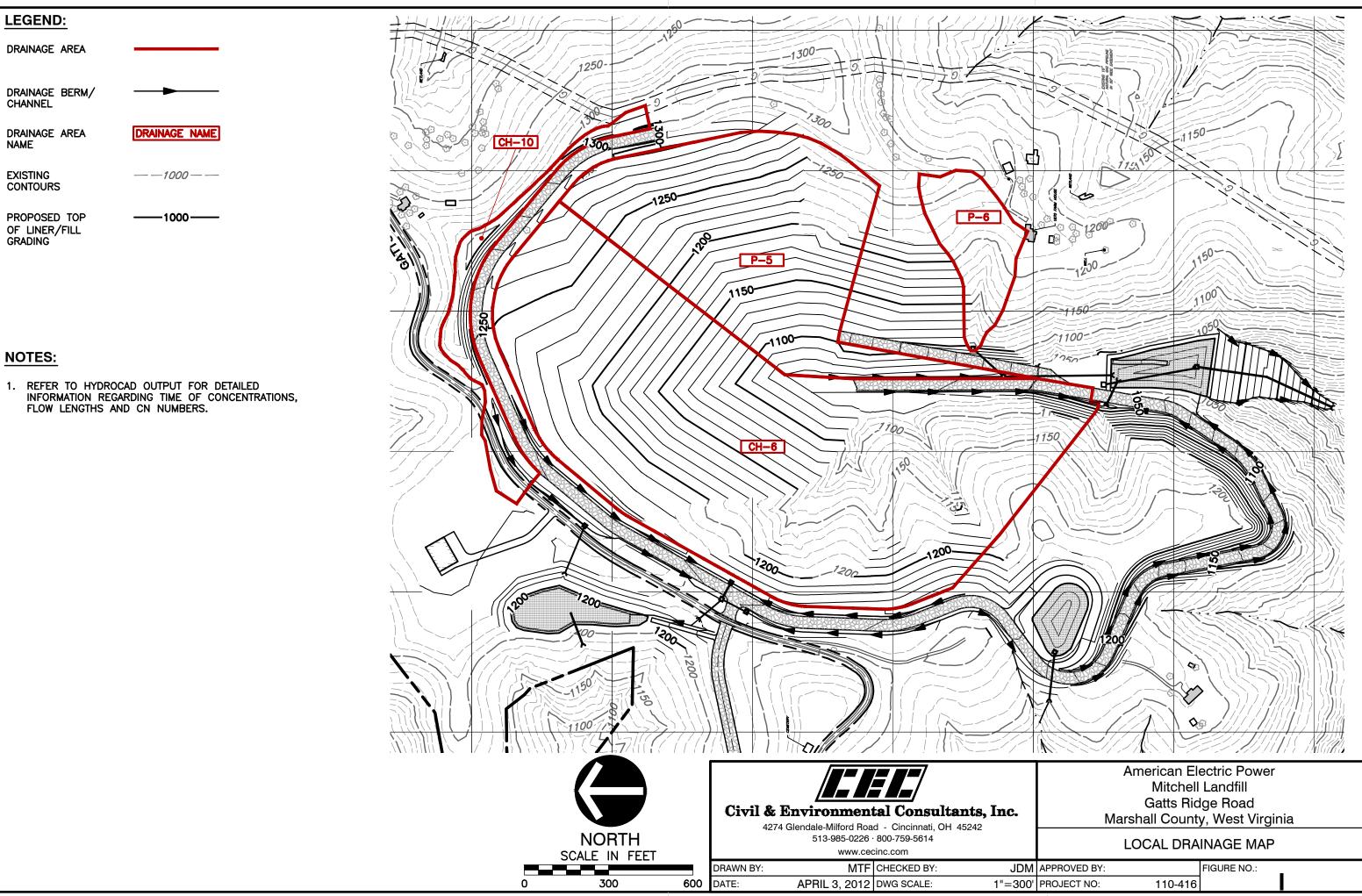
18.0" Round Pipe n= 0.013 Length= 98.7' Slope= 0.0203 '/' Inlet Invert= 1,220.00', Outlet Invert= 1,218.00'

Reach P-11: P-11

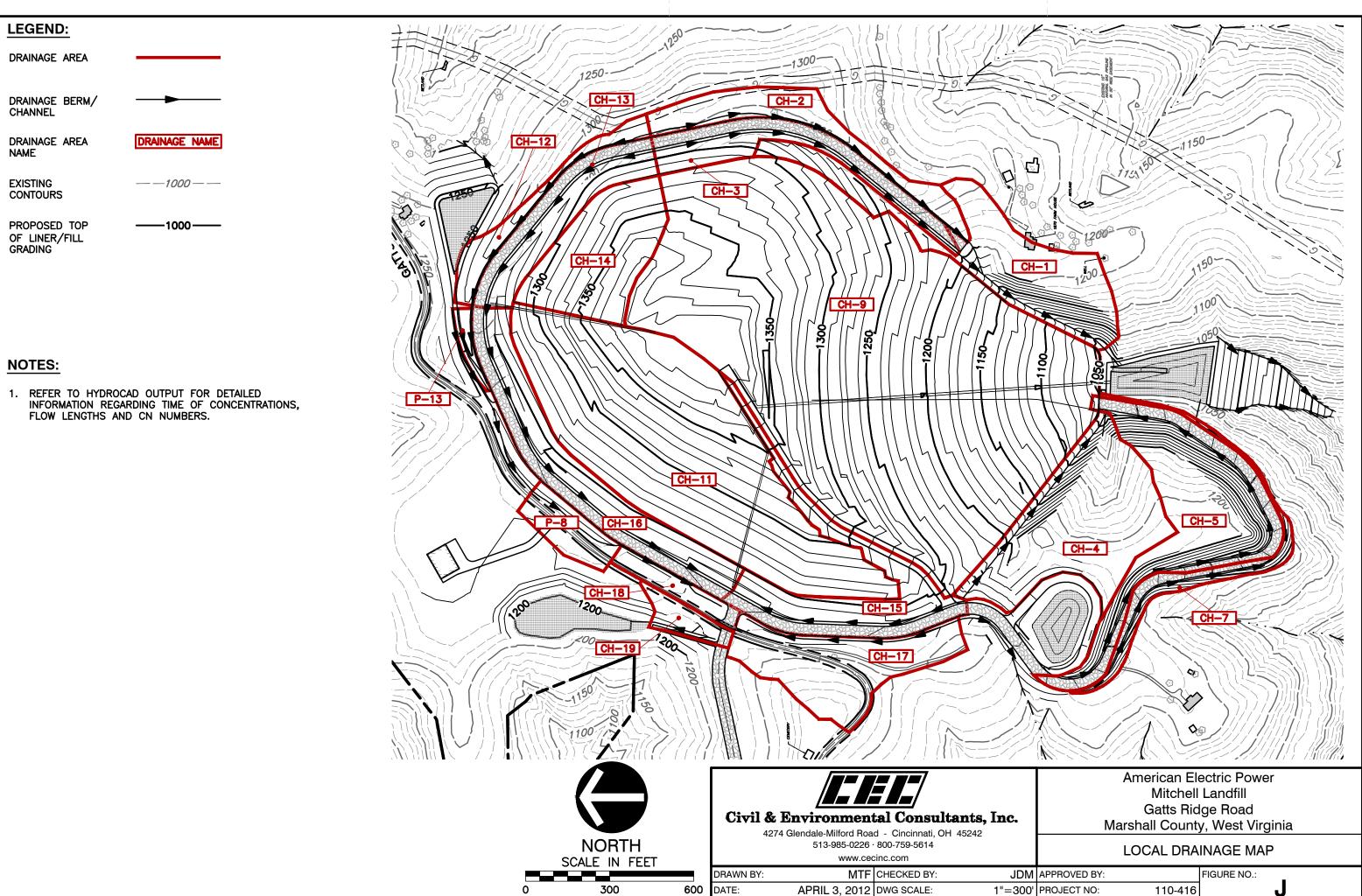

Summary for Reach P-12: P-12

[52] Hint: Inlet/Outlet conditions not evaluated[55] Hint: Peak inflow is 104% of Manning's capacity[62] Hint: Exceeded Reach CH-11 OUTLET depth by 90.02' @ 12.13 hrs


Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 13.04 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.93 fps, Avg. Travel Time= 0.3 min


Peak Storage= 439 cf @ 12.13 hrs Average Depth at Peak Storage= 2.58' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 80.88 cfs

36.0" Round Pipe n= 0.013 Length= 68.0' Slope= 0.0147 '/' Inlet Invert= 1,218.00', Outlet Invert= 1,217.00'



Reach P-12: P-12

JDM	APPROVED BY:		FIGURE NO.:	
"=300'	PROJECT NO:	110-416		

JDM	APPROVED BY:		FIGURE NO.:	
"=300'	PROJECT NO:	110-416	J	

SURFACE WATER CONTROL CALCULATIONS

Excess Soil Area

			CIVII	& Environment	al Consul	tants,	Inc	•			
SUB	JECT	Surface Wat	er Con	trol Structures			PROJ	ECT NO.		110	0-416
APPLI	CABLE	33CSR1 3.16	33CSR1 3.16.c.4. Stormwater, Soil Erosion, and								
RU	JLE	Sedimentation	Sedimentation Control Plan								
PRO	JECT	American Ele	American Electric Power – Mitchell Landfill Excess Soil								•
LOCA	ATION	Gatts Ridge I	Gatts Ridge Road, Marshall County, West Virginia								8
	MADE B	BY EGK	DATE	05/11/16	CHECKED BY	МТ	F	DATE			

OBJECTIVE:

To design proposed surface water control structures for the Mitchell Landfill Excess Soil Area. These structures will capture surface water flow from the disturbed area of this project, portions of the existing Mitchell Landfill, and 4.4 acres of offsite area, and divert it to the East and Northeast Sediment Ponds. All Sediment Pond calculations can be found in the PTI calculation entitled "Sediment Pond Design Calculations". The calculations for all surface water control structures satisfy the regulations for residual waste landfills as follows:

33CSR1 3.16.c.4.

An application to conduct transfer station activities must include a plan to manage surface storm water soil erosion and sedimentation control during the various phases of construction and operation on the permit area. Calculations indicating water quantities must be based on the twenty-five (25)-year, twenty-four (24)-hour storm event. The plan must include fully dimensioned diversion ditches and indicate length, gradient, and crosssection for configuration by reach and capacities for ditch volume by reach. Calculations that are necessary to support design and siting must be included in the plan.

The design is based upon accepted engineering design equations, methodologies and assumptions. Where applicable, design references have been made. Calculations have been performed using the software package, HydroCAD Version 10.00-14, Copyright 2015.

METHOD:

Peak flows have been estimated with SCS TR-55 by calculating the time of concentration (Tc) of each channel reach, the composite runoff curve number describing the reach's watershed and the total area of the reach's watershed. A computer software package entitled "HydroCAD" Version 10.00-14, Copyright 2015, was utilized to perform the SCS TR-55 calculations.

The rainfall values for this site are listed below. The United States Department of Commerce, Weather Bureau, Technical Paper No. 40, Rainfall Frequency Atlas of the United States, for Mitchell County, West Virginia, provided the estimated rainfall depths and is presented in "Sediment Ponds Design Calculations".

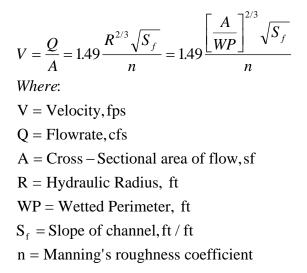
SUB	JECT	Surface Wat	er Con	trol Structures			PROJ	ECT NO.		110)-416	6
APPLI	CABLE	33CSR1 3.16	3CSR1 3.16.c.4. Stormwater, Soil Erosion, and									
RU	JLE	Sedimentation	on Con	trol Plan								
PRO	JECT	American Ele	American Electric Power – Mitchell Landfill Excess Soil									•
LOCA		Gatts Ridge I	Gatts Ridge Road, Marshall County, West Virginia									8
	MADE E	BY EGK DATE 05/11/16 CHECKED BY MT						DATE				

RAINFALL DATA									
Frequency Duration Depth (in)									
25 yr	24 hr	4.44							

According to the TR-55 methods, times of concentration were estimated as the sum of sheet flow, shallow concentrated flow, and channel flow. Flow calculations utilized a Curve Number (CN) representative of the post construction surface conditions. Maximum sheet flow length used was 200 feet. Shallow concentrated flow time of concentration as estimated based upon the condition of the flow path.

This site is located in an area of hydrologic soil groups B & C. Since over 95 percent of the site consists of type C soils, hydrologic soil group C was used throughout. Based on the existing and proposed site conditions the following runoff coefficients have been determined and will be utilized.

CN DATA	
Description	CN
Existing (Woods Grass Combination, Fair)	76
Newly Graded Areas (Including Ditches)	91
Landfill (50-75% Grass Cover, Fair)	91
Impervious Areas (Access Road and Pond)	98


Utilizing a series of downchutes, roadside channels, pipe culverts, and basins, all stormwater runoff from disturbed areas is directed to the East Sediment Pond. At the western portion of the site, the access road channel collects runoff from the north slope of Mitchell Landfill, a portion of the existing haul road, and both off- and on-site areas upslope from the access road. At the northern portion of the site, a downchute conveys runoff from off-site and from the benched excess soil fill slope to the Northeast Sediment Pond. These flows from the western and northern areas collect in the East Sediment Pond before being released below the impoundment. Cutoff trenches and/or berms will be constructed along site boundaries downslope from existing terrain, and will bypass off-site stormwater runoff around the East Sediment Pond and ultimately to the toe of the impoundment. The locations of the channels, culverts, ponds, and cutoff trenches/berms are shown within the permit documents.

SUB	JECT	Surface Wat	er Con	trol Structures			PROJ	ECT NO.		110)-416	j
APPLI	CABLE	33CSR1 3.16	33CSR1 3.16.c.4. Stormwater, Soil Erosion, and									
RU	JLE	Sedimentation	on Cor	ntrol Plan								
PRO	JECT	American Ele	ectric P	ower – Mitchell La	ndfill Excess	s Soil	PAGE		3	OF	Ι.	•
LOCA	ATION	Gatts Ridge	Gatts Ridge Road, Marshall County, West Virginia									8
	MADE E	BY EGK	DATE	05/11/16	CHECKED BY	МТ	F	DATE				

CALCULATIONS:

With the peak discharge known for each channel, the channel cross section is sized and a channel lining material is selected (from the channel lining design options, included below). Flow properties within the channels are estimates from the HydroCAD output and hydrographs utilizing Manning's Equation (EQ. 1):

See Local Drainage Map for the drainage areas utilized. "S" designation throughout HydroCAD reports and drainage maps are Sub-Areas. "CH" designation throughout HydroCAD reports and tables are Channel designations. The tables below show the drainage watershed identification, length, inlet and outlet invert elevations, contributing area, and peak flow for each channel based on the 25-year/24-hour storm event:

SUB	JECT	Surface Wat	er Con	trol Structures			PROJ	ECT NO.		11()-416	
APPLI	CABLE	33CSR1 3.16	3CSR1 3.16.c.4. Stormwater, Soil Erosion, and									
RU	JLE	Sedimentati	on Cor	trol Plan								
PRO	JECT	American Ele	ectric P	ower – Mitchell La	PAGE		4			•		
LOCA		Gatts Ridge	Gatts Ridge Road, Marshall County, West Virginia									8
	MADE E	EGK	F	DATE								

Channels:

	Drainage	lnv Eleva	-	Length	Slope	Drainage Area	Peak Flow	Max. Velocity	(R)Riprap Class/ (G)Grout
Channel	Area ID	Inlet	Outlet	(ft)	(%)	(acres)	(cfs)	(fps)	Class
CH-1	S-1	1281.3	1138.9	1070	13.31	4.56	22.53	6.10	R-5
CH-2	S-1,4,6,7	1145.6	1117.3	97	29.20	15.68	82.47	12.60	G-6
CH-3	S-3	1232.7	1120.9	462	24.20	12.48	64.34	11.02	G-6
CH-4	S-4	1276.4	1153.5	1037	11.85	11.12	60.75	8.34	G-6
CH-5	S-5	1118.8	1055.9	222	28.36	10.33	25.67	9.17	G-6
CH-6	S-6	1118.7	1055.9	274	22.89	10.07	23.39	8.27	G-6
CH-8	S-8	1269.2	1118.7	935	16.11	5.01	11.02	5.91	R-5
CH-9A	S-9A	1148.8	1129.6	129	14.90	3.70	9.13	5.45	R-5
CH-9B	S-9B	1129.6	1118.8	372	2.91	8.40	20.74	3.75	R-3

For channel details and schedule, see Details sheet of the Permit to Install application drawing set.

Channel protection was designed using NRCS guidance referenced at the end of this report. The riprap class was selected after the D50 was determined using empirical formulas based on unit discharge and channel slope. Channels requiring larger than R-7 riprap were designed with grouted riprap according to channel velocity. Minimum depth of protection must be 2 x D50. Channel lining sizes are provided in the following table:

CHANNEL	LININGS
Riprap Class	D50 (in)
R-3	3
R-4	6
R-5	9
R-6	15
R-7	18

	JECT	Surface Wat	er Con	rol Structures				FOT NO		11(0-416	
306	JECI											
APPLIC	CABLE		3CSR1 3.16.c.4. Stormwater, Soil Erosion, and									
RU	JLE	Sedimentati	on Con	trol Plan								
PRO.	JECT	American Ele	American Electric Power – Mitchell Landfill Excess Soil									
LOCA	ATION	Gatts Ridge	Gatts Ridge Road, Marshall County, West Virginia									ō
	MADE B	BY EGK	DATE	05/11/16	CHECKED BY	МТ	F	DATE				

For channel slopes and outlet protection between 2% and 10%: $D50 = [q (S)^{1.5}/4.75(10)^{-3}]^{0.53}$

For channel slopes between 10% and 40%: $D50 = [q (S)^{0.58}/3.93(10)^{-2}]^{0.53}$

D50 = Particle size for which 50% (by weight) of the sample is finer, in. S = Bed slope, ft./ft. q = Unit discharge, ft3/s/ft

For channels and outlet protection requiring larger than R-7 rip rap:

For flow velocities below 7.5 fps, use G-5. For flow velocities between 7.5 fps and 15 fps, use G-6. For flow velocities between 15 fps and 17.5 fps, use G-7.

CHANNEL LINI	NGS
Grout Class	D50 (in)
G-5	9
G-6	15
G-7	18

SUB	JECT	Surface Wat	er Con	trol Structures			PROJ	ECT NO.		110-416		
APPLI	CABLE	33CSR1 3.16	δ.c.4. S	tormwater, Soil Ei								
RL	JLE	Sedimentati	edimentation Control Plan									
PRO	PROJECT American Electric Power – Mitchell Landfill Excess Soil								c			0
LOCA	ATION	Gatts Ridge	PAGE		6	OF		8				
	MADE E	BY EGK	DATE	05/11/16	CHECKED BY	МТ	F	DATE		•		

Pipes: (Pipes 1 and 2 are shown within Sediment Pond Design Calculations)

		Invert Elevations			Pipe		Drainage	Peak	Max.
	HydroCAD			Length	Dia.	Slope	Area	Flow	Velocity
Pipe	I.D.	Inlet	Outlet	(ft)	(in.)	(%)	(acres)	(cfs)	(fps)
1	P-6	1268.63	1266.77	175.4	36	1.06	5.89	29.10	4.12
2	P-1	1146.16	1145.69	47	36	1.0	11.12	50.84	7.19

Pipe Outlet Protection:

Pipe	Pipe Dia. (in.)	Peak Flow (cfs)	Max. Velocity (fps)	Width Outlet (ft)	Width at End (ft)	Length (ft)	D50 (in)	Depth (in)	(R)Riprap Class/ (G)Grout Class
P-6	36	34.02	4.81	10	10	10	15	30	G-6
P-1	36	60.68	8.59	10	10	10	18	36	G-7
1P	24	31.88*	3.31	10	10	10	15	30	G-6
2P	42	57.59	6.92	10	10	10	15	30	G-6

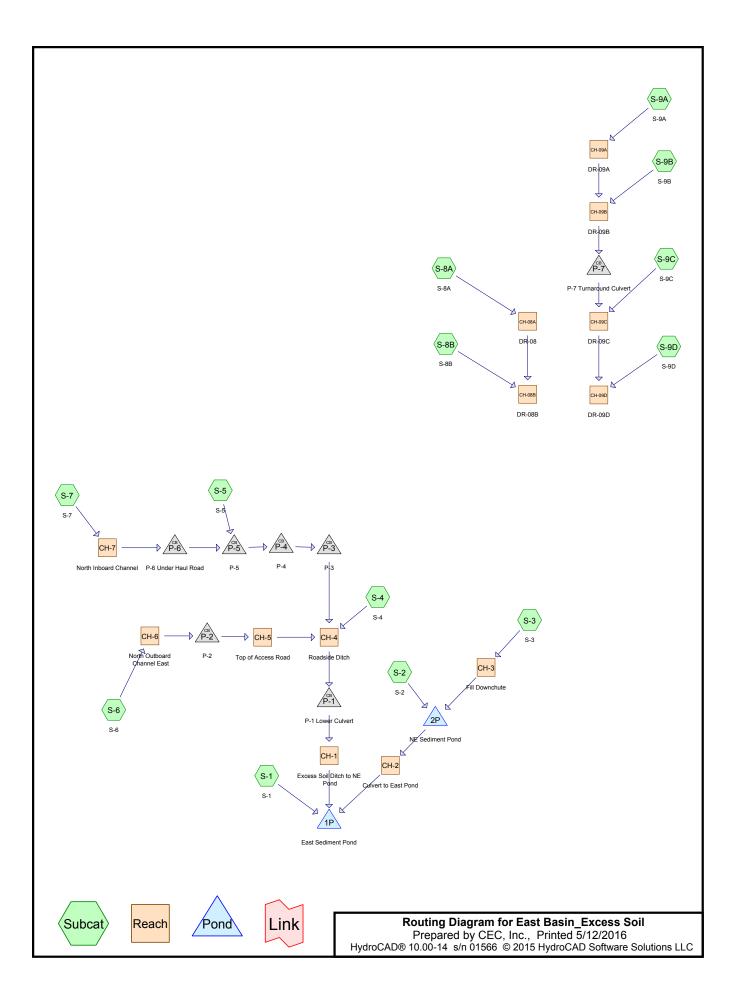
* Peak flow and velocity controlled by upstream riser wier.

** Plan dimensions governed by receiving rock-lined channel.

			C ₁ V ₁ I	& Environment	al Consul	tants,	Inc	•				
SUB	JECT	Surface Wat	er Con	trol Structures			PROJECT NO.			110	0-416	;
APPLI	CABLE	33CSR1 3.16	6.c.4. S	tormwater, Soil Er								
RU	JLE	Sedimentati	edimentation Control Plan									
PRO	PROJECT American Electric Power – Mitchell Landfill Excess Soi					s Soil			7	OF		•
LOCA	ATION	Gatts Ridge	PAGE		1			8				
	MADE BY EGK DATE 05/11/16 CHECKED BY M				МТ	F	DATE		-			

CONCLUSIONS:

All surface water control structures were designed based on peak flows resulting from the 25year, 24-hour storm event. A series of channels, pipe culverts, downchutes, diversion berms, and ponds divert all stormwater runoff from the Excess Soil Disposal Area, a portion of the existing Mitchell Landfill, and 4.4 offsite acres to the East and Northeast Sedimentation Ponds. Runoff will be controlled in a manner that satisfies applicable regulations. See Drawings for complete construction details. See attachments for Surface Water Channel Design HydroCAD output and hydrograph files.


REFERENCES:

- 1. United States Department of Commerce, Weather Bureau, Technical Paper No. 40, Rainfall Frequency Atlas of the United States, for Mitchell County, West Virginia.
- 2. National Resources Conservation Service, LINED WATERWAY OR OUTLET, September 2010. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs143_026310.pdf
- 3. HydroCAD Software Solutions LLC, HYDROCAD, Version 10.00-14, 2015, Computer Software Program.
 - 4. U.S. Department of Transportation, Federal Highway Administration. Hydraulic Engineering Circular No. 15, Third Edition: Design of Roadside Channels with Flexible Linings.

SUB	JECT	Surface Wat	er Con	trol Structures			PROJ		110-416			
APPLI	CABLE	33CSR1 3.16	6.c.4. S	tormwater, Soil Ei								
RU	JLE	Sedimentati	on Cor	trol Plan								
PROJECT American Electric Power – Mitchell					ndfill Excess	s Soil			•	OF		•
LOCATION		Gatts Ridge	PAGE		8			8				
		DATE	05/11/16 СНЕСКЕД ВУ М		МТ	F	DATE					

SURFACE WATER CHANNEL DESIGN HYDROCAD OUTPUT AND HYDROGRAPH FILES

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.485	98	Impervious (Gravel Road), HSG C (S-1, S-4, S-5)
1.242	98	Impervious (Pond Surface) (S-1, S-2)
5.393	91	Landfill (50-75% grass cover, fair), HSG C (S-7)
19.847	91	Newly graded area, HSG C (S-1, S-2, S-3, S-4, S-5, S-6, S-7, S-8B, S-9D)
0.500	98	Paved haul road, HSG C (S-7)
25.376	76	Woods/grass comb., Fair, HSG C (S-3, S-4, S-5, S-6, S-8A, S-8B, S-9A, S-9B,
		S-9C, S-9D)
52.843	84	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
51.601	HSG C	S-1, S-2, S-3, S-4, S-5, S-6, S-7, S-8A, S-8B, S-9A, S-9B, S-9C, S-9D
0.000	HSG D	
1.242	Other	S-1, S-2
52.843		TOTAL AREA

East Basin_Excess Soil

Prepared by CEC, Inc.	
HydroCAD® 10.00-14 s/n 01566 © 2015 HydroC	CAD Software Solutions LLC

Printed 5/12/2016 Page 4

Ground Covers (all nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchmer
пъG-А	пос-р	п <u>э</u> G-С	п3G-D	Other	TOLA	Ground	Subcatchiner
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	0.000	0.485	0.000	0.000	0.485	Impervious (Gravel Road)	
0.000	0.000	0.000	0.000	1.242	1.242	Impervious (Pond Surface)	
0.000	0.000	5.393	0.000	0.000	5.393	Landfill (50-75% grass cover, fair)	
0.000	0.000	19.847	0.000	0.000	19.847	Newly graded area	
0.000	0.000	0.500	0.000	0.000	0.500	Paved haul road	
0.000	0.000	25.376	0.000	0.000	25.376	Woods/grass comb., Fair	
0.000	0.000	51.601	0.000	1.242	52.843	TOTAL AREA	

East Basin_Excess Soil Prepared by CEC, Inc. HydroCAD® 10.00-14 s/n 01566 © 2015 HydroCAD Software Solutions LLC

Pipe Listing (all nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	1P	1,073.25	1,056.45	224.0	0.0750	0.013	24.0	0.0	0.0
2	2P	1,127.00	1,126.04	96.4	0.0100	0.013	36.0	0.0	0.0
3	P-1	1,147.82	1,147.58	47.7	0.0050	0.013	36.0	0.0	0.0
4	P-2	1,269.40	1,269.16	49.0	0.0049	0.013	15.0	0.0	0.0
5	P-3	1,248.43	1,247.06	254.5	0.0054	0.013	36.0	0.0	0.0
6	P-4	1,249.40	1,248.43	195.0	0.0050	0.013	36.0	0.0	0.0
7	P-5	1,249.95	1,249.40	109.4	0.0050	0.013	36.0	0.0	0.0
8	P-6	1,250.39	1,249.95	44.2	0.0100	0.013	30.0	0.0	0.0
9	P-7	1,125.92	1,123.94	35.0	0.0566	0.013	30.0	0.0	0.0

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

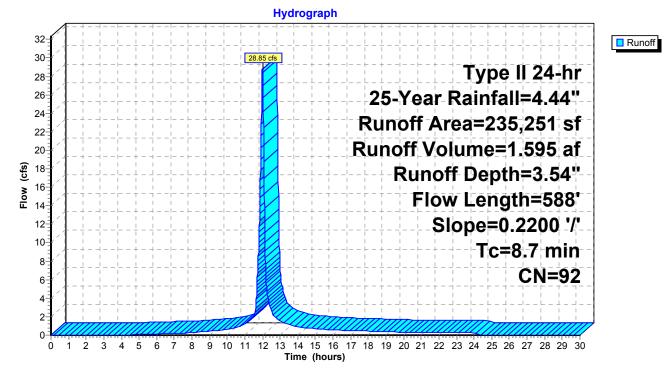
SubcatchmentS-1: S-1		Runoff Area=235,251 sf 19.89% Impervious Runoff Depth=3.54" Slope=0.2200 '/' Tc=8.7 min CN=92 Runoff=28.85 cfs 1.595 af
SubcatchmentS-2: S-2		Runoff Area=1.730 ac 15.61% Impervious Runoff Depth=3.54" Flow Length=457' Tc=8.0 min CN=92 Runoff=9.46 cfs 0.511 af
SubcatchmentS-3: S-3	Flow	Runoff Area=12.481 ac 0.00% Impervious Runoff Depth=3.14" v Length=1,021' Tc=14.3 min CN=88 Runoff=50.89 cfs 3.266 af
SubcatchmentS-4: S-4	Flo	Runoff Area=227,818 sf 6.76% Impervious Runoff Depth=2.95" ow Length=991' Tc=10.0 min CN=86 Runoff=23.28 cfs 1.285 af
SubcatchmentS-5: S-5		Runoff Area=28,663 sf 4.41% Impervious Runoff Depth=2.33" Flow Length=212' Tc=4.1 min CN=79 Runoff=2.92 cfs 0.128 af
SubcatchmentS-6: S-6	F	Runoff Area=32,588 sf 0.00% Impervious Runoff Depth=2.41" Flow Length=688' Tc=14.0 min CN=80 Runoff=2.42 cfs 0.150 af
SubcatchmentS-7: S-7	Flo	Runoff Area=275,376 sf 7.91% Impervious Runoff Depth=3.54" ow Length=580' Tc=10.1 min CN=92 Runoff=32.25 cfs 1.867 af
SubcatchmentS-8A: S-8A	Flo	Runoff Area=5.010 ac 0.00% Impervious Runoff Depth=2.08" ow Length=784' Tc=17.9 min CN=76 Runoff=12.31 cfs 0.869 af
SubcatchmentS-8B: S-8B	Flo	Runoff Area=5.004 ac 0.00% Impervious Runoff Depth=2.16" ow Length=751' Tc=11.4 min CN=77 Runoff=15.86 cfs 0.902 af
SubcatchmentS-9A: S-9A	Flo	Runoff Area=3.700 ac 0.00% Impervious Runoff Depth=2.08" ow Length=772' Tc=13.1 min CN=76 Runoff=10.63 cfs 0.642 af
SubcatchmentS-9B: S-9B	Flo	Runoff Area=3.670 ac 0.00% Impervious Runoff Depth=2.08" ow Length=860' Tc=13.3 min CN=76 Runoff=10.47 cfs 0.637 af
SubcatchmentS-9C: S-9C	F	Runoff Area=1.030 ac 0.00% Impervious Runoff Depth=2.08" Flow Length=630' Tc=13.8 min CN=76 Runoff=2.89 cfs 0.179 af
SubcatchmentS-9D: S-9D	F	Runoff Area=1.860 ac 0.00% Impervious Runoff Depth=2.16" Flow Length=925' Tc=13.5 min CN=77 Runoff=5.48 cfs 0.335 af
Reach CH-08A: DR-08		/g. Flow Depth=1.03' Max Vel=2.89 fps Inflow=12.31 cfs 0.869 af 5.0' S=0.0209 '/' Capacity=26.52 cfs Outflow=12.16 cfs 0.869 af
Reach CH-08B: DR-08B		/g. Flow Depth=0.83' Max Vel=8.50 fps Inflow=25.95 cfs 1.771 af 2.0' S=0.2292 '/' Capacity=37.54 cfs Outflow=25.92 cfs 1.771 af
Reach CH-09A: DR-09A		/g. Flow Depth=0.57' Max Vel=5.96 fps Inflow=10.63 cfs 0.642 af 2.0' S=0.1694 '/' Capacity=32.27 cfs Outflow=10.62 cfs 0.642 af

East Basin_Excess Soil Prepared by CEC, Inc.		R <i>ainfall=4.44"</i> ed 5/12/2016
HydroCAD® 10.00-14 s/n 01566 © 201	5 HydroCAD Software Solutions LLC	Page 7
Reach CH-09B: DR-09B n=0.055	Avg. Flow Depth=1.32' Max Vel=3.43 fps Inflow=21.0 L=166.0' S=0.0226 '/' Capacity=27.57 cfs Outflow=21.0	
Reach CH-09C: DR-09C n=0.055	Avg. Flow Depth=1.32' Max Vel=3.88 fps Inflow=23.8 L=159.0' S=0.0289 '/' Capacity=31.20 cfs Outflow=23.8	
Reach CH-09D: DR-09D n=0.055	Avg. Flow Depth=0.83' Max Vel=9.69 fps Inflow=29.2 L=192.0' S=0.3006 '/' Capacity=42.99 cfs Outflow=29.2	
	E Avg. Flow Depth=1.14' Max Vel=11.31 fps Inflow=55.4 L=100.0' S=0.2882 '/' Capacity=185.07 cfs Outflow=55.4	
	Avg. Flow Depth=1.13' Max Vel=9.28 fps Inflow=44.7 L=34.0' S=0.1959 '/' Capacity=152.58 cfs Outflow=44.7	
Reach CH-3: Fill Downchute n=0.055	Avg. Flow Depth=1.16' Max Vel=10.11 fps Inflow=50.8 L=375.0' S=0.2266 '/' Capacity=164.12 cfs Outflow=50.7	
Reach CH-4: Roadside Ditch n=0.055	Avg. Flow Depth=1.41' Max Vel=8.18 fps Inflow=56.4 L=779.6' S=0.1202 '/' Capacity=119.52 cfs Outflow=55.4	
Reach CH-5: Top of Access Road n=0.055	Avg. Flow Depth=0.26' Max Vel=3.45 fps Inflow=2.2 L=163.7' S=0.1350 '/' Capacity=126.67 cfs Outflow=2.2	
	nel Avg. Flow Depth=0.35' Max Vel=2.37 fps Inflow=2.4 5 L=604.0' S=0.0455 '/' Capacity=73.56 cfs Outflow=2.2	
Reach CH-7: North Inboard Channe n=0.055	Avg. Flow Depth=1.16' Max Vel=4.77 fps Inflow=32.2 L=844.0' S=0.0518 '/' Capacity=274.48 cfs Outflow=30.5	
Pond 1P: East Sediment Pond Primary=20.78	Peak Elev=1,117.59' Storage=323,191 cf Inflow=119.1 3 cfs 4.347 af Secondary=0.00 cfs 0.000 af Outflow=20.7	
Pond 2P: NE Sediment Pond 36.0" F	Peak Elev=1,130.23' Storage=40,265 cf Inflow=57.5 Round Culvert n=0.013 L=96.4' S=0.0100 '/' Outflow=44.7	
Pond P-1: P-1 Lower Culvert 36.0" F	Peak Elev=1,152.34' Inflow=55.4 Round Culvert n=0.013 L=47.7' S=0.0050 '/' Outflow=55.4	
Pond P-2: P-2 15.0"	Peak Elev=1,270.28' Inflow=2.2 Round Culvert n=0.013 L=49.0' S=0.0049 '/' Outflow=2.2	
Pond P-3: P-3 36.0" Re	Peak Elev=1,251.02' Inflow=31.7 ound Culvert n=0.013 L=254.5' S=0.0054 '/' Outflow=31.7	
Pond P-4: P-4 36.0" Ro	Peak Elev=1,252.34' Inflow=31.7 ound Culvert n=0.013 L=195.0' S=0.0050 '/' Outflow=31.7	
Pond P-5: P-5 36.0" Re	Peak Elev=1,253.20' Inflow=31.7 ound Culvert n=0.013 L=109.4' S=0.0050 '/' Outflow=31.7	

East Basin_Excess Soil	Type II 24-hr 25-Year Rainfall=4.44"
Prepared by CEC, Inc.	Printed 5/12/2016
HydroCAD® 10.00-14 s/n 01566 © 2015 HydroCAD Software	Solutions LLC Page 8
Pond P-6: P-6 Under Haul Road 30.0" Round Culvert n=0.013	Peak Elev=1,254.86' Inflow=30.53 cfs 1.867 af L=44.2' S=0.0100 '/' Outflow=30.53 cfs 1.867 af
Pond P-7: P-7 Turnaround Culvert	Peak Elev=1,127.97' Inflow=21.00 cfs 1.279 af

30.0" Round Culvert n=0.013 L=35.0' S=0.0566 '/' Outflow=21.00 cfs 1.279 af

Total Runoff Area = 52.843 acRunoff Volume = 12.364 afAverage Runoff Depth = 2.81"95.78% Pervious = 50.616 ac4.22% Impervious = 2.227 ac


Summary for Subcatchment S-1: S-1

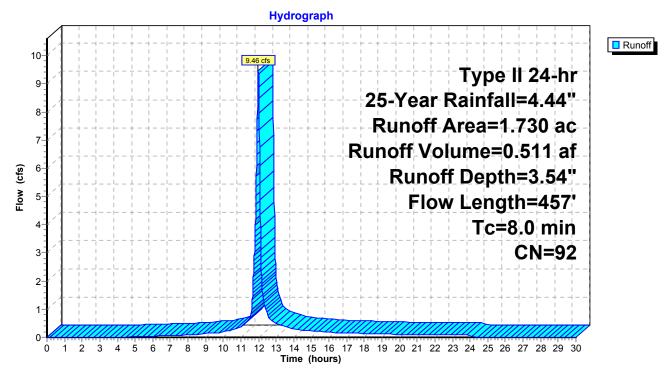
Runoff = 28.85 cfs @ 12.00 hrs, Volume= 1.595 af, Depth= 3.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

	A	rea (sf)	CN E	Description							
	1	88,449		Newly graded area, HSG C							
*		42,362	98 Ir	npervious	(Pond Surf	face)					
*		4,440				bad), HSG C					
	2	35,251	92 V	Veighted A	verage						
	1	88,449	8	0.11% Per	vious Area						
		46,802	1	9.89% Imp	pervious Ar	ea					
	Тс	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
_	7.3	200	0.2200	0.45		Sheet Flow, L-1					
						Grass: Short n= 0.150 P2= 2.54"					
	1.4	388	0.2200	4.69		Shallow Concentrated Flow, L-2					
						Nearly Bare & Untilled Kv= 10.0 fps					
_	8.7	588	Total								

Subcatchment S-1: S-1

Summary for Subcatchment S-2: S-2


Runoff = 9.46 cfs @ 11.99 hrs, Volume= 0.511 af, Depth= 3.54"

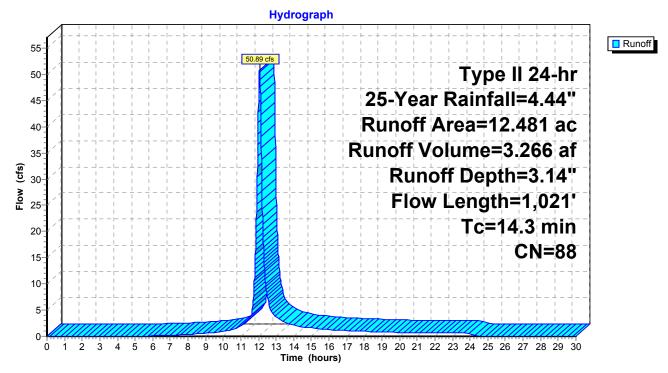
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

_	Area	(ac) (CN De	scription		
	1.	460	91 Ne	wly graded	area, HSG	С
*	0.	270	98 lm	pervious (P	ond Surface	
	1.	730	92 W	eighted Ave	rage	
	1.	460	84	.39% Pervic	ous Area	
	0.	270	15	.61% Imper	vious Area	
	Тс	Length			Capacity	Description
_	(min)	(feet)	(ft/fl) (ft/sec)	(cfs)	
	7.2	200	0.231	0 0.46		Sheet Flow, L-1
						Grass: Short n= 0.150 P2= 2.54"
	0.8	257	0.300	0 5.48		Shallow Concentrated Flow, L-2
_						Nearly Bare & Untilled Kv= 10.0 fps
	8.0	157	Total			

8.0 457 Total

Subcatchment S-2: S-2

Summary for Subcatchment S-3: S-3

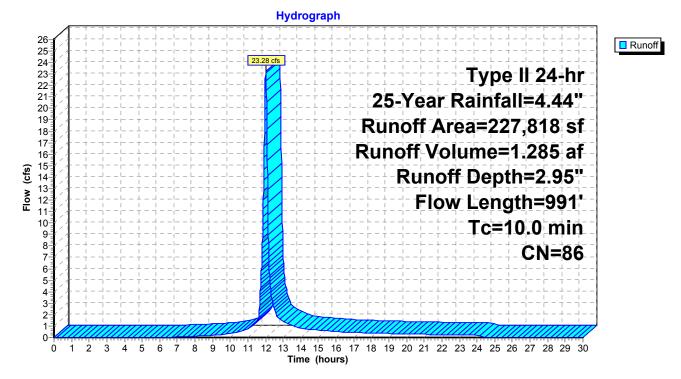

Runoff = 50.89 cfs @ 12.06 hrs, Volume= 3.266 af, Depth= 3.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

Area	(ac) C	N Desc	cription		
2.	<u>806 7</u>	<u>'6 Woo</u>	ds/grass c	<u>comb., Fair,</u>	, HSG C
12.	481 8	8 Weig	ghted Aver	age	
12.	481	100.	00% Pervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.8	138	0.2840	0.21		Sheet Flow, L-1
					Woods: Light underbrush n= 0.400 P2= 2.54"
1.5	365	0.1680	4.10		Shallow Concentrated Flow, L-3
					Nearly Bare & Untilled Kv= 10.0 fps
1.0	143	0.0290	2.46	10.33	Channel Flow, L-4
					Area= 4.2 sf Perim= 42.5' r= 0.10'
					n= 0.022 Earth, clean & straight
1.0	375	0.2350	6.13	24.51	Channel Flow, L-5
					Area= 4.0 sf Perim= 12.5' r= 0.32' n= 0.055
	9. 2. 12. 12. (min) 10.8 1.5 1.0	9.675 9 2.806 7 12.481 8 12.481 Tc Length (min) (feet) 10.8 138 1.5 365 1.0 143	9.675 91 New 2.806 76 Woo 12.481 88 Weig 12.481 100. Tc Length Slope (min) (feet) (ft/ft) 10.8 138 0.2840 1.5 365 0.1680 1.0 143 0.0290	9.675 91 Newly graded i 2.806 76 Woods/grass c 12.481 88 Weighted Aver 12.481 100.00% Pervi Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec) 10.8 138 0.2840 0.21 1.5 365 0.1680 4.10 1.0 143 0.0290 2.46	9.675 91 Newly graded area, HSG 2.806 76 Woods/grass comb., Fair, 12.481 88 Weighted Average 12.481 100.00% Pervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) 10.8 138 0.2840 0.21 1.5 365 0.1680 4.10 1.0 143 0.0290 2.46 10.33

14.3 1,021 Total

Subcatchment S-3: S-3

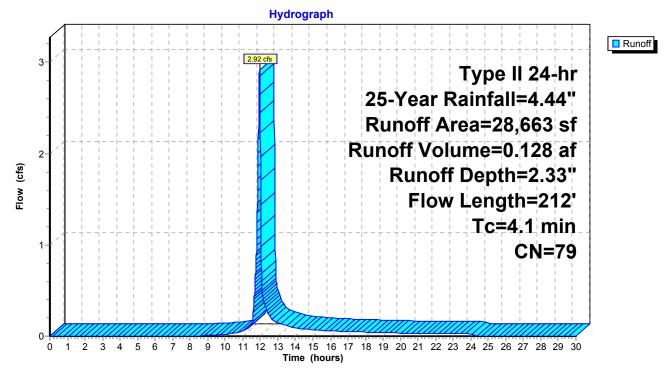

Summary for Subcatchment S-4: S-4

Runoff = 23.28 cfs @ 12.01 hrs, Volume= 1.285 af, Depth= 2.95"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

_	A	rea (sf)	CN E	Description						
	1	33,696	91 N	lewly grad	ed area, HS	SG C				
*		15,407 98 Impervious (Gravel Road), HSG C								
_		78,715	76 V	Voods/grass comb., Fair, HSG C						
	2	27,818	86 V	Veighted A	verage					
	2	12,411	9	3.24% Per	vious Area					
		15,407	6	.76% Impe	ervious Are	а				
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	7.8	200	0.1860	0.42		Sheet Flow, L-1				
						Grass: Short n= 0.150 P2= 2.54"				
	1.0	161	0.1350	2.57		Shallow Concentrated Flow, L-2				
						Short Grass Pasture Kv= 7.0 fps				
	1.2	630	0.1200	9.09	181.77	Channel Flow, L-3				
_						Area= 20.0 sf Perim= 20.9' r= 0.96' n= 0.055				
	10.0	991	Total							

Subcatchment S-4: S-4

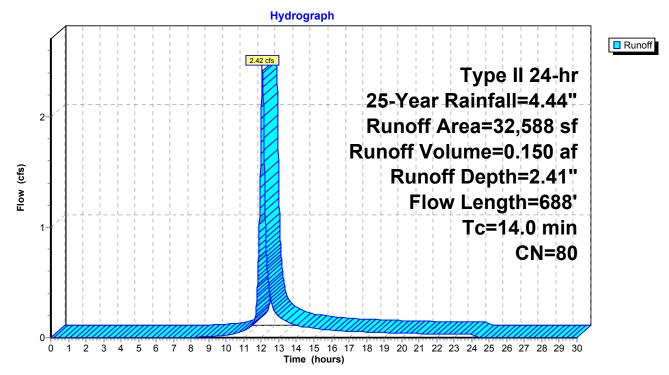

Summary for Subcatchment S-5: S-5

Runoff = 2.92 cfs @ 11.95 hrs, Volume= 0.128 af, Depth= 2.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

_	A	rea (sf)	CN E	Description							
		22,651	76 V	6 Woods/grass comb., Fair, HSG C							
		4,749	91 N	0							
*		1,263	98 li	mpervious	(Gravel Ro	ad), HSG C					
		28,663	79 V	Veighted A	verage						
		27,400	g	5.59% Pei	rvious Area						
		1,263	4	4.41% Impervious Area							
				-							
	Тс	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	3.7	103	0.3160	0.46		Sheet Flow, L-1					
						Grass: Short n= 0.150 P2= 2.54"					
	0.4	109	0.0620	4.65	55.77	Channel Flow, L-2					
						Area= 12.0 sf Perim= 20.9' r= 0.57' n= 0.055					
	4.1	212	Total								

Subcatchment S-5: S-5

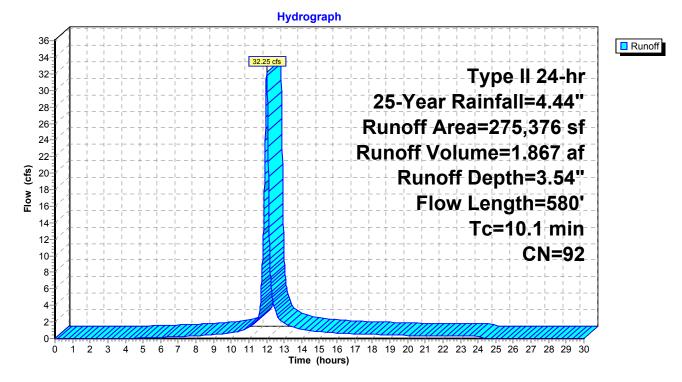

Summary for Subcatchment S-6: S-6

Runoff = 2.42 cfs @ 12.06 hrs, Volume= 0.150 af, Depth= 2.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

A	rea (sf)	CN I	CN Description							
	23,793 76 Woods/grass comb., Fair, HSG C									
	8,795	91 I	Newly grad	ed area, HS	SG C					
	32,588	80 \	Neighted A	verage						
	32,588		100.00% P	ervious Are	а					
Tc	Length	Slope		Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
11.5	84	0.0890	0.12		Sheet Flow, L-1					
					Woods: Light underbrush n= 0.400 P2= 2.54"					
2.5	604	0.0455	3.98	47.77	Channel Flow, L-2					
					Area= 12.0 sf Perim= 20.9' r= 0.57' n= 0.055					
14.0	688	Total								

Subcatchment S-6: S-6

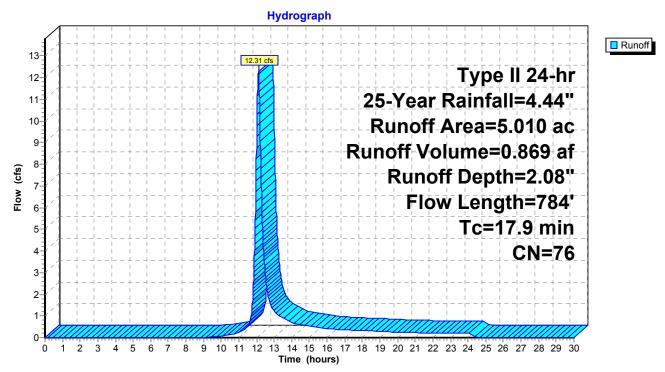

Summary for Subcatchment S-7: S-7

Runoff = 32.25 cfs @ 12.01 hrs, Volume= 1.867 af, Depth= 3.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

_	A	rea (sf)	CN E	Description						
*		21,792	98 F							
	18,668 91 Newly graded area, HSG C									
*	* 234,916 91 Landfill (50-75% grass cover, fair), HSG C									
	2	75,376	92 V	Veighted A	verage					
	253,584 92.09% Pervious Area									
		21,792	7	.91% Impe	ervious Are	а				
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	8.5	200	0.0170	0.39		Sheet Flow, L-1				
						Fallow n= 0.050 P2= 2.54"				
	1.3	218	0.0790	2.81		Shallow Concentrated Flow, L-2				
						Nearly Bare & Untilled Kv= 10.0 fps				
	0.3	162	0.2120	8.98	179.64	Channel Flow, L-3				
						Area= 20.0 sf Perim= 32.6' r= 0.61' n= 0.055				
	10.1	580	Total							

Subcatchment S-7: S-7


Summary for Subcatchment S-8A: S-8A

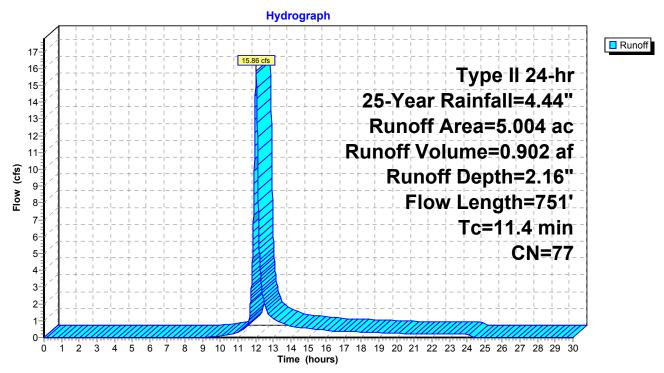
Runoff = 12.31 cfs @ 12.11 hrs, Volume= 0.869 af, Depth= 2.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

_	Area	(ac) C	N Dese	cription		
	5.	010 7	'6 Woo	ds/grass c	comb., Fair,	HSG C
	5.	010	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	14.3	200	0.2960	0.23		Sheet Flow, L-1
	1.6	382	0.3380	4.07		Woods: Light underbrush n= 0.400 P2= 2.54" Shallow Concentrated Flow, L-2 Short Cross Posture, Kuz 7.0 fps
	2.0	202	0.0170	1.65	6.59	Short Grass Pasture Kv= 7.0 fps Channel Flow, L-3 Area= 4.0 sf Perim= 12.5' r= 0.32' n= 0.055
	17.9	784	Total			

Subcatchment S-8A: S-8A

Summary for Subcatchment S-8B: S-8B

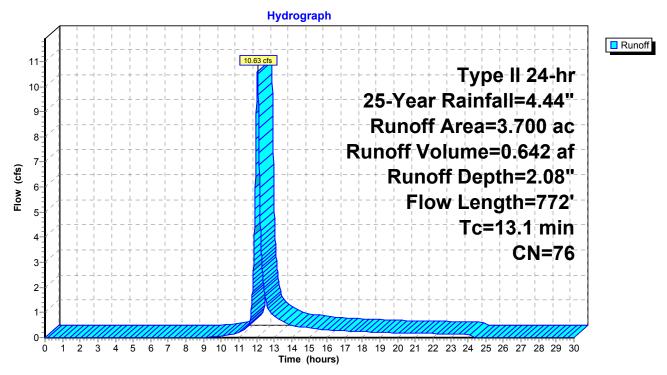

Runoff = 15.86 cfs @ 12.03 hrs, Volume= 0.902 af, Depth= 2.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

_	Area	(ac) C	N Des	cription		
	4.	590 7	76 Woo	ds/grass d	comb., Fair,	HSG C
_	0.	414 9	1 New	ly graded	area, HSG	C
	5.	004 7	7 Weig	ghted Aver	age	
	5.	004	100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	9.5	200	0.2950	0.35		Sheet Flow, L-1
						Grass: Dense n= 0.240 P2= 2.54"
	1.2	261	0.2870	3.75		Shallow Concentrated Flow, L-2
	0.0	457	0 4000	7 50	00.44	Short Grass Pasture Kv= 7.0 fps
	0.3	157	0.4220	7.53	30.11	Channel Flow, L-3 Area= 4.0 sf Perim= 12.5' r= 0.32' n= 0.060
	0.4	133	0.2160	5.87	23.50	Channel Flow, L-4
	0.4	100	0.2100	5.07	20.00	Area= 4.0 sf Perim= 12.5' r= 0.32' n= 0.055
-	44.4	754	T - 4 - 1			

11.4 751 Total

Subcatchment S-8B: S-8B

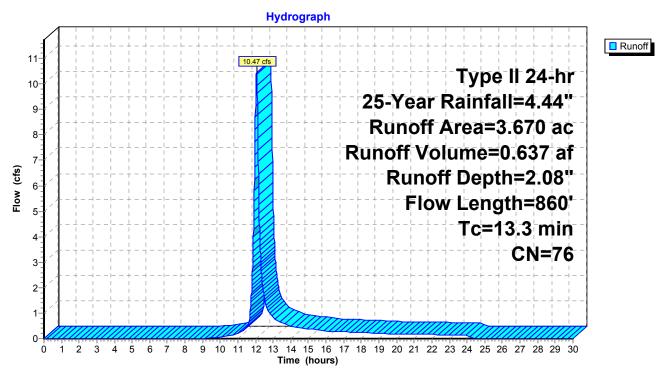

Summary for Subcatchment S-9A: S-9A

Runoff = 10.63 cfs @ 12.05 hrs, Volume= 0.642 af, Depth= 2.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

_	Area	(ac) C	N Dese	cription					
	3.	700 7	'6 Woo	ds/grass o	comb., Fair,	HSG C			
	3.700 100.00% Pervious Area								
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	10.4	200	0.2350	0.32		Sheet Flow, L-1			
	2.4	482	0.2210	3.29		Grass: Dense n= 0.240 P2= 2.54" Shallow Concentrated Flow, L-2			
	0.3	90	0.1790	5.35	21.39	Short Grass Pasture Kv= 7.0 fps Channel Flow, L-3 Area= 4.0 sf Perim= 12.5' r= 0.32' n= 0.055			
_	13.1	772	Total						

Subcatchment S-9A: S-9A

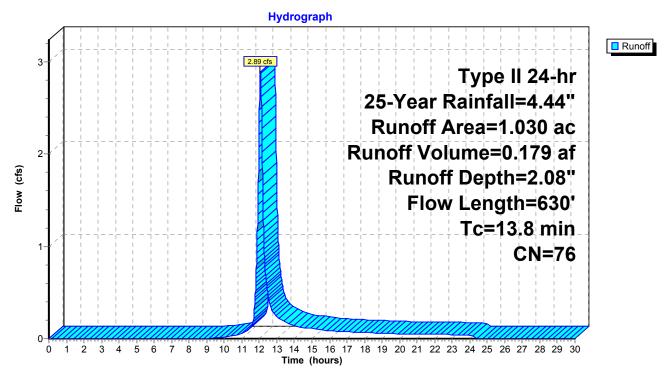

Summary for Subcatchment S-9B: S-9B

Runoff = 10.47 cfs @ 12.05 hrs, Volume= 0.637 af, Depth= 2.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

 Area	(ac) C	N Dese	cription					
3.	670 7	'6 Woo	ds/grass o	comb., Fair,	HSG C			
3.670 100.00% Pervious Area								
 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
9.6	200	0.2900	0.35		Sheet Flow, L-1			
2.3	495	0.2560	3.54		Grass: Dense n= 0.240 P2= 2.54" Shallow Concentrated Flow, L-2			
1.4	165	0.0220	1.97	9.85	Short Grass Pasture Kv= 7.0 fps Channel Flow, L-3 Area= 5.0 sf Perim= 14.5' r= 0.34' n= 0.055			
13.3	860	Total						

Subcatchment S-9B: S-9B

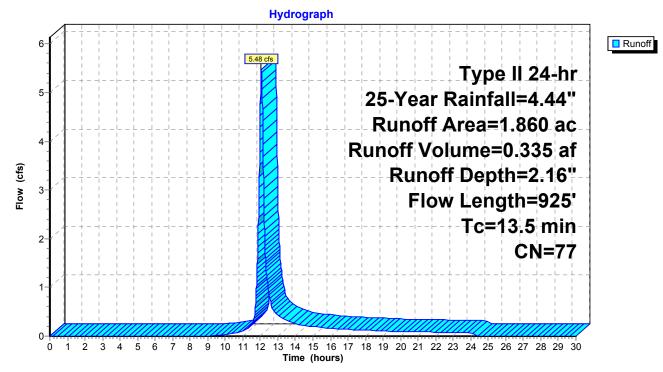

Summary for Subcatchment S-9C: S-9C

Runoff = 2.89 cfs @ 12.06 hrs, Volume= 0.179 af, Depth= 2.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

_	Area	(ac) C	N Des	cription				
1.030 76 Woods/grass comb., Fair, HSG C								
1.030 100.00% Pervious Area								
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	11.3	200	0.1910	0.29		Sheet Flow, L-1		
	1.3	271	0.2460	3.47		Grass: Dense n= 0.240 P2= 2.54" Shallow Concentrated Flow, L-2 Short Grass Desture Kirz 7.0 fp2		
	1.2	159	0.0280	2.22	11.12	Short Grass Pasture Kv= 7.0 fps Channel Flow, L-3 Area= 5.0 sf Perim= 14.5' r= 0.34' n= 0.055		
	13.8	630	Total					

Subcatchment S-9C: S-9C


Summary for Subcatchment S-9D: S-9D

Runoff = 5.48 cfs @ 12.06 hrs, Volume= 0.335 af, Depth= 2.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=4.44"

_	Area	(ac) C	N Dese	cription				
1.697 76 Woods/grass comb., Fair,								
0.163 91 Newly graded area, HSG C								
1.860 77 Weighted Average								
	1.	860	100.	00% Pervi	ous Area			
	Тс	Length	Slope	Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	10.4	200	0.2330	0.32		Sheet Flow, L-1		
						Grass: Dense n= 0.240 P2= 2.54"		
	2.8	590	0.2560	3.54		Shallow Concentrated Flow, L-2		
						Short Grass Pasture Kv= 7.0 fps		
	0.3	135	0.3590	7.57	30.29	•		
						Area= 4.0 sf Perim= 12.5' r= 0.32' n= 0.055		
_	13.5	925	Total					

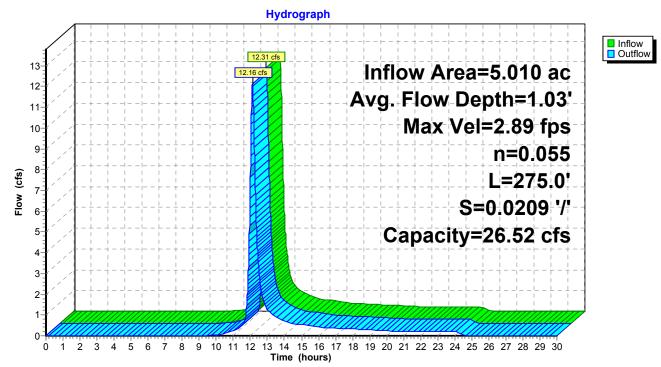
Subcatchment S-9D: S-9D

Summary for Reach CH-08A: DR-08

 Inflow Area =
 5.010 ac,
 0.00% Impervious,
 Inflow Depth =
 2.08"
 for
 25-Year event

 Inflow =
 12.31 cfs @
 12.11 hrs,
 Volume=
 0.869 af

 Outflow =
 12.16 cfs @
 12.13 hrs,
 Volume=
 0.869 af,
 Atten=
 1%,
 Lag=
 1.0 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 2.89 fps, Min. Travel Time= 1.6 min Avg. Velocity = 0.92 fps, Avg. Travel Time= 5.0 min

Peak Storage= 1,158 cf @ 12.13 hrs Average Depth at Peak Storage= 1.03' Bank-Full Depth= 1.50' Flow Area= 7.5 sf, Capacity= 26.52 cfs

2.00' x 1.50' deep channel, n= 0.055 Side Slope Z-value= 2.0 '/' Top Width= 8.00' Length= 275.0' Slope= 0.0209 '/' Inlet Invert= 1,124.75', Outlet Invert= 1,119.00'

Reach CH-08A: DR-08

Summary for Reach CH-08B: DR-08B

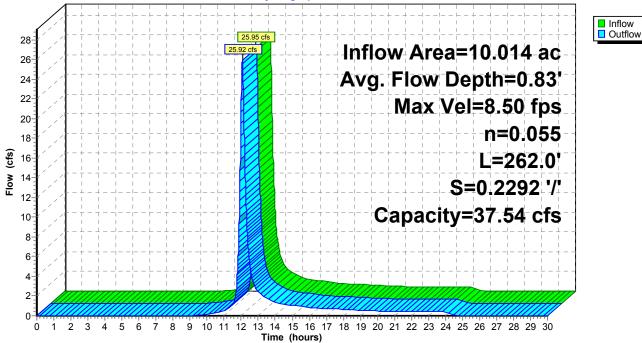
[62] Hint: Exceeded Reach CH-08A OUTLET depth by 0.01' @ 9.20 hrs

 Inflow Area =
 10.014 ac, 0.00% Impervious, Inflow Depth = 2.12" for 25-Year event

 Inflow =
 25.95 cfs @
 12.06 hrs, Volume=
 1.771 af

 Outflow =
 25.92 cfs @
 12.07 hrs, Volume=
 1.771 af, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 8.50 fps, Min. Travel Time= 0.5 min Avg. Velocity = 2.58 fps, Avg. Travel Time= 1.7 min


Peak Storage= 799 cf @ 12.07 hrs Average Depth at Peak Storage= 0.83' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 37.54 cfs

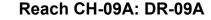
2.00' x 1.00' deep channel, n= 0.055 Side Slope Z-value= 2.0 '/' Top Width= 6.00' Length= 262.0' Slope= 0.2292 '/' Inlet Invert= 1,119.00', Outlet Invert= 1,058.95'

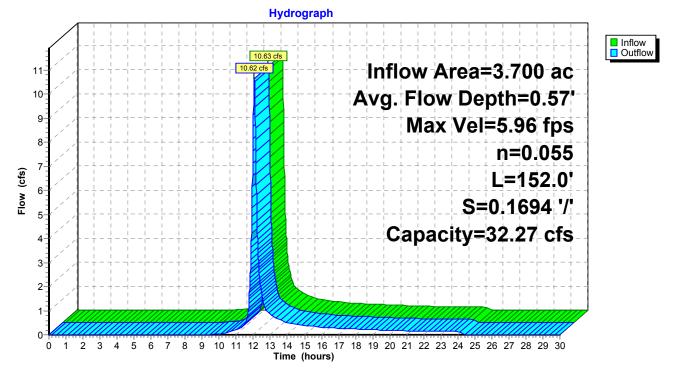
Reach CH-08B: DR-08B

Hydrograph

Summary for Reach CH-09A: DR-09A

 Inflow Area =
 3.700 ac,
 0.00% Impervious,
 Inflow Depth =
 2.08"
 for
 25-Year event


 Inflow =
 10.63 cfs @
 12.05 hrs,
 Volume=
 0.642 af


 Outflow =
 10.62 cfs @
 12.06 hrs,
 Volume=
 0.642 af,
 Atten= 0%,
 Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 5.96 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.78 fps, Avg. Travel Time= 1.4 min

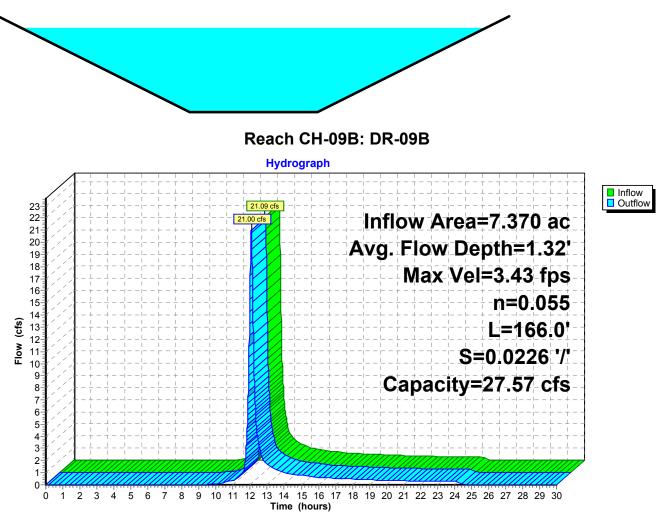
Peak Storage= 271 cf @ 12.06 hrs Average Depth at Peak Storage= 0.57' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 32.27 cfs

2.00' x 1.00' deep channel, n= 0.055 Side Slope Z-value= 2.0 '/' Top Width= 6.00' Length= 152.0' Slope= 0.1694 '/' Inlet Invert= 1,155.42', Outlet Invert= 1,129.67'

Summary for Reach CH-09B: DR-09B

[62] Hint: Exceeded Reach CH-09A OUTLET depth by 0.75' @ 12.08 hrs

 Inflow Area =
 7.370 ac, 0.00% Impervious, Inflow Depth = 2.08" for 25-Year event


 Inflow =
 21.09 cfs @
 12.06 hrs, Volume=
 1.279 af

 Outflow =
 21.00 cfs @
 12.07 hrs, Volume=
 1.279 af, Atten= 0%, Lag= 0.6 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 3.43 fps, Min. Travel Time= 0.8 min Avg. Velocity = 1.11 fps, Avg. Travel Time= 2.5 min

Peak Storage= 1,017 cf @ 12.07 hrs Average Depth at Peak Storage= 1.32' Bank-Full Depth= 1.50' Flow Area= 7.5 sf, Capacity= 27.57 cfs

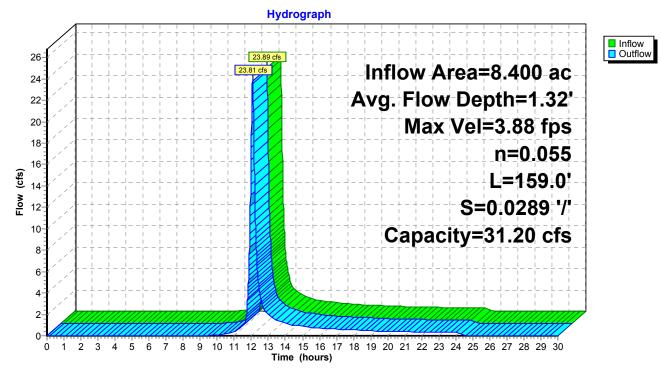
2.00' x 1.50' deep channel, n= 0.055 Side Slope Z-value= 2.0 '/' Top Width= 8.00' Length= 166.0' Slope= 0.0226 '/' Inlet Invert= 1,129.67', Outlet Invert= 1,125.92'

Summary for Reach CH-09C: DR-09C

 Inflow Area =
 8.400 ac,
 0.00% Impervious,
 Inflow Depth =
 2.08"
 for
 25-Year event

 Inflow =
 23.89 cfs @
 12.07 hrs,
 Volume=
 1.457 af

 Outflow =
 23.81 cfs @
 12.07 hrs,
 Volume=
 1.457 af,


Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 3.88 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.25 fps, Avg. Travel Time= 2.1 min

Peak Storage= 976 cf @ 12.07 hrs Average Depth at Peak Storage= 1.32' Bank-Full Depth= 1.50' Flow Area= 7.5 sf, Capacity= 31.20 cfs

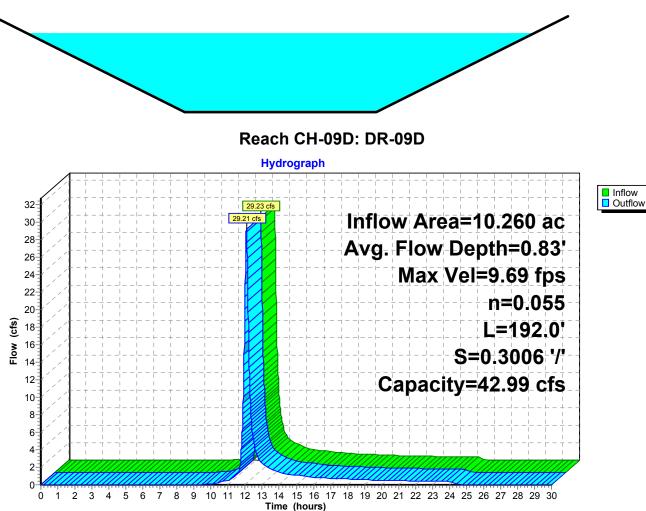
2.00' x 1.50' deep channel, n= 0.055 Side Slope Z-value= 2.0 '/' Top Width= 8.00' Length= 159.0' Slope= 0.0289 '/' Inlet Invert= 1,123.94', Outlet Invert= 1,119.34'

Reach CH-09C: DR-09C

Summary for Reach CH-09D: DR-09D

[61] Hint: Exceeded Reach CH-09C outlet invert by 0.82' @ 12.08 hrs

 Inflow Area =
 10.260 ac, 0.00% Impervious, Inflow Depth = 2.10" for 25-Year event


 Inflow =
 29.23 cfs @
 12.07 hrs, Volume=
 1.793 af

 Outflow =
 29.21 cfs @
 12.08 hrs, Volume=
 1.793 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 9.69 fps, Min. Travel Time= 0.3 min Avg. Velocity = 2.89 fps, Avg. Travel Time= 1.1 min

Peak Storage= 578 cf @ 12.08 hrs Average Depth at Peak Storage= 0.83' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 42.99 cfs

2.00' x 1.00' deep channel, n= 0.055 Side Slope Z-value= 2.0 '/' Top Width= 6.00' Length= 192.0' Slope= 0.3006 '/' Inlet Invert= 1,119.34', Outlet Invert= 1,061.62'

Inflow Area =

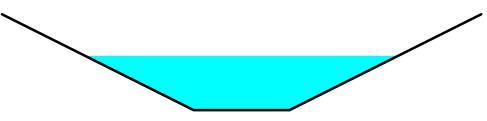
Summary for Reach CH-1: Excess Soil Ditch to NE Pond

12.958 ac, 6.81% Impervious, Inflow Depth = 3.18" for 25-Year event

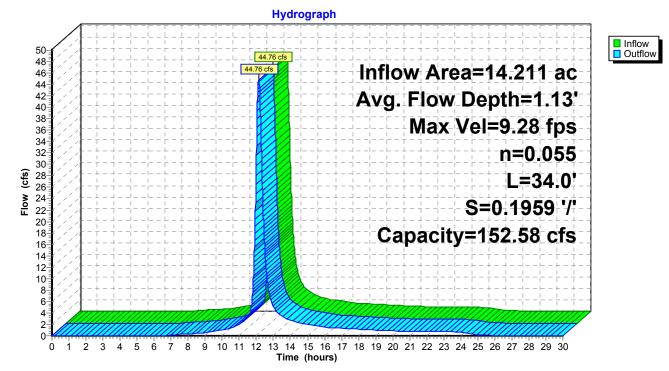
Inflow 55.46 cfs @ 12.05 hrs, Volume= 3.430 af = Outflow 55.45 cfs @ 12.05 hrs, Volume= 3.430 af, Atten= 0%, Lag= 0.1 min = Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 11.31 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.87 fps, Avg. Travel Time= 0.6 min Peak Storage= 490 cf @ 12.05 hrs Average Depth at Peak Storage= 1.14' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 185.07 cfs 2.00' x 2.00' deep channel, n= 0.055 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 100.0' Slope= 0.2882 '/' Inlet Invert= 1,147.82', Outlet Invert= 1,119.00' Reach CH-1: Excess Soil Ditch to NE Pond Hydrograph Inflow Outflow 60 55.45 cfs Inflow Area=12.958 ac 55-Avg. Flow Depth=1.14' 50-Max Vel=11.31 fps 45 40 n=0.055 (cfs) 35 L=100.0' Flow 30-S=0.2882 '/' 25 Capacity=185.07 cfs 20 15 10-5 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

Summary for Reach CH-2: Culvert to East Pond

 Inflow Area =
 14.211 ac, 1.90% Impervious, Inflow Depth > 3.19" for 25-Year event


 Inflow =
 44.76 cfs @
 12.14 hrs, Volume=
 3.772 af

 Outflow =
 44.76 cfs @
 12.14 hrs, Volume=
 3.772 af, Atten= 0%, Lag= 0.0 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 9.28 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.62 fps, Avg. Travel Time= 0.2 min

Peak Storage= 164 cf @ 12.14 hrs Average Depth at Peak Storage= 1.13' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 152.58 cfs

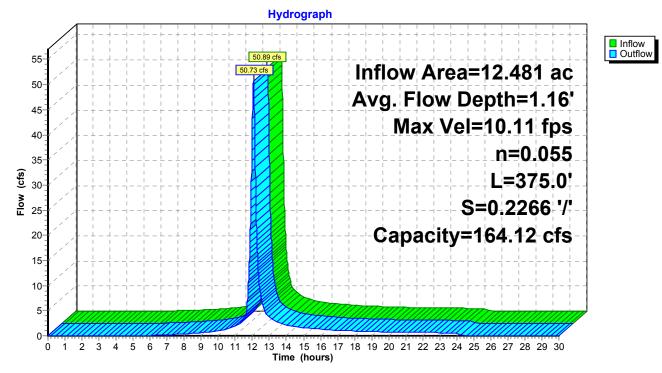
2.00' x 2.00' deep channel, n= 0.055 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 34.0' Slope= 0.1959 '/' Inlet Invert= 1,125.66', Outlet Invert= 1,119.00'

Reach CH-2: Culvert to East Pond

Summary for Reach CH-3: Fill Downchute

 Inflow Area =
 12.481 ac,
 0.00% Impervious,
 Inflow Depth =
 3.14"
 for
 25-Year event

 Inflow =
 50.89 cfs @
 12.06 hrs,
 Volume=
 3.266 af


 Outflow =
 50.73 cfs @
 12.07 hrs,
 Volume=
 3.266 af,
 Atten= 0%,
 Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 10.11 fps, Min. Travel Time= 0.6 min Avg. Velocity = 3.07 fps, Avg. Travel Time= 2.0 min

Peak Storage= 1,881 cf @ 12.07 hrs Average Depth at Peak Storage= 1.16' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 164.12 cfs

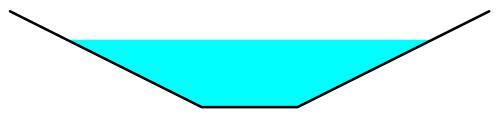
2.00' x 2.00' deep channel, n= 0.055 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 375.0' Slope= 0.2266 '/' Inlet Invert= 1,213.99', Outlet Invert= 1,129.00'

Reach CH-3: Fill Downchute

Summary for Reach CH-4: Roadside Ditch

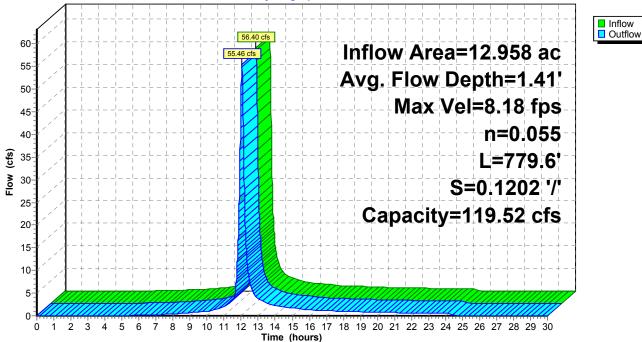
[62] Hint: Exceeded Reach CH-5 OUTLET depth by 1.18' @ 12.03 hrs

 Inflow Area =
 12.958 ac, 6.81% Impervious, Inflow Depth = 3.18" for 25-Year event

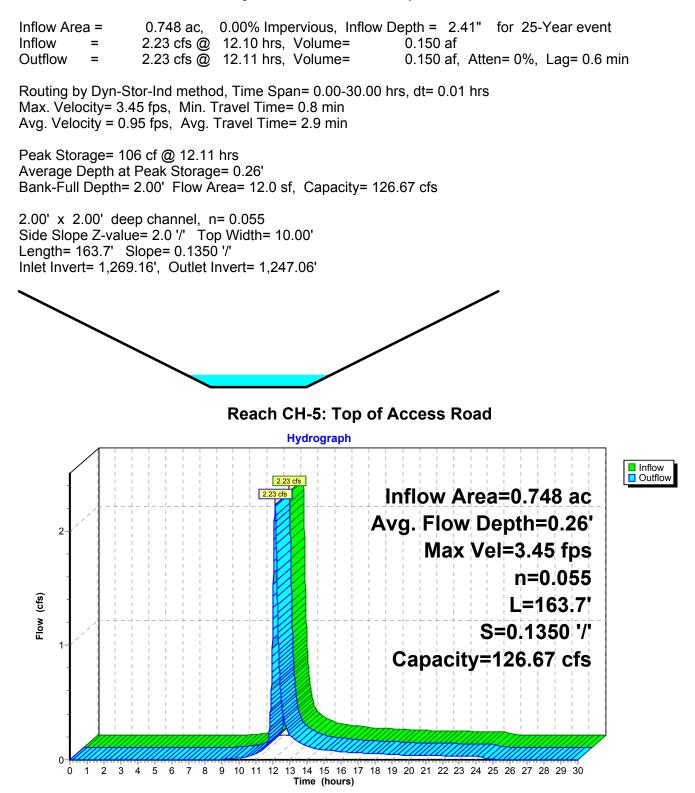

 Inflow =
 56.40 cfs @
 12.03 hrs, Volume=
 3.430 af

 Outflow =
 55.46 cfs @
 12.05 hrs, Volume=
 3.430 af, Atten= 2%, Lag= 1.1 min

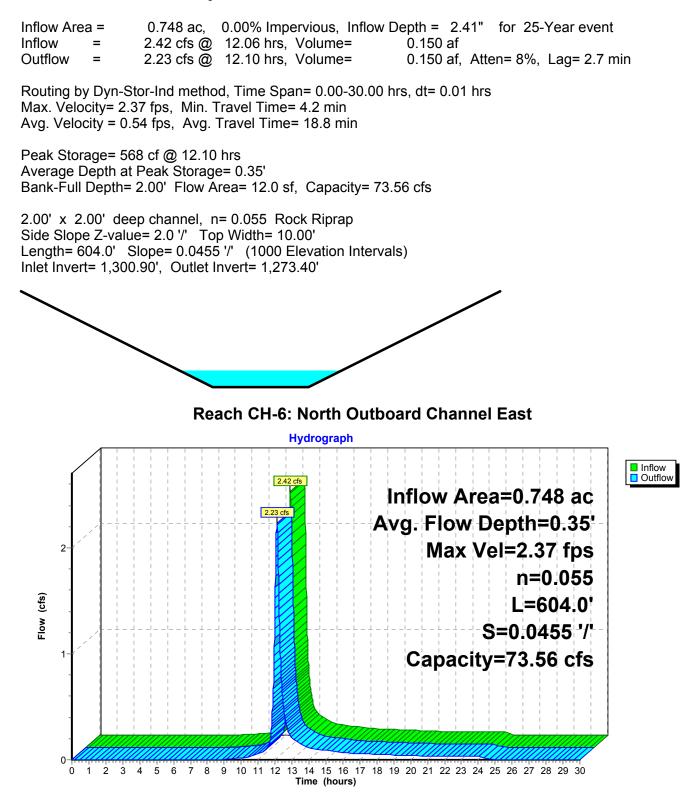
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 8.18 fps, Min. Travel Time= 1.6 min Avg. Velocity = 2.01 fps, Avg. Travel Time= 6.5 min


Peak Storage= 5,282 cf @ 12.05 hrs Average Depth at Peak Storage= 1.41' Bank-Full Depth= 2.00' Flow Area= 12.0 sf, Capacity= 119.52 cfs

2.00' x 2.00' deep channel, n= 0.055 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 779.6' Slope= 0.1202 '/' (1000 Elevation Intervals) Inlet Invert= 1,247.06', Outlet Invert= 1,153.36'



Reach CH-4: Roadside Ditch


Hydrograph

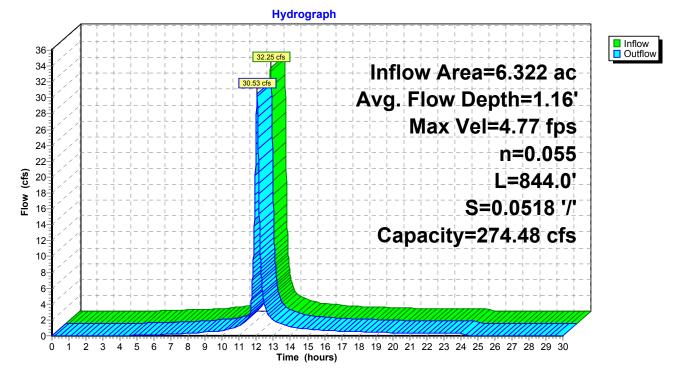
Summary for Reach CH-5: Top of Access Road

Summary for Reach CH-6: North Outboard Channel East

Summary for Reach CH-7: North Inboard Channel

 Inflow Area =
 6.322 ac,
 7.91% Impervious, Inflow Depth =
 3.54" for 25-Year event

 Inflow =
 32.25 cfs @
 12.01 hrs, Volume=
 1.867 af


 Outflow =
 30.53 cfs @
 12.04 hrs, Volume=
 1.867 af, Atten= 5%, Lag= 1.8 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Max. Velocity= 4.77 fps, Min. Travel Time= 2.9 min Avg. Velocity = 1.40 fps, Avg. Travel Time= 10.1 min

Peak Storage= 5,401 cf @ 12.04 hrs Average Depth at Peak Storage= 1.16' Bank-Full Depth= 3.00' Flow Area= 33.0 sf, Capacity= 274.48 cfs

2.00' x 3.00' deep channel, n= 0.055 Rock Riprap Side Slope Z-value= 3.0 '/' Top Width= 20.00' Length= 844.0' Slope= 0.0518 '/' Inlet Invert= 1,298.71', Outlet Invert= 1,255.00'

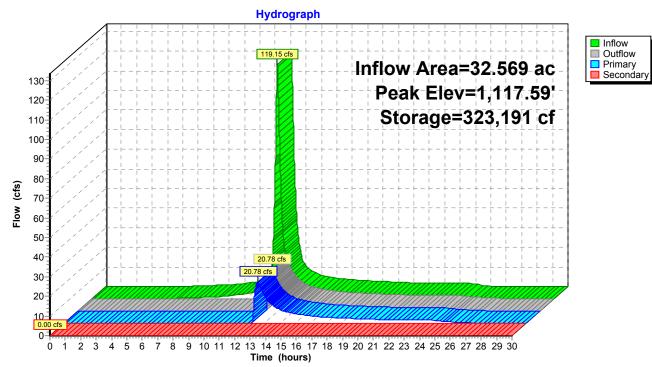
Reach CH-7: North Inboard Channel

Summary for Pond 1P: East Sediment Pond

Inflow Area =	32.569 ac,	6.84% Impervious, Inflow E	Depth = 3.24" for 25-Year event
Inflow =	119.15 cfs @	12.04 hrs, Volume=	8.796 af
Outflow =	20.78 cfs @	12.57 hrs, Volume=	4.347 af, Atten= 83%, Lag= 31.8 min
Primary =	20.78 cfs @	12.57 hrs, Volume=	4.347 af
Secondary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Starting Elev= 1,109.45' Surf.Area= 18,667 sf Storage= 102,458 cf Peak Elev= 1,117.59' @ 12.57 hrs Surf.Area= 36,428 sf Storage= 323,191 cf (220,733 cf above start) Flood Elev= 1,119.00' Surf.Area= 39,851 sf Storage= 377,013 cf (274,555 cf above start)

Plug-Flow detention time= 503.6 min calculated for 1.995 af (23% of inflow) Center-of-Mass det. time= 153.7 min (963.7 - 810.0)


Volume	Invert	Avail.Sto	rage Storage D	Description	
#1	1,100.00'	418,07	76 cf Custom S	Stage Data (Pi	rismatic)Listed below (Recalc)
	_				
Elevatio		Irf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
1,100.0		3,863	0	0	
1,105.0		10,932	36,988	36,988	
1,106.0		12,571	11,752	48,739	
1,107.0		14,321	13,446	62,185	
1,108.0		15,995	15,158	77,343	
1,109.0		17,817	16,906	94,249	
1,110.0		19,705	18,761	113,010	
1,111.0	0	21,660	20,683	133,693	
1,112.0		23,682	22,671	156,364	
1,113.0	0	25,771	24,727	181,090	
1,115.0		30,150	55,921	237,011	
1,120.0	0	42,276	181,065	418,076	
Device	Routing	Invert	Outlet Devices		
#1	Primary	1,073.25'	24.0" Round	Culvert	
			L= 224.0' RCF	P, square edge	headwall, Ke= 0.500
			Inlet / Outlet In	vert= 1,073.25	'/ 1,056.45' S= 0.0750 '/' Cc= 0.900
			n= 0.013, Flow	v Area= 3.14 sf	
#2	Device 1	1,116.82'	36.0" Horiz. O	rifice/Grate C	C= 0.600 in 36.0" Grate (100% open area)
			Limited to weir	flow at low hea	ads
#3	Secondary	1,119.00'	20.0' long x 2	0.0' breadth B	road-Crested Rectangular Weir
			Head (feet) 0.2	20 0.40 0.60	0.80 1.00 1.20 1.40 1.60
			Coef. (English)	2.68 2.70 2.	70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=20.77 cfs @ 12.57 hrs HW=1,117.59' (Free Discharge)

-1=Culvert (Passes 20.77 cfs of 93.59 cfs potential flow)

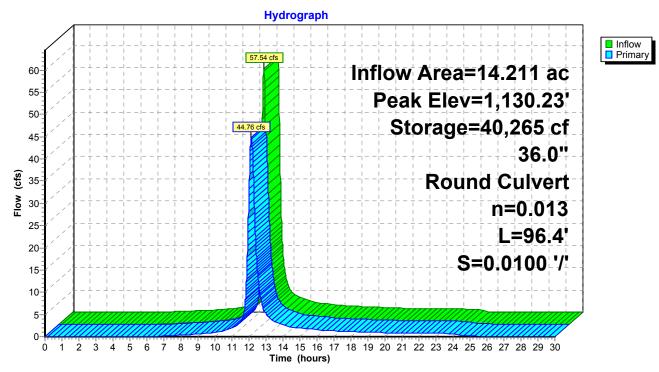
2=Orifice/Grate (Weir Controls 20.77 cfs @ 2.87 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=1,109.45' (Free Discharge) **3=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

Pond 1P: East Sediment Pond

Summary for Pond 2P: NE Sediment Pond

[62] Hint: Exceeded Reach CH-3 OUTLET depth by 0.21' @ 12.17 hrs

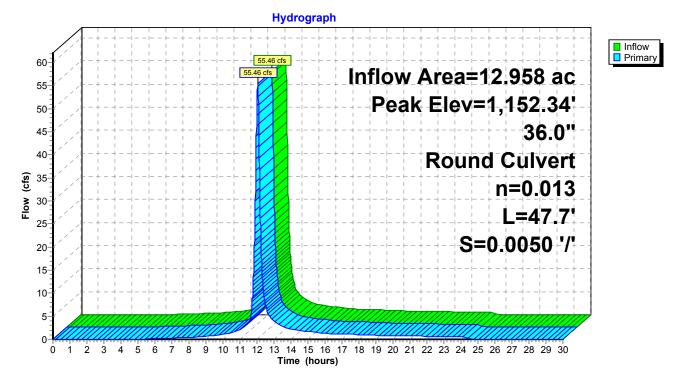

Inflow Area =	14.211 ac,	1.90% Impervious, Inflow	Depth = 3.19" for 25-Year event
Inflow =	57.54 cfs @	12.05 hrs, Volume=	3.777 af
Outflow =	44.76 cfs @	12.14 hrs, Volume=	3.772 af, Atten= 22%, Lag= 5.4 min
Primary =	44.76 cfs @	12.14 hrs, Volume=	3.772 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Starting Elev= 1,127.00' Surf.Area= 5,571 sf Storage= 16,509 cf Peak Elev= 1,130.23' @ 12.14 hrs Surf.Area= 9,235 sf Storage= 40,265 cf (23,756 cf above start)

Plug-Flow detention time= 93.6 min calculated for 3.393 af (90% of inflow) Center-of-Mass det. time= 18.7 min (823.7 - 805.0)

Volume	Inver	t Avail.	Storage	Storage	Description	
#1	1,121.00)' 58	3,583 cf	Custom	n Stage Data (P	rismatic)Listed below (Recalc)
Elevation		Surf.Area		Store	Cum.Store	
(feet)		(sq-ft)	(Cubi	c-feet)	(cubic-feet)	
1,121.00		594		0	0	
1,122.00		1,008		801	801	
1,123.00		1,561		1,285	2,086	
1,124.00		2,700		2,131	4,216	
1,125.00		3,600		3,150	7,366	
1,126.00		4,557		4,079	11,445	
1,127.00		5,571		5,064	16,509	
1,128.00		6,640		6,106	22,614	
1,129.00		7,767		7,204	29,818	
1,130.00		8,950		8,359	38,176	
1,131.00		10,189		9,570	47,746	
1,132.00		11,486	1	10,838	58,583	
·						
Device F	Routing	Inve	ert Outle	et Device	S	
	Primary	1,127.(L= 9 Inlet	6.4' RC / Outlet I	· · ·	headwall, Ke= 0.500 ' / 1,126.04' S= 0.0100 '/' Cc= 0.900 f

Primary OutFlow Max=44.76 cfs @ 12.14 hrs HW=1,130.23' TW=1,126.79' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 44.76 cfs @ 6.33 fps)

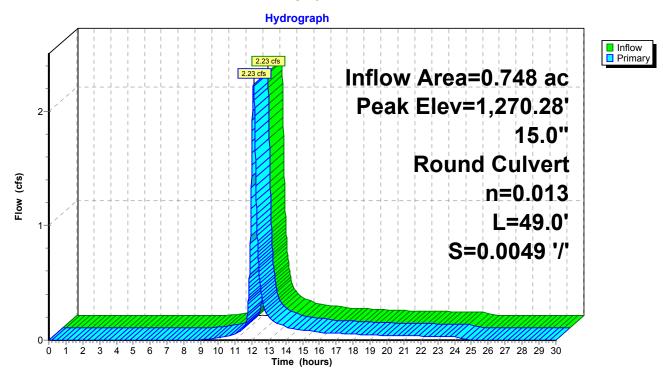


Pond 2P: NE Sediment Pond

Summary for Pond P-1: P-1 Lower Culvert

Inflow Area = 12.958 ac, 6.81% Impervious, Inflow Depth = 3.18" for 25-Year event Inflow 55.46 cfs @ 12.05 hrs, Volume= 3.430 af = Outflow 55.46 cfs @ 12.05 hrs, Volume= 3.430 af, Atten= 0%, Lag= 0.0 min = Primary = 55.46 cfs @ 12.05 hrs, Volume= 3.430 af Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 1,152.34' @ 12.05 hrs Flood Elev= 1,152.82' Device Routing Invert Outlet Devices 1.147.82' 36.0" Round Culvert L= 47.7' Ke= 0.500 #1 Primary Inlet / Outlet Invert= 1,147.82' / 1,147.58' S= 0.0050 '/' Cc= 0.900 n= 0.013, Flow Area= 7.07 sf

Primary OutFlow Max=55.40 cfs @ 12.05 hrs HW=1,152.34' TW=1,148.96' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 55.40 cfs @ 7.84 fps)

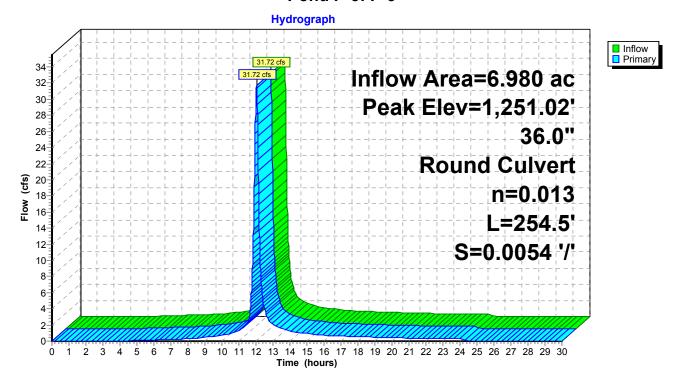


Pond P-1: P-1 Lower Culvert

Summary for Pond P-2: P-2

Inflow Are	:a =		.00% Impervious, Inflow Depth = 2.41" for 25-Year event
Inflow	=	2.23 cfs @ 1	2.10 hrs, Volume= 0.150 af
Outflow	=	2.23 cfs @ 1	2.10 hrs, Volume= 0.150 af, Atten= 0%, Lag= 0.0 min
Primary	=	2.23 cfs @ 1	2.10 hrs, Volume= 0.150 af
	<i>i</i> = 1,270.	28' @ 12.10 hr	Time Span= 0.00-30.00 hrs, dt= 0.01 hrs s
Device F	Routing	Invert	Outlet Devices
#1 F	Primary	1,269.40'	15.0" Round Culvert L= 49.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,269.40' / 1,269.16' S= 0.0049 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf

Primary OutFlow Max=2.23 cfs @ 12.10 hrs HW=1,270.28' TW=1,269.42' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 2.23 cfs @ 3.38 fps)

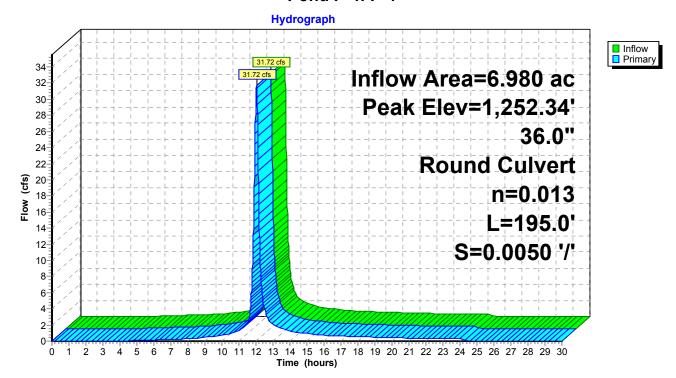


Pond P-2: P-2

Summary for Pond P-3: P-3

Inflow Area = 6.980 ac, 7.58% Impervious, Inflow Depth = 3.43" for 25-Year event Inflow 31.72 cfs @ 12.04 hrs, Volume= 1.994 af = 31.72 cfs @ 12.04 hrs, Volume= Outflow 1.994 af, Atten= 0%, Lag= 0.0 min = Primary = 31.72 cfs @ 12.04 hrs, Volume= 1.994 af Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 1,251.02' @ 12.04 hrs Flood Elev= 1,279.70' Device Routing Invert Outlet Devices 1.248.43' #1 Primary 36.0" Round Culvert L= 254.5' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,248.43' / 1,247.06' S= 0.0054 '/' Cc= 0.900

n= 0.013, Flow Area= 7.07 sf

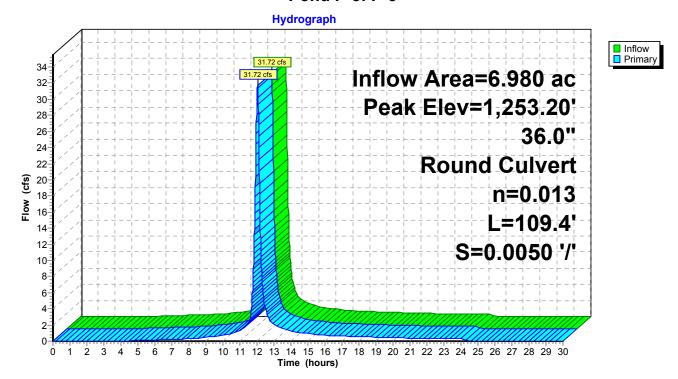


Summary for Pond P-4: P-4

Inflow Area = 6.980 ac, 7.58% Impervious, Inflow Depth = 3.43" for 25-Year event Inflow 31.72 cfs @ 12.04 hrs, Volume= 1.994 af = 31.72 cfs @ 12.04 hrs, Volume= Outflow 1.994 af, Atten= 0%, Lag= 0.0 min = Primary = 31.72 cfs @ 12.04 hrs, Volume= 1.994 af Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 1,252.34' @ 12.04 hrs Flood Elev= 1,268.71' Device Routing Invert **Outlet Devices** 1.249.40' #1 Primary 36.0" Round Culvert L= 195.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,249.40' / 1,248.43' S= 0.0050 '/' Cc= 0.900

Primary OutFlow Max=31.61 cfs @ 12.04 hrs HW=1,252.33' TW=1,251.02' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 31.61 cfs @ 5.69 fps)

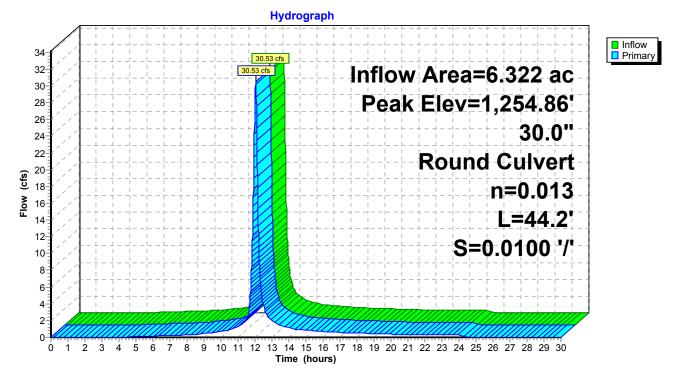
n= 0.013, Flow Area= 7.07 sf



Summary for Pond P-5: P-5

Inflow Area = 6.980 ac, 7.58% Impervious, Inflow Depth = 3.43" for 25-Year event Inflow 31.72 cfs @ 12.04 hrs, Volume= 1.994 af = 31.72 cfs @ 12.04 hrs, Volume= Outflow 1.994 af, Atten= 0%, Lag= 0.0 min = Primary = 31.72 cfs @ 12.04 hrs, Volume= 1.994 af Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 1,253.20' @ 12.04 hrs Flood Elev= 1,257.58' Device Routing Invert **Outlet Devices** 1.249.95' #1 Primary 36.0" Round Culvert L= 109.4' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,249.95' / 1,249.40' S= 0.0050 '/' Cc= 0.900 n= 0.013, Flow Area= 7.07 sf

Primary OutFlow Max=31.40 cfs @ 12.04 hrs HW=1,253.19' TW=1,252.33' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 31.40 cfs @ 5.12 fps)



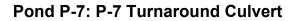
Summary for Pond P-6: P-6 Under Haul Road

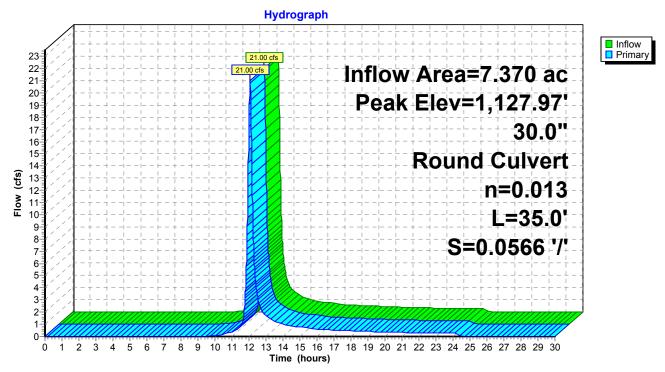
Inflow Area = 6.322 ac, 7.91% Impervious, Inflow Depth = 3.54" for 25-Year event Inflow 30.53 cfs @ 12.04 hrs, Volume= 1.867 af = Outflow 30.53 cfs @ 12.04 hrs, Volume= 1.867 af, Atten= 0%, Lag= 0.0 min = Primary = 30.53 cfs @ 12.04 hrs, Volume= 1.867 af Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 1,254.86' @ 12.05 hrs Flood Elev= 1,255.14' Device Routing Invert Outlet Devices #1 1.250.39' 30.0" Round Culvert L= 44.2' Ke= 0.500 Primary Inlet / Outlet Invert= 1,250.39' / 1,249.95' S= 0.0100 '/' Cc= 0.900 n= 0.013, Flow Area= 4.91 sf

Primary OutFlow Max=30.41 cfs @ 12.04 hrs HW=1,254.85' TW=1,253.20' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 30.41 cfs @ 6.20 fps)

Pond P-6: P-6 Under Haul Road

Summary for Pond P-7: P-7 Turnaround Culvert


[62] Hint: Exceeded Reach CH-09B OUTLET depth by 0.73' @ 12.07 hrs

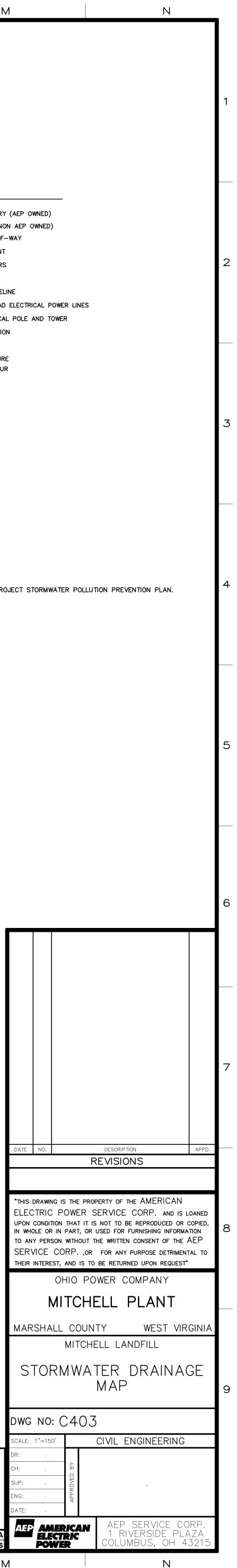

Inflow Are	a =	7.370 ac,	0.00% Impervious, Inflow	Depth = 2.08" for 25-Year event
Inflow	=	21.00 cfs @	12.07 hrs, Volume=	1.279 af
Outflow	=	21.00 cfs @	12.07 hrs, Volume=	1.279 af, Atten= 0%, Lag= 0.0 min
Primary	=	21.00 cfs @	12.07 hrs, Volume=	1.279 af
• •		Stor-Ind metho 7.97' @ 12.07	od, Time Span= 0.00-30.00 hrs	hrs, dt= 0.01 hrs

Flood Elev= 1,128.25'

Device	Routing	Invert	Outlet Devices
#1	Primary	1,125.92'	30.0" Round Culvert L= 35.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,125.92' / 1,123.94' S= 0.0566 '/' Cc= 0.900 n= 0.013, Flow Area= 4.91 sf

Primary OutFlow Max=20.98 cfs @ 12.07 hrs HW=1,127.97' TW=1,125.26' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 20.98 cfs @ 4.87 fps)

LEGEND


	FACILITY BOUNDARY (AEF
	PROPERTY LINE (NON AE
	EXISTING RIGHT-OF-WAY
	EXISTING EASEMENT
	EXISTING CONTOURS
	EXISTING STREAM
<i>G</i>	EXISTING GAS PIPELINE
<i>ОН-Е</i>	EXISTING OVERHEAD ELEC
•	EXISTING ELECTRICAL POL
	EXISTING VEGETATION
	EXISTING ROADS
580 <i></i>	EXISTING STRUCTURE PROPOSED CONTOUR
	DRAINAGE AREA
	FLOW PATH

Μ

NOTES:

1. REFER TO DRAINAGE CALCULATIONS IN ATTACHMENT C OF THE PROJECT STORMWATER POLLUTION PREVENTION PLAN.

CONTOUR INTERVAL = 10 FEET	NORTH SCALE IN FEET	240			
DRAWN BY: DAR CHECKED BY: JSF APPROVED BY:	Civil & En 4274 Gle Ph: 513.	vironmenta ndale-Milford Road - 985.0226 · 800.759.56 www.cecino	LCons Cincinnati, 514 · Fax: 513 5.com	OH 45242 3.985.0228	•
DATE: APRIL 2013 DWG SCALE: AS NOTED PROJECT NO: 1					

SEDIMENT POND CALCULATIONS

(Taken from the Solid Waste/NPDES Permit Application for the Mitchell Landfill)

Note that the current sediment pond calculations associated with the South Pond in a separate calculation brief presented immediately after this calculation brief.

SUBJ	ECT	Sediment Po	ond De	sign Calculations			PROJ	ECT NO.	110-416		
APPLIC	ABLE	33CSR1 4.5.	b.3.A. I	Design and Const	ruction						
RUL	LE	Requiremen	Requirements								
PROJ	ECT	American Ele	American Electric Power – Mitchell Landfill							40	
LOCA	TION	Gatts Ridge	Gatts Ridge Road, Marshall County, West Virginia						1	OF	12
	MADE B	Y MTF	DATE	04/03/12	CHECKED BY	JD	Μ	DATE	04	/03/1	2
	REV 1 B	Y EGK	DATE	05/11/16	CHECKED BY	МТ	F	DATE	5/	/12/1	6

OBJECTIVE:

To design the proposed Sedimentation Ponds, and provide stormwater management and sedimentation control, by satisfying the following regulations for residual waste landfills:

33CSR1 4.5.b.3.A.3.

All sediment control structures must have a sediment capacity of 0.125 acre-feet for each acre of disturbed area in the structure's watershed. In addition to the sediment capacity, the sediment control structure must have the detention capacity to store a two (2)-year, twenty-four (24)-hour frequency storm. The water stored from this storm must be released through a nonclogging dewatering device that allows the stored volume of water to be evacuated within a seven (7)-day to eight (8)-day period. The elevation of the nonclogging dewatering device must not be lower than the maximum elevation of the designed sediment storage volume and also satisfy the storm water provisions of the Federal Clean Water Act as reflected in W. Va. Code § 22-11-1, et seq., and any rules promulgated thereunder.

33CSR1 4.5.b.3.A.7.(b)

Sediment control structures must provide a combination of principal and emergency spillways that will safely discharge a minimum twenty-five (25)-year, twenty-four (24)-hour storm without overtopping of the structure. There must be no outflow through the emergency spillway during the passage of a ten (10)-year, twenty-four (24)-hour frequency storm through the sediment control structure. All spillways must discharge an adequate distance beyond the downstream toe of the structure to a natural drainway to prevent erosion of the downstream toe.

The design is based upon accepted engineering design equations, methodologies and assumptions. Where applicable, design references have been made. Calculations have been performed using the software package, Hydraflow Hydrographs Extension for AutoCAD Civil 3D 2011 Version 8, Copyright 2007-2010.

						,	1		1			
SUBJECT	Sedim	nent Po	ond De	sign Calculations			PROJ	ECT NO.	110-416			
APPLICABLE	33CSI	R1 4.5.	b.3.A. I	Design and Const	ruction							
RULE	Requi	Requirements										
PROJECT	Ameri	American Electric Power – Mitchell Landfill							40			
LOCATION	Gatts	Gatts Ridge Road, Marshall County, West Virginia					PAGE		2	OF	12	
MADE	ву М	1TF	DATE	04/03/12	CHECKED BY	JD	Μ	DATE	04	/03/1	2	
REV 1	ву Е	GK	DATE	05/11/16	CHECKED BY	МТ	F	DATE	5/	12/1	6	

METHOD:

Stormwater routings have been performed with a storage-elevation routing methodology. The inflow hydrographs have been developed using the Hydraflow hydrograph method, which utilizes components of TR-20 and TR-55, using the times of concentration (Tc) and watershed parameters determined for each contributing watershed.

The rainfall values for this site are listed below. The United States Department of Commerce, Weather Bureau, Technical Paper No. 40, Rainfall Frequency Atlas of the United States, for Mitchell County, West Virginia., provided the estimated rainfall depths and is presented in "Sedimentation Pond – Phase 1 Calculations".

RAINFALL DATA								
Frequency Duration Depth (in)								
2 yr	24 hr	2.54						
10 yr	24 hr	3.81						
25 yr	24 hr	4.44						
100 yr	24 hr	5.10						

According to the TR-55 methods, times of concentration were estimated as the sum of sheet flow, shallow concentrated flow and channel flow. Flow calculations utilized a Curve Number (CN) representative of the post construction surface conditions. Maximum sheet flow length used was 200 feet. Shallow concentrated flow times of concentration were estimated depending on the condition of the flow path.

This site is located in an area of hydrologic soil groups B & C. Since over 95 percent of the site consists of type C soils, hydrologic soil group C was used throughout. Based on the existing and proposed site conditions the following runoff coefficients have been determined and will be utilized.

CN DATA	
Description	CN
Existing (Woods Grass Combination, Fair)	76
Newly Graded Areas (Ditches)	91
Landfill (50-75% Grass Cover, Fair)	91
Impervious Areas (Paved Haul Road)	98

SUB	JECT	Sediment Po	ond De	sign Calculations			PROJ	ECT NO.		110	0-416
APPLIC	CABLE	33CSR1 4.5.	b.3.A.	Design and Const	ruction						
RU	ILE	Requiremen	ts								
PRO	JECT	American Elec		ower – Mitchell La	ndfill				•		40
LOCA		Gatts Ridge	Gatts Ridge Road, Marshall County, West Virginia						3	OF	12
MADE BY		BY MTF	DATE	04/03/12	CHECKED BY	JD	Μ	DATE	04	/03/1	2
	REV 1 B	BY EGK	DATE	05/11/16	CHECKED BY	МТ	F	DATE	5/	12/1	6

The inflow hydrographs were developed using Hydraflow for each contributing watershed based on the previously mentioned criteria and the delineated drainage areas. These areas can be found in Figures A-H of Sedimentation Ponds. For Phase 1 through Phase 4 – Filled, 5-acres of drainage has been removed from the South Pond drainage areas and accounted for within the Leachate Calculations. The contributing drainage areas for the sedimentation ponds are summarized below:

Drainage Area	CN	Watershed Area (Acre)	Tc (Minutes)
South - Phase 1	82	80.10	17.8
West – Phase 1	89	18.37	22.1
South - Phase 2	85	78.10	17.8
West – Phase 2	90	22.48	22.1
South - Phase 2 - Filled	84	68.68	17.8
West – Phase 2 - Filled	90	31.90	22.1
South - Phase 3	86	68.89	17.8
West – Phase 3	90	31.90	22.1
South - Phase 3 - Filled	86	62.76	17.8
West – Phase 3 - Filled	90	30.32	22.1
East – Phase 3 - Filled	89	35.34	19.8
South - Phase 4	89	62.76	17.8
West – Phase 4	90	30.32	22.1
East – Phase 4	89	35.34	19.8
South - Phase 4 - Filled	88	54.05	17.8
West – Phase 4 - Filled	90	38.82	22.1
East – Phase 4 - Filled	89	35.56	19.8
South - Phase 5	88	60.35	17.8
West – Phase 5	90	38.20	22.1
East – Phase 5	89	35.09	19.8

			CIVII			units,	me.				
SUBJE	ст	Sediment Po	ond De	sign Calculations			PROJ	ECT NO.		11(0-416
APPLICA	ABLE	33CSR1 4.5.	b.3.A. I	Design and Consti	ruction						
RULI	E	Requirement	ts	_							
PROJE	ЕСТ	American Ele	ectric P	ower – Mitchell Lai	ndfill						40
LOCAT	ION	Gatts Ridge F	Gatts Ridge Road, Marshall County, West Virginia		PAGE		4	OF	12		
ı	MADE BY	r MTF	DATE	04/03/12	CHECKED BY	JD	М	DATE	04	/03/1	2
1	REV 1 BY	Y EGK DATE		05/11/16	CHECKED BY	МТ	F	DATE	5/	12/1	6

Using the developed inflow hydrographs, all routings have been performed with the initial pool elevation within the ponds at the top of the required sediment storage volume. The required sedimentation storage volume and the 2-year runoff volume have been provided below the invert of the principal spillway. The inflow hydrograph from the 10-year/24-hour storm event was then used to size the principal spillway. The 25-year/24-hour storm event was then passed through the principal spillway in order to determine the elevation at which the emergency spillway was to be placed. The 100-year/24-hour storm event was then used to design the emergency spillway.

ANALYSIS:

SEDIMENT VOLUME SIZING:

According to 33CSR1 4.5.b.3.A., the sedimentation pond must have adequate sediment storage volume for the runoff from the 2-year/24-hour storm event and 0.125 acre-feet per acre of disturbed area.

Volume Requirement for two-year/twenty-four-hour storm:

Utilizing the hydrographs from HydroCAD, the runoff from the 2-year/24-hour storm event for each phase is shown in the table below.

Volume Requirement for 0.125 acre-feet per disturbed acre:

Per the mentioned regulation, the storage volume required for each drainage area is calculated as follows:

$$V = Disturbed Area\left(\frac{0.125\,acre - ft}{acre}\right)$$

The expected total disturbed drainage area and total storage volume requirements for each phase are shown in the table below. The total volume of the two-year/twenty-four-hour runoff plus the sediment storage volume was calculated for each phase as shown in the table below.

SUB	JECT	Sediment Po	ond De	sign Calculations			PROJ	ECT NO.		11()-416
	CABLE	33CSR1 4.5. Requiremen		Design and Constr	ruction						
PRO	JECT	American Ele	ectric P	ower – Mitchell La	ndfill				F		10
LOCA	ATION	Gatts Ridge	e Road, Marshall County, West Virginia			PAGE		5	OF	12	
	MADE E	MADE BY MTF DATE 04/03/12 CHECKED BY		JD	Μ	DATE	04	/03/1	2		
	REV 1 E	BY EGK	DATE	05/11/16	CHECKED BY	МТ	F	DATE	5/12/16		6

South Drainage Areas	2-Year Runoff (CF)	Disturbed Area (SF)	Sediment Volume (CF)	Total Volume (CF)
South - Phase 1	295,354	1,678,824	209,853	505,207
South - Phase 2	339,253	1,565,052	195,631	534,884
South - Phase 2 - Filled	282,725	1,146,447	143,306	426,031
South - Phase 3	315,519	1,643,200	205,400	520,919
South - Phase 3 - Filled	287,443	1,238,775	154,847	442,290
South - Phase 4	335,536	1,616,548	202,069	537,605
South - Phase 4 - Filled	274,619	1,082,465	135,308	409,927
South - Phase 5	306,629	550,149	68,769	375,398

West Drainage Areas	2-Year Runoff (CF)	Disturbed Area (SF)	Sediment Volume (CF)	Total Volume (CF)
West – Phase 1	98,454	547,823	68,478	166,932
West – Phase 2	126,706	135,399	16,925	143,631
West – Phase 2 - Filled	179,801	410,290	51,286	231,087
West – Phase 3	179,801	410,290	51,286	231,087
West – Phase 3 - Filled	170,896	457,366	57,171	228,067
West – Phase 4	170,896	311,957	38,995	209,891
West – Phase 4 - Filled	218,805	516,636	64,580	283,385
West – Phase 5	215,311	325,552	40,694	256,005

East Drainage Areas*	2-Year Runoff (CF)	Disturbed Area (SF)	Sediment Volume (CF)	Total Volume (CF)
East – Phase 3 - Filled	32,532	220,026	27,503	60,035
East – Phase 4	32,532	47,485	5,936	38,468
East – Phase 4 - Filled	33,655	180,948	22,619	56,273
East – Phase 5	30,156	151,619	18,952	49,108

* For comparison purposes, calculations are only for areas inside of the outboard perimeter channel of the Haul Road. The remaining portion of East Drainage areas is the same for all Phases.

SUB	JECT	Sec	diment Pc	ond De	sign Calculations			PROJ	ECT NO.		110)-416
APPLI	CABLE	330	CSR1 4.5.	b.3.A. I	Design and Consti	ruction						
RU	JLE	Ree	quiremen	ts								
PRO	JECT	Am	nerican Electric Power – Mitchell Landfill				^		40			
LOCA	ATION	Gat	tts Ridge I	ge Road, Marshall County, West Virginia				PAGE		6	OF	12
	MADE BY MTF DATE		DATE	04/03/12	CHECKED BY	JD	M DATE		04	/03/1	2	
	REV 1 E	BY	EGK DATE		05/11/16	CHECKED BY	МТ	F DATE		5/	/12/1	6

The South Pond was designed to accommodate the Phase 4 volume throughout all calculations. The West Pond was designed to accommodate the Phase 4 – Filled volume throughout all calculations. The East Pond was designed to accommodate the Phase 3 – Filled volume throughout all calculations. Based on the above calculations and the actual available sediment storage of the sedimentation pond, it can be assumed that cleaning of each Sedimentation Pond will be required prior to each phase.

Each pond has been designed to release the 2-year/24-hour storm event through a floating skimmer over a 7-day period. The calculations are based on the Faircloth Skimmer Online Sizing Calculator. Below is the summary for each of the skimmers.

Drainage Areas	2-Year Runoff (CF)	Days to Drain	Skimmer Size (in)	Orifice Diameter (in)	Flow Rate (cfs)
South Pond	335,536	7	6.0	5.8	0.5548
West Pond	218,805	7	5.0	4.9	0.3618
East Pond	194,687	7	5.0	4.6	0.2840

The chart below shows the provided volumes and elevations for the design Ponds:

Design Drainage Area	Required Volume (CF)	Required Volume Provided at Elevation	Principal Spillway Elevation	25-YR Routed Storage Elevation	Emergency Spillway Elevation	Top Of Berm Elevation
South - Phase 4	537,605	1038.88	1038.88	1039.65	1039.88	1041.08
West – Phase 4 - Filled	283,385	1201.67	1201.67	1202.54	1202.67	1204.00
East – Phase 3 - Filled	310,698*	1117.03	1117.03	1117.98	1119.00	1120.00

*16,434 CF sediment volume is provided in the Northeast Pond.

PRINCIPAL SPILLWAY DESIGN:

According to 33CSR1 4.5.b.3.A.7.(b) Sediment control structures must provide a combination of principal and emergency spillways that will safely discharge a minimum twenty-five (25)-year, twenty-four (24)-hour storm without overtopping of the structure. There must be no outflow

SUB	JECT	Sediment Po	ond De	sign Calculations			PROJ	ECT NO.		110	0-416
APPLI	CABLE	33CSR1 4.5.	b.3.A.	Design and Const	ruction						
RU	JLE	Requiremen	ts								
PRO	JECT	American El	ectric P	ower – Mitchell La	ndfill		PAGE		7		40
LOCA		Gatts Ridge	Road, N	/larshall County, W	rshall County, West Virginia					OF	12
	MADE B	BY MTF	DATE	04/03/12	CHECKED BY	JD	М	DATE	04	/03/1	2
	REV 1 B	EGK	DATE	05/11/16	CHECKED BY	МТ	F	DATE	5/	12/1	6

through the emergency spillway during the passage of a ten (10)-year, twenty-four (24)-hour frequency storm through the sediment control structure. To fulfill this regulation, the principal spillway was placed at the elevation of the 2-year/24-hour storm elevation, which provides the required sediment storage volume. The 25-year/24-hour storm event was then routed through the designed principal spillway in order to determine the 25-year/24-hour elevation. Therefore, if the principal spillway is capable of releasing the flow from the 25-year/24-hour storm event, it is capable of safely handling the flow from the 10-year/24-hour storm event.

The details of the principal spillway for each Sedimentation Pond are found within the Hydraflow printout and are summarized as follows:

South Pond	Culvert	Principal Spillway Riser
Structure Type	48" Pipe	13' x 13' Box
Invert Elevation	980.00	1038.88
Pipe/Crest Length (feet)	250.88	52.00
Slope (%)	11.67	n/a
N-Value	0.013	n/a
Orifice/Weir Coefficient	0.6	3.33

West Pond	Culvert	Principal Spillway Riser
Structure Type	36" Pipe	60" Dia. Pipe
Invert Elevation	1190.00	1201.67
Pipe/Crest Length (feet)	119.10	15.71
Slope (%)	4.2	n/a
N-Value	0.013	n/a
Orifice/Weir Coefficient	0.6	3.33

SUB	JECT	Se	diment Po	ond De	PROJECT NO.		110-416						
APPLI	CABLE	330	CSR1 4.5.I	b.3.A. I	Design and Constr	ruction							
RU	JLE	Re	quirement	ts							-		
PRO	PROJECT American Electr			ectric P	ower – Mitchell La	ndfill				0		40	
LOCA	ATION	Ga	tts Ridge F	Road, N	Marshall County, W	est Virginia		PAGE		8	OF	12	
	MADE E		MTF	DATE	04/03/12	CHECKED BY	JD	DM DATE		04	04/03/12		
	REV 1 B	BY	EGK	DATE	05/11/16	CHECKED BY	МТ	F	DATE	5/	12/1	6	

East Pond	Culvert	Principal Spillway Riser
Structure Type	24" Pipe	36" Dia. Pipe
Invert Elevation	1073.25	1117.03
Pipe/Crest Length (feet)	224	9.42
Slope (%)	7.5	n/a
N-Value	0.013	n/a
Orifice/Weir Coefficient	0.6	3.33

According to 33CSR1 4.5.b.3.A.7.(b), the routing, included with this calculation, shows that the maximum pool elevation is below the invert elevation of the emergency spillway. Thus, during the 25-year/24-hour storm event, the emergency spillway provides flood storage with no flow entering the emergency spillway while allowing flow through the principal spillway.

EMERGENCY SPILLWAY DESIGN:

According to 33CSR1 4.5.b.3.A.7.(b), the emergency spillway has been designed such that the combination of the principal spillway and emergency spillway will safely discharge the 25-year/24-hour storm event. This design requirement has been evaluated by routing flow from the 25-year/24-hour storm through the pond using the previously designed principal spillway.

All spillways must discharge an adequate distance beyond the downstream toe of the structure to a natural drainway to prevent erosion of the downstream toe. The inverts of the emergency spillways have been set above the elevation of the 25-year/24-hour storm event.

The details of the emergency spillway for each Sedimentation Pond are found within the Hydraflow printout and are summarized as follows:

SUB	JECT	Sediment Po	liment Pond Design Calculations							110-416		
APPLI	CABLE			Design and Constr	ruction							
RU	JLE	Requiremen	ts									
PRO	JECT	American Ele	American Electric Power – Mitchell Landfill						•		10	
LOCATION		Gatts Ridge	Gatts Ridge Road, Marshall County, West Virginia						9	OF	12	
	MADE E	BY MTF	DATE	04/03/12	CHECKED BY	JD	Μ	DATE	04	/03/1	2	
	REV 1 E	BY EGK	DATE	05/11/16	CHECKED BY	МТ	F	DATE	5/	12/1	6	

South Pond (Phase 2)	Emergency Spillway
Spillway Type	8' Pipe
Crest Elevation	1039.88
Crest Length (feet)	25.13
Weir Coefficient	3.33
Channel Lining	n/a
Maximum pool elevation 25-year 24-hour storm	1039.65
Top of Embankment	1041.08
Freeboard above the 25-year elevation	1.43

West Pond (Phase 4 – Filled)	Emergency Spillway
Spillway Type	Cipoletti
Crest Elevation	1202.67
Crest Length (feet)	50.00
Weir Coefficient	3.33
Channel Lining	Rock
Maximum pool elevation 25-year 24-hour storm	1202.54
Top of Embankment	1204.00
Freeboard above the 25-year elevation	1.46

SUB	JECT	Sediment Po	ond De	sign Calculations		PROJECT NO.		110-416			
APPLI	CABLE			Design and Consti	ruction						
RU	JLE	Requiremen	ts								
PRO	JECT	American Ele	American Electric Power – Mitchell Landfill								10
LOCATION		Gatts Ridge	Satts Ridge Road, Marshall County, West Virginia					1	0	OF	12
	MADE E	BY MTF	DATE	04/03/12	CHECKED BY	JD	Μ	DATE	04	/03/1	2
	REV 1 E	BY EGK	DATE	05/11/16	CHECKED BY	МТ	F	DATE	5/	/12/1	6

East Pond (Phase 3 – Filled)	Value
Spillway Type	Cipoletti
Crest Elevation	1119.00
Crest Length (feet)	20.00
Weir Coefficient	3.33
Channel Lining	Rock
Maximum pool elevation 25-year 24-hour storm	1117.98
Top of Embankment	1120.00
Freeboard above the 25-year elevation	2.02

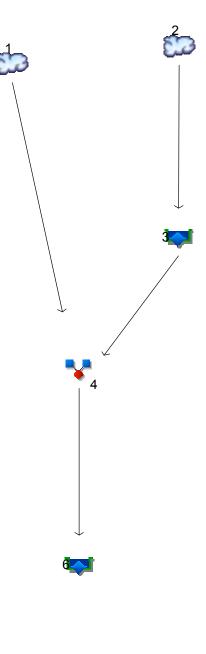
OUTLET CHANNEL:

The proposed principal spillway and emergency spillway will outlet to the existing drainage channels downstream of the proposed Sedimentation Ponds. (Please see "Permanent Surface Water Control Structures Perimeter Channel Design Calculations" for additional information regarding the channel design)

CONCLUSIONS:

The proposed Sedimentation Ponds have been designed to meet the regulations as outlined in 33CSR1 4.5.b.3.A.7. All three ponds utilize primary spillways to convey the 10-year/24-hour storm event within each watershed. The routing of the 25-year/24-hour storm event produces water level elevations below the invert of the proposed emergency spillway. The flow from the 100-yr/24-hr storm was routed through the proposed principal spillway and the emergency spillway. All sedimentation ponds provide over one foot of freeboard for a 100-year/24-hour storm event in relation to the top of the embankment.

SUBJ	JECT	Se	diment Po	ond De	sign Calculations			PROJ	ECT NO.		110-416		
APPLIC	CABLE	33	CSR1 4.5.	b.3.A. I	Design and Const	ruction							
RU	JLE	Re	quiremen	ts									
PROJECT		Am	nerican Ele	ectric P	ower – Mitchell La	ndfill						40	
LOCA		Ga	Gatts Ridge Road, Marshall County, West Virginia					PAGE	1	1	OF	12	
MADE B		BY	MTF	DATE	04/03/12	CHECKED BY	JD	Μ	DATE	04	/03/1	2	
	REV 1 BY		EGK	DATE	05/11/16	CHECKED BY	МТ	F	DATE	5/	12/1	6	


REFERENCES:

- 1. United States Department of Commerce, Weather Bureau, Technical Paper No. 40, Rainfall Frequency Atlas of the United States, for Mitchell County, West Virginia.
- 2. Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014, Version 10.3, 2007-2014, Computer Software Program.
- 3. Faircloth Skimmer Online Sizing Calculator. http://www.fairclothskimmer.com/skimmer.html

SUB	JECT	Sediment F	ond De	sign Calculations	5		PROJ	ECT NO.	110-416			
APPLI	CABLE	33CSR1 4.	5.b.3.A.	Design and Cons	truction							
RU	JLE	Requireme	nts									
PROJECT		American E	lectric P	ower – Mitchell La	andfill				0		40	
LOCA	ATION	Gatts Ridge	Road, I	Marshall County, V	Vest Virginia		PAGE		2	OF	12	
MADE B		MTF	DATE	04/03/12	CHECKED BY	JD	Μ	DATE	04	/03/1	2	
	REV 1 E	BY EGK	DATE	05/11/16	CHECKED BY	МТ	F	DATE	5/	/12/1	6	

SEDIMENTATION POND – HYDRAFLOW OUTPUT AND HYDROGRAPH FILES

<u>Legend</u>

<u>Hyd.</u>	<u>Origin</u>	Description
1	SCS Runoff	East Pond Only

2	SCS Runoff	NE Pond Only
2	Decervoir	NE Dond

5	I CeSel VOII	
4	Combine	East Pond Inflow

6 Reservoir East Pond Total

Thursday, 05 / 12 / 2016

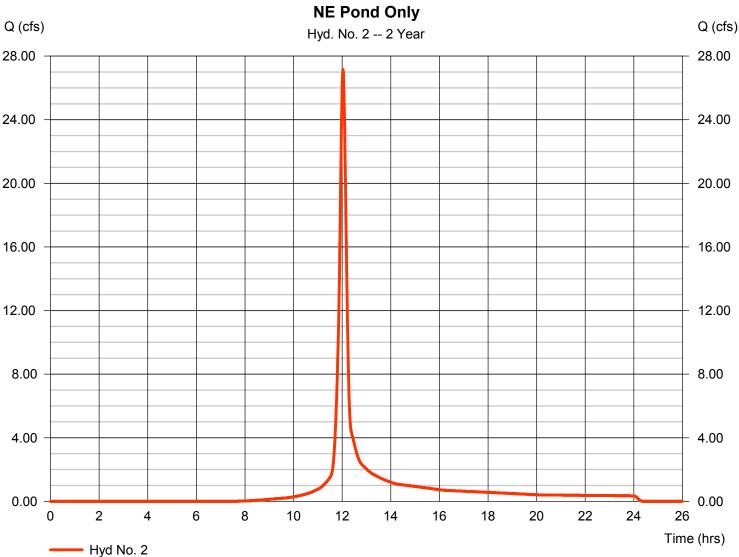
Hydrograph Return Period Recap Hydrafiow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

lyd. Io.		Inflow hyd(s)		Peak Outflow (cfs)							Hydrograph Description
<i>.</i>	type (origin)	nyu(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff			42.46			72.86	87.97		103.75	East Pond Only
2	SCS Runoff			27.16			48.28	58.87		69.97	NE Pond Only
3	Reservoir	2		19.86			34.01	43.08		50.74	NE Pond
4	Combine	1, 3		60.46			101.04	126.49		150.10	East Pond Inflow
6	Reservoir	4		0.275			10.14	29.29		39.37	East Pond Total

Proj. file: 110416_Drainage-2016-01-11-Excess Soil_PH3-FILL_REV_two ponds.jpwrsday, 05 / 12 / 2016

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	42.46	1	723	121,615				East Pond Only
2	SCS Runoff	27.16	1	722	73,080				NE Pond Only
3	Reservoir	19.86	1	728	73,072	2	1129.04	13,613	NE Pond
4	Combine	60.46	1	724	194,687	1, 3			East Pond Inflow
6	Reservoir	0.275	1	1462	34,700	4	1116.54	181,775	East Pond Total
110	0416_Drainag	ge-2016-0)1-11-Exc	cess Soil_		<u>PRE0/1:</u> t2/0/	pan ds.gpw	Thursday,	05 / 12 / 2016


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Hyd. No. 2

NE Pond Only

Hydrograph type	= SCS Runoff	Peak discharge	= 27.16 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.03 hrs
Time interval	= 1 min	Hyd. volume	= 73,080 cuft
Drainage area	= 14.220 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 13.60 min
Total precip.	= 2.54 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(11.140 x 91) + (2.810 x 76) + (0.270 x 98)] / 14.220

4

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

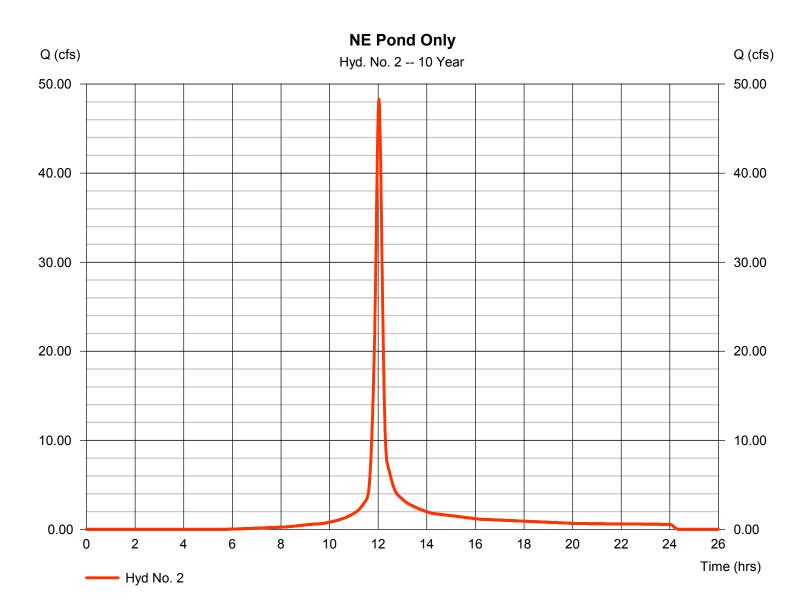
Hyd. No. 2

NE Pond Only

Description	;	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%) Travel Time (min)	= 2 = 2 = 2	0.400 138.0 2.54 28.40 10.79	+	0.150 0.0 0.00 0.00 0.00	+	0.011 0.0 0.00 0.00 0.00	=	10.79
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= '	365.00 16.80 Unpaved .61		0.00 0.00 Unpaved 0.00	ł	0.00 0.00 Paved 0.00		
Travel Time (min)	=	0.92	+	0.00	+	0.00	=	0.92
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 4	4.20 42.50 2.90 0.022 .45		4.00 12.50 23.50 0.050 6.73		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0	})143.0		375.0		0.0		
Travel Time (min)	=	0.97	+	0.93	+	0.00	=	1.90
Total Travel Time, Tc								13.60 min

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

lyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	72.86	1	723	212,643				East Pond Only
2	SCS Runoff	48.28	1	722	131,785				NE Pond Only
3	Reservoir	34.01	1	728	131,777	2	1130.31	24,576	NE Pond
4	Combine	101.04	1	725	344,420	1, 3			East Pond Inflow
6	Reservoir	10.14	1	776	168,290	4	1117.49	214,373	East Pond Total
110	0416_Drainag	ge-2016-0	1-11-Exc	ess Soil			ǿea ds.gpw	Thursday,	05 / 12 / 2016


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Hyd. No. 2

NE Pond Only

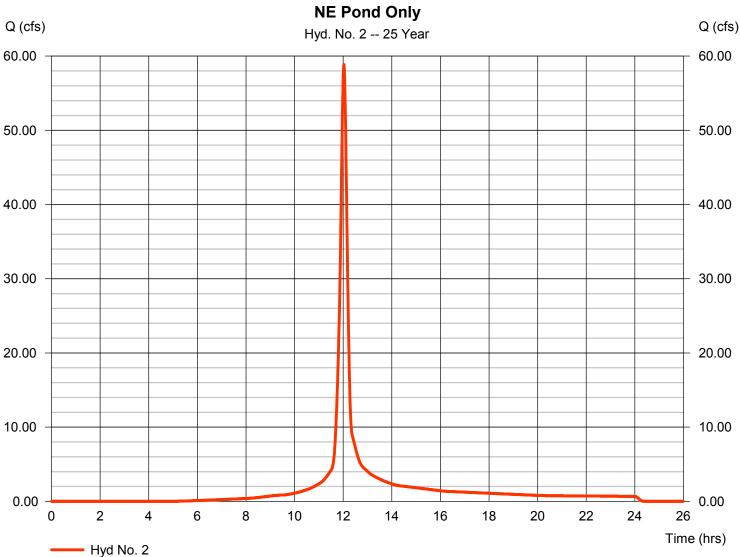
Hydrograph type	= SCS Runoff	Peak discharge	= 48.28 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.03 hrs
Time interval	= 1 min	Hyd. volume	= 131,785 cuft
Drainage area	= 14.220 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 13.60 min
Total precip.	= 3.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(11.140 x 91) + (2.810 x 76) + (0.270 x 98)] / 14.220

7

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

lyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	87.97	1	723	259,135				East Pond Only
2	SCS Runoff	58.87	1	722	162,074				NE Pond Only
3	Reservoir	43.08	1	728	162,066	2	1130.79	29,131	NE Pond
4	Combine	126.49	1	724	421,201	1, 3			East Pond Inflow
6	Reservoir	29.29	1	749	244,963	4	1117.98	231,607	East Pond Total
110	416_Drainag	ge-2016-0	1-11-Exc	ess Soil_		2 8.660/1 :12/50 \	ǿea ds.gpw	Thursday,	05 / 12 / 2016


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Hyd. No. 2

NE Pond Only

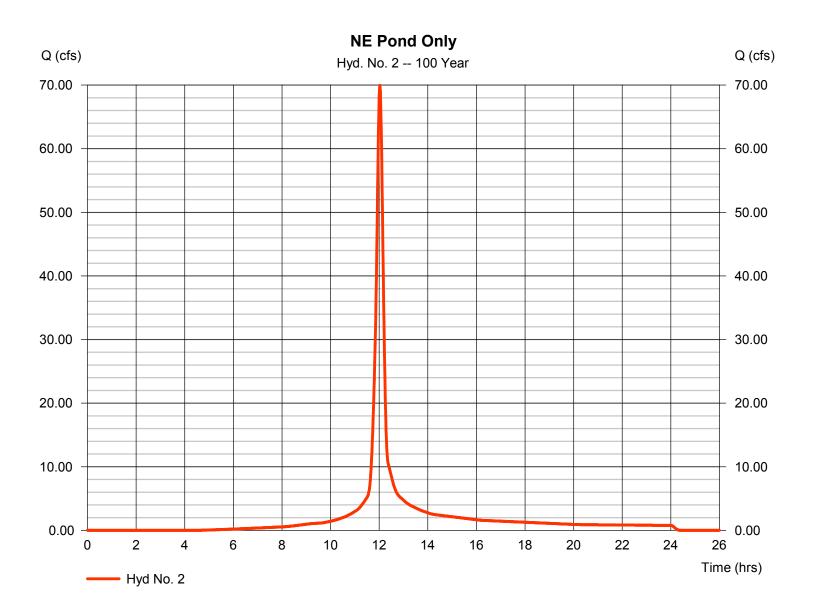
Hydrograph type	= SCS Runoff	Peak discharge	= 58.87 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.03 hrs
Time interval	= 1 min	Hyd. volume	= 162,074 cuft
Drainage area	= 14.220 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 13.60 min
Total precip.	= 4.44 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(11.140 x 91) + (2.810 x 76) + (0.270 x 98)] / 14.220

9

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	103.75	1	723	308,385				East Pond Only
2	SCS Runoff	69.97	1	722	194,292				NE Pond Only
3	Reservoir	50.74	1	728	194,284	2	1131.28	34,201	NE Pond
4	Combine	150.10	1	724	502,669	1, 3			East Pond Inflow
6	Reservoir	39.37	1	746	326,346	4	1118.75	260,601	East Pond Total
110	0416_Drainag	ge-2016-0	1-11-Exc	cess Soil		PRECOND_two	p ŏed s.gpw	Thursday,	05 / 12 / 2016


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Hyd. No. 2

NE Pond Only

Hydrograph type	= SCS Runoff	Peak discharge	= 69.97 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.03 hrs
Time interval	= 1 min	Hyd. volume	= 194,292 cuft
Drainage area	= 14.220 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 13.60 min
Total precip.	= 5.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(11.140 x 91) + (2.810 x 76) + (0.270 x 98)] / 14.220

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Return Period	Intensity-Du	uration-Frequency E	quation Coefficients	(FHA)
(Yrs)	В	D	Е	(N/A)
1	0.0000	0.0000	0.0000	
2	0.0000	0.0000	0.0000	
3	0.0000	0.0000	0.0000	
5	0.0000	0.0000	0.0000	
10	0.0000	0.0000	0.0000	
25	0.0000	0.0000	0.0000	
50	0.0000	0.0000	0.0000	
100	0.0000	0.0000	0.0000	

File name: SampleFHA.idf

Intensity = B / (Tc + D)^E

Return					Intens	ity Values	(in/hr)					
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Tc = time in minutes. Values may exceed 60.

		R	ainfall F	Precipitat	tion Tab	le (in)		
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
SCS 24-hour	2.25	2.54	0.00	3.25	3.81	4.44	0.00	5.10
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Custom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Precip. file name: P:\2011\110-416\-Calculations\Marchall_Co_WV.pcp

SEDIMENT POND CALCULATIONS

South Pond

Civil & Environmental Consultants, Inc.

SUB	JECT	South Pond	Design (Calculations			PROJ	ECT NO.		110	0-416
	CABLE	33CSR1 4.5 Requirement		esign and Cons	struction						
PRO	JECT	American El	ectric Pov	wer – Mitchell L	andfill						
LOCATION		Gatts Ridge Road, Marshall County, West Virginia					PAGE		1	OF	8
	MADE B	MTF	DATE	04/03/12	CHECKED BY	JR	RI	REV. DATE	0′	1/29/	13

OBJECTIVE:

To design the proposed Sedimentation Ponds, and provide stormwater management and sedimentation control, by satisfying the following regulations for residual waste landfills:

33CSR1 4.5.b.3.A.3.

All sediment control structures must have a sediment capacity of 0.125 acre-feet for each acre of disturbed area in the structure's watershed. In addition to the sediment capacity, the sediment control structure must have the detention capacity to store a two (2)-year, twenty-four (24)-hour frequency storm. The water stored from this storm must be released through a nonclogging dewatering device that allows the stored volume of water to be evacuated within a seven (7)-day to eight (8)-day period. The elevation of the nonclogging dewatering device must not be lower than the maximum elevation of the designed sediment storage volume and also satisfy the storm water provisions of the Federal Clean Water Act as reflected in W. Va. Code § 22-11-1, et seq., and any rules promulgated thereunder.

33CSR1 4.5.b.3.A.7.(b)

Sediment control structures must provide a combination of principal and emergency spillways that will safely discharge a minimum twenty-five (25)-year, twenty-four (24)-hour storm without overtopping of the structure. There must be no outflow through the emergency spillway during the passage of a ten (10)-year, twenty-four (24)-hour frequency storm through the sediment control structure. All spillways must discharge an adequate distance beyond the downstream toe of the structure to a natural drainway to prevent erosion of the downstream toe.

The design is based upon accepted engineering design equations, methodologies and assumptions. Where applicable, design references have been made. Calculations have been performed using the software package, Hydraflow Hydrographs Extension for AutoCAD Civil 3D 2011 Version 8, Copyright 2007-2010.

METHOD:

Stormwater routings have been performed with a storage-elevation routing methodology. The inflow hydrographs have been developed using the Hydraflow hydrograph method, which

SUB	JECT	South Pond	Design	Calculations			PROJ	ECT NO.	110-416			
APPLI	CABLE	33CSR1 4.5.	CSR1 4.5.b.3.A. Design and Construction									
RU	ILE	Requiremen	ts									
PRO	JECT	CT American Electric Power – Mitchell Landfill						.				
LOCATION		Gatts Ridge Road, Marshall County, West Virginia					PAGE	4	2	OF	8	5
MADE B		MTF	DATE	04/03/12 CHECKED BY JRI REV. DATE					0′	1/29/	13	

utilizes components of TR-20 and TR-55, using the times of concentration (Tc) and watershed parameters determined for each contributing watershed.

The rainfall values for this site are listed below. The United States Department of Commerce, Weather Bureau, Technical Paper No. 40, Rainfall Frequency Atlas of the United States, for Marshall County, West Virginia., provided the estimated rainfall depths and is presented in "Sedimentation Pond – Phase 1 Calculations".

RAINFALL DATA										
Frequency Duration Depth (in)										
2 yr	24 hr	2.54								
10 yr	24 hr	3.81								
25 yr	24 hr	4.44								
100 yr	24 hr	5.10								

According to the TR-55 methods, times of concentration were estimated as the sum of sheet flow, shallow concentrated flow and channel flow. Flow calculations utilized a Curve Number (CN) representative of the post construction surface conditions. Maximum sheet flow length used was 200 feet. Shallow concentrated flow times of concentration were estimated depending on the condition of the flow path.

This site is located in an area of hydrologic soil groups B & C. Since over 95 percent of the site consists of type C soils, hydrologic soil group C was used throughout. Based on the existing and proposed site conditions the following runoff coefficients have been determined and will be utilized.

CN DATA							
Description	CN						
Existing (Woods Grass Combination, Fair)	76						
Newly Graded Areas (Ditches)	91						
Landfill (50-75% Grass Cover, Fair)	91						
Impervious Areas (Paved Haul Road)	98						

The inflow hydrographs were developed using Hydraflow for each contributing watershed based on the previously mentioned criteria and the delineated drainage areas. These areas can be

SUB.	JECT	South Pond	Desigr	Calculations			PROJ	ECT NO.	110-416			
APPLI	CABLE	33CSR1 4.5.	CSR1 4.5.b.3.A. Design and Construction									
RU	JLE	Requiremen	quirements								-	
PRO	JECT	American Ele	merican Electric Power – Mitchell Landfill						^			,
LOCA	ATION	Gatts Ridge I	Road, N	Iarshall County, W	lest Virginia		PAGE		3	OF	8	\$
MADE BY MTF DATE		04/03/12	CHECKED BY	JR		REV.	0	1/29/	13			

found in Figure A of South Pond. The contributing drainage areas for the sedimentation ponds are summarized below:

Drainage Area	CN	Watershed Area (Acre)	Tc (Minutes)
South Pond	82	86.52	17.8

Using the developed inflow hydrographs, all routings have been performed with the initial pool elevation within the ponds at the top of the required sediment storage volume. The required sedimentation storage volume and the 2-year runoff volume have been provided below the invert of the principal spillway. The inflow hydrograph from the 10-year/24-hour storm event was then used to size the principal spillway. The 25-year/24-hour storm event was then passed through the principal spillway in order to determine the elevation at which the emergency spillway was to be placed. The 100-year/24-hour storm event was then used to design the emergency spillway.

ANALYSIS:

SEDIMENT VOLUME SIZING:

According to 33CSR1 4.5.b.3.A., the sedimentation pond must have adequate sediment storage volume for the runoff from the 2-year/24-hour storm event and 0.125 acre-feet per acre of disturbed area.

Volume Requirement for two-year/twenty-four-hour storm:

Utilizing the hydrographs from HydroCAD, the runoff from the 2-year/24-hour storm event for each phase is shown in the table below.

Volume Requirement for 0.125 acre-feet per disturbed acre:

Per the mentioned regulation, the storage volume required for each drainage area is calculated as follows:

$$V = Disturbed Area\left(\frac{0.125 \, acre - ft}{acre}\right)$$

SUB.	JECT	South Pond	Design	Calculations			PROJE	ECT NO.		110	0-416	
	CABLE		CSR1 4.5.b.3.A. Design and Construction									
RU	JLE	Requiremen	ts								-	
PRO	JECT	American El	ectric Po	ower – Mitchell La	andfill				4			
LOCA	ATION	Gatts Ridge	Road, N	larshall County, V	Vest Virginia		PAGE		4	OF	8)
MADE B		MTF	DATE	04/03/12	CHECKED BY	JR	21	REV.	0′	1/29/	13	

The expected total disturbed drainage area and total storage volume requirements for each phase are shown in the table below. The total volume of the two-year/twenty-four-hour runoff plus the sediment storage volume was calculated for each phase as shown in the table below.

South Drainage Areas	2-Year	Disturbed	Sediment	Total Volume
	Runoff (CF)	Area (SF)	Volume (CF)	(CF)
South Pond	319,027	1,657,896	207,237	526,264

The South Pond was designed to accommodate the Phase 1 volume throughout all calculations. The designed capacity of the pond, including provision for sediment accumulation, anticipates that accumulated sediment will be removed from the ponds periodically during the life of the landfill. The volume in each pond allocated to sediment is identified in the tables above. In accordance with 33CSR1 Section 4.5.b.3.A.6, sediment will be removed when 60% of the maximum allowable sediment accumulation is reached. The following table identifies the pond stage (elevation), that when reached by accumulated sediment, will indicate that 60% of the designed sediment accumulation volume has been consumed and a sediment removal event is necessary. Staff gauges can be established in the ponds to identify when the sediment level reaches the removal stage.

Required Sediment Removal Stage								
Sediment Pond	Elevation							
Sediment Folia	(feet amsl)							
South Pond	1027.64							

Each pond has been designed to release the 2-year/24-hour storm event through a floating skimmer over a 7-day period. The calculations are based on the Faircloth Skimmer Online Sizing Calculator. Below is the summary for each of the skimmers.

SUB	JECT	South Por	South Pond Design Calculations								110-416		
APPLI	CABLE	33CSR1 4	.5.b.3.A. I										
RU	JLE	Requirem	ents										
PRO	JECT	American	American Electric Power – Mitchell Landfill								0		
LOCA	LOCATION Gatts Ridge Road, Marshall County, West Virginia						PAGE		5	OF	8		
	MADE BY MTF DATE 04/03/12 CHECKED BY J					JR	I	REV. DATE	0	1/29/	13		

Drainage Areas	2-Year Runoff (CF)	Days to Drain	Skimmer Size (in)	Orifice Diameter (in)	Flow Rate (cfs)
South Pond	319,027	7	6.0	5.7	0.5275

The chart below shows the provided volumes and elevations for the design Ponds:

Design Drainage Area	Required Volume (CF)	Required Volume Provided at Elevation	Principal Spillway Elevation	25-YR Routed Storage Elevation	Emergency Spillway Elevation	Top Of Berm Elevation
South Pond	526,264	1038.92	1038.92	1039.60	1040.08	1041.08

PRINCIPAL SPILLWAY DESIGN:

According to 33CSR1 4.5.b.3.A.7.(b) Sediment control structures must provide a combination of principal and emergency spillways that will safely discharge a minimum twenty-five (25)-year, twenty-four (24)-hour storm without overtopping of the structure. There must be no outflow through the emergency spillway during the passage of a ten (10)-year, twenty-four (24)-hour frequency storm through the sediment control structure. To fulfill this regulation, the principal spillway was placed at the elevation of the 2-year/24-hour storm elevation, which provides the required sediment storage volume. The 25-year/24-hour storm event was then routed through the designed principal spillway in order to determine the 25-year/24-hour elevation. Therefore, if the principal spillway is capable of releasing the flow from the 25-year/24-hour storm event, it is capable of safely handling the flow from the 10-year/24-hour storm event.

SUB	JECT	South Pond	outh Pond Design Calculations								110-416		
APPLI	CABLE	33CSR1 4.5.	33CSR1 4.5.b.3.A. Design and Construction										
RL	JLE	Requiremen	Requirements										
PRO	JECT	American El	American Electric Power – Mitchell Landfill										
LOCA	LOCATION Gatts Ridge Road, Marshall County, West Virginia						PAGE		6	OF	8	5	
	MADE BY MTF DATE 04/03/12 CHECKED BY					JR	RI	REV. DATE	01	1/29/	13		

The details of the principal spillway for each Sedimentation Pond are found within the Hydraflow printout and are summarized as follows:

South Pond	Culvert	Principal Spillway Riser
Structure Type	42" Pipe	Weir
Invert Elevation	968.28	1038.92
Pipe/Crest Length (feet)	204.547	80.00
Slope (%)	11.50	n/a
N-Value	0.012	n/a
Orifice/Weir Coefficient	0.6	3.33

According to 33CSR1 4.5.b.3.A.7.(b), the routing, included with this calculation, shows that the maximum pool elevation is below the invert elevation of the emergency spillway. Thus, during the 25-year/24-hour storm event, the emergency spillway provides flood storage with no flow entering the emergency spillway while allowing flow through the principal spillway.

EMERGENCY SPILLWAY DESIGN:

According to 33CSR1 4.5.b.3.A.7.(b), the emergency spillway has been designed such that the combination of the principal spillway and emergency spillway will safely discharge the 25-year/24-hour storm event. This design requirement has been evaluated by routing flow from the 25-year/24-hour storm through the pond using the previously designed principal spillway.

All spillways must discharge an adequate distance beyond the downstream toe of the structure to a natural drainway to prevent erosion of the downstream toe. The inverts of the emergency spillways have been set above the elevation of the 25-year/24-hour storm event.

The details of the emergency spillway for the South Pond are found within the Hydraflow printout and are summarized as follows:

SUB	JECT	South Pond	Desiar	n Calculations			PROJ	ECT NO.		11(0-416	
APPLI	CABLE	33CSR1 4.5.	b.3.A. I	1100	<u></u>							
	JECT	•		ower – Mitchell La				-				
LOCA	Gatts Ridge Road, Marshall County, West Virginia						PAGE		1	OF	8	\$
	MADE E	DE BY MTF DATE 04/03/12 CHECKED BY					21	REV. DATE	0^	1/29/	13	

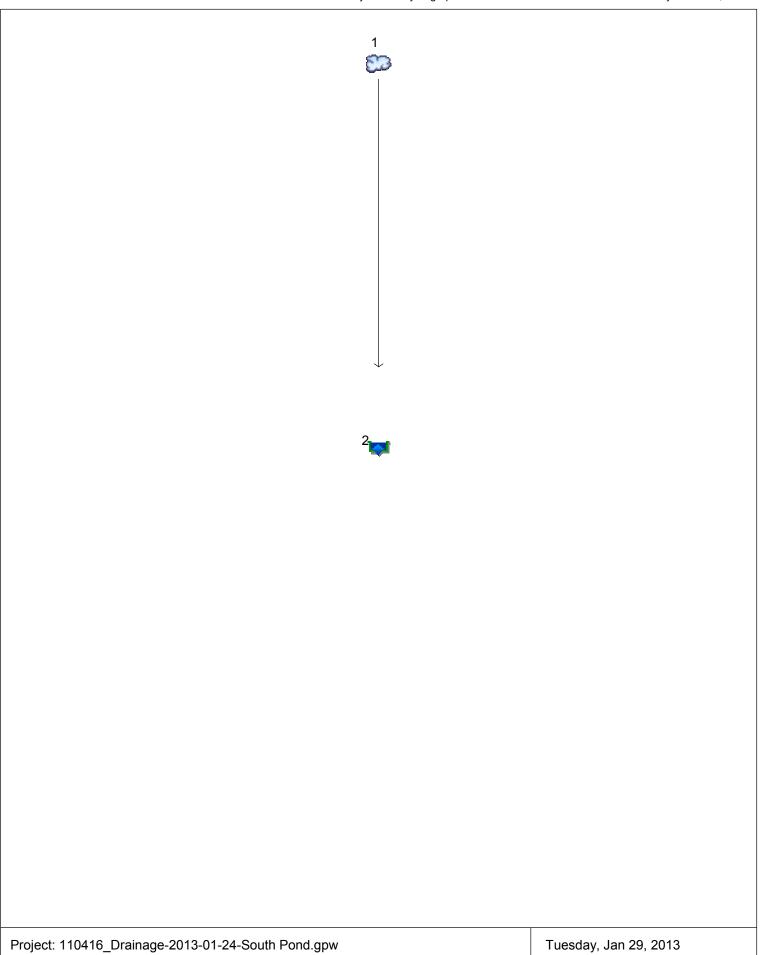
South Pond (Phase 1)	Emergency Spillway
Spillway Type	8' Dia. MH
Crest Elevation	1040.08
Crest Length (feet)	25.13
Weir Coefficient	3.33
Channel Lining	n/a
Maximum pool elevation 25-year 24-hour storm	1039.60
Top of Embankment	1041.08
Freeboard above the 25-year elevation	1.48

OUTLET CHANNEL:

The proposed principal spillway and emergency spillway will outlet to the existing drainage channels downstream of the proposed Sedimentation Ponds. (Please see "Permanent Surface Water Control Structures Perimeter Channel Design Calculations" for additional information regarding the channel design)

CONCLUSIONS:

The proposed South Pond has been designed to meet the regulations as outlined in 33CSR1 4.5.b.3.A.7. The temporary pond utilizes the primary spillway to convey the 10-year/24-hour storm event within the watershed. The routing of the 25-year/24-hour storm event produces water level elevations below the invert of the proposed emergency spillway. The flow from the 100-yr/24-hr storm was routed through the proposed principal spillway and the emergency spillway. The South Pond provides over one foot of freeboard for a 100-year/24-hour storm event in relation to the top of the emergency spillway and an additional one foot of freeboard from the emergency spillway to the top of embankment.



SUB	JECT	South Pond	Design	Calculations	PROJE	ECT NO.		110-416				
APPLI	CABLE	33CSR1 4.5.	b.3.A. D									
RU	JLE	Requiremen	Requirements									
PRO	JECT	American Ele	American Electric Power – Mitchell Landfill									
LOCA	LOCATION Gatts Ridge Road, Marshall County, West Virginia						PAGE		3	OF	8	5
	MADE BY MTF DATE 04/03/12 CHECKED BY						l	REV. DATE	01	1/29/	13	

REFERENCES:

- 1. United States Department of Commerce, Weather Bureau, Technical Paper No. 40, Rainfall Frequency Atlas of the United States, for Mitchell County, West Virginia.
- 2. Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2011, Version 8, 2007-2010, Computer Software Program.
- 3. Faircloth Skimmer Online Sizing Calculator. <http://www.fairclothskimmer.com/skimmer.html>

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2011 by Autodesk, Inc. v8

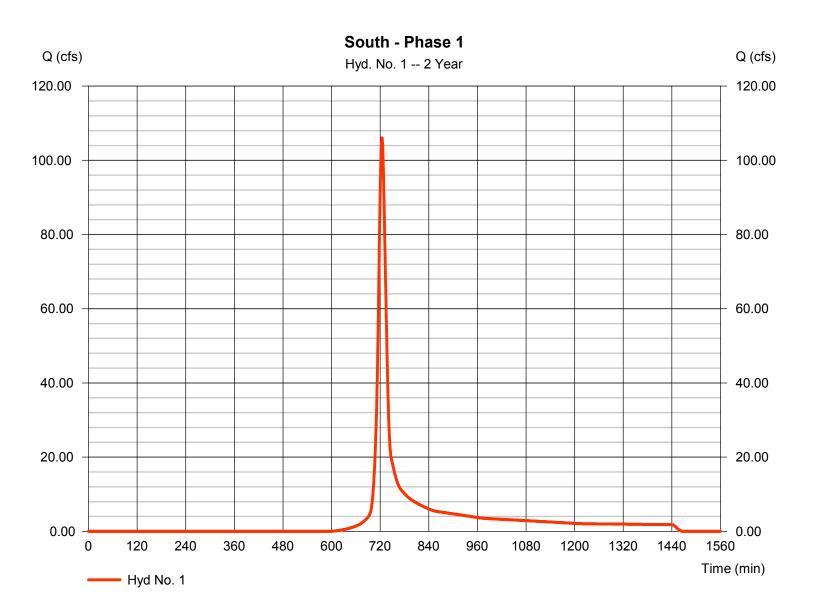
Hydrograph Return Period Recap Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2011 by Autodesk, Inc. v8

lyd. Io.	Hydrograph type	Inflow hyd(s)				Peak Ou	tflow (cfs))		1	Hydrograph Description	
0.	(origin)	liyu(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description	
1	SCS Runoff			106.03			214.10	270.59		330.73	South - Phase 1	
2	Reservoir	1		1.875			54.05	164.39		270.66	South Pond - Phase 1	

Hydrograph Summary Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2011 by Autodesk, Inc. v8

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	106.03	1	724	319,027				South - Phase 1
2	Reservoir	1.875	1	1374	16,638	1	1038.83	304,039	South Pond - Phase 1
110)416_Drainag	 ge-2013-0	 1-24-Soເ	uth Pond.	pvReturn F	Period: 2 Ye	ear	Tuesday, J	Jan 29, 2013


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2011 by Autodesk, Inc. v8

Hyd. No. 1

South - Phase 1

Hydrograph type	= SCS Runoff	Peak discharge	= 106.03 cfs
Storm frequency	= 2 yrs	Time to peak	= 724 min
Time interval	= 1 min	Hyd. volume	= 319,027 cuft
Drainage area	= 86.520 ac	Curve number	= 82*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 17.80 min
Total precip.	= 2.54 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(48.110 x 76) + (10.320 x 91) + (18.200 x 91) + (3.470 x 98)] / 86.520

4

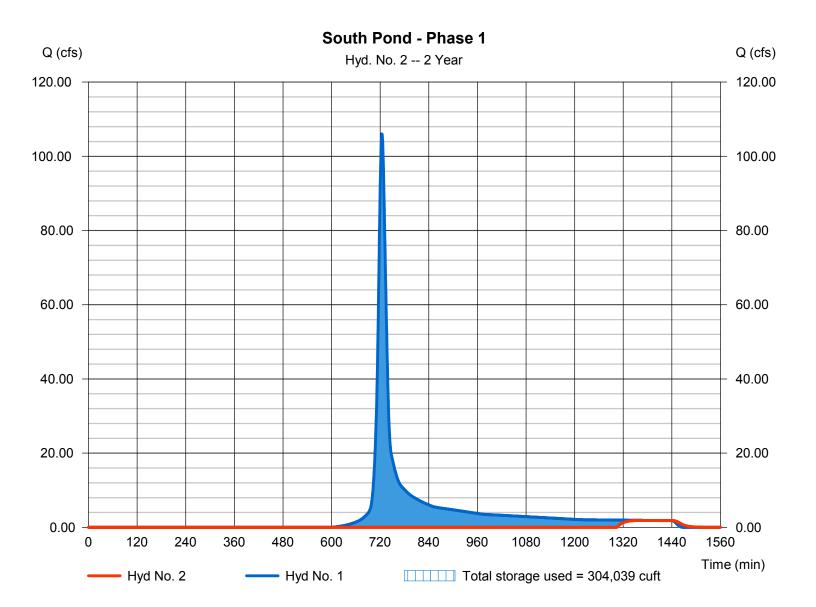
Tuesday, Jan 29, 2013

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2011 by Autodesk, Inc. v8

Hyd. No. 1

South - Phase 1

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>	
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.400 = 200.0 = 2.54 = 19.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00			
Travel Time (min)	= 17.05	+	0.00	+	0.00	=	17.05	
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 188.87 = 28.00 = Unpaved =8.54	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00			
Travel Time (min)	= 0.37	+	0.00	+	0.00	=	0.37	
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 33.00 = 20.97 = 21.00 = 0.040 =23.13		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00			
Flow length (ft)	({0})554.9		0.0		0.0			
Travel Time (min)	= 0.40	+	0.00	+	0.00	=	0.40	
Total Travel Time, Tc								


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2011 by Autodesk, Inc. v8

Hyd. No. 2

South Pond - Phase 1

Hydrograph type	= Reservoir	Peak discharge	= 1.875 cfs
Storm frequency	= 2 yrs	Time to peak	= 1374 min
Time interval	= 1 min	Hyd. volume	= 16,638 cuft
Inflow hyd. No.	= 1 - South - Phase 1	Max. Elevation	= 1038.83 ft
Reservoir name	= South Pond-Minus Sediment	Max. Storage	= 304,039 cuft

Storage Indication method used.

Pond Report

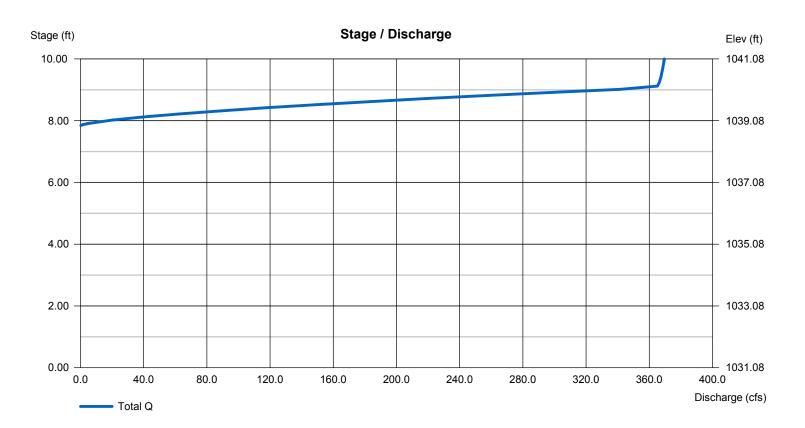
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2011 by Autodesk, Inc. v8

Pond No. 2 - South Pond-Minus Sediment

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 1031.08 ft

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	1031.08	28,316	0	0
0.92	1032.00	31,119	27,327	27,327
1.92	1033.00	34,041	32,566	59,893
2.92	1034.00	37,125	35,568	95,461
3.92	1035.00	40,351	38,723	134,184
4.92	1036.00	43,689	42,005	176,189
5.92	1037.00	47,242	45,449	221,638
6.92	1038.00	50,922	49,066	270,704
7.84	1038.92	54,000	48,257	318,961
7.92	1039.00	54,936	4,352	323,313
8.92	1040.00	58,879	56,890	380,203
9.92	1041.00	62,901	60,873	441,076
10.00	1041.08	64,074	5,078	446,154

Culvert / Orifice Structures

[A] [C] [D] [A] [B] [C] [PrfRsr] [B] Rise (in) = 40.87 0.00 Inactive Inactive Crest Len (ft) = 80.00 25.13 Inactive Inactive Span (in) = 40.87 0.00 0.00 0.00 Crest El. (ft) = 1038.92 1040.08 0.00 0.00 No. Barrels = 1 0 0 0 Weir Coeff. = 3.33 3.33 3.33 3.33 = 968.28 0.00 0.00 0.00 Weir Type Invert El. (ft) = 1 Rect Ciplti ---= 204.55 0.00 0.00 0.00 Multi-Stage = Yes Yes No No Length (ft) = 11.50 0.00 0.00 n/a Slope (%) = .012 .013 .013 n/a N-Value **Orifice Coeff.** = 0.60 0.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Contour) TW Elev. (ft) No No No = 0.00 Multi-Stage = n/a

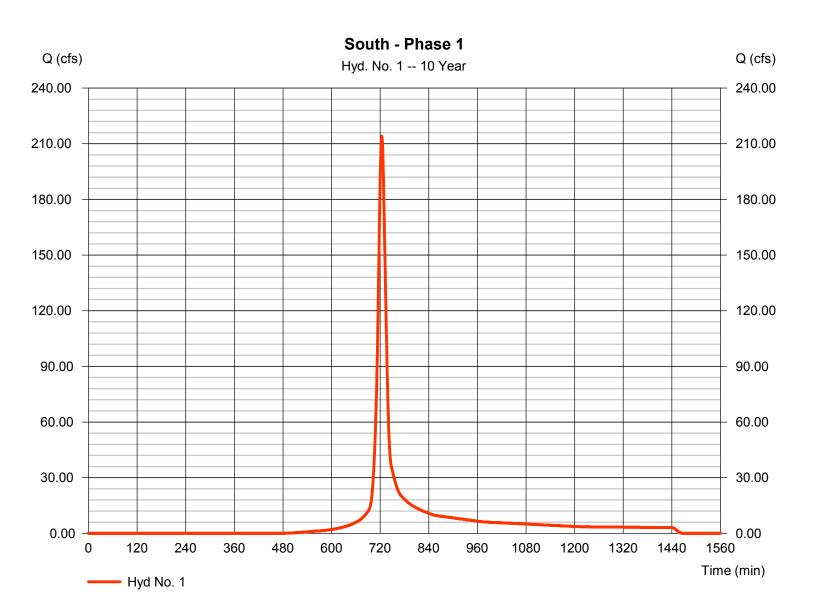
Weir Structures

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Hydrograph Summary Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2011 by Autodesk, Inc. v8

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	214.10	1	724	633,899				South - Phase 1
2	Reservoir	54.05	1	741	331,510	1	1039.17	322,275	South Pond - Phase 1
)416_Drainaç								Jan 29, 2013


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2011 by Autodesk, Inc. v8

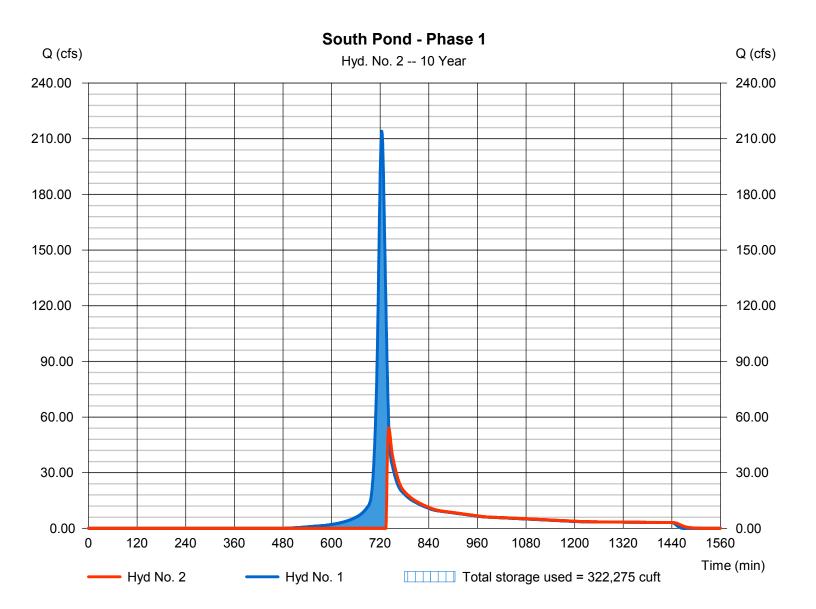
Hyd. No. 1

South - Phase 1

Hydrograph type	= SCS Runoff	Peak discharge	= 214.10 cfs
Storm frequency	= 10 yrs	Time to peak	= 724 min
Time interval	= 1 min	Hyd. volume	= 633,899 cuft
Drainage area	= 86.520 ac	Curve number	= 82*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 17.80 min
Total precip.	= 3.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(48.110 x 76) + (10.320 x 91) + (18.200 x 91) + (3.470 x 98)] / 86.520

9


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2011 by Autodesk, Inc. v8

Hyd. No. 2

South Pond - Phase 1

Hydrograph type	= Reservoir	Peak discharge	= 54.05 cfs
Storm frequency	= 10 yrs	Time to peak	= 741 min
Time interval	= 1 min	Hyd. volume	= 331,510 cuft
Inflow hyd. No.	= 1 - South - Phase 1	Max. Elevation	= 1039.17 ft
Reservoir name	= South Pond-Minus Sediment	Max. Storage	= 322,275 cuft

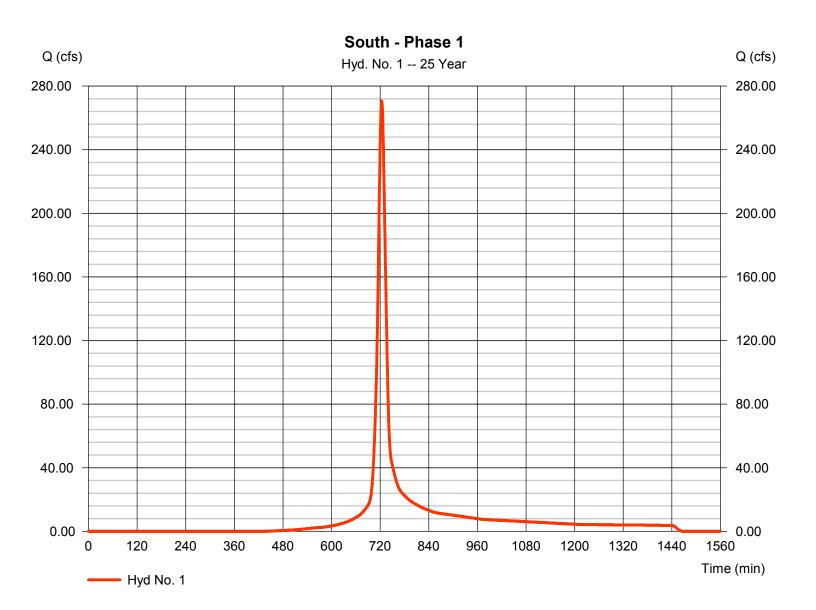
Storage Indication method used.

Tuesday, Jan 29, 2013

Hydrograph Summary Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2011 by Autodesk, Inc. v8

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	270.59	1	724	802,183				South - Phase 1
2	Reservoir	164.39	1	733	499,794	1	1039.55	343,921	South Pond - Phase 1
)416_Drainaç								an 29, 2013

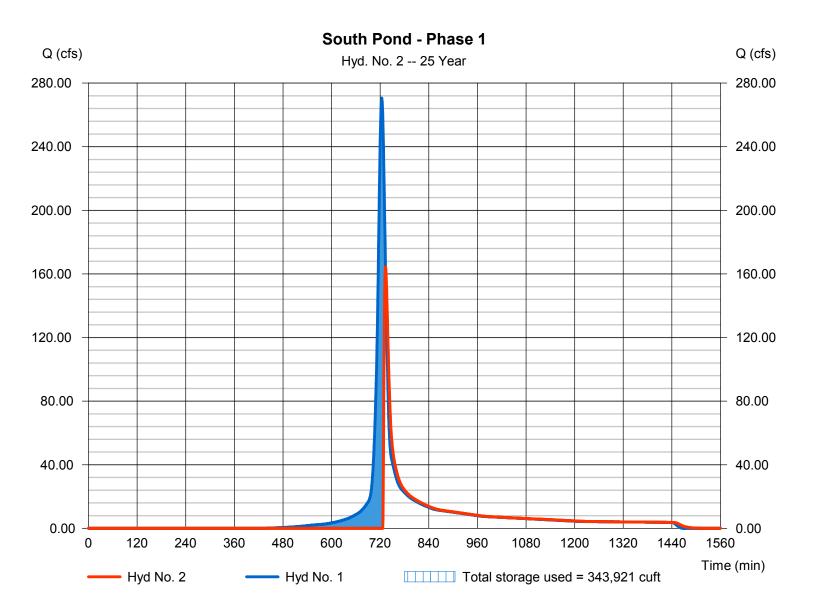

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2011 by Autodesk, Inc. v8

Hyd. No. 1

South - Phase 1

Hydrograph type	= SCS Runoff	Peak discharge	= 270.59 cfs
Storm frequency	= 25 yrs	Time to peak	= 724 min
Time interval	= 1 min	Hyd. volume	= 802,183 cuft
Drainage area	= 86.520 ac	Curve number	= 82*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 17.80 min
Total precip.	= 4.44 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(48.110 x 76) + (10.320 x 91) + (18.200 x 91) + (3.470 x 98)] / 86.520


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2011 by Autodesk, Inc. v8

Hyd. No. 2

South Pond - Phase 1

Hydrograph type	= Reservoir	Peak discharge	= 164.39 cfs
Storm frequency	= 25 yrs	Time to peak	= 733 min
Time interval	= 1 min	Hyd. volume	= 499,794 cuft
Inflow hyd. No.	= 1 - South - Phase 1	Max. Elevation	= 1039.55 ft
Reservoir name	= South Pond-Minus Sediment	Max. Storage	= 343,921 cuft

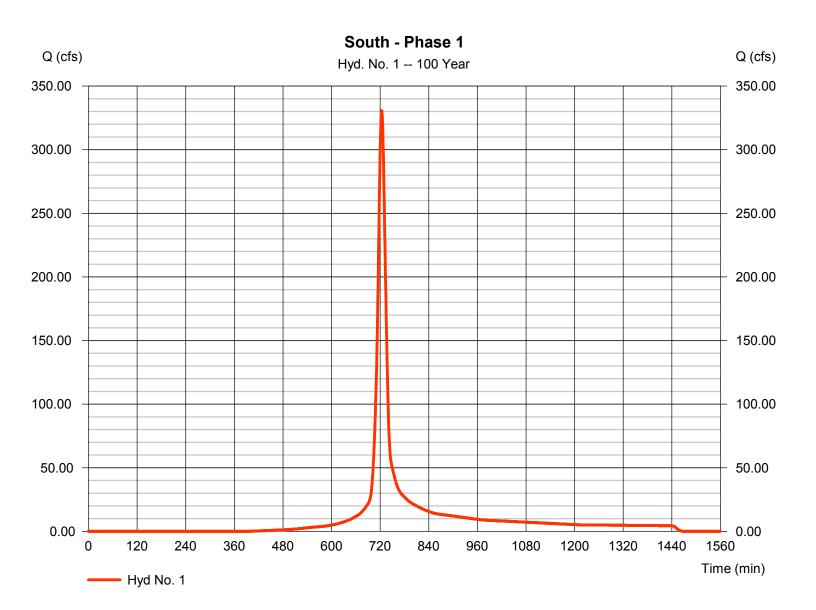
Storage Indication method used.

13

Hydrograph Summary Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2011 by Autodesk, Inc. v8

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	330.73	1	724	983,866				South - Phase 1
2	Reservoir	270.66	1	729	681,476	1	1039.83	360,205	South Pond - Phase 1
140)416_Drainag		1 04 0-1	ith Dorrel			Veer	Tuesday	 an 29, 2013


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2011 by Autodesk, Inc. v8

Hyd. No. 1

South - Phase 1

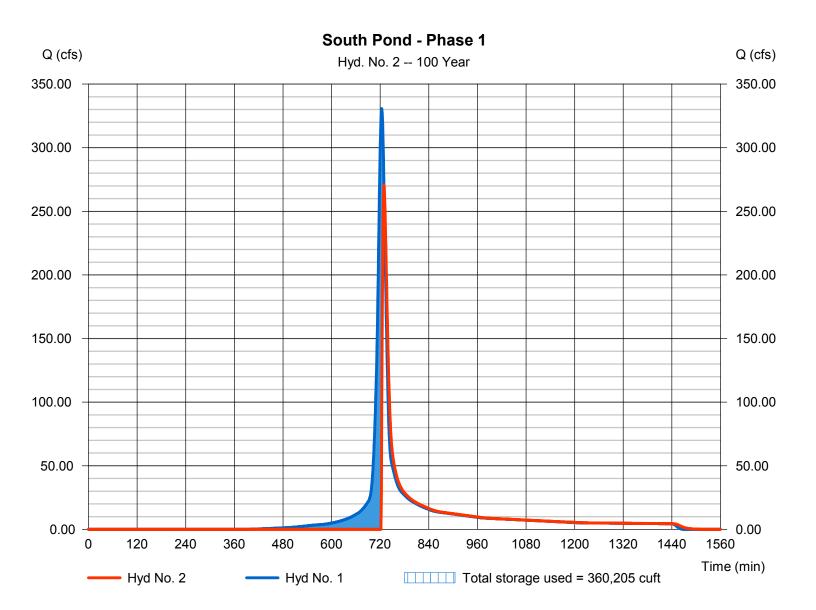
Hydrograph type	= SCS Runoff	Peak discharge	= 330.73 cfs
Storm frequency	= 100 yrs	Time to peak	= 724 min
Time interval	= 1 min	Hyd. volume	= 983,866 cuft
Drainage area	= 86.520 ac	Curve number	= 82*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 17.80 min
Total precip.	= 5.10 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(48.110 x 76) + (10.320 x 91) + (18.200 x 91) + (3.470 x 98)] / 86.520

15

Tuesday, Jan 29, 2013

Hydrograph Report


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2011 by Autodesk, Inc. v8

Hyd. No. 2

South Pond - Phase 1

Hydrograph type	= Reservoir	Peak discharge	= 270.66 cfs
Storm frequency	= 100 yrs	Time to peak	= 729 min
Time interval	= 1 min	Hyd. volume	= 681,476 cuft
Inflow hyd. No.	= 1 - South - Phase 1	Max. Elevation	= 1039.83 ft
Reservoir name	= South Pond-Minus Sediment	Max. Storage	= 360,205 cuft

Storage Indication method used.

Tuesday, Jan 29, 2013

Hydraflow Rainfall Report

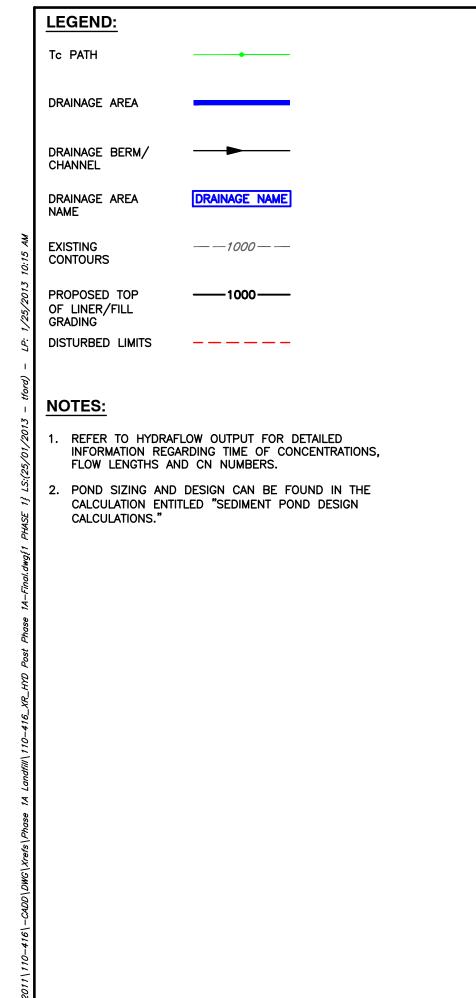
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2011 by Autodesk, Inc. v8

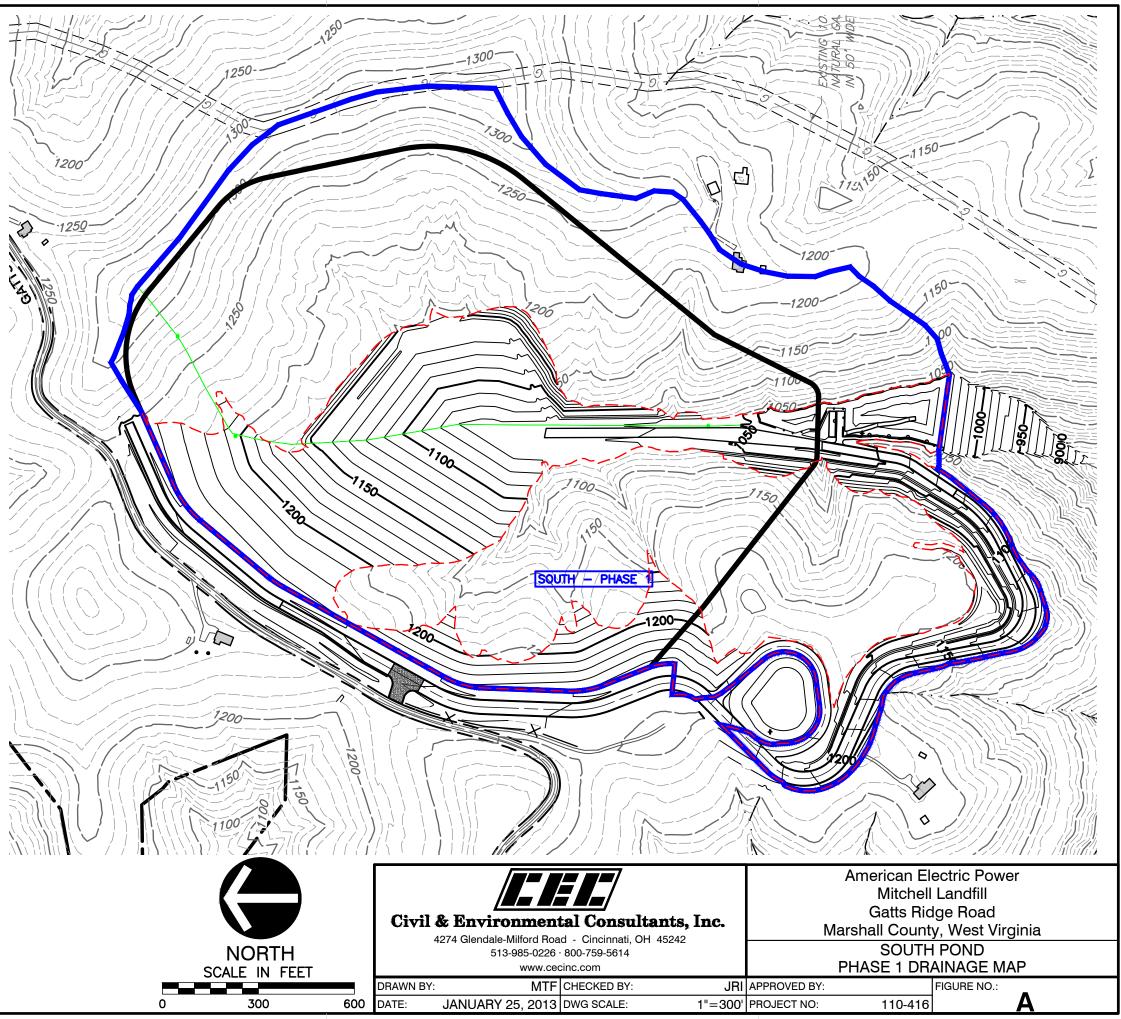
Return Period	Intensity-D	Intensity-Duration-Frequency Equation Coefficients (FHA)						
(Yrs)	В	D	E	(N/A)				
1	0.0000	0.0000	0.0000					
2	0.0000	0.0000	0.0000					
3	0.0000	0.0000	0.0000					
5	0.0000	0.0000	0.0000					
10	0.0000	0.0000	0.0000					
25	0.0000	0.0000	0.0000					
50	0.0000	0.0000	0.0000					
100	0.0000	0.0000	0.0000					
	1	1		1				

File name: Lebanon.IDF

Intensity = B / (Tc + D)^E

Return					Intens	ity Values	(in/hr)					
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00


Tc = time in minutes. Values may exceed 60.


					Precip	. file name	: Marchall	_Co_WV.pd
		F	Rainfall I	Precipita	tion Tab	ole (in)		
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
SCS 24-hour	2.25	2.54	0.00	3.25	3.81	4.44	0.00	5.10
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Custom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Tuesday, Jan 29, 2013

AEP - Mitchell Landfill South Pond

Calculate Skimmer Size					
Basin Volume in Cubic Feet	319,027	Cu.Ft		Skimmer Size	6.0 Inch
Days to Drain*	7 [Days		Orifice Radius	2.8 Inch[es]
				Orifice Diameter	5.7 Inch[es]
*In NC assume 3 days to drain					
Estimate Volume of Basin	Length	Width			
Estimate Volume of Basin Top of water surface in feet	Length	Width	Feet	VOLUME	0 Cu. Ft.
	Length	Width	Feet Feet	VOLUME	0 Cu. Ft.

APPENDIX B; SECTION 2

RUN-OFF CONTROL FEATURE SUPPORTING CALCULATIONS

WATER BALANCE CALCULATIONS

(Taken from the Solid Waste/NPDES Permit Application for the Mitchell Landfill)

SUBJECT	Water	Balan	ce Calo	culation			PROJ	ECT NO.		11()-416
APPLICABLE RULE	33CSF	33CSR1:3.8.e 1-9									
PROJECT	Amerio	can Ele	ectric P	ower – Mitchell Lar	ndfill		PAGE		4	OF	27
LOCATION	Gatts I	Ridge I	Road, N	larshall County, W	est Virginia		PAGE		1	OF	37
MADE E	вү А	МН	DATE	02/22/12	CHECKED BY	Rł	4	DATE	2-	27-1	2
REVISED B	Y: T	DM	DATE	1/3/2019	CHECKED BY	ED	С	DATE	1	/7/19)

This calculation was updated in January 2019 to account for changes to the base liner system associated with Phase 3 and 4 Construction. Changes to the base liner system include elimination of the geocomposite on the sideslopes and floor, and exclusive use of bottom ash for the leachate collection layer material.

Note that this calculation previously included a discussion of flow rates coming from the leachate collection zone. These flow rates were calculated using assumed flow rates of 1×10^{-2} cm/sec for the leachate collection material. This revised calculation has been prepared to determine the minimum permeability required to maintain the design maximum leachate heads as determined in the Liner Hydraulic Equivalency (GCL and CCL) Calculation Brief (i.e., 10-inch maximum leachate head). As such, reference to the flow rates coming from the leachate collection zone have been stricken from this calculation brief. Please refer to the previous calculation brief included in the permit application for the Mitchell Landfill for further discussion of leachate flow rates.

OBJECTIVE:

This calculation will evaluate the water balance for Mitchell Landfill. **METHOD OF ANALYSIS:**

The Hydrologic Evaluation of Landfill Performance (HELP) Model (ver. 3.07) was used to simulate leachate generation. The HELP model is a computer program developed for the USEPA that is used to determine the fluid flux through landfill and landfill liner systems. The HELP model is a water balance model, and is widely used in landfill design. This model utilizes climatologic, soil and design data, and performs a solution technique that accounts for the effects of surface layer storage, runoff, infiltration, percolation, evapotranspiration, soil moisture storage, and lateral drainage to calculate a leachate generation volume.

HELP MODEL ANALYSIS:

HELP Model Design Data:

The following climatological parameters are common to all model runs and were provided by the HELP model program. Historical climate data available for the Pittsburgh area was chosen because it is in close proximity to the project site (approximately 80 miles northeast), is similar in elevation and has comparable climatic characteristics. The following climate data is provided by the HELP program:

- Evapotranspiration;
- Precipitation;
- Temperature; and,
- solar radiation.

\\Svr-cinci\projects\2011\110-416\-Draft Documents\M-Composite Liner Equivalency Analysis\Appendix C Hydrologic Evaluation of Landfill Performance\110-416 Water Balance (January 2019).docx

		CIVII	& Environment	lai Collsul	iants,	me.				
SUBJECT	Water Balan	ce Calo	culation			PROJ	ECT NO.		110	D-416
APPLICABLE RULE	33CSR1:3.8.	e 1-9								
PROJECT	American Ele	ectric P	ower – Mitchell Lai	ndfill		PAGE		2	OF	37
LOCATION	Gatts Ridge	Road, N	larshall County, W	est Virginia		PAGE		Z	OF	37
MADE E	AMH	DATE	02/22/12	CHECKED BY	RI	4	DATE	2-	27-1	2
REVISED B	Y: TDM	DATE	1/3/2019	CHECKED BY	ED	С	DATE	1	/7/19)

The program also requires specific data with respect to waste, liner and subbase characteristics, interior slope lengths and inclination, and cover slope characteristics.

The following design data was used for the layers in the simulations:

- Permeability of final cover = 1.0×10^{-6} cm/s (not used in intermediate conditions)
- Permeability of fly ash = 1.3×10^{-4} cm/s, per CEC test results
- The leachate collection layer permeability was varied for the floor and sideslope conditions until an acceptable maximum head on liner system was produced.
- Geomembrane installation is 'Good' with 2 pinholes and 4 installation defects / acre. Permeability of geomembrane = 2.0 x 10⁻¹¹ cm/s
- Permeability of GCL = 5 x 10⁻⁹ cm/s (typical for commercial GCL products). CEC notes that the project design does require a GCL permeability of 3.4 x1 0⁻⁹ cm/s. This lower permeability requirement was initially required to demonstrate equivalency to a compacted clay liner (CCL). However, for this analysis, the permeability of 5 x 10⁻⁹ cm/s was used to maintain consistency with the original permit documents. This difference in permeability does not have a substantial impact in calculating the maximum leachate head generated on the liner system.
- Permeability of subbase = 1 x 10⁻⁵ cm/s (comparison model runs indicate permeability of this layer does not affect flow through the barrier layer)

The following design data was used for the simulations involving the floor of the landfill:

- Bottom (liner) slope = 5% (minimum floor slope expected)
- Slope length = 60 feet (maximum floor slope length)

The following design data was used for the simulations involving the sideslopes of the landfill:

- Bottom (liner) slope = 33% (For 3H:1V Slopes)
- Bottom (liner) slope = 25% (For 4H:1V Slopes)
- Slope length = 900 feet (maximum sideslope length)

The following information was used for simulations involving intermediate conditions:

- Curve number of exposed fly ash = 86 [bare soil, Group B (USDA classification silt loam per CEC lab results)].
- Time span of 5 years

			CIVII	& Environment	al Collsul	iants,	me.				
SUBJECT	W	ater Balan	ce Calo	culation			PROJ	ECT NO.		110)-416
APPLICABLE RULE	33	BCSR1:3.8.	e 1-9								
PROJECT	Ar	merican Ele	ectric P	ower – Mitchell Lar	ndfill		PAGE		3	OF	37
LOCATION	Ga	atts Ridge I	Road, N	larshall County, W	est Virginia		PAGE		3	UF	37
MADE E	ЗY	АМН	DATE	02/22/12	CHECKED BY	RI	4	DATE	2-	27-1	2
REVISED B	Y:	TDM	DATE	1/3/2019	CHECKED BY	ED	С	DATE	1	/7/19)

• Waste thickness = 10 feet, 100 feet

The following information was used for simulations involving final conditions:

- Curve number of exposed final cover = 86 [bare soil, Group B]
- Time span of 100 years
- Waste thickness = 10 feet, 100 feet, 250 feet

HELP Model Analyses:

Several HELP Model analyses were performed using the design data presented above. The following provides a summary of the input used in the models:

Intermediate Condition: Floor without final cover

		1	
Layer	HELP Model	Thickness	Permeability
Layei	Texture No.	(inches)	(cm/sec)
Waste ⁽¹⁾	30	Varies	0.0013
Granular leachate collection layer ⁽¹⁾	1	18	Varied
Geomembrane	37	0.03	2.0 x 10 ⁻¹¹
GCL ⁽¹⁾	17	0.25	5.0 x 10 ⁻⁹
Subbase ⁽¹⁾	26	6	1.0 x 10 ⁻⁴
Soil	4	6	0.0017

Notes:

(1) Texture No. 0 in HELP Model because of change to permeability.

Intermediate Condition: Sideslopes without final cover

Lovor	HELP Model	Thickness	Permeability
Layer	Texture No.	(inches)	(cm/sec)
Waste ⁽¹⁾	30	Varies	0.0013
Granular leachate collection layer ⁽¹⁾	1	18	Varied
Geomembrane	37	0.03	2.0x10 ⁻¹¹
GCL ⁽¹⁾	17	0.25	5.0x10 ⁻⁹
Subbase ⁽¹⁾	26	6	1.0x10 ⁻⁴
Soil	4	6	0.0017

Notes:

(1) Texture No. 0 in HELP Model because of change to permeability.

					units,	IIIC.		-		
SUBJECT	Water Balan	ce Cal	culation			PROJ	ECT NO.		11()-416
APPLICABLE RULE	33CSR1:3.8	e 1-9								
PROJECT	American El	ectric P	ower – Mitchell Lar	ndfill		PAGE		4	OF	37
LOCATION	Gatts Ridge	Road, M	larshall County, W	est Virginia		FAGE		4	UF	37
MADE I	зү АМН	DATE	02/22/12	CHECKED BY	RI	4	DATE	2-	27-1	2
REVISED B	Y: TDM	DATE	1/3/2019	CHECKED BY	ED	С	DATE	1	/7/19)

Final Conditions: Floor with final cover

Layer	HELP Model Texture No.	Thickness (inches)	Permeability (cm/sec)
Final cover ⁽¹⁾	26	24	1.0x10 ⁻⁴
Waste ⁽¹⁾	30	Varies	0.0013
Granular leachate collection layer ⁽¹⁾	1	18	Varied
Geomembrane	37	0.03	2.0x10 ⁻¹¹
GCL ⁽¹⁾	17	0.25	5.0x10 ⁻⁹
Subbase ⁽¹⁾	26	6	1.0x10 ⁻⁴
Soil	4	6	0.0017

Notes:

(1) Texture No. 0 in HELP Model because of change to permeability.

Final Conditions: Sideslopes with final cover

Layer	HELP Model Texture No.	Thickness (inches)	Permeability (cm/sec)
Final cover (1)	26	24	1.0x10 ⁻⁶
Waste ⁽¹⁾	30	Varies	0.0013
Granular leachate collection layer ⁽¹⁾	1	18	Varied
Geomembrane	37	0.03	2.0x10 ⁻¹¹
GCL ⁽¹⁾	17	0.25	5.0x10 ⁻⁹
Subbase ⁽¹⁾	26	6	1.0x10 ⁻⁴
Soil	4	6	0.0017

Notes:

(1) Texture No. 0 in HELP Model because of change to permeability.

HELP Model Results:

The results of the HELP Model analyses are presented in Appendix A. **Table 1** presents a summary of data developed from the HELP model runs for intermediate conditions evaluated:

	Civil & Environmental Consultants, I										
SUBJECT	Water Balan	Vater Balance Calculation					ECT NO.		110-416		
APPLICABLE RULE	33CSR1:3.8.	33CSR1:3.8.e 1-9									
PROJECT	American Ele	American Electric Power – Mitchell Landfill						5	OF	37	
LOCATION	Gatts Ridge Road, Marshall County, West Virginia					PAGE		5	UF	31	
MADE E	BY AMH DATE 02/22/12 CHECKED BY RH			4	DATE	2-	27-1	2			
REVISED B	Y: TDM	DATE	1/3/2019 СНЕСКЕД ВУ EDC				DATE	1	/7/19)	

Table 1: Summary for Intermediate Conditions

File Name	Floor/ Sideslope	Waste Thickness (ft)	Leachate Collection Layer Perm. (cm/sec)	Max. Head on Liner System (inches)
GCLFLI1	Floor	10	1.25 x 10 ⁻³	9.994
GCLFLI2	Floor	100	4.00 x 10 ⁻⁴	9.994
GCL3SSI1	3H:1V slope	10	6.00 x 10 ⁻³	9.532
GCL3SSI2	3H:1V slope	100	4.00 x 10 ⁻³	9.091
GCL4SSI1	4H:1V slope	10	7.00 x 10 ⁻³	9.912
GCL4SSI2	4H:1V slope	100	5.00 x 10 ⁻³	9.147

Table 2 presents a summary of data developed from the HELP model runs for final conditions evaluated:

File Name	Floor/ Sideslope	Waste Thickness (ft)	Leachate Collection Layer Perm.	Max. Head on Liner System (inches)
GCLFLF1	Floor	10	(cm/sec) 1.3 x 10 ⁻³	9.174
GCLFLF2	Floor	100	1.0 x 10 ⁻³	9.219
GCLFLF3	Floor	250	1.0 x 10 ⁻³	9.086
GCL3SSF1	3H:1V Sideslope	10	4.5 x 10 ⁻³	9.466
GCL3SSF2	3H:1V Sideslope	100	3.5 x 10 ⁻³	9.625
GCL3SSF3	3H:1V Sideslope	250	3.5 x 10 ⁻³	9.470
GCL4SSF1	4H:1V Sideslope	10	6.0 x 10 ⁻³	9.135
GCL4SSF2	4H:1V Sideslope	100	4.5 x 10 ⁻³	9.482
GCL4SSF3	4H:1V Sideslope	250	4,5 x 10⁻³	9.320

Table 2: Summary for Final Cover Conditions

From the results above, it can be noted that the maximum head on the liner system when using an granular drainage layer with a minimum permeability of 7.00×10^{-3} cm/sec is less than the maximum allowable leachate head of 10 inches.

									440.440	
SUBJECT	Water Balan	Vater Balance Calculation					PROJECT NO.		110-416	
APPLICABLE RULE	33CSR1:3.8.	33CSR1:3.8.e 1-9								
PROJECT	American Ele	American Electric Power – Mitchell Landfill						6	OF	37
LOCATION	Gatts Ridge Road, Marshall County, West Virginia					PAGE		0	UF	31
MADE E	AMH	AMH DATE 02/22/12 CHECKED BY RH				4	DATE	2-	27-1	2
REVISED B	Y: TDM	DATE 1/3/2019 CHECKED BY EDC				С	DATE	1	/7/19)

CONCLUSIONS:

The results above show that the maximum head on the liner system when using a granular drainage layer with a minimum permeability of 7.00×10^{-3} cm/sec is less than the maximum allowable leachate head of 10 inches.

APPENDIX A

	• • • • • • • • • • • • • • • • • • • •	
		* * *
* *		*
* *		*
**	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	*
**	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	*
* *	DEVELOPED BY ENVIRONMENTAL LABORATORY	*
* *	USAE WATERWAYS EXPERIMENT STATION	*
**	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	*
**		*
**		*
************		* * *
PRECIPITATION	DATA FILE: C:\HELP\DATA4.D4	

TEMPERATURE DATA FILE:	C:\HELP\DATA7.D7
SOLAR RADIATION DATA FILE	C:\HELP\DATA13.D13
EVAPOTRANSPIRATION DATA:	C:\HELP\DATA11.D11
SOIL AND DESIGN DATA FILE	
OUTPUT DATA FILE:	C:\HELP\GCLFLI1.OUT

TIME: 16:27 DATE: 1/ 3/2019

.....

TITLE: AEP Mitchell - GCL, 10' waste, 5% slopes

.....

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL	PEI	RCOLATION LAYER
MATERIAL TEXTU	JRE	NUMBER 0
THICKNESS	=	120.00 INCHES
	=	
FIELD CAPACITY	=	0.1870 VOL/VOL
WILTING POINT	=	
	=	
EFFECTIVE SAT. HYD. COND.	=	0.13000000000E-02 CM/SEC

LAYER 2

TYPE 2 - LATERA	L DE	ATNACE LAVI	70	
MATERIAL TEXT				
THICKNESS	=		INCHES	
POROSITY	=	0.5780	VOL/VOL	
FIELD CAPACITY	=	0.0760	VOL/VOL	
WILTING POINT	=	0.0250	VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.1990	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.12499999	7000E-02	CM/SEC
SLOPE	=	5.00	PERCENT	
DRAINAGE LENGTH	=	60.0	FEET	

LAYER 3

TYPE 4 - FLEXIE	LE 1	MEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 37
THICKNESS	=	0.03 INCHES
POROSITY	=	0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.199999999000E-10 CM/SEC
FML PINHOLE DENSITY	=	2.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	4.00 HOLES/ACRE
FML PLACEMENT OUALITY	=	3 - GOOD

LAYER 4

TYPE 3 - BARR	IER	SOIL LINER		
MATERIAL TEXT	URE	NUMBER 0		
THICKNESS	=	0.25	INCHES	
POROSITY	=		VOL/VOL	
FIELD CAPACITY	=	0.7470	VOL/VOL	
WILTING POINT	=	0.4000	VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.7500	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.49999999	000E-08	CM/SEC

LAYER 5

TYPE 1 - VERTICAL	PERCOLATION LAYER	
MATERIAL TEXT	URE NUMBER 0	
THICKNESS	= 6.00 INCHES	
POROSITY	= 0.4450 VOL/VOL	
FIELD CAPACITY	= 0.3930 VOL/VOL	
WILTING POINT	= 0.2770 VOL/VOL	
INITIAL SOIL WATER CONTENT	= 0.3930 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	= 0.999999975000E-05 CM/SE	С

LAYER 6

TYPE 1 - VERTICAL	PEF	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER 4
THICKNESS	=	6.00 INCHES
POROSITY	=	0.4370 VOL/VOL
FIELD CAPACITY	=	0.1050 VOL/VOL
WILTING POINT	=	0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.1089 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.17000002000E-02 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS USER-SPECIFIED.

FRACTIO AREA PR EVAPORA INITIAL UPPER L LOWER L INITIAL	OFF CURVE NU N OF AREA AI OJECTED ON H TIVE ZONE DE WATER IN EVAN IMIT OF EVAN SNOW WATER WATER IN LA	LOWING RUNO NORIZONTAL P PTH APORATIVE Z ORATIVE STO ORATIVE STO	LANE = = ONE = RAGE = RAGE = =	86.00 100.0 1.000 8.0 2.332 4.328 0.376 0.000 31.086	ACRES INCHES INCHES INCHES INCHES INCHES
	NITIAL WATEF UBSURFACE IN		-	31.086	INCHES INCHES/YEAR
IOTAL S		ANSPIRATION			INCHES/IEAK
NOTE:	EVAPOTRANSE PITTSBURG		A WAS OBTA PENNSYLV		
	ATION LATITU XIMUM LEAF #				50 DEGREES
	ART OF GROWI		JULIAN DAT		
	D OF GROWING		LIAN DATE)		88
	APORATIVE ZO ERAGE ANNUAI				0 INCHES 20 MPH
	ERAGE 1ST QU				
	ERAGE 2ND QU				
	ERAGE 3RD QU ERAGE 4TH QU				
AV	ERAGE 41H QU	ARIER RELAI	IVE HUMIDI	11 = 70.	.00 %
NOTE:		ON DATA WAS NTS FOR AN MONTHLY	PITTSBURGH		PENNSYLVANIA
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT		IOV JUN/DEC
2.86	2.40	3.58	3.28	3.5	3.30
3.83	3.31	2.80	2.49	2.3	2.57
NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PITTSBURCH PENNSYLVANIA NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)					
JAN/JUL				MAY/N	
26.70	28.80	38.50	50.10		
26.70	28.80	38.50 64.10	50.10		

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PITTSBURGH PENNSYLVANIA AND STATION LATITUDE = 40.50 DEGREES

.....

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5

			MAR/SEP			JUN/DEC
PRECIPITATION						
TOTALS	3 33	3 14	4 20	2 96	2 68	2 99
			4.20 3.70			
STD. DEVIATIONS	0.67 1.09	1.06 1.44	0.65 2.42	0.91 1.41	1.22 0.85	0.43 1.13
RUNOFF						
TOTALS	1.984 0.021	1.817 0.139	3.929 0.056	0.411 0.009	0.023 0.001	0.021 0.217
STD. DEVIATIONS	1.555	0.909 0.135	2.471 0.084	0.464 0.019	0.052	0.029
EVAPOTRANSPIRATION						
TOTALS	0.479	0.493	0.547	2.936	2.088	2.518
			0.547 2.171			
STD. DEVIATIONS	0.144 1.237	0.158 0.633	0.114 0.787	0.790 0.904	1.294 0.149	0.744 0.274
LATERAL DRAINAGE COLLE						
TOTALS			0.4492	0 4660	0 7966	0 7657
101813			0.5079			
STD. DEVIATIONS	0.2801 0.1272	0.2078 0.0851	0.2063 0.1297	0.3162 0.0762	0.2994 0.2767	0.2474 0.3199
PERCOLATION/LEAKAGE TH						
TOTALS			0 0019	0 0019	0 0022	0 0020
IUIALS	0.0030	0.0021	0.0018 0.0020	0.0018	0.0032	0.0029
STD. DEVIATIONS	0.0011 0.0005	0.0008	0.0008	0.0013 0.0003	0.0012	0.0010 0.0013
PERCOLATION/LEAKAGE TH						
TOTALS	0.0016	0.0021	0.0028	0.0026	0.0016	0.0016
			0.0028 0.0025			
STD. DEVIATIONS			0.0013 0.0006			
AVERAGES						
DAILY AVERAGE HEAD ON						
AVERAGES	4.1673	3.2114	2.4596	2.6371	4.3624	4.3330 3.9569
STD. DEVIATIONS	1.5339 0.6968	1.2766 0.4658	1.1297 0.7340	1.7890 0.4173	1.6393 1.5658	1.3997 1.7519
******		•••••				
AVERAGE ANNUAL TOTA	LS & (STD	. DEVIATI	ONS) FOR	YEARS	1 THROUGH	5
		INCHE	s 	CU. F	EET 	PERCENT

PRECIPITATION	37.74	(0.555)	136996.2	100.00
RUNOFF	8.629	(2.6381)	31321.67	22.863
EVAPOTRANSPIRATION	21.860	(1.9291)	79351.94	57.923
LATERAL DRAINAGE COLLECTED FROM LAYER 2	7.53889	(1.61185)	27366.187	19.97587
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.02989	(0.00646)	108.483	0.07919
AVERAGE HEAD ON TOP OF LAYER 3	3.503 (0.753)		
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.02505	(0.00862)	90.914	0.06636
CHANGE IN WATER STORAGE	-0.313	(2.1370)	-1134.51	-0.828
•••••		• • •			

.....

PEAK DAILY VALUES FOR YEARS		
		(CU. FT.)
PRECIPITATION		7151.100
RUNOFF	3.147	11424.2100
DRAINAGE COLLECTED FROM LAYER 2	0.04386	159.22774
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.000176	0.63763
AVERAGE HEAD ON TOP OF LAYER 3	7.445	
MAXIMUM HEAD ON TOP OF LAYER 3	9.994	
LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN)	19.6 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.000130	0.47220
SNOW WATER	4.87	17677.5410
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.4	4714

MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0470

*** Maximum heads are computed using McEnroe's equations. *** Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

FINAL WATER STORAGE AT END OF YEAR 5

-	2011007	0.1000
2	2.8991	0.1611
3	0.0000	0.0000
4	0.1875	0.7500
5	2.3580	0.3930
6	0.6779	0.1130
SNOW WATE	R 0.000	

.....

• •		*
*		*
* HYDRO	DLOGIC EVALUATION OF LANDFILL PERFORMANCE	*
* HEL	P MODEL VERSION 3.07 (1 NOVEMBER 1997)	*
* E	DEVELOPED BY ENVIRONMENTAL LABORATORY	٠
*	USAE WATERWAYS EXPERIMENT STATION	*
	SEPA RISK REDUCTION ENGINEERING LABORATORY	٠
**		*
*		*
	• • • • • • • • • • • • • • • • • • • •	
	• • • • • • • • • • • • • • • • • • • •	• •
PRECIPITATION DATA FI	LLE: C:\HELP\DATA4.D4	

TEMPERATURE DATA FILE:	C:\HELP\DATA7.D7
SOLAR RADIATION DATA FILE:	C:\HELP\DATA13.D13
EVAPOTRANSPIRATION DATA:	C:\HELP\DATA11.D11
SOIL AND DESIGN DATA FILE:	C:\HELP\GCLFLI2.D10
OUTPUT DATA FILE:	C:\HELP\GCLFLI2.OUT

TIME: 16:40 DATE: 1/ 3/2019

TITLE: AEP Mitchell - GCL, 100' waste, 5% slopes, cap

.....

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

	PERCOLATION LAYER
MATERIAL TEXT	URE NUMBER 0
THICKNESS	= 24.00 INCHES
POROSITY	= 0.4450 VOL/VOL
FIELD CAPACITY	= 0.3930 VOL/VOL
WILTING POINT	= 0.2770 VOL/VOL
INITIAL SOIL WATER CONTENT	= 0.4065 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.999999975000E-05 CM/SEC

LAYER 2

TYPE 1 - VERTICAL	PEF	RCOLATION LAYER
MATERIAL TEXTU	JRE	NUMBER 0
THICKNESS	=	1200.00 INCHES
POROSITY	=	0.5410 VOL/VOL
FIELD CAPACITY	=	0.1870 VOL/VOL
WILTING POINT	=	0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.1875 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.13000000000E-02 CM/SEC

LAYER 3

TYPE 2 - LATERAI	L DF	RAINAGE LAYER
MATERIAL TEXT	JRE	NUMBER 0
THICKNESS	=	18.00 INCHES
POROSITY	=	0.4170 VOL/VOL
FIELD CAPACITY	=	0.0450 VOL/VOL
WILTING POINT	=	0.0180 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.1513 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.399999990000E-03 CM/SEC
SLOPE	=	5.00 PERCENT
DRAINAGE LENGTH	=	60.0 FEET

LAYER 4

TYPE 4 - FLEXIE	LE	MEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 37
THICKNESS	=	0.03 INCHES
POROSITY		0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.199999999000E-10 CM/SEC
FML PINHOLE DENSITY	=	2.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	4.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	3 - GOOD

LAYER 5

	TYPE 3 -	BARRIER	SOIL LINER		
	MATERIAL	TEXTURE	NUMBER 0		
THICKNESS		=	0.25	INCHES	
POROSITY		=	0.7500	VOL/VOL	
FIELD CAPACITY	í	=	0.7470	VOL/VOL	
WILTING POINT		=	0.4000	VOL/VOL	
INITIAL SOIL N	WATER CON'	FENT =	0.7500	VOL/VOL	
REFECTIVE SAT	HYD. COL	VD =	0.49999999	7000E-08	CM/SEC

LAYER 6

TYPE 1 - VERTICAL	ERCOLAT	ION LAYER
MATERIAL TEXT	E NUMBER	R 0
THICKNESS	6	.00 INCHES
POROSITY	0	.4450 VOL/VOL
FIELD CAPACITY	0	.3930 VOL/VOL
WILTING POINT	0	.2770 VOL/VOL
INITIAL SOIL WATER CONTENT		.3930 VOL/VOL
EFFECTIVE SAT. HYD. COND.	0.9999	999975000E-05 CM/SEC

LAYER 7

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 4 THICKNESS = 6.00 INCHES POROSITY = 0.4370 VOL/VOL

FIEL WILT INIT EFFE	D CAPACITY ING POINT IAL SOIL WAT CTIVE SAT. H	ER CONTENT YD. COND.	= 0. = 0. = 0.1700	1050 VOL/1 0470 VOL/1 1083 VOL/1 00002000E	70L 70L 702 02 CM/SEC
			EVAPORATIV		
NOTE:	SCS RUNOFF	CURVE NUMB	ER WAS USER	-SPECIFIEI	».
FRACTIO AREA PR EVAPORA INITIAL UPPER L INITIAL INITIAL TOTAL I	OFF CURVE NU OJECTED ON H TIVE ZONE DE WATER IN EV IMIT OF EVAP SNOW WATER WATER IN LA WITIAL WATER UBSURFACE IN	LOWING RUN ORIZONTAL PTH APORATIVE ORATIVE ST ORATIVE ST YER MATERI	PLANE = ZONE = ORAGE = ORAGE =	3.468 3.560 2.216 0.000 240.632 240.632	ACRES INCHES INCHES INCHES INCHES
			N AND WEATH		
NOTE:	EVAPOTRANSP PITTSBURG		TA WAS OBTA PENNSYLV		
MA ST EN EV	ATION LATITU XIMUM LEAF A ART OF GROWING APORATIVE ZO ERAGE ANNUAL ERAGE 1ST QU ERAGE 2ND QU ERAGE 3RD QU ERAGE 4TH QU	REA INDEX NG SEASON SEASON (J NE DEPTH WIND SPEE	(JULIAN DAT ULIAN DATE)	E) = 0 = 2 = 8 = 9	114 288 .0 INCHES 20 MPH
NOTE:	PRECIPITATI COEFFICIE	ON DATA WA NTS FOR	S SYNTHETIC PITTSBURGH	ALLY GENEI	RATED USING PENNSYLVANIA
	NORMAL ME	AN MONTHLY	PRECIPITAT	ION (INCHI	2S)
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/1	IOV JUN/DEC
2.86 3.83	2.40 3.31	3.58 2.80	3.28 2.49	3.1	54 3.30 34 2.57
NOTE:	TEMPERATURE COEFFICIE				TED USING PENNSYLVANIA
NO	RMAL MEAN MO	NTHLY TEMP	ERATURE (DE	GREES FAHI	RENHEIT)
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/1	IOV JUN/DEC
26.70 72.00	28.80 70.60	38.50 64.10	50.10 52.50	59. 41.	68.10 60 31.40
NOTE :	COEFFICIE	NTS FOR	WAS SYNTHET PITTSBURGH UDE = 40.		MERATED USING PENNSYLVANIA S

AVERAGE MONTHL						
			MAR/SEP			
RECIPITATION						
TOTALS	3.33	3.14		2.96	2.68	2.99
	3.16	3.73	3.70	2.78	2.36	2.71
STD. DEVIATIONS	0.67	1.06	0.65	0.91 1.41	1.22	0.43
	1.09	1.44	2.42	1.41	0.85	1.13
UNOFF						
TOTALS	2.615	2.184	4.498	0.899	0.413	0.575
	0.923	1.182	1.321	0.389	0.337	0.665
STD. DEVIATIONS	1.711	0.931	2.180	0.546	0.444	0.281
	0.510	0.717	1.171	0.293	0.354	0.545
VAPOTRANSPIRATION						
TOTALS	0.479	0.494	0.547 2.023	2.610	1.942	2.240
	2.575	2.155	2.023	1.936	1.724	2.240 0.746
STD. DEVIATIONS	0.144	0.158			1.368	0.707
	0.993	0.555	0.871	0.830	0.118	0.276
ATERAL DRAINAGE COLL						
TOTALS			0.2031	0.1960	0.2333	0.207
	0.1938	0.1703	0.1681	0.1841	0.1804	0.216
STD. DEVIATIONS	0.1375	0.1180	0.1176	0.1157	0.1186	0.115
	0.0994	0.0897	0.0956	0.0770	0.0832	0.116
ERCOLATION/LEAKAGE TI						
TOTALS			0.0025	0.0024	0.0029	0.002
			0.0021			
STD. DEVIATIONS	0.0017	0.0015	0.0015	0.0014	0.0015	0.001
		0.0011			0.0010	
ERCOLATION/LEAKAGE TI						
TOTALS			0.0023	0.0023	0.0021	0.002
	0.0024	0.0027	0.0025	0.0024	0.0023	0.002
STD. DEVIATIONS	0.0015	0.0013	0.0015	0.0015	0.0014	0.001
	0.0016	0.0014	0.0015	0.0014	0.0010	0.001
	OF MONTHL					

AVERAGES 4.3373 3.9391 3.4753 3.4664 3.9920 3.6606 3.3168 2.9147 2.9725 3.1498 3.1903 3.7111

STD. DEVIATIONS		2.0460 1.3180	

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 5

	INCHE:	5	CU. FEET	PERCENT
PRECIPITATION				
RUNOFF	16.002 (1.9740)	58086.25	42.400
EVAPOTRANSPIRATION	19.471 (1.3521)	70680.94	51.593
LATERAL DRAINAGE COLLECTED FROM LAYER 3	2.41475 (1.17340)	8765.543	6.39838
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.02995 (0.01468)	108.703	0.07935
AVERAGE HEAD ON TOP OF LAYER 4	3.510 (1.709)		
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.02676 (0.01477)	97.135	0.07090
CHANGE IN WATER STORAGE	-0.175 (1.4731)	-633.67	-0.463

.....

PEAK DAILY VALUES FOR YEARS	1 THROUGH	5
		(CU. FT.)
PRECIPITATION	1.97	
RUNOFF	3.218	11680.9248
DRAINAGE COLLECTED FROM LAYER 3	0.01404	50.95304
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.000176	0.63763
AVERAGE HEAD ON TOP OF LAYER 4	7.445	
MAXIMUM HEAD ON TOP OF LAYER 4	9.994	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	19.6 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.000136	0.49377
SNOW WATER	4.87	17677.5410
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.4	1440
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.1	2770
*** Maximum heads are computed using M	lcEnroe's equat	ions. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kanasa ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

.....

.....

FINAL WATER	STORAGE AT	END OF YEAR	5
LAYER	(INCHES)	(VOL/VOL)	
1	9.9272	0.4136	
2	224.6011	0.1872	
3	2.0204	0.1122	
4	0.0000	0.0000	
5	0.1875	0.7500	
6	2.3580	0.3930	
7	0.6655	0.1109	
SNOW WATER	0.000		

	***************************************	*******
*		*
*		*
*	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	*
*	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	*
*	DEVELOPED BY ENVIRONMENTAL LABORATORY	*
*	USAE WATERWAYS EXPERIMENT STATION	*
*	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	*
*		*
*		*

********		*******

PRECIPITATION DATA FILE:	C:\HELP\DATA4.D4
TEMPERATURE DATA FILE:	C:\HELP\DATA7.D7
SOLAR RADIATION DATA FILE:	C:\HELP\DATA13.D13
EVAPOTRANSPIRATION DATA:	C:\HELP\DATA11.D11
SOIL AND DESIGN DATA FILE:	C:\HELP\GCL3SSI1.D10
OUTPUT DATA FILE:	C:\HELP\GCL3SSI1.OUT

TIME: 16:44 DATE: 1/ 3/2019

.....

TITLE: AEP Mitchell - GCL, 10' waste, 33% slopes

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

	PERCOLATION LAYER	
MATERIAL TEXT	URE NUMBER Ö	
THICKNESS	= 120.00 INCHES	
POROSITY	= 0.5410 VOL/VOL	
FIELD CAPACITY	= 0.1870 VOL/VOL	
WILTING POINT	= 0.0470 VOL/VOL	
INITIAL SOIL WATER CONTENT	= 0.2025 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	= 0.13000000000E-02 CM/SE	C

LAYER 2

TYPE 2 - LATERA	L DF	AINAGE LAYE	2R	
MATERIAL TEXT	URE	NUMBER 0		
THICKNESS	=	18.00	INCHES	
POROSITY	=	0.5780	VOL/VOL	
FIELD CAPACITY	=	0.0760	VOL/VOL	
WILTING POINT			VOL/VOL	
INITIAL SOIL WATER CONTENT			VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.60000005	5000E-02	CM/SEC
	=	33.00	PERCENT	
DRAINAGE LENGTH	=	900.0	FEET	

LAYER 3

TYPE 4 - FLEX	IBLE MEMBRANE LINER	
MATERIAL TE	KTURE NUMBER 37	
THICKNESS	= 0.03 INCHES	
POROSITY	= 0.0000 VOL/VOL	
FIELD CAPACITY	= 0.0000 VOL/VOL	
WILTING POINT	= 0.0000 VOL/VOL	
INITIAL SOIL WATER CONTEN	r = 0.0000 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	= 0.199999999000E-10 CM	/SEC
FML PINHOLE DENSITY	= 2.00 HOLES/ACRE	
FML INSTALLATION DEFECTS	= 4.00 HOLES/ACRE	
FML PLACEMENT QUALITY	= 3 - GOOD	

LAYER 4

TYPE 3	- BARRIER	SOIL LINER		
MATERI	AL TEXTURE	NUMBER 0		
THICKNESS	=	0.25	INCHES	
POROSITY	=	0.7500	VOL/VOL	
FIELD CAPACITY	=	0.7470	VOL/VOL	
WILTING POINT	=	0.4000	VOL/VOL	
INITIAL SOIL WATER CO	ONTENT =	0.7500	VOL/VOL	
EFFECTIVE SAT. HYD. (COND. =	0.49999999	7000E-08	CM/SEC

LAYER 5

TYPE 1 - VERTICAL	PE	RCOLATION LAYER	
MATERIAL TEXT	URE	NUMBER 0	
THICKNESS	=	6.00 INCHES	
POROSITY	=	0.4450 VOL/VOL	
FIELD CAPACITY	=	0.3930 VOL/VOL	
WILTING POINT	=	0.2770 VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.3930 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.999999975000E-05	CM/SEC

LAYER 6

TYPE 1 - VERTICAL MATERIAL TEXT	PERCOLATION LAYER URE NUMBER 4	
THICKNESS	= 6.00 INCHES	
POROSITY	= 0.4370 VOL/VOL	
FIELD CAPACITY	= 0.1050 VOL/VOL	
WILTING POINT	= 0.0470 VOL/VOL	
INITIAL SOIL WATER CONTENT	= 0.1065 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	= 0.17000002000E-02 CM/SE	С

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE:	SCS	RUNOFF	CURVE	NUMBER	WAS	USER-S	SPECIFIED.	
SCS RUNG	OFF (CURVE NU	JMBER			=	86.00	

FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	8.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	2.332	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	4.328	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	0.376	INCHES
INITIAL SNOW WATER	=		INCHES
INITIAL WATER IN LAYER MATERIALS	=		
TOTAL INITIAL WATER	=	30.156	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM PITTSBURGH PENNSYLVANIA PITTSBURGH PERNSYLVANIA STATION LATITUDE 4 4 0.50 DEGRESS MAXIMUN LEARF AREA INDEX = 0.00 START OF GROWING SEASON (JULIAN DATE) = 14 END OF GROWING SEASON (JULIAN DATE) = 0.00 WAEDORATIVE ZONE DEPTH = 0.0 INCESS WVERAGE INTO CUMARTER READIVE = 0.0 INCESS AVERAGE ZND QUARTER RELATIVE HUMIDITY = 6.00 \$ AVERAGE ZND QUARTER RELATIVE HUMIDITY = 6.00 \$ AVERAGE AND QUARTER RELATIVE HUMIDITY = 6.00 \$ AVERAGE AND QUARTER RELATIVE HUMIDITY = 7.00 \$ NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PITTSBURGH PENNSYLVANIA NORMAL MEAN MONTHLY PRECIPITATION (INCHES) MAR/SEP APR/OCT JAN/JUL FEB/AUG MAY/NOV JUN/DEC 3.58 3.28 2.86 2.40 3.31 3.54 3.30 NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PITTSBURGH PENNSYLVANIA NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
26.70	28.80	38.50	50.10	59.70	68.10
72.00	70.60	64.10	52.50	41.60	31.40

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PITTSBURGE PENNSYLVANIA AND STATION LATITUDE = 40.50 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5

		FEB/AUG	MAR/SEP	APR/OCT		
PRECIPITATION						
TOTALS	3.33	3.14	4.20	2.96	2.68	2.99
	3.16	3.73	3.70	2.78	2.36	2.71
STD. DEVIATIONS	0.67 1.09	1.06 1.44	0.65 2.42	0.91 1.41	1.22	0.43
RUNOFF						
TOTALS	1.984 0.021	1.817 0.139	3.929 0.056	0.411 0.009	0.023 0.001	0.021 0.217
STD. DEVIATIONS	1.555 0.030	0.909 0.135	2.471 0.084	0.464 0.019	0.052	0.029 0.221
EVAPOTRANSPIRATION						
TOTALS	0.479 3.391	0.493 2.561	0.547 2.171	2.936	2.088 1.794	2.518 0.747
STD. DEVIATIONS	0.144 1.237	0.158 0.633		0.790 0.904		
LATERAL DRAINAGE COLL						
TOTALS		0.4321	0.3075 0.4642		0.9870 0.7483	
STD. DEVIATIONS	0.3433 0.0952	0.2238	0.2285		0.3398 0.4779	
PERCOLATION/LEAKAGE TI						
TOTALS	0.0016	0.0009	0.0006			
	0.0013		0.0010		0.0015	
STD. DEVIATIONS	0.0007	0.0005	0.0005 0.0003	0.0009 0.0004	0.0007	0.000
PERCOLATION/LEAKAGE T						
TOTALS	0.0010 0.0013	0.0015 0.0017	0.0019 0.0015	0.0016 0.0010	0.0006	0.000 0.001
STD. DEVIATIONS	0.0007 0.0003		0.0005 0.0004			
AVERAGES	OF MONTHL					
DAILY AVERAGE HEAD ON AVERAGES	2.2456		0.8820 1.3757		2.8307 2.2177	
	2.2456 1.7650 0.9846	1.3696 1.1887 0.7149	0.8820 1.3757 0.6554 0.4993	2.1047	2.2177	2.192
AVERAGES	2.2456 1.7650 0.9846 0.2729	1.3696 1.1887 0.7149 0.3191	1.3757 0.6554 0.4993	2.1047 1.2842 0.5504	2.2177 0.9746 1.4163	2.192 0.763 1.289
AVERAGES	2.2456 1.7650 0.9846 0.2729	1.3696 1.1887 0.7149 0.3191	1.3757 0.6554 0.4993	2.1047 1.2842 0.5504	2.2177 0.9746 1.4163	2.192 0.763 1.289
AVERAGES STD. DEVIATIONS AVERAGE ANNUAL TOT	2.2456 1.7650 0.9846 0.2729	1.3696 1.1887 0.7149 0.3191	1.3757 0.6554 0.4993	2.1047 1.2842 0.5504	2.2177 0.9746 1.4163	2.192 0.763 1.289
AVERAGES STD. DEVIATIONS	2.2456 1.7650 0.9846 0.2729	1.3696 1.1887 0.7149 0.3191	1.3757 0.6554 0.4993	2.1047 1.2842 0.5504	2.2177 0.9746 1.4163	2.192 0.763 1.289

RUNOFF	8.629	(2.6381)	31321.67	22.863
EVAPOTRANSPIRATION	21.860	(1.9291)	79351.94	57.923
LATERAL DRAINAGE COLLECTED FROM LAYER 2	7.51678	(1.72446)	27285.920	19.91728
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.01553	(0.00359)	56.362	0.04114
AVERAGE HEAD ON TOP OF LAYER 3	1.827 (0.422)		
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.01501	(0.00314)	54.481	0.03977
CHANGE IN WATER STORAGE	-0.280	(1.7981)	-1017.81	-0.743

.....

PEAK DAILY VALUES FOR YEARS		
	(INCHES)	(CU. FT.)
PRECIPITATION	1.97	7151.100
RUNOFF	3.147	11424.2100
DRAINAGE COLLECTED FROM LAYER 2	0.05427	197.01524
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.000113	0.41006
AVERAGE HEAD ON TOP OF LAYER 3	4.825	
MAXIMUM HEAD ON TOP OF LAYER 3	9.532	
LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN)	0.0 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.000080	0.29139
SNOW WATER	4.87	17677.5410
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.	4714
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.	0470

*** Maximum heads are computed using McEnroe's equations. *** Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

.....

.....

FINAL WAT	TER STORAGE AT	END OF YEAR	5
LAYER	(INCHES)	(VOL/VOL)	
1	23.4007	0.1950	
2	2.1662	0.1203	
3	0.0000	0.0000	
4	0.1875	0.7500	
5	2.3580	0.3930	
6	0.6417	0.1070	
SNOW WATEL	0.000		

.....

* * * * * * * * * *		
* *		*
		*
* *	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	*
* *	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	*
* *	DEVELOPED BY ENVIRONMENTAL LABORATORY	*
* *	USAE WATERWAYS EXPERIMENT STATION	*
* *	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	*
* *		*
* *		*
	* * * * * * * * * * * * * * * * * * * *	

PRECIPITATION DATA FILE:	C:\HELP\DATA4.D4
TEMPERATURE DATA FILE:	C:\HELP\DATA7.D7
SOLAR RADIATION DATA FILE:	C:\HELP\DATA13.D13
EVAPOTRANSPIRATION DATA:	C:\HELP\DATA11.D11
SOIL AND DESIGN DATA FILE:	C:\HELP\GCL3SSI2.D10
OUTPUT DATA FILE:	C:\HELP\GCL3SSI2.OUT

TIME: 16:47 DATE: 1/ 3/2019

.....

TITLE: AEP Mitchell - GCL, 100' waste, 33% slopes

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

	PERCOLATION LAYER
MATERIAL TEXTU	URE NUMBER 0
THICKNESS	= 1200.00 INCHES
POROSITY	= 0.5410 VOL/VOL
FIELD CAPACITY	= 0.1870 VOL/VOL
WILTING POINT	= 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT	= 0.1892 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.13000000000E-02 CM/SEC

LAYER 2

TYPE 2 - LATER	AL DE	ATNAGE LAVI	CR .	
MATERIAL TEX				
THICKNESS	=	18.00	INCHES	
	=		VOL/VOL	
FIELD CAPACITY	=	0.0760	VOL/VOL	
WILTING POINT			VOL/VOL	
INITIAL SOIL WATER CONTENT			VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.4000001	9000E-02	CM/SEC
SLOPE	=	33.00	PERCENT	
DRAINAGE LENGTH	=	900.0	FEET	

LAYER 3

	E MEMBRANE LINER
WILTING POINT INITIAL SOIL WATER CONTENT EFFECTIVE SAT. HYD. COND.	= 0.03 INCHES = 0.0000 VOL/VOL = 0.0000 VOL/VOL = 0.0000 VOL/VOL = 0.0000 VOL/VOL
FML PLACEMENT QUALITY	= 3 - GOOD

LAYER 4

TYPE 3	- BARRIER	SOIL LINER		
MATERI	AL TEXTURE	NUMBER 0		
THICKNESS	=	0.25	INCHES	
POROSITY	=	0.7500	VOL/VOL	
FIELD CAPACITY	=	0.7470	VOL/VOL	
WILTING POINT	=	0.4000	VOL/VOL	
INITIAL SOIL WATER CO	ONTENT =	0.7500	VOL/VOL	
EFFECTIVE SAT. HYD. (COND. =	0.49999999	7000E-08	CM/SEC

LAYER 5

TYPE 1 - VERTICAL	L PE	RCOLATION LAYER	
MATERIAL TEXT	TURE	NUMBER 0	
THICKNESS	=	6.00 INCHES	
POROSITY	=	0.4450 VOL/VOL	
FIELD CAPACITY	=	0.3930 VOL/VOL	
WILTING POINT	=	0.2770 VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.3930 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.999999975000E-05	CM/SEC

LAYER 6

TYPE 1 - VERTICAL MATERIAL TEXT	PERCOLATION LAYER	
THICKNESS	= 6.00 INCHES	
POROSITY	= 0.4370 VOL/VOL	
FIELD CAPACITY	= 0.1050 VOL/VOL	
WILTING POINT	= 0.0470 VOL/VOL	
INITIAL SOIL WATER CONTENT	= 0.1079 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	= 0.17000002000E-02 CM/SEC	2

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE :	SCS	RUNOFF	CURVE	NUMBER	WAS	USER-	SPECIFIED.	
SCS RUNG	OFF (CURVE N	UMBER			-	86.00	

FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	8.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	2.332	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	4.328	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	0.376	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	233.198	INCHES
TOTAL INITIAL WATER		233.198	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM PITTSBURGH PENNSYLVANIA PITTSBURGH PERNSYLVANIA STATION LATITUDE 4 4 0.50 DEGRESS MAXIMUN LEARF AREA INDEX = 0.00 START OF GROWING SEASON (JULIAN DATE) = 14 END OF GROWING SEASON (JULIAN DATE) = 0.00 WAEDORATIVE ZONE DEPTH = 0.0 INCESS WVERAGE INTO CUMARTER READIVE = 0.0 INCESS AVERAGE ZND QUARTER RELATIVE HUMIDITY = 6.00 \$ AVERAGE ZND QUARTER RELATIVE HUMIDITY = 6.00 \$ AVERAGE AND QUARTER RELATIVE HUMIDITY = 6.00 \$ AVERAGE AND QUARTER RELATIVE HUMIDITY = 7.00 \$ NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PITTSBURGH PENNSYLVANIA NORMAL MEAN MONTHLY PRECIPITATION (INCHES) MAR/SEP APR/OCT FEB/AUG MAY/NOV JUN/DEC JAN/JUL 3.58 2.40 3.28 3.30 2.86 3.54 NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PITTSBURGH PENNSYLVANIA NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT) FEB/AUG MAR/SEP APR/OCT MAY/NOV JAN/JUL JUN/DEC

26.70	28.80	38.50	50.10	59.70	68.10
72.00	70.60	64.10	52.50	41.60	31.40

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PITTSBURGH PENNSYLVANIA AND STATION LATITUDE = 40.50 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5

		FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	3.33 3.16	3.14 3.73	4.20 3.70	2.96 2.78	2.68 2.36	2.99 2.71
STD. DEVIATIONS	0.67 1.09	1.06 1.44	0.65 2.42	0.91 1.41	1.22 0.85	0.43 1.13
RUNOFF						
TOTALS	1.984 0.021	1.817 0.139	3.929 0.056	0.411 0.009	0.023 0.001	0.021 0.217
STD. DEVIATIONS	1.555	0.909 0.135	2.471 0.084	0.464 0.019	0.052	0.029
EVAPOTRANSPIRATION						
TOTALS	0.479 3.391	0.493 2.561	0.547 2.171	2.936 2.132	2.088 1.794	2.518 0.747
STD. DEVIATIONS	0.144 1.237	0.158 0.633	0.114 0.787	0.790 0.904	1.294 0.149	0.744 0.274
LATERAL DRAINAGE COL						
TOTALS	0.6922 0.7772	0.6334	0.5907 0.5682	0.4721 0.6243	0.6197 0.5996	0.751 0.599
STD. DEVIATIONS		0.2805 0.2084		0.2872 0.2137		0.157
PERCOLATION/LEAKAGE						
TOTALS	0.0022		0.0018	0.0015	0.0019 0.0019	0.002
STD. DEVIATIONS	0.0007 0.0004	0.0009 0.0007	0.0011 0.0007	0.0009 0.0007	0.0006	0.000
PERCOLATION/LEAKAGE						
TOTALS	0.0015 0.0013	0.0013 0.0017	0.0018	0.0021 0.0018	0.0017 0.0018	0.001
STD. DEVIATIONS			0.0011 0.0008			0.000
	S OF MONTHL	Y AVERAGE	D DAILY H	EADS (INC	HES)	
DAILY AVERAGE HEAD OF						
AVERAGES	2.9779 3.3435	3.0110 2.9311	2.5411 2.5259	2.0986 2.6857		3.342 2.580
STD. DEVIATIONS	0.9496 0.6124		1.4652 0.9690			0.701 0.728
AVERAGE ANNUAL TO	FALS & (STD	. DEVIATI			1 THROUGH	5
		INCHE	S		EET	PERCENT
RECIPITATION			0.555)			

RUNOFF	8.629	(2.6381)	31321.67	22.863
EVAPOTRANSPIRATION	21.860	(1.9291)	79351.94	57.923
LATERAL DRAINAGE COLLECTED FROM LAYER 2	7.61043	(1.72326)	27625.873	20.16543
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.02363	(0.00539)	85.787	0.06262
AVERAGE HEAD ON TOP OF LAYER 3	2.781 (0.634)		
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.02004	(0.00693)	72.741	0.05310
CHANGE IN WATER STORAGE	-0.379	(2.7890)	-1376.01	-1.004

.....

.....

PEAK DAILY VALUES FOR YEARS	1 THROUGH	5
		(CU. FT.)
PRECIPITATION	1.97	7151.100
RUNOFF	3.147	11424.2100
DRAINAGE COLLECTED FROM LAYER 2	0.03448	125.17932
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.000108	0.39054
AVERAGE HEAD ON TOP OF LAYER 3	4.599	
MAXIMUM HEAD ON TOP OF LAYER 3	9.091	
LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN)	0.0 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.000107	0.38779
SNOW WATER	4.87	17677.5410
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.	4714
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.	0470

*** Maximum heads are computed using McEnroe's equations. *** Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

.....

.....

FINAL WATE	R STORAGE AT	END OF YEAR 5	
LAYER	(INCHES)	(VOL/VOL)	
1	225.4732	0.1879	
1	223.1/32	0.1075	
2	2.6186	0.1455	
3	0.0000	0.0000	
4	0.1875	0.7500	
5	2.3580	0.3930	
6	0.6652	0.1109	
SNOW WATER	0.000		

.....

********		*******
* *		*
**		*
	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	*
* *	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	*
* *	DEVELOPED BY ENVIRONMENTAL LABORATORY	*
* *	USAE WATERWAYS EXPERIMENT STATION	*
* *	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	*
**		*
* *		*
********		*******

PRECIPITATION DATA FILE:	C:\HELP\DATA4.D4
TEMPERATURE DATA FILE:	C:\HELP\DATA7.D7
SOLAR RADIATION DATA FILE:	C:\HELP\DATA13.D13
EVAPOTRANSPIRATION DATA:	C:\HELP\DATA11.D11
SOIL AND DESIGN DATA FILE:	C:\HELP\GCL4SSI1.D10
OUTPUT DATA FILE:	C:\HELP\GCL4SSI1.OUT

TIME: 16:48 DATE: 1/ 3/2019

.....

TITLE: AEP Mitchell - GCL, 10' waste, 25% slopes

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL MATERIAL TEXT	PERCOLATION LAYER	
THICKNESS	= 120.00 INCHES	
POROSITY	= 0.5410 VOL/VOL	
FIELD CAPACITY	= 0.1870 VOL/VOL	
WILTING POINT	= 0.0470 VOL/VOL	
INITIAL SOIL WATER CONTENT	= 0.2025 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	= 0.13000000000E-02 CM/SEC	

LAYER 2

TYPE 2 - LATERAI	L DR	AINAGE LAYE	2R	
MATERIAL TEXT	JRE	NUMBER 0		
THICKNESS	=	18.00	INCHES	
POROSITY			VOL/VOL	
FIELD CAPACITY	=	0.0760	VOL/VOL	
WILTING POINT			VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.1532	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.70000022	2000E-02	CM/SEC
SLOPE	=	25.00	PERCENT	
DRAINAGE LENGTH	=	900.0	FEET	

LAYER 3

TYPE 4 - FLEXIBI	LE MEMBRANE LINER
MATERIAL TEXT	JRE NUMBER 37
THICKNESS	= 0.03 INCHES
POROSITY	= 0.0000 VOL/VOL
FIELD CAPACITY	= 0.0000 VOL/VOL
WILTING POINT	= 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	= 0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.199999999000E-10 CM/SEC
FML PINHOLE DENSITY	= 2.00 HOLES/ACRE
FML INSTALLATION DEFECTS	= 4.00 HOLES/ACRE
FML PLACEMENT QUALITY	= 3 - GOOD

LAYER 4

TYPE 3	 BARRIER 	SOIL LINER		
MATERIA	L TEXTURE	NUMBER 0		
THICKNESS	=	0.25	INCHES	
POROSITY	=	0.7500	VOL/VOL	
FIELD CAPACITY	=	0.7470	VOL/VOL	
WILTING POINT	=	0.4000	VOL/VOL	
INITIAL SOIL WATER CO	NTENT =	0.7500	VOL/VOL	
EFFECTIVE SAT. HYD. C	OND. =	0.49999999	7000E-08	CM/SEC

LAYER 5

TYPE 1 - VERTICAL	PE	RCOLATION LAYER	
MATERIAL TEXT	TURE	NUMBER 0	
THICKNESS	=	6.00 INCHES	
POROSITY	=	0.4450 VOL/VOL	
FIELD CAPACITY	=	0.3930 VOL/VOL	
WILTING POINT	=	0.2770 VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.3930 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.999999975000E-05	CM/SEC

LAYER 6

TYPE 1 - VERTICAL MATERIAL TEXT	PERCOLATION LAYER URE NUMBER 4	
THICKNESS	= 6.00 INCHES	
POROSITY	= 0.4370 VOL/VOL	
FIELD CAPACITY	= 0.1050 VOL/VOL	
WILTING POINT	= 0.0470 VOL/VOL	
INITIAL SOIL WATER CONTENT	= 0.1068 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	= 0.17000002000E-02 CM/SE	C

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE:	SCS	RUNOFF	CURVE	NUMBER	WAS	USER-SPECIFIED.	
SCS PUN	SEE (TIPUP NI	IMBER			- 86.00	

FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	8.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	2.332	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	4.328	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	0.376	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	30.249	INCHES
TOTAL INITIAL WATER	=	30.249	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM PITTSBURGH PENNSYLVANIA STATION LARF AREAL INDEX = 40.50 DEGREES MAXIMUM LEAF AREA INDEX = 0.00 START OF GROWING SEASON (JULIAN DATE) = 14 END OF GROWING SEASON (JULIAN DATE) = 288 EVADORATIVE ZONE DEPTH = 9.00 AVERAGE ANNUAL WIND SPEED = 9.20 AVERAGE ZIN QUARTER RELATIVE HUMIDITY = 63.00 AVERAGE ZIN QUARTER RELATIVE HUMIDITY = 63.00 AVERAGE AND QUARTER RELATIVE HUMIDITY = 7.00 AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 70.00 NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PITTSBURGH PENNSYLVANIA NORMAL MEAN MONTHLY PRECIPITATION (INCHES) MAR/SEP APR/OCT JAN/JUL FEB/AUG MAY/NOV JUN/DEC 3.58 3.28 2.86 2.40 3.54 3.30 NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PITTSBURGH PENNSYLVANIA NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
26.70	28.80	38.50	50.10	59.70	68.10
72.00	70.60	64.10	52.50	41.60	31.40

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PITTSBURGE PENNSYLVANIA AND STATION LATITUDE = 40.50 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5

				APR/OCT		
PRECIPITATION						
TOTALS	3.33 3.16	3.14 3.73	4.20 3.70	2.96 2.78	2.68 2.36	2.99 2.71
STD. DEVIATIONS	0.67	1.06 1.44	0.65 2.42	0.91 1.41	1.22 0.85	0.43 1.13
RUNOFF						
TOTALS	1.984 0.021	1.817 0.139	3.929 0.056	0.411 0.009	0.023 0.001	0.021 0.217
STD. DEVIATIONS	1.555	0.909 0.135	2.471 0.084	0.464 0.019		
EVAPOTRANSPIRATION						
TOTALS	0.479 3.391	0.493 2.561	0.547 2.171	2.936 2.132	2.088 1.794	2.518 0.747
STD. DEVIATIONS	0.144 1.237	0.158 0.633	0.114 0.787	0.790 0.904	1.294 0.149	0.744 0.274
LATERAL DRAINAGE COL						
TOTALS	0.7829		0.3263	0.4278 0.7214	0.9562 0.7404	
STD. DEVIATIONS	0.3378 0.0969		0.2258 0.1611	0.4180 0.1757	0.3379 0.4503	
PERCOLATION/LEAKAGE						
TOTALS			0.0007 0.0010	0.0010 0.0016	0.0021 0.0017	0.0019 0.0017
STD. DEVIATIONS	0.0008	0.0005	0.0005	0.0009 0.0004	0.0008	0.0006 0.0010
PERCOLATION/LEAKAGE		ER 6				
TOTALS		0.0015		0.0017 0.0011		
STD. DEVIATIONS	0.0008 0.0004			0.0010 0.0006		0.0005
AVERAGE	S OF MONTHL					
DAILY AVERAGE HEAD O						
AVERAGES	1.9442	1.3410	1.5025		2.3788	2.3631
STD. DEVIATIONS				1.3430 0.5462		
AVERAGE ANNUAL TO					1 THROUGH	
		INCHE	S	CU. F	EET	PERCENT
PRECIPITATION			0.555)			100.00

RUNOFF	8.629	(2.6381)	31321.67	22.863
EVAPOTRANSPIRATION	21.860	(1.9291)	79351.94	57.923
LATERAL DRAINAGE COLLECTED FROM LAYER 2	7.52055	(1.70338)	27299.588	19.92726
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.01685	(0.00385)	61.161	0.04464
AVERAGE HEAD ON TOP OF LAYER 3	1.982 (0.452)		
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.01580	(0.00361)	57.358	0.04187
CHANGE IN WATER STORAGE	-0.285	(1.8385)	-1034.34	-0.755

.....

.....

PEAK DAILY VALUES FOR YEARS	1 THROUGH	5
		(CU. FT.)
PRECIPITATION	1.97	7151.100
RUNOFF	3.147	11424.2100
DRAINAGE COLLECTED FROM LAYER 2	0.05233	189.97421
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.000118	0.42893
AVERAGE HEAD ON TOP OF LAYER 3	5.044	
MAXIMUM HEAD ON TOP OF LAYER 3	9.912	
LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN)	0.0 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.000085	0.30778
SNOW WATER	4.87	17677.5410
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.	4714
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.	0470

*** Maximum heads are computed using McEnroe's equations. *** Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

.....

.....

FINAL WATE	R STORAGE AT	END OF YEAR 5	
LAYER	(INCHES)	(VOL/VOL)	
1	23.4007	0.1950	
2	2.2322	0.1240	
3	0.0000	0.0000	
4	0.1875	0.7500	
5	2.3580	0.3930	
6	0.6459	0.1077	
SNOW WATER	0.000		

.....

* * * * * * * * * *		
* *		*
		*
**	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	*
* *	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	*
* *	DEVELOPED BY ENVIRONMENTAL LABORATORY	*
* *	USAE WATERWAYS EXPERIMENT STATION	*
* *	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	*
* *		*
* *		*
	* * * * * * * * * * * * * * * * * * * *	

PRECIPITATION DATA FILE:	C:\HELP\DATA4.D4
TEMPERATURE DATA FILE:	C:\HELP\DATA7.D7
SOLAR RADIATION DATA FILE:	C:\HELP\DATA13.D13
EVAPOTRANSPIRATION DATA:	C:\HELP\DATA11.D11
SOIL AND DESIGN DATA FILE:	C:\HELP\GCL4SSI2.D10
OUTPUT DATA FILE:	C:\HELP\GCL4SSI2.OUT

TIME: 16:50 DATE: 1/ 3/2019

.....

TITLE: AEP Mitchell - GCL, 100' waste, 25% slopes

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

HES
/VOL
/VOL
/VOL
/VOL
E-02 CM/SEC

LAYER 2

TYPE 2 - LATERA	L DF	RAINAGE LAYI	ER	
MATERIAL TEXT	URE	NUMBER 0		
THICKNESS	=	18.00	INCHES	
POROSITY			VOL/VOL	
		0.0760	VOL/VOL	
WILTING POINT	=	0.0250	VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.1627	VOL/VOL	
EFFECTIVE SAT. HYD. COND.		0.4999998	9000E-02	CM/SEC
SLOPE	=	25.00	PERCENT	
DRAINAGE LENGTH	=	900.0	FEET	

LAYER 3

TYPE 4 - FLEXIE	BLE MEMBRANE LINER
MATERIAL TEXT	TURE NUMBER 37
THICKNESS	= 0.03 INCHES
POROSITY	= 0.0000 VOL/VOL
FIELD CAPACITY	= 0.0000 VOL/VOL
WILTING POINT	= 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	= 0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.199999999000E-10 CM/SEC
FML PINHOLE DENSITY	= 2.00 HOLES/ACRE
FML INSTALLATION DEFECTS	= 4.00 HOLES/ACRE
FML PLACEMENT QUALITY	= 3 - GOOD

LAYER 4

TYPE 3	- BARRIER	SOIL LINER		
MATERI	AL TEXTURE	NUMBER 0		
THICKNESS	=	0.25	INCHES	
POROSITY	=	0.7500	VOL/VOL	
FIELD CAPACITY	=	0.7470	VOL/VOL	
WILTING POINT	=	0.4000	VOL/VOL	
INITIAL SOIL WATER CO	ONTENT =	0.7500	VOL/VOL	
EFFECTIVE SAT. HYD. (COND. =	0.49999999	7000E-08	CM/SEC

LAYER 5

TYPE 1 - VERTICAL	D PE	RCOLATION LAYER	
MATERIAL TEXT	FURE	NUMBER 0	
THICKNESS	=	6.00 INCHES	
POROSITY	=	0.4450 VOL/VOL	
FIELD CAPACITY	=	0.3930 VOL/VOL	
WILTING POINT	=	0.2770 VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.3930 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.999999975000E-05	CM/SEC

LAYER 6

TYPE 1 - VERTICAL MATERIAL TEXT	PERCOLATION LAYER	
THICKNESS	= 6.00 INCHES	
POROSITY	= 0.4370 VOL/VOL	
FIELD CAPACITY	= 0.1050 VOL/VOL	
WILTING POINT	= 0.0470 VOL/VOL	
INITIAL SOIL WATER CONTENT	= 0.1079 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	= 0.17000002000E-02 CM/SEC	

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE:	SCS	RUNOFF	CURVE	NUMBER	WAS	USER-	SPECIFIED.	
SCS RUNG	OFF (CURVE N	JMBER			=	86.00	

FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	8.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	2.332	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	4.328	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	0.376	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	233.217	INCHES
TOTAL INITIAL WATER	=	233.217	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM PITTSBURGH PENNSYLVANIA PITTSBURGH PERNSYLVANIA STATION LATITUDE 4 4 0.50 DEGRESS MAXIMUN LEARF AREA INDEX = 0.00 START OF GROWING SEASON (JULIAN DATE) = 14 END OF GROWING SEASON (JULIAN DATE) = 0.00 WAEDORATIVE ZONE DEPTH = 0.0 INCESS WVERAGE INTO CUMARTER READIVE = 0.0 INCESS AVERAGE ZND QUARTER RELATIVE HUMIDITY = 6.00 \$ AVERAGE ZND QUARTER RELATIVE HUMIDITY = 6.00 \$ AVERAGE AND QUARTER RELATIVE HUMIDITY = 6.00 \$ AVERAGE AND QUARTER RELATIVE HUMIDITY = 7.00 \$ NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PITTSBURGH PENNSYLVANIA NORMAL MEAN MONTHLY PRECIPITATION (INCHES) MAR/SEP APR/OCT JAN/JUL FEB/AUG MAY/NOV JUN/DEC 3.58 3.28 2.86 2.40 3.54 3.30 NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PITTSBURGH PENNSYLVANIA NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
26.70	28.80	38.50	50.10	59.70	68.10
72.00	70.60	64.10	52.50	41.60	31.40

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PITTSBURGE PENNSYLVANIA AND STATION LATITUDE = 40.50 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 5

				APR/OCT		
PRECIPITATION						
TOTALS	3.33 3.16	3.14 3.73	4.20 3.70	2.96 2.78	2.68 2.36	2.99 2.71
STD. DEVIATIONS	0.67	1.06 1.44	0.65	0.91 1.41	1.22 0.85	0.43 1.13
RUNOFF						
TOTALS	1.984 0.021	1.817 0.139	3.929 0.056	0.411 0.009	0.023 0.001	0.021 0.217
STD. DEVIATIONS	1.555	0.909 0.135	2.471 0.084	0.464 0.019		
EVAPOTRANSPIRATION						
TOTALS	0.479 3.391	0.493 2.561	0.547 2.171	2.936 2.132	2.088 1.794	2.518 0.747
STD. DEVIATIONS	0.144 1.237	0.158 0.633	0.114 0.787	0.790 0.904	1.294 0.149	0.744 0.274
LATERAL DRAINAGE COL						
TOTALS	0.6917			0.4735 0.6246	0.6193 0.5999	
STD. DEVIATIONS	0.2193 0.1424			0.2864 0.2130		
PERCOLATION/LEAKAGE						
TOTALS		0.0020	0.0019 0.0018	0.0015	0.0019 0.0019	0.0024 0.0019
STD. DEVIATIONS	0.0007	0.0009	0.0011 0.0007	0.0009 0.0007	0.0006 0.0004	0.0005
PERCOLATION/LEAKAGE		ER 6				
TOTALS		0.0014	0.0019	0.0021 0.0019	0.0018	
STD. DEVIATIONS	0.0010 0.0007		0.0011 0.0008	0.0010 0.0008	0.0007 0.0007	
AVERAGE	S OF MONTHL					
DAILY AVERAGE HEAD O						
AVERAGES	3.3785	2.9669	2.5599		2.6981	2.6125
STD. DEVIATIONS	0.9546 0.6200			1.2884 0.9273		
AVERAGE ANNUAL TO					1 THROUGH	
		INCHE	S	CU. FI	EET	PERCENT
PRECIPITATION		7.74 (0.555)	1369		100.00

RUNOFF	8.629	(2.6381)	31321.67	22.863
EVAPOTRANSPIRATION	21.860	(1.9291)	79351.94	57.923
LATERAL DRAINAGE COLLECTED FROM LAYER 2	7.61080	(1.72319)	27627.213	20.16641
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.02392	(0.00545)	86.814	0.06337
AVERAGE HEAD ON TOP OF LAYER 3	2.814 (0.641)		
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.02023	(0.00706)	73.445	0.05361
CHANGE IN WATER STORAGE	-0.380	(2.7902)	-1378.04	-1.006

.....

.....

PEAK DAILY VALUES FOR YEARS		
	(INCHES)	(CU. FT.)
PRECIPITATION	1.97	7151.100
RUNOFF	3.147	11424.2100
DRAINAGE COLLECTED FROM LAYER 2	0.03443	124.97035
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.000109	0.39455
AVERAGE HEAD ON TOP OF LAYER 3	4.646	
MAXIMUM HEAD ON TOP OF LAYER 3	9.147	
LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN)	0.0 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 6	0.000108	0.39155
SNOW WATER	4.87	17677.5410
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.	4714
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.	0470

*** Maximum heads are computed using McEnroe's equations. *** Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kanasa ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

.....

.....

F	INAL	WATER	STORAGE	AT	END	OF	YEAR	5		
1	AYER		(INCH)	ES)		(VOL/V	DL)	 	 -
	1		225.4	732		-	0.18	79		
	2		2.6	339			0.14	53		
	3		0.0	000			0.00	0 0		
	4		0.1	875			0.75	0 0		
	5		2.3	580			0.39	3 0		
	6		0.6	559			0.11	10		
SN	ow wa	TER	0.0	0 0						

.....

	* * * * * * * * * * * * * * * * * * * *	* * * * *
	* * * * * * * * * * * * * * * * * * * *	* * * * *
**		*
**		*
**	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	*
• •	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	*
**	DEVELOPED BY ENVIRONMENTAL LABORATORY	*
**	USAE WATERWAYS EXPERIMENT STATION	*
**	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	*
• •		*
**		*
	* * * * * * * * * * * * * * * * * * * *	
	* * * * * * * * * * * * * * * * * * * *	* * * * *
PRECIPITATION	DATA FILE: C:\HELP\PITBGH.D4	

TEMPERATURE DATA FILE:	C:\HELP\PITBGH.D7
SOLAR RADIATION DATA FILE:	C:\HELP\PITBGH.D13
EVAPOTRANSPIRATION DATA:	C:\HELP\PITBGH.D11
SOIL AND DESIGN DATA FILE:	C:\HELP\GCLFLF1.D10
OUTPUT DATA FILE:	C:\HELP\GCLFLF1.OUT

TIME: 16:54 DATE: 1/ 3/2019

TITLE: AEP Mitchell - GCL, 10' waste, 5% slopes, cap

.....

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

	PERCOLATION LAYER
MATERIAL TEXT	
THICKNESS	= 24.00 INCHES
POROSITY	= 0.4450 VOL/VOL
FIELD CAPACITY	= 0.3930 VOL/VOL
WILTING POINT	= 0.2770 VOL/VOL
INITIAL SOIL WATER CONTENT	= 0.4065 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.999999975000E-05 CM/SEC

LAYER 2

TYPE 1 - VERTICAL	PER	COLATION LAYER
MATERIAL TEXTU	JRE	NUMBER 0
THICKNESS	=	120.00 INCHES
POROSITY	=	0.5410 VOL/VOL
FIELD CAPACITY	=	0.1870 VOL/VOL
WILTING POINT	=	0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.1916 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.13000000000E-02 CM/SEC

LAYER 3

TYPE 2 - LATERAI	L DF	AINAGE LAYER
MATERIAL TEXT	JRE	NUMBER 0
THICKNESS	=	18.00 INCHES
POROSITY	=	0.4170 VOL/VOL
FIELD CAPACITY	=	0.0450 VOL/VOL
WILTING POINT	=	0.0180 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0944 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.124999997000E-02 CM/SEC
SLOPE	=	5.00 PERCENT
DRAINAGE LENGTH	=	60.0 FEET

LAYER 4

TYPE 4 - FLEXIE	LE	MEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 37
THICKNESS	=	0.03 INCHES
POROSITY		0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.199999999000E-10 CM/SEC
FML PINHOLE DENSITY	=	2.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	4.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	3 - GOOD

LAYER 5

	TYPE 3 -	BARRIER	SOIL LINER		
	MATERIAL	TEXTURE	NUMBER 0		
THICKNESS		=	0.25	INCHES	
POROSITY		=	0.7500	VOL/VOL	
FIELD CAPACITY	í	=	0.7470	VOL/VOL	
WILTING POINT		=	0.4000	VOL/VOL	
INITIAL SOIL N	WATER CON'	rent =	0.7500	VOL/VOL	
REFECTIVE SAT	HYD. COL	VD. =	0.49999999	7000E-08	CM/SEC

LAYER 6

TYPE 1 - VERTICAL	ERCOLAT	ION LAYER
MATERIAL TEXT	E NUMBER	R 0
THICKNESS	6	.00 INCHES
POROSITY	0	.4450 VOL/VOL
FIELD CAPACITY	0	.3930 VOL/VOL
WILTING POINT	0	.2770 VOL/VOL
INITIAL SOIL WATER CONTENT		.3930 VOL/VOL
EFFECTIVE SAT. HYD. COND.	0.9999	999975000E-05 CM/SEC

LAYER 7

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 4 THICKNESS = 6.00 INCHES POROSITY = 0.4370 VOL/VOL

WILT	D CAPACITY ING POINT IAL SOIL WAT CTIVE SAT. H	ER CONTENT	= 0.04	050 VOL/V 170 VOL/V 055 VOL/V 0002000E-	OL OL
		DESIGN AND 1			
NOTE:	SCS RUNOFF	CURVE NUMBER	WAS USER-S	PECIFIED	
FRACTIO AREA PR EVAPORA INITIAL UPPER L INITIAL INITIAL TOTAL I	OFF CURVE NU N OF AREA AL OJECTED ONE DE WATER IN EV IMIT OF EVAF SNOW WATER WATER IN LA NITIAL WATER UBSURFACE IN	LOWING RUNOI ORIZONTAL PI PTH APORATIVE ZO ORATIVE STOP ORATIVE STOP	FF = 1 JANE = = DNE = tAGE = tAGE = =	1.000 8.0 3.468 3.560 2.216 0.000 37.626 37.626	INCHES INCHES INCHES
		ANSPIRATION			
NOTE:	EVAPOTRANSF PITTSBURG		WAS OBTAIN PENNSYLVAN		
MA ST EN EV AV AV AV	ATION LATITU XIMUM LEAF A ART OF GROWING D OF GROWING APORATIVE ZC ERAGE ANNUAL ERAGE 1ST QU ERAGE 2ND QU ERAGE 3RD QU ERAGE 4TH QU	REA INDEX ING SEASON (JU SEASON (JU NE DEPTH WIND SPEED JARTER RELAT: JARTER RELAT:	VE HUMIDITY	= 0. = 1 = 2 = 8. = 9. f = 67. f = 63. f = 71.	14 88 0 INCHES 20 MPH 00 % 00 %
NOTE:	PRECIPITATI COEFFICIE	ON DATA WAS INTS FOR I	SYNTHETICAI ITTSBURGH		ATED USING PENNSYLVANIA
	NORMAL ME	AN MONTHLY I	RECIPITATIO	ON (INCHE	S)
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/N	
2.86 3.83	2.40 3.31	MAR/SEP 3.58 2.80	3.28 2.49	3.5 2.3	4 3.30
NOTE:	TEMPERATURE COEFFICIE	DATA WAS ST NTS FOR I	NTHETICALLY	GENERAT	ED USING PENNSYLVANIA
NO	RMAL MEAN MC	NTHLY TEMPER	ATURE (DEGR	REES FAHR	ENHEIT)
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/N	OV JUN/DEC
26.70 72.00	28.80 70.60	38.50 64.10	50.10 52.50	59.7 41.6	0 68.10 0 31.40
NOTE:	COEFFICIE		ITTSBURGH		ERATED USING PENNSYLVANIA

AVERAGE MONTHL						
			MAR/SEP			
RECIPITATION						
TOTALS	2.88	2.32	3.65	3.47	3.44	3.30
	3.84	3.44	2.68	2.56	2.43	2.71
STD. DEVIATIONS	1.10	0.89 1.77	1.06 1.45	1.28	1.56 0.95	1.20
JNOFF						
TOTALS	1 260	0.055	2 440	0.887	0 074	0.883
IOTALS	1.375	1.332	3.449 0.948	0.645		
STD. DEVIATIONS	1.207	1.393	1.791	0.754	0.660	0.629
	1.037	1.103	0.836	0.582	0.411	0.661
/APOTRANSPIRATION						
TOTALS	0.603	0.467	1.022	2.826		2.315
	2.485	2.087	1.607	1.633	1.349	0.896
STD. DEVIATIONS	0.184	0.144				
TOTALS	0.2723		0.2615	0.2424 0.0834		0.244
STD. DEVIATIONS	0.1699	0.2352	0.2415	0.1660	0.1550	0.136
			0.0590	0.0629	0.0733	0.104
ERCOLATION/LEAKAGE T						
TOTALS	0 0011	0 0012	0.0010	0.0010		0.001
	0.0007	0.0005	0.0004	0.0003	0.0004	0.000
STD. DEVIATIONS			0.0010			
ERCOLATION/LEAKAGE T			0.0002	0.0002	0.0003	0.000
TOTALS			0.0006			
STD. DEVIATIONS			0.0005			
AVERAGES	OF MONTHL	Y AVERAGE	D DAILY H	EADS (INC	HES)	

AVERAGES 1.4910 1.8516 1.4322 1.3715 1.7286 1.3846 0.9920 0.6842 0.5206 0.4566 0.5178 0.8397

STD. DEVIATIONS	0.9305 0.5389		0.9392 0.3442	0.8488 0.4146	0.7710 0.5712

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 100

	INCHE	s	CU. FEET	PERCENT
PRECIPITATION			133299.0	
RUNOFF	14.582 (2.9123)	52931.12	39.709
EVAPOTRANSPIRATION	19.768 (2.2736)	71756.85	53.831
LATERAL DRAINAGE COLLECTED FROM LAYER 3	2.37136 (1.12867)	8608.032	6.45768
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.00934 (0.00447)	33.902	0.02543
AVERAGE HEAD ON TOP OF LAYER 4	1.106 (0.529)		
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.00937 (0.00362)	34.012	0.02552
CHANGE IN WATER STORAGE	-0.009 (1.5727)	-30.97	-0.023

.....

PEAK DAILY VALUES FOR YEARS	1 THROUGH 10	0
	(INCHES)	(CU. FT.)
PRECIPITATION	4.44	16117.200
RUNOFF	4.061	14741.8955
DRAINAGE COLLECTED FROM LAYER 3	0.03943	143.11752
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.000158	0.57195
AVERAGE HEAD ON TOP OF LAYER 4	6.693	
MAXIMUM HEAD ON TOP OF LAYER 4	9.174	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	18.8 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.00079	0.28500
SNOW WATER	5.36	19474.3164
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.4	442
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.2	770
*** Maximum heads are computed using	McEnroe's equat	ions. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kanasa ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

FINAL WATER	R STORAGE AT EN	O OF YEAR 100	
LAYER	(INCHES)	(VOL/VOL)	
1	9.8034	0.4085	
2	22.4400	0.1870	
3	1.3395	0.0744	
4	0.0000	0.0000	
5	0.1875	0.7500	
6	2.3580	0.3930	
7	0.6300	0.1050	
SNOW WATER	0.015		

		* * * * *
**		*
**		*
**	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	*
**	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	*
**	DEVELOPED BY ENVIRONMENTAL LABORATORY	*
**	USAE WATERWAYS EXPERIMENT STATION	*
**	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	*
**		*
**		*
		* * * * *
		* * * * *
PRECIPITATION	DATA FILE: C:\HELP\PITBGH.D4	

TEMPERATURE DATA FILE:	C:\HELP\PITBGH.D7
SOLAR RADIATION DATA FILE:	C:\HELP\PITBGH.D13
EVAPOTRANSPIRATION DATA:	C:\HELP\PITBGH.D11
SOIL AND DESIGN DATA FILE:	C:\HELP\GCLFLF2.D10
OUTPUT DATA FILE:	C:\HELP\GCLFLF2.OUT

TIME: 17:11 DATE: 1/ 3/2019

TITLE: AEP Mitchell - GCL, 100' waste, 5% slopes, cap

.....

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

	PERCOLATION LAYER
MATERIAL TEXT	URE NUMBER 0
THICKNESS	= 24.00 INCHES
POROSITY	= 0.4450 VOL/VOL
FIELD CAPACITY	= 0.3930 VOL/VOL
WILTING POINT	= 0.2770 VOL/VOL
INITIAL SOIL WATER CONTENT	= 0.4065 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.999999975000E-05 CM/SEC

LAYER 2

TYPE 1 - VERTICAL	PEF	RCOLATION LAYER
MATERIAL TEXTU	JRE	NUMBER 0
THICKNESS	=	1200.00 INCHES
POROSITY	=	0.5410 VOL/VOL
FIELD CAPACITY	=	0.1870 VOL/VOL
WILTING POINT	=	0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.1875 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.13000000000E-02 CM/SEC

LAYER 3

TYPE 2 - LATERAI	L DF	AINAGE LAYE	R	
MATERIAL TEXT	JRE	NUMBER 0		
THICKNESS	=	18.00	INCHES	
POROSITY		0.4170	VOL/VOL	
FIELD CAPACITY	=	0.0450	VOL/VOL	
WILTING POINT	=	0.0180	VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.1068	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.10000005	000E-02	CM/SEC
SLOPE	=	5.00	PERCENT	
DRAINAGE LENGTH	=	60.0	FEET	

LAYER 4

TYPE 4 - FLEXIE	LE	MEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 37
THICKNESS	=	0.03 INCHES
POROSITY		0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.199999999000E-10 CM/SEC
FML PINHOLE DENSITY	=	2.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	4.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	3 - GOOD

LAYER 5

	TYPE 3 -	BARRIER	SOIL LINER		
	MATERIAL	TEXTURE	NUMBER 0		
THICKNESS		=	0.25	INCHES	
POROSITY		=	0.7500	VOL/VOL	
FIELD CAPACITY	£	=	0.7470	VOL/VOL	
WILTING POINT		=	0.4000	VOL/VOL	
INITIAL SOIL N	WATER CON	TENT =	0.7500	VOL/VOL	
EFFECTIVE SAT.	. HYD. COL	ND. =	0.49999999	7000E-08	CM/SEC

LAYER 6

TYPE 1 - VERTICAL	ERCOLAT	ION LAYER
MATERIAL TEXT	E NUMBER	R 0
THICKNESS	6	.00 INCHES
POROSITY	0	.4450 VOL/VOL
FIELD CAPACITY	0	.3930 VOL/VOL
WILTING POINT	0	.2770 VOL/VOL
INITIAL SOIL WATER CONTENT		.3930 VOL/VOL
EFFECTIVE SAT. HYD. COND.	0.9999	999975000E-05 CM/SEC

LAYER 7

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 4 THICKNESS = 6.00 INCHES POROSITY = 0.4370 VOL/VOL

WILTI INITI	CAPACITY NG POINT AL SOIL WATH TIVE SAT. HY	R CONTENT	= 0.105 = 0.047 = 0.105 = 0.1700000	50 VOL/VOI 70 VOL/VOI 59 VOL/VOI 002000E-02	
			VAPORATIVE 2		
NOTE:	SCS RUNOFF C	URVE NUMBER	WAS USER-SE	PECIFIED.	
SCS RUNC	FF CURVE NUM	IBER		36.00	
	I OF AREA ALI			00.0 PH 1.000 AC	IRCENT IRES
	VIVE ZONE DEP WATER IN EVJ				ICHES
	MATER IN EVAPO		AGE =	3.560 IN 2.216 IN	ICHES
LOWER LI	MIT OF EVAPO	RATIVE STOP	AGE =	2.216 IN	ICHES
INITIAL	SNOW WATER WATER IN LAY	ER MATERIAI			
TOTAL IN	IITIAL WATER		S = 23 = 23 =	39.819 IN	ICHES
TOTAL SU	BSURFACE INF	LOW	=	0.00 IN	ICHES/YEAR
STJ MAJ STJ ENI EVJ AVE AVE AVE	EVAPOTRANSP PITTSBURG VITION LAITTUU IMUM LEAF AN ET OF GROWING IPORATIVE ZON RAGE ANNUAL RAGE 1ST QUI RAGE ATH QUI PRECIPITATIO COEFFICIEN	RATION DATA EA INDEX (G SEASON (JUI SEASON (JUI WIND SPEED RTER RELATI RTER RELATI RTER RELATI RTER RELATI RTER RELATI ST DATA WAS ITS FOR E	AND WEATHER WAS OBTAINS PENNSYLVANI ULIAN DATE) VE HUMIDITY VE HUMIDITY VE HUMIDITY VE HUMIDITY SYNTHETICALL ITTSBURGH RECIPITATION	ED FROM FA = 40.5(= 0.00 = 111 = 28.00 = 9.2(= 67.00 = 71.00 = 70.00 EY GENERAT	INCHES INCHES MPH I & I & I & I & I & I & I & I & I & I &
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
2.86	2.40	3.58	3.28	3.54	3.30
3.83	3.31	2.80	3.28 2.49	2.34	2.57
	COEFFICIEN	ITS FOR I	NTHETICALLY VITTSBURGH	PI	INNSYLVANIA
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	
26.70	28.80	38.50 64.10	50.10	59.70	68.10
72.00	70.60	64.10	52.50	41.60	31.40
NOTE :	COEFFICIEN	ITS FOR E	S SYNTHETIC ITTSBURGH E = 40.50	PI	RATED USING ENNSYLVANIA

AVERAGE MONTHLY						
	JAN/JUL					
RECIPITATION						
TOTALS	2.88 3.84	2.32 3.44	3.65 2.68	3.47 2.56	3.44 2.43	3.30 2.71
STD. DEVIATIONS	1.10 1.61	0.89 1.77	1.06 1.45	1.28	1.56 0.95	1.20
UNOFF						
TOTALS	1.269 1.375	2.055 1.332	3.449 0.948	0.887 0.645	0.874 0.365	0.883
STD. DEVIATIONS	1.207 1.037	1.393 1.103	1.791 0.836	0.754 0.582	0.660 0.411	0.629
VAPOTRANSPIRATION						
TOTALS	0.603 2.485	0.467 2.087		2.826 1.633	2.477 1.349	
STD. DEVIATIONS	0.184 0.901	0.144 0.811	0.610 0.806	0.765 0.600	1.029 0.327	
ATERAL DRAINAGE COLLE						
TOTALS	0.2099	0.2488	0.2574 0.1180	0.2488 0.1035	0.3075 0.1010	
STD. DEVIATIONS			0.1965 0.0784		0.1508 0.0675	
ERCOLATION/LEAKAGE TH						
TOTALS	0.0010	0.0012	0.0013 0.0006			
STD. DEVIATIONS		0.0007 0.0005	0.0010 0.0004		0.0008	
ERCOLATION/LEAKAGE TH						
TOTALS	0.0009	0.0006	0.0007 0.0013		0.0007 0.0011	
STD. DEVIATIONS			0.0006 0.0006		0.0005 0.0007	

AVERAGES 1.4369 1.8676 1.7618

STD. DEVIATIONS	0.7811 0.9084		1.2233 0.4762	1.0738 0.5628

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 100

				CU. FEET	
PRECIPITATION				133299.0	
RUNOFF	14.582	(2.9123)	52931.12	39.709
EVAPOTRANSPIRATION	19.768	(2.2736)	71756.85	53.831
LATERAL DRAINAGE COLLECTED FROM LAYER 3	2.37083	(1.12136)	8606.123	6.45625
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.01168	(0.00556)	42.395	0.0318
AVERAGE HEAD ON TOP OF LAYER 4	1.380 (0.653)		
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.01174	(0.00448)	42.601	0.0319
CHANGE IN WATER STORAGE	-0.010	(1.5938)	-37.65	-0.028

.....

PEAK DAILY VALUES FOR YEARS	1 THROUGH 10	0
	(INCHES)	(CU. FT.)
PRECIPITATION	4.44	16117.200
RUNOFF	4.061	14741.8955
DRAINAGE COLLECTED FROM LAYER 3	0.03174	115.20315
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.000159	0.57556
AVERAGE HEAD ON TOP OF LAYER 4	6.734	
MAXIMUM HEAD ON TOP OF LAYER 4	9.219	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	18.8 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.00098	0.35659
SNOW WATER	5.36	19474.3164
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.4	442
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.2	770
*** Maximum heads are computed using	McEnroe's equat	ions. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

.....

.....

	FINAL WATER	STORAGE AT	END OF YEAR 100	
	LAYER	(INCHES)	(VOL/VOL)	
	1	9.8034	0.4085	
	2	224.4000	0.1870	
	3	1.3880	0.0771	
	4	0.0000	0.0000	
	5	0.1875	0.7500	
	6	2.3580	0.3930	
	7	0.6300	0.1050	
:	SNOW WATER	0.015		

* * * * * * * * * * * * * * * * * * * *		***
		* * *
* *		**
**		**
** HYDROLOGIC	EVALUATION OF LANDFILL PERFORMANCE	**
** HELP MODE	L VERSION 3.07 (1 NOVEMBER 1997)	**
** DEVELOR	PED BY ENVIRONMENTAL LABORATORY	* *
** USAE	WATERWAYS EXPERIMENT STATION	* *
** FOR USEPA RI	SK REDUCTION ENGINEERING LABORATORY	**
* *		* *
* *		**
		* * *
PRECIPITATION DATA FILE:	C:\HELP\PITBGH.D4	

TEMPERATURE DATA FILE:	C:\HELP\PITBGH.D7
SOLAR RADIATION DATA FILE:	C:\HELP\PITBGH.D13
EVAPOTRANSPIRATION DATA:	C:\HELP\PITBGH.D11
SOIL AND DESIGN DATA FILE:	C:\HELP\GCLFLF3.D10
OUTPUT DATA FILE:	C:\HELP\GCLFLF3.OUT

TIME: 17:13 DATE: 1/ 3/2019

..... TITLE: AEP Mitchell - GCL, 250' waste, 5% slopes, cap

.....

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL	PERCOLATION LAYER
MATERIAL TEXTU	IRE NUMBER 0
THICKNESS	= 24.00 INCHES
POROSITY	= 0.4450 VOL/VOL
FIELD CAPACITY	= 0.3930 VOL/VOL
WILTING POINT	= 0.2770 VOL/VOL
INITIAL SOIL WATER CONTENT	= 0.4065 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.999999975000E-05 CM/SEC

LAYER 2

TYPE 1 - VERTICAL	PER	RCOLATION LAYER
MATERIAL TEXTU	JRE	NUMBER 0
THICKNESS	=	3000.00 INCHES
POROSITY	=	0.5410 VOL/VOL
FIELD CAPACITY	=	0.1870 VOL/VOL
WILTING POINT	=	0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.1872 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.13000000000E-02 CM/SEC

LAYER 3

TYPE 2 - LATERAI	L DF	RAINAGE LAYER
MATERIAL TEXT	JRE	NUMBER 0
THICKNESS	=	18.00 INCHES
POROSITY	=	0.4170 VOL/VOL
FIELD CAPACITY	=	0.0450 VOL/VOL
WILTING POINT	=	0.0180 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.1071 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.10000005000E-02 CM/SEC
SLOPE	=	5.00 PERCENT
DRAINAGE LENGTH	=	60.0 FEET

LAYER 4

TYPE 4 - FLEXIB	LE I	MEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 37
THICKNESS	=	0.03 INCHES
POROSITY	=	0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.199999999000E-10 CM/SEC
FML PINHOLE DENSITY	=	2.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	4.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	3 - GOOD

LAYER 5

	TYPE 3 -	BARRIER	SOIL LINER		
	MATERIAL	TEXTURE	NUMBER 0		
THICKNESS		=	0.25	INCHES	
POROSITY		=	0.7500	VOL/VOL	
FIELD CAPACITY	£	=	0.7470	VOL/VOL	
WILTING POINT		=	0.4000	VOL/VOL	
INITIAL SOIL N	NATER CON	TENT =	0.7500	VOL/VOL	
EFFECTIVE SAT.	HYD. CO	ND. =	0.49999999	7000E-08	CM/SEC

LAYER 6

TYPE 1 - VERTICAL	PERCOLATION LAYER	
MATERIAL TEXTU	JRE NUMBER 0	
THICKNESS	= 6.00 INCHES	
POROSITY	= 0.4450 VOL/VOL	
FIELD CAPACITY	= 0.3930 VOL/VOL	
WILTING POINT	= 0.2770 VOL/VOL	
INITIAL SOIL WATER CONTENT	= 0.3930 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	= 0.999999975000E-05 CM/SE	C

LAYER 7

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 4 = 6.00 INCHES = 0.4370 VOL/VOL THICKNESS POROSITY

FIELD WILTII INITI; EFFEC	CAPACITY NG POINT AL SOIL WATE FIVE SAT. HY	R CONTENT D. COND.	= 0.105 = 0.047 = 0.105 = 0.1700000	50 VOL/V 70 VOL/V 59 VOL/V 002000E-	OL OL OL 02 CM/SEC
		ESIGN AND E			Ъ -
NOTE: :	SCS RUNOFF C	URVE NUMBER	WAS USER-SE	PECIFIED	
SCS RUNO	FF CURVE NUM	BER	= 8	36.00	
	OF AREA ALL JECTED ON HO			1.000	PERCENT
EVAPORAT	IVE ZONE DEP	TH	=	8.0	INCHES
INITIAL I	IVE ZONE DEP WATER IN EVA MIT OF EVAPO	PORATIVE ZON	NE =	3.468	INCHES
LOWER LI	MIT OF EVAPO	RATIVE STOR	AGE =	3.560 2.216 0.000	INCHES
INITIAL S	SNOW WATER		=	0.000 76.423	INCHES
TOTAL IN:	WATER IN LAY ITIAL WATER	ER MAIERIAD.	= 51	76.423	INCHES
TOTAL SUI	BSURFACE INF	LOW	=	0.00	INCHES/YEAR
STA' MAX: STAI END EVA AVEI AVEI AVEI	EVAPOTRANSPI PITTSBURGH TION LATITUB TION LATITUB TO GROWING PORTIVE ZON AGGE ANNUAL AGGE 121 QUA RAGE 2ND QUA RAGE 4TH QUA PRECIPITATIO	E EA INDEX G SEASON (JUL E DEPTH WIND SPEED RTER RELATI RTER RELATI RTER RELATI N DATA WAS	WAS OBTAINE PENNSYLVANJ ULIAN DATE) IAN DATE) VE HUMIDITY VE HUMIDITY VE HUMIDITY VE HUMIDITY SYNTHETICALI	ED FROM IA = 40. = 0. = 1 = 2 = 8. = 9. = 67. = 63. = 71. = 70. LY GENER	14 88 0 INCHES 20 MPH 00 % 00 % 00 % 00 %
		TS FOR P			PENNSYLVANIA
		N MONTHLY P			
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/N	OV JUN/DEC
2.86	2.40	3.58 2.80	3.28 2.49	3.5	4 3.30
3.83	3.31	2.80	2.49	2.3	4 2.57
	TEMPERATURE COEFFICIEN WAL MEAN MON	TS FOR P	ITTSBURGH		PENNSYLVANIA
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/N	OV JUN/DEC
26.70	FEB/AUG 28 80	MAR/SEP 38.50 64.10	APR/OCT 50.10 52.50	MAY/N 	0 68.10
72.00	28.80 70.60	64.10	52.50	59.7 41.6	0 31.40
NOTE: 5	SOLAR RADIAT COEFFICIEN		S SYNTHETICA	ALLY GEN	PERATED USING PENNSYLVANIA

..... AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 100 JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC PRECIPITATION TOTALS 2.88 3.84 2.32 3.44 3.65 2.68 3.47 2.56 3.44 2.43 3.30 2.71 STD. DEVIATIONS 1.10 0.89 1.77 1.06 1.28 1.56 0.95 1.20 RUNOFF TOTALS 1.269 1.375 2.055 3.449 0.948 0.887 0.874 0.883 STD. DEVIATIONS 1.207 1.393 1.037 1.103 1.791 0.836 0.754 0.660 0.629 EVAPOTRANSPIRATION TOTALS 0.603 0.467 2.485 2.087 1.022 1.607 2.826 1.633 2.477 1.349 2.315 0.896 STD. DEVIATIONS 0.184 0.144 0.901 0.811 0.610 0.806 0.765 1.029 0.327 0.890 LATERAL DRAINAGE COLLECTED FROM LAYER 3 TOTALS 0.2084 0.2464 0.2141 0.1598 0.2560 0.2481 0.1043 0.3072 0.2663 STD. DEVIATIONS 0.1132 0.1476 0.1328 0.1101 0.1928 0.1707 0.0717 0.1500 0.1523 PERCOLATION/LEAKAGE THROUGH LAYER 5 TOTALS 0.0010 0.0012 0.0011 0.0008 0.0013 0.0012 0.0015 0.0013 STD. DEVIATIONS 0.0006 0.0007 0.0010 0.0008 0.0007 0.0005 0.0004 0.0004 0.0003 0.0008 PERCOLATION/LEAKAGE THROUGH LAYER 7 TOTALS 0.0009 0.0006 0.0007 0.0008 0.0007 0.0008 0.0011 0.0013 0.0013 0.0013 0.0011 0.0011 STD. DEVIATIONS 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 0.0005 0.0006 0.0006 0.0007 0.0007 0.0007 AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES) DAILY AVERAGE HEAD ON TOP OF LAYER 4

AVERAGES

1.4266 1.8497 1.7522 1.7551 2.1026 1.8836 1.4657 1.0939 0.8432 0.7141 0.7177 0.9552

STD. DEVIATIONS	0.7747 0.9090	1.1058 0.7533		1.0771 0.5624

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 100

				CU. FEET	
PRECIPITATION				133299.0	
RUNOFF	14.582	(2.9123)	52931.12	39.709
EVAPOTRANSPIRATION	19.768	(2.2736)	71756.85	53.831
LATERAL DRAINAGE COLLECTED FROM LAYER 3	2.37087	(1.12015)	8606.268	6.45636
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.01168	(0.00555)	42.395	0.0318
AVERAGE HEAD ON TOP OF LAYER 4	1.380 (0.652)		
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.01174	(0.00451)	42.600	0.0319
CHANGE IN WATER STORAGE	-0.010	(1.5936)	-37.79	-0.028

.....

PEAK DAILY VALUES FOR YEARS	1 THROUGH 10	0
	(INCHES)	(CU. FT.)
PRECIPITATION	4.44	16117.200
RUNOFF	4.061	14741.8955
DRAINAGE COLLECTED FROM LAYER 3	0.03117	113.14462
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.000156	0.56507
AVERAGE HEAD ON TOP OF LAYER 4	6.614	
MAXIMUM HEAD ON TOP OF LAYER 4	9.086	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	18.7 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.00099	0.35764
SNOW WATER	5.36	19474.3164
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.4	442
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.2	770
*** Maximum heads are computed using	McEnroe's equat	ions. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kanaaa ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

.....

.....

	FINAL WATER	STORAGE AT 1	END OF YEAR 100	
	LAYER	(INCHES)	(VOL/VOL)	
	1	9.8034	0.4085	
	2	561.0000	0.1870	
	3	1.3884	0.0771	
	4	0.0000	0.0000	
	5	0.1875	0.7500	
	6	2.3580	0.3930	
	7	0.6300	0.1050	
:	SNOW WATER	0.015		

*		*
*	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	*
*	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	*
*	DEVELOPED BY ENVIRONMENTAL LABORATORY	*
*	USAE WATERWAYS EXPERIMENT STATION	*
*	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	
*		*
********		******

PRECIPITATION DATA FILE:	C:\HELP\PITBGH.D4
TEMPERATURE DATA FILE:	C:\HELP\PITBGH.D7
SOLAR RADIATION DATA FILE:	C:\HELP\PITBGH.D13
EVAPOTRANSPIRATION DATA:	C:\HELP\PITBGH.D11
SOIL AND DESIGN DATA FILE:	C:\HELP\GCL3SSF1.D10
OUTPUT DATA FILE:	C:\HELP\GCL3SSF1.OUT

TIME: 17:17 DATE: 1/ 3/2019

TITLE: AEP Mitchell - GCL, 10' waste, 33% slopes, cap

.....

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL MATERIAL TEXT	PERCOLATION LAYER
THICKNESS	= 24.00 INCHES
POROSITY	= 0.4450 VOL/VOL
FIELD CAPACITY	= 0.3930 VOL/VOL
WILTING POINT	= 0.2770 VOL/VOL
INITIAL SOIL WATER CONTENT	= 0.4065 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.999999975000E-05 CM/SEC

LAYER 2

TYPE 1 - VERTICAL	PER	COLATION LAYER
MATERIAL TEXTU	JRE	NUMBER 0
THICKNESS	=	120.00 INCHES
POROSITY	=	0.5410 VOL/VOL
FIELD CAPACITY	=	0.1870 VOL/VOL
WILTING POINT	=	0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.1916 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.13000000000E-02 CM/SEC

LAYER 3

TYPE 2 - LATERAI	L DF	RAINAGE LAYER
MATERIAL TEXT	JRE	NUMBER 0
THICKNESS	=	18.00 INCHES
POROSITY	=	0.5780 VOL/VOL
FIELD CAPACITY	=	0.0760 VOL/VOL
WILTING POINT	=	0.0250 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.1233 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.449999981000E-02 CM/SEC
SLOPE	=	33.00 PERCENT
DRAINAGE LENGTH	=	900.0 FEET

LAYER 4

TYPE 4 - FLEXIE	LE	MEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 37
THICKNESS	=	0.03 INCHES
POROSITY		0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.199999999000E-10 CM/SEC
FML PINHOLE DENSITY	=	2.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	4.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	3 - GOOD

LAYER 5

	TYPE 3 - BARR MATERIAL TEXT				
THICKNESS		=	0.25	INCHES	
POROSITY		=	0.7500	VOL/VOL	
FIELD CAPACITY	(=		VOL/VOL	
WILTING POINT		=	0.4000	VOL/VOL	
INITIAL SOIL W	WATER CONTENT	=		VOL/VOL	
EFFECTIVE SAT.	HYD. COND.	=	0.49999999	7000E-08	CM/SEC

LAYER 6

TYPE 1 - VERTICAL	ERCOLAT	ION LAYER
MATERIAL TEXT	E NUMBER	R 0
THICKNESS	6	.00 INCHES
POROSITY	0	.4450 VOL/VOL
FIELD CAPACITY	0	.3930 VOL/VOL
WILTING POINT	0	.2770 VOL/VOL
INITIAL SOIL WATER CONTENT		.3930 VOL/VOL
EFFECTIVE SAT. HYD. COND.	0.9999	999975000E-05 CM/SEC

LAYER 7

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 4 THICKNESS = 6.00 INCHES POROSITY = 0.4370 VOL/VOL

WILTI INITI	CAPACITY NG POINT AL SOIL WAT: FIVE SAT. H	ER CONTENT	= 0.109 = 0.047 = 0.109 = 0.1700000	50 VOL/VO 70 VOL/VO 51 VOL/VO 002000E-0	L
			VAPORATIVE 2		
NOTE:	SCS RUNOFF	CURVE NUMBER	WAS USER-SE	PECIFIED.	
SCS RUNO	FF CURVE NU	MBER		86.00	
		LOWING RUNOP DRIZONTAL PI		00.0 P 1.000 A	ERCENT CRES
EVAPORAT	IVE ZONE DE	PTH	=	8.0 I	NCHES
		APORATIVE ZO		3.468 I 3.560 I	
LOWER LI	MIT OF EVAP	DRATIVE STOP DRATIVE STOP	AGE =	2.216 I	NCHES
INITIAL :	SNOW WATER	YER MATERIAI	=	0.000 I 38.144 I	
				38.144 I	NCHES
TOTAL SU	BSURFACE IN	FLOW	=	0.00 I	NCHES/YEAR
STA MAX STA END EVA AVE AVE AVE	EVAPOTRANSP PITTSBURG: TION LAITITU IMUM LEAF AI ST OF GROWING OF GROWING OF GROWING PORATIVE 200 RAGE 1ST QU. RAGE 2RD QU. RAGE 3RD QU. RAGE 4TH QU. PRECIPITATII COEFFICIE!	IRATION DATA H DE REA INDEX NG SEASON (J SEASON (JUI NE DEPTH WIND SFEED RATER RELATI RATER RELATI RATER RELATI RATER RELATI ON DATA WAS NTS FOR	A WAS OBTAIN PENNSYLVAN: UULIAN DATE) UVE HUMIDITY VE HUMIDITY VE HUMIDITY SYNTHETICAL	ED FROM IA = 40.5 = 0.0 = 11 = 28 = 8.0.0 = 9.2 = 67.0 = 71.0 = 70.0 LY GENERA F	4 8 1NCHES 0 MFH 0 % 0 % 0 % 0 % TED USING ENNSYLVANIA
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NO	V JUN/DEC
2.86	2.40	3.58	3.28	3.54	3.30
3.83	3.31	2.80	2.49	2.34	2.57
	COEFFICIE	NTS FOR E	YNTHETICALLY PITTSBURGH RATURE (DEGRI	P	ENNSYLVANIA
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NC	V JUN/DEC
26.70 72.00	28.80 70.60	MAR/SEP 38.50 64.10	50.10 52.50	MAY/NC 59.70 41.60	68.10
72.00	70.60	64.10	52.50	41.60	31.40
	SOLAR RADIA' COEFFICIEI	FION DATA WA	AS SYNTHETIC/ PITTSBURGH DE = 40.50	ALLY GENE	RATED USING

AVERAGE MONTH						
			MAR/SEP			
RECIPITATION						
TOTALS	2.88	2.32	3.65	3.47	3.44	3.30
	3.84	3.44	2.68	2.56	2.43	2.71
STD. DEVIATIONS	1.10 1.61	0.89 1.77	1.06 1.45	1.28 1.23	1.56 0.95	1.20 1.00
JNOFF						
TOTALS	1,269	2.055	3.449	0.887	0.874	0.883
	1.375	1.332	3.449 0.948	0.645	0.365	0.500
STD. DEVIATIONS		1.393			0.660	
	1.037	1.103	0.836	0.582	0.411	0.66
VAPOTRANSPIRATION						
TOTALS			1.022			
	2.485	2.087	1.607	1.633	1.349	0.89
STD. DEVIATIONS	0.184	0.144 0.811	0.610			
TOTALS	0.2794	0.3152	0.2623 0.0879		0.3190 0.0904	
STD. DEVIATIONS			0.2470 0.0590		0.1569 0.0755	
ERCOLATION/LEAKAGE						
TOTALS	0.0008	0.0009	0.0007		0.0009	
	0.0005	0.0003	0.0002	0.0002	0.0002	0.00
STD. DEVIATIONS			0.0007		0.0004	
			0.0002	0.0002	0.0002	0.001
ERCOLATION/LEAKAGE						
TOTALS			0.0005			
STD. DEVIATIONS			0.0004 0.0005			
AUEDACE	S OF MONTHL					
	S OF MONINL					

AVERAGES 1.0685 1.3210 1.0031 0.9594 1.2198 0.9628 0.6778 0.4591 0.3473 0.3073 0.3572 0.5952

STD. DEVIATIONS	1.0191 0.2611	0.6589	0.5446 0.4129	

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 100

				CU. FEET	
PRECIPITATION				133299.0	
RUNOFF	14.582	(2.9123)	52931.12	39.709
EVAPOTRANSPIRATION	19.768	(2.2736)	71756.85	53.831
LATERAL DRAINAGE COLLECTED FROM LAYER 3	2.37389	(1.13098)	8617.235	6.46459
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.00652	(0.00312)	23.663	0.0177
AVERAGE HEAD ON TOP OF LAYER 4	0.773 (0.370)		
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.00653	(0.00297)	23.694	0.0177
CHANGE IN WATER STORAGE	-0.008	(1.5701)	-29.85	-0.022

.....

PEAK DAILY VALUES FOR YEARS	1 THROUGH 10	0
	(INCHES)	(CU. FT.)
PRECIPITATION	4.44	16117.200
RUNOFF	4.061	14741.8955
DRAINAGE COLLECTED FROM LAYER 3	0.04043	146.76697
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.000112	0.40726
AVERAGE HEAD ON TOP OF LAYER 4	4.793	
MAXIMUM HEAD ON TOP OF LAYER 4	9.466	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	0.0 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.00068	0.24637
SNOW WATER	5.36	19474.3164
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.4	442
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.2	770
*** Maximum heads are computed using	McEnroe's equat	ions. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kanasa ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

FINAL WATER	R STORAGE AT EN	O OF YEAR 100	
LAYER	(INCHES)	(VOL/VOL)	
1	9.8034	0.4085	
2	22.4400	0.1870	
3	1.8880	0.1049	
4	0.0000	0.0000	
5	0.1875	0.7500	
6	2.3580	0.3930	
7	0.6300	0.1050	
SNOW WATER	0.015		

		* * * * *
		* * * * *
**		*
**		*
**	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	*
• •	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	*
**	DEVELOPED BY ENVIRONMENTAL LABORATORY	*
**	USAE WATERWAYS EXPERIMENT STATION	*
• •	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	*
• •		*
**		*
		* * * * *
PRECIPITATION	DATA FILE: C:\HELP\PITBGH.D4	

TEMPERATURE DATA FILE:	C:\HELP\PITBGH.D7
SOLAR RADIATION DATA FILE:	C:\HELP\PITBGH.D13
EVAPOTRANSPIRATION DATA:	C:\HELP\PITBGH.D11
SOIL AND DESIGN DATA FILE:	C:\HELP\GCL3SSF2.D10
OUTPUT DATA FILE:	C:\HELP\GCL3SSF2.OUT

TIME: 17:22 DATE: 1/ 3/2019

TITLE: AEP Mitchell - GCL, 100' waste, 33% slopes, cap

.....

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL MATERIAL TEXT	PERCOLATION LAYER
THICKNESS	= 24.00 INCHES
POROSITY	= 0.4450 VOL/VOL
FIELD CAPACITY	= 0.3930 VOL/VOL
WILTING POINT	= 0.2770 VOL/VOL
INITIAL SOIL WATER CONTENT	= 0.4065 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.999999975000E-05 CM/SEC

LAYER 2

TYPE 1 - VERTICAL PI	RCOLATION LAYER
MATERIAL TEXTURE	NUMBER 0
THICKNESS =	1200.00 INCHES
POROSITY =	0.5410 VOL/VOL
FIELD CAPACITY =	0.1870 VOL/VOL
WILTING POINT =	0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT =	0.1875 VOL/VOL
EFFECTIVE SAT. HYD. COND. =	0.13000000000E-02 CM/SEC

LAYER 3

TYPE 2 - LATERAI	L DE	AINAGE LAYER
MATERIAL TEXT	JRE	NUMBER 0
THICKNESS	=	18.00 INCHES
POROSITY	=	0.5780 VOL/VOL
FIELD CAPACITY	=	0.0760 VOL/VOL
WILTING POINT	=	0.0250 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.1367 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.350000011000E-02 CM/SEC
SLOPE	=	33.00 PERCENT
DRAINAGE LENGTH	=	900.0 FEET

LAYER 4

TYPE 4 - FLEXIE	LE	MEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 37
THICKNESS	=	0.03 INCHES
POROSITY		0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.199999999000E-10 CM/SEC
FML PINHOLE DENSITY	=	2.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	4.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	3 - GOOD

LAYER 5

MATERIAL TEXT	
THICKNESS POROSITY	= 0.25 INCHES = 0.7500 VOL/VOL
	= 0.7470 VOL/VOL
WILTING POINT INITIAL SOIL WATER CONTENT	= 0.4000 VOL/VOL = 0.7500 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.499999997000E-08 CM/SEC

LAYER 6

TYPE 1 - VERTICAL	PERCOLATION LAYER
MATERIAL TEXTU	RE NUMBER 0
THICKNESS	= 6.00 INCHES
POROSITY	= 0.4450 VOL/VOL
FIELD CAPACITY	= 0.3930 VOL/VOL
	= 0.2770 VOL/VOL
	= 0.3930 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.999999975000E-05 CM/SEC

LAYER 7

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 4 THICKNESS = 6.00 INCHES POROSITY = 0.4370 VOL/VOL

WILT	D CAPACITY ING POINT IAL SOIL WA' CTIVE SAT. 1	FER CONTENT HYD. COND.	= 0.0 = 0.1	050 VOL/VOL 470 VOL/VOL 052 VOL/VOL 0002000E-02 CM	1/SEC
		DESIGN AND			
NOTE :	SCS RUNOFF	CURVE NUMBE	R WAS USER-	SPECIFIED.	
FRACTION AREA PR EVAPORA' INITIAL UPPER L LOWER L INITIAL INITIAL TOTAL II	DJECTED ON I FIVE ZONE DI WATER IN E IMIT OF EVAI IMIT OF EVAI SNOW WATER	LLOWING RUNO HORIZONTAL P EPTH VAPORATIVE Z PORATIVE STO PORATIVE STO AYER MATERIA R	FF = LANE = = ONE = RAGE = RAGE = =	86.00 100.0 PERCI 1.000 ACRES 8.0 INCHI 3.468 INCHI 3.560 INCHI 2.216 INCHI 0.000 INCHI 240.351 INCHI 0.000 INCHI	
		RANSPIRATION			
NOTE:	EVAPOTRANS PITTSBUR	PIRATION DAT	A WAS OBTAI PENNSYLVA		
MA. ST EN: EV. AV: AV:	D OF GROWING APORATIVE Z ERAGE ANNUA ERAGE 1ST Q ERAGE 2ND 0	AREA INDEX ING SEASON (JU 3 SEASON (JU DNE DEPTH L WIND SPEED JARTER RELAT JARTER RELAT	LIAN DATE) IVE HUMIDIT IVE HUMIDIT		ICHES
NOTE:	PRECIPITAT COEFFICI	ION DATA WAS ENTS FOR	SYNTHETICA PITTSBURGH	LLY GENERATED PENNS	USING YLVANIA
	NORMAL M	EAN MONTHLY	PRECIPITATI	ON (INCHES)	
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
2.86 3.83	2.40 3.31	3.58 2.80	3.28 2.49	3.54 2.34	3.30 2.57
	COEFFICI	ENTS FOR	PITTSBURGH		YLVANIA
NO				REES FAHRENHEI	
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
26.70 72.00	28.80 70.60	MAR/SEP 38.50 64.10	APR/OCT 50.10 52.50	59.70 41.60	68.10 31.40
NOTE :	COEFFICI		PITTSBURGH	CALLY GENERATI PENNS 0 DEGREES	

AVERAGE MONTHI	Y VALUES II					
			MAR/SEP			
RECIPITATION						
TOTALS	2 00	2 22	2 65	2 47	3.44	3.30
TOTALS	3.84	3.44	3.65 2.68	2.56	2.43	2.71
STD. DEVIATIONS	1.10 1.61	0.89 1.77	1.06 1.45	1.28 1.23	1.56 0.95	1.20
UNOFF						
TOTALS	1.269	2.055	3.449	0.887	0.874	0.883
	1.375	1.332	3.449 0.948	0.645	0.365	0.500
STD. DEVIATIONS	1.207 1.037		1.791 0.836			
VAPOTRANSPIRATION						
TOTALS	0.603	0.467	1.022	2.826	2.477 1.349	2.31
	2.485	2.087	1.607	1.633	1.349	0.89
STD. DEVIATIONS	0.184					
TOTALS		0.2517	0.2592 0.1158		0.3098 0.0998	
STD. DEVIATIONS			0.2001 0.0780			
ERCOLATION/LEAKAGE 1						
TOTALS	0.0007		0.0009		0.0011	
	0.0007	0.0006	0.0004	0.0004	0.0004	0.001
STD. DEVIATIONS	0.0004 0.0005	0.0005	0.0007	0.0006	0.0005	0.00
ERCOLATION/LEAKAGE 1						
TOTALS			0.0006	0.0006	0.0007	0.00
			0.0008			
STD. DEVIATIONS			0.0005 0.0006			
	OF MONTHL	Y AVERAGE	D DAILY H	EADS (INC	HES)	
AVERAGES						

AVERAGES 1.0421 1.3567 1.2742 1.2708 1.5231 1.3513 1.0425 0.7681 0.5885 0.4994 0.5072 0.6876

STD. DEVIATIONS	0.5713 0.6568		0.8896 0.3417	0.7793 0.4106

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 100

				CU. FEET	
PRECIPITATION				133299.0	
RUNOFF	14.582	(2.9123)	52931.12	39.709
EVAPOTRANSPIRATION	19.768	(2.2736)	71756.85	53.831
LATERAL DRAINAGE COLLECTED FROM LAYER 3	2.37397	(1.12548)	8617.527	6.46481
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.00838	(0.00399)	30.435	0.0228
AVERAGE HEAD ON TOP OF LAYER 4	0.993 (0.471)		
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.00839	(0.00347)	30.471	0.0228
CHANGE IN WATER STORAGE	-0.010	(1.5949)	-36.92	-0.028

.....

PEAK DAILY VALUES FOR YEARS	1 THROUGH 10	D
	(INCHES)	(CU. FT.)
PRECIPITATION	4.44	16117.200
RUNOFF	4.061	14741.8955
DRAINAGE COLLECTED FROM LAYER 3	0.03203	116.26259
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.000114	0.41490
AVERAGE HEAD ON TOP OF LAYER 4	4.882	
MAXIMUM HEAD ON TOP OF LAYER 4	9.625	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	0.0 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.00071	0.25935
SNOW WATER	5.36	19474.3164
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.4	442
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.2	770
*** Maximum heads are computed using M	IcEnroe's equat:	ions. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kanasa ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

.....

.....

	FINAL WATER STO	RAGE AT END OF	YEAR 100
	LAYER (INCHES) (
	1	9.8034	0.4085
	2 2	24.4000	0.1870
	3	1.9404	0.1078
	4	0.0000	0.0000
	5	0.1875	0.7500
	6	2.3580	0.3930
	7	0.6300	0.1050
S	NOW WATER	0.015	

************		********
*		
*		
*	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	
*	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	
**	DEVELOPED BY ENVIRONMENTAL LABORATORY	
*	USAE WATERWAYS EXPERIMENT STATION	
*	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	
*		
*		
RECIPITATION	DATA FILE: C:\HELP\PITBGH.D4	

TEMPERATURE DATA FILE:	C:\HELP\PITBGH.D7
SOLAR RADIATION DATA FILE:	C:\HELP\PITBGH.D13
EVAPOTRANSPIRATION DATA:	C:\HELP\PITBGH.D11
SOIL AND DESIGN DATA FILE:	C:\HELP\GCL3SSF3.D10
OUTPUT DATA FILE:	C:\HELP\GCL3SSF3.OUT

TIME: 17:25 DATE: 1/ 3/2019

TITLE: AEP Mitchell - GCL, 250' waste, 33% slopes, cap

.....

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

	PERCOLATION LAYER
MATERIAL TEXT	URE NUMBER 0
THICKNESS	= 24.00 INCHES
POROSITY	= 0.4450 VOL/VOL
FIELD CAPACITY	= 0.3930 VOL/VOL
WILTING POINT	= 0.2770 VOL/VOL
INITIAL SOIL WATER CONTENT	= 0.4065 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.999999975000E-05 CM/SEC

LAYER 2

PEF	COLATION LAYER
URE	NUMBER 0
=	3000.00 INCHES
=	0.5410 VOL/VOL
=	0.1870 VOL/VOL
=	0.0470 VOL/VOL
=	0.1872 VOL/VOL
=	0.13000000000E-02 CM/SEC
	URE = = = = =

LAYER 3

TYPE 2 - LATERAI	L DE	AINAGE LAYER
MATERIAL TEXT	JRE	NUMBER 0
THICKNESS	=	18.00 INCHES
POROSITY	=	0.5780 VOL/VOL
FIELD CAPACITY	=	0.0760 VOL/VOL
WILTING POINT	=	0.0250 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.1369 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.350000011000E-02 CM/SEC
SLOPE	=	33.00 PERCENT
DRAINAGE LENGTH	=	900.0 FEET

LAYER 4

TYPE 4 - FLEXIE	LE	MEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 37
THICKNESS	=	0.03 INCHES
POROSITY		0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.199999999000E-10 CM/SEC
FML PINHOLE DENSITY	=	2.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	4.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	3 - GOOD

LAYER 5

TYPE 3 - BARR:	RIER SOIL LINER
MATERIAL TEXT	FURE NUMBER 0
THICKNESS	= 0.25 INCHES
POROSITY	= 0.7500 VOL/VOL = 0.7470 VOL/VOL
WILTING POINT	= 0.4000 VOL/VOL
INITIAL SOIL WATER CONTENT	= 0.7500 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.499999997000E-08 CM/SE

LAYER 6

TYPE 1 - VERTICAL	PERCOLATION LAYER
MATERIAL TEXTU	JRE NUMBER 0
THICKNESS	= 6.00 INCHES
POROSITY	= 0.4450 VOL/VOL
FIELD CAPACITY	= 0.3930 VOL/VOL
	= 0.2770 VOL/VOL
	= 0.3930 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.999999975000E-05 CM/SEC

LAYER 7

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 4 THICKNESS = 6.00 INCHES POROSITY = 0.4370 VOL/VOL

WILTI INITI	CAPACITY NG POINT AL SOIL WAT TIVE SAT. H	ER CONTENT	= 0.105 = 0.047 = 0.105 = 0.1700000	0 VOL/VOL 0 VOL/VOL 2 VOL/VOL 002000E-02	CM/SEC
			VAPORATIVE 2		
NOTE:	SCS RUNOFF	CURVE NUMBER	WAS USER-SP	PECIFIED.	
FRACTION AREA PRO EVAPORAT INITIAL UPPER LI LOWER LI INITIAL INITIAL TOTAL IN	JECTED ON H IVE ZONE DE WATER IN EV MIT OF EVAP MIT OF EVAP SNOW WATER	LOWING RUNOF ORIZONTAL PI PTH APORATIVE ZC ORATIVE STOR ORATIVE STOR YER MATERIAL	F = 10 ANE = NE = AGE = S = 57 = 57	86.00 1.000 PE 1.000 AC 8.0 IN 3.468 IN 3.560 IN 2.216 IN 0.000 IN 6.956 IN 0.00 IN	RES CHES CHES CHES CHES CHES CHES CHES
			AND WEATHER	DATA	
NOTE:	EVAPOTRANSP		WAS OBTAINE		
MAX STJ ENI EVJ AVE AVE	O OF GROWING APORATIVE ZO RAGE ANNUAL RAGE 1ST QU RAGE 2ND OU	REA INDEX NG SEASON (JU SEASON (JUI NE DEPTH WIND SPEED ARTER RELATI ARTER RELATI	ULIAN DATE) IAN DATE) VE HUMIDITY VE HUMIDITY VE HUMIDITY VE HUMIDITY	= 288 = 8.0 = 9.20 = 67.00 = 63.00	INCHES MPH %
NOTE:	COEFFICIE	NTS FOR F		PE	NNSYLVANIA
			RECIPITATION		
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
2.86 3.83	2.40 3.31	3.58 2.80	3.28 2.49	3.54 2.34	
	COEFFICIE	NTS FOR F		PE	NNSYLVANIA
			ATURE (DEGRE		HEIT)
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
26.70 72.00	FEB/AUG 28.80 70.60	MAR/SEP 38.50 64.10	APR/OCT 50.10 52.50	MAY/NOV 59.70 41.60	68.10 31.40
NOTE:	COEFFICIE	NTS FOR F	S SYNTHETICA ITTSBURGH DE = 40.50	PE	

AVERAGE MONTH	LY VALUES I				DUGH 100	
		FEB/AUG	MAR/SEP		MAY/NOV	
RECIPITATION						
TOTALS	2 00	2 22	2 65	2 47	3.44	3.30
IOIALS	3.84	3.44	3.65 2.68	2.56	2.43	2.71
STD. DEVIATIONS	1.10	0.89	1.06	1.28	1.56	1.20
INOFF						
TOTALS	1.269	2.055	3.449 0.948	0.887 0.645	0.874 0.365	0.883
STD. DEVIATIONS	1.207	1.393 1.103	1.791 0.836	0.754 0.582	0.660 0.411	0.629 0.661
/APOTRANSPIRATION						
TOTALS	0.603	0.467	1.022	2.826	2.477	2.315
101400	2.485	2.087	1.022 1.607	1.633	1.349	0.896
STD. DEVIATIONS	0.184	0.144			1.029	
TOTALS		0.2492 0.1579	0.2577 0.1171	0.2495 0.1024		
STD. DEVIATIONS			0.1963 0.0821			
ERCOLATION/LEAKAGE						
TOTALS	0.0007	0.0009	0.0009	0.0009	0.0011	0.000
	0.0008	0.0006	0.0004	0.0004	0.0004	0.000
STD. DEVIATIONS			0.0007 0.0003			
ERCOLATION/LEAKAGE						
TOTALS	0.0007	0.0005	0.0006	0.0006	0.0007	0.000
			0.0008			
STD. DEVIATIONS	0.0004	0.0004 0.0006	0.0005 0.0006	0.0004 0.0007	0.0003 0.0006	0.000
	S OF MONTHLY	Y AVERAGE	D DAILY H	EADS (INC	HES)	

AVERAGES 1.0345 1.3435 1.2672 1.2674 1.5218 1.3569 1.0481 0.7761 0.5949 0.5036 0.5097 0.6871

STD. DEVIATIONS	0.8104	0.8782	0.7442 0.3501	0.7820	

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 100

				CU. FEET	
PRECIPITATION				133299.0	
RUNOFF	14.582	(2.9123)	52931.12	39.709
EVAPOTRANSPIRATION	19.768	(2.2736)	71756.85	53.831
LATERAL DRAINAGE COLLECTED FROM LAYER 3	2.37402	(1.12436)	8617.676	6.46492
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.00838	(0.00399)	30.435	0.0228
AVERAGE HEAD ON TOP OF LAYER 4	0.993 (0.470)		
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.00839	(0.00348)	30.470	0.0228
CHANGE IN WATER STORAGE	-0.010	(1.5948)	-37.07	-0.028

.....

PEAK DAILY VALUES FOR YEARS	1 THROUGH 100	
	(INCHES)	(CU. FT.)
PRECIPITATION	4.44	16117.200
RUNOFF	4.061	14741.8955
DRAINAGE COLLECTED FROM LAYER 3	0.03145	114.17583
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.000112	0.40734
AVERAGE HEAD ON TOP OF LAYER 4	4.794	
MAXIMUM HEAD ON TOP OF LAYER 4	9.470	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	0.0 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.00072	0.25997
SNOW WATER	5.36	19474.3164
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.44	42
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.27	70
*** Maximum heads are computed using M	IcEnroe's equati	ons. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

.....

	FINAL WATER	STORAGE AT E	END OF YEAR 100	
	LAYER	(INCHES)	(VOL/VOL)	
	1	9.8034	0.4085	
	2	561.0000	0.1870	
	3	1.9408	0.1078	
	4	0.0000	0.0000	
	5	0.1875	0.7500	
	6	2.3580	0.3930	
	7	0.6300	0.1050	
s	NOW WATER	0.015		

	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	*
	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	*
	DEVELOPED BY ENVIRONMENTAL LABORATORY	*
*	USAE WATERWAYS EXPERIMENT STATION	*
*	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	*
*		*
*		*

PRECIPITATION DATA FILE:	C:\HELP\PITBGH.D4
TEMPERATURE DATA FILE:	C:\HELP\PITBGH.D7
SOLAR RADIATION DATA FILE:	C:\HELP\PITBGH.D13
EVAPOTRANSPIRATION DATA:	C:\HELP\PITBGH.D11
SOIL AND DESIGN DATA FILE:	C:\HELP\GCL4SSF1.D10
OUTPUT DATA FILE:	C:\HELP\GCL4SSF1.OUT

TIME: 17:28 DATE: 1/ 3/2019

TITLE: AEP Mitchell - GCL, 10' waste, 25% slopes, cap

.....

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

	PERCOLATION LAYER
MATERIAL TEXT	URE NUMBER Ö
THICKNESS	= 24.00 INCHES
POROSITY	= 0.4450 VOL/VOL
FIELD CAPACITY	= 0.3930 VOL/VOL
WILTING POINT	= 0.2770 VOL/VOL
INITIAL SOIL WATER CONTENT	= 0.4065 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.999999975000E-05 CM/SEC

LAYER 2

TYPE 1 - VERTICAL	PERCOLATION LAYER
MATERIAL TEXTU	RE NUMBER 0
THICKNESS	= 120.00 INCHES
POROSITY	= 0.5410 VOL/VOL
FIELD CAPACITY	= 0.1870 VOL/VOL
WILTING POINT	= 0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT	= 0.1916 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.13000000000E-02 CM/SEC

LAYER 3

TYPE 2 - LATERAI	L DF	AINAGE LAYER
MATERIAL TEXT	JRE	NUMBER 0
THICKNESS	=	18.00 INCHES
POROSITY	=	0.5780 VOL/VOL
FIELD CAPACITY	=	0.0760 VOL/VOL
WILTING POINT	=	0.0250 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.1214 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.60000005000E-02 CM/SEC
SLOPE	=	25.00 PERCENT
DRAINAGE LENGTH	=	900.0 FEET

LAYER 4

TYPE 4 - FLEXIE	LE	MEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 37
THICKNESS	=	0.03 INCHES
POROSITY		0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.199999999000E-10 CM/SEC
FML PINHOLE DENSITY	=	2.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	4.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	3 - GOOD

LAYER 5

TYPE	3 - BARRIER	SOIL LINER		
MATER	RIAL TEXTURE	NUMBER 0		
THICKNESS	=	0.25	INCHES	
POROSITY	=	0.7500	VOL/VOL	
FIELD CAPACITY	=	0.7470	VOL/VOL	
WILTING POINT	=	0.4000	VOL/VOL	
INITIAL SOIL WATER			VOL/VOL	
EFFECTIVE SAT. HYD.	COND. =	0.49999999	7000E-08	CM/SEC

LAYER 6

TYPE 1 - VERTICAL	PEF	COLATION LAYER
MATERIAL TEXTU	JRE	NUMBER 0
THICKNESS	=	6.00 INCHES
POROSITY	=	0.4450 VOL/VOL
FIELD CAPACITY	=	0.3930 VOL/VOL
WILTING POINT	=	0.2770 VOL/VOL
	=	
EFFECTIVE SAT. HYD. COND.	=	0.999999975000E-05 CM/SEC

LAYER 7

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 4 THICKNESS = 6.00 INCHES POROSITY = 0.4370 VOL/VOL

FIEL WILT INIT EFFE	D CAPACITY ING POINT IAL SOIL WAT CTIVE SAT. F	TER CONTENT HYD. COND.	= 0.10 = 0.04 = 0.10 = 0.170000	050 VOL/V 170 VOL/V 051 VOL/V 0002000E-	TOL TOL TOL 02 CM/SEC	
		DESIGN AND	EVAPORATIVE	ZONE DAT	'A 	
NOTE:	SCS RUNOFF	CURVE NUMBE	R WAS USER-S	SPECIFIEI		
FRACTIO AREA PR	OFF CURVE NU N OF AREA AI OJECTED ON I TIVE ZONE DE WATER IN EX IMIT OF EVAN SNOW WATER WATER IN LJ NITIAL WATER UBSURFACE IN	LOWING RUNC	DFF = 1 LANE = = ONE = RAGE = RAGE = = LS =	1.000		
			AND WEATHER			
ST MA ST EN EV AV AV AV AV	PITTSBURG ATION LATITU XIMUM LEAF # ART OF GROWIN D OF GROWING APORATIVE ZC ERAGE ANNUAL ERAGE 1ST QU ERAGE 2ND QU ERAGE 3RD QU	H JDE REA INDEX SEASON (JU SEASON (JU NE DEPTH JWIND SPEEL JARTER RELAT JARTER RELAT JARTER RELAT	A WAS OBTAIN PENNSYLVAN JULIAN DATE) (ILIAN DATE) (IVE HUMIDITY) IVE HUMIDITY IVE HUMIDITY IVE HUMIDITY	IIA = 40. = 0. = 1 = 2 = 8. = 9. r = 67. r = 63. r = 71.	14 88 0 INCHES 20 MPH 00 % 00 % 00 %	
NOTE:	COEFFICIE	INTS FOR	SYNTHETICAI PITTSBURGH		PENNSYLVANIA	
TAN / THE	FEB/AUG	MAR/SEP	PRECIPITATIO		IOV JUN/D	FC
2.86 3.83	2.40 3.31	3.58 2.80				7
NOTE:			YNTHETICALLY PITTSBURGH		PENNSYLVANIA	
NO	RMAL MEAN MO	NTHLY TEMPE	RATURE (DEGF	REES FAHR	ENHEIT)	
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/N	IOV JUN/D	
26.70 72.00	28.80 70.60	38.50 64.10	50.10 52.50	59.7 41.6	0 68.1	0
NOTE :	COEFFICIE	INTS FOR			HERATED USING PENNSYLVANIA	

AVERAGE MONTHL			FOR YEARS			
			MAR/SEP			
RECIPITATION						
TOTALS	2.88 3.84	2.32 3.44	3.65 2.68	3.47 2.56	3.44 2.43	3.30 2.71
STD. DEVIATIONS	1.10 1.61	0.89 1.77	1.06 1.45	1.28 1.23	1.56 0.95	1.20 1.00
UNOFF						
TOTALS	1.269 1.375	2.055 1.332	3.449 0.948	0.887 0.645	0.874 0.365	0.883 0.500
STD. DEVIATIONS	1.207 1.037	1.393 1.103	1.791 0.836	0.754 0.582		0.629 0.661
VAPOTRANSPIRATION						
TOTALS	0.603 2.485	0.467 2.087	1.022 1.607	2.826 1.633	2.477 1.349	2.315 0.896
STD. DEVIATIONS	0.184 0.901	0.144 0.811	0.610 0.806	0.765 0.600	1.029 0.327	0.890 0.246
ATERAL DRAINAGE COLL						
TOTALS	0.2858	0.3209	0.2625 0.0842	0.2428		0.242 0.157
STD. DEVIATIONS	0.1817 0.0986	0.2514 0.0677	0.2517 0.0591	0.1670 0.0650	0.1586 0.0776	0.139 0.111
ERCOLATION/LEAKAGE T						
TOTALS	0.0007	0.0008	0.0007			
STD. DEVIATIONS			0.0007			
ERCOLATION/LEAKAGE T						
TOTALS	0.0005	0.0004	0.0005			
STD. DEVIATIONS	0.0003 0.0005	0.0003 0.0006	0.0004 0.0005	0.0004 0.0005	0.0003 0.0004	0.000
AVERAGES	OF MONTHL	Y AVERAGE	D DAILY H	EADS (INC	HES)	
AILY AVERAGE HEAD ON	TOP OF LA	YER 4				
AVERAGES			0 0520	0 9100	1 1666	0 000

AVERAGES 1.0368 1.2758 0.9520 0.9100 1.1666 0.9081 0.6289 0.4188 0.3156 0.2819 0.3355 0.5725

STD. DEVIATIONS	0.6592 0.3575	0.9969 0.2457	0.6261 0.2357	0.5216 0.4037

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 100

				CU. FEET	
PRECIPITATION				133299.0	
RUNOFF	14.582	(2.9123)	52931.12	39.709
EVAPOTRANSPIRATION	19.768	(2.2736)	71756.85	53.831
LATERAL DRAINAGE COLLECTED FROM LAYER 3	2.37398	(1.13170)	8617.535	6.46481
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.00618	(0.00296)	22.446	0.0168
AVERAGE HEAD ON TOP OF LAYER 4	0.734 (0.351)		
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.00619	(0.00284)	22.474	0.0168
CHANGE IN WATER STORAGE	-0.008	(1.5670)	-28.93	-0.022

.....

PEAK DAILY VALUES FOR YEARS	1 THROUGH 10	0
	(INCHES)	(CU. FT.)
PRECIPITATION	4.44	16117.200
RUNOFF	4.061	14741.8955
DRAINAGE COLLECTED FROM LAYER 3	0.04129	149.89175
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.000109	0.39436
AVERAGE HEAD ON TOP OF LAYER 4	4.643	
MAXIMUM HEAD ON TOP OF LAYER 4	9.135	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	0.0 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.000067	0.24473
SNOW WATER	5.36	19474.3164
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.4	442
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.2	770
*** Maximum heads are computed using	McEnroe's equat	ions. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kanaaa ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

.....

.....

FINAL WATER	STORAGE AT	END OF YEAR 100	
 LAYER	(INCHES)	(VOL/VOL)	
1	9.8034	0.4085	
2	22.4400	0.1870	
3	1.8798	0.1044	
4	0.0000	0.0000	
5	0.1875	0.7500	
6	2.3580	0.3930	
7	0.6300	0.1050	
SNOW WATER	0.015		

********		*******
*		*
*		*
	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	*
	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	*
**	DEVELOPED BY ENVIRONMENTAL LABORATORY	*
**	USAE WATERWAYS EXPERIMENT STATION	*
**	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	*
		*
**		*
********		*******

PRECIPITATION DATA FILE:	C:\HELP\PITBGH.D4
TEMPERATURE DATA FILE:	C:\HELP\PITBGH.D7
SOLAR RADIATION DATA FILE:	C:\HELP\PITBGH.D13
EVAPOTRANSPIRATION DATA:	C:\HELP\PITBGH.D11
SOIL AND DESIGN DATA FILE:	C:\HELP\GCL4SSF2.D10
OUTPUT DATA FILE:	C:\HELP\GCL4SSF2.OUT

TIME: 17:32 DATE: 1/ 3/2019

TITLE: AEP Mitchell - GCL, 100' waste, 25% slopes, cap

.....

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL MATERIAL TEXT	PERCOLATION LAYER
THICKNESS	= 24.00 INCHES
POROSITY	= 0.4450 VOL/VOL
FIELD CAPACITY	= 0.3930 VOL/VOL
WILTING POINT	= 0.2770 VOL/VOL
INITIAL SOIL WATER CONTENT	= 0.4065 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.999999975000E-05 CM/SEC

LAYER 2

TYPE 1 - VERTICAL	PEF	RCOLATION LAYER
MATERIAL TEXTU	JRE	NUMBER 0
THICKNESS	=	1200.00 INCHES
POROSITY	=	0.5410 VOL/VOL
FIELD CAPACITY	=	0.1870 VOL/VOL
WILTING POINT	=	0.0470 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.1875 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.13000000000E-02 CM/SEC

LAYER 3

TYPE 2 - LATERA	L DF	RAINAGE LAYER
MATERIAL TEXT	URE	NUMBER 0
THICKNESS	=	18.00 INCHES
POROSITY	=	0.5780 VOL/VOL
FIELD CAPACITY	=	0.0760 VOL/VOL
WILTING POINT	=	0.0250 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.1361 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.449999981000E-02 CM/SEC
SLOPE	=	25.00 PERCENT
DRAINAGE LENGTH	=	900.0 FEET

LAYER 4

TYPE 4 - FLEXIE	LE	MEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 37
THICKNESS	=	0.03 INCHES
POROSITY		0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.199999999000E-10 CM/SEC
FML PINHOLE DENSITY	=	2.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	4.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	3 - GOOD

LAYER 5

	TYPE 3 -	BARRIER	SOIL LINER		
	MATERIAL	TEXTURE	NUMBER 0		
THICKNESS		=	0.25	INCHES	
POROSITY		=	0.7500	VOL/VOL	
FIELD CAPACITY	£	=	0.7470	VOL/VOL	
WILTING POINT		=	0.4000	VOL/VOL	
INITIAL SOIL N	WATER CON	TENT =	0.7500	VOL/VOL	
EFFECTIVE SAT.	. HYD. COL	ND. =	0.49999999	7000E-08	CM/SEC

LAYER 6

TYPE 1 - VERTICAL	ERCOLAT	ION LAYER
MATERIAL TEXT	E NUMBER	R 0
THICKNESS	6	.00 INCHES
POROSITY	0	.4450 VOL/VOL
FIELD CAPACITY	0	.3930 VOL/VOL
WILTING POINT	0	.2770 VOL/VOL
INITIAL SOIL WATER CONTENT		.3930 VOL/VOL
EFFECTIVE SAT. HYD. COND.	0.9999	999975000E-05 CM/SEC

LAYER 7

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 4 THICKNESS = 6.00 INCHES POROSITY = 0.4370 VOL/VOL

FIEL WILT INIT EFFE	D CAPACITY ING POINT IAL SOIL WA CTIVE SAT.	TER CONTENT HYD. COND.	= 0.10 = 0.04 = 0.10 = 0.170000	050 VOL/VOL 170 VOL/VOL 152 VOL/VOL 0002000E-02 C№	I/SEC
		DESIGN AND			
NOTE:	SCS RUNOFF	CURVE NUMBE	R WAS USER-S	SPECIFIED.	
FRACTIO AREA PR EVAPORA INITIAL UPPER L LOWER L INITIAL INITIAL TOTAL I	OJECTED ON TIVE ZONE D WATER IN E IMIT OF EVA IMIT OF EVA	LLOWING RUNO HORIZONTAL P EPTH VAPORATIVE Z PORATIVE STO PORATIVE STO AYER MATERIA R	FF = 1 LANE = ONE = RAGE = RAGE = = LS = 2	86.00 1.00.0 PERCH 1.000 ACRES 8.0 INCHH 3.468 INCHH 2.216 INCHH 0.000 INCHH 240.340 INCHH 0.000 INCHH	5 5 5 5 5 5 5
		RANSPIRATION			
NOTE:	EVAPOTRANS PITTSBUR	PIRATION DAT. GH	A WAS OBTAIN PENNSYLVAN		
MA ST EN EV AV AV AV	D OF GROWIN APORATIVE Z ERAGE ANNUA ERAGE 1ST Q ERAGE 2ND Q ERAGE 3RD Q	AREA INDEX ING SEASON (JU G SEASON (JU ONE DEPTH L WIND SPEED UARTER RELAT UARTER RELAT	LIAN DATE) IVE HUMIDITY IVE HUMIDITY IVE HUMIDITY	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	CHES
NOTE:		ION DATA WAS ENTS FOR		LY GENERATED PENNS	USING YLVANIA
	NORMAL M	EAN MONTHLY	PRECIPITATIO	ON (INCHES)	
JAN/JUL	FEB/AUG 2.40	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
2.86 3.83	2.40 3.31	MAR/SEP 3.58 2.80	3.28 2.49	3.54 2.34	3.30 2.57
NOTE:		E DATA WAS S ENTS FOR		GENERATED US PENNS	ING YLVANIA
NO	RMAL MEAN M	ONTHLY TEMPE	RATURE (DEGF	REES FAHRENHEI	т)
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
26.70 72.00	28.80 70.60	38.50 64.10	50.10 52.50	59.70 41.60	68.10 31.40
NOTE :	COEFFICI		PITTSBURGH	CALLY GENERATE PENNS DEGREES	

			FOR YEARS			
			MAR/SEP			
RECIPITATION						
TOTALS	2.88	2.32	3.65	3.47	3.44	3.30
	3.84	3.44	2.68	2.56	2.43	2.71
STD. DEVIATIONS	1.10	0.89 1.77	1.06 1.45	1.28	1.56 0.95	1.20
UNOFF						
TOTALS	1.269	2.055	3.449	0.887	0.874	0.883
IUIALS	1.375					0.500
STD. DEVIATIONS	1.207	1.393	1.791	0.754	0.660	0.629
	1.037	1.103	1.791 0.836	0.582	0.411	0.629 0.661
VAPOTRANSPIRATION						
TOTALS	0.603	0.467	1.022	2.826	2.477	2.315
	2.485	0.467 2.087	1.607	1.633	1.349	0.896
STD. DEVIATIONS	0.184	0.144				
ATERAL DRAINAGE COLLE TOTALS	0.2130		0.2599			0.266
STD. DEVIATIONS			0.2019			
ERCOLATION/LEAKAGE TH	ROUGH LAY	ER 5	0.0778	0.0694	0.0084	0.084
	0.0007	0.0009	0.0009	0.0009	0.0011	0.000
TOTALS	0 0007	0.0005	0 0004	0 0003	0.0003	0.000
TOTALS	0.0007	0.0005	0.0004	0.0005		
TOTALS STD. DEVIATIONS	0.0004	0.0005	0.0007	0.0006		
	0.0004		0.0007			
STD. DEVIATIONS ERCOLATION/LEAKAGE THI	0.0004 0.0005 ROUGH LAY	0.0005 0.0004 ER 7	0.0007	0.0006		
STD. DEVIATIONS ERCOLATION/LEAKAGE THI	0.0004 0.0005 ROUGH LAY 0.0007	0.0005 0.0004 ER 7 0.0005	0.0007 0.0003	0.0006	0.0002	0.000
STD. DEVIATIONS	0.0004 0.0005 ROUGH LAY 0.0007	0.0005 0.0004 ER 7	0.0007 0.0003	0.0006	0.0002	0.000
STD. DEVIATIONS	0.0004 0.0005 ROUGH LAY 0.0007 0.0008 0.0004	0.0005 0.0004 ER 7 0.0005	0.0007 0.0003 0.0006 0.0008 0.0008	0.0006	0.0002	0.000 0.000 0.000 0.000

AVERAGES 1.0300 1.3420 1.2572 1.2528 1.5034 1.3302 1.0221 0.7497 0.5727 0.4859 0.4956 0.6766

STD. DEVIATIONS	0.8212			

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 100

				CU. FEET	
PRECIPITATION				133299.0	
RUNOFF	14.582	(2.9123)	52931.12	39.709
EVAPOTRANSPIRATION	19.768	(2.2736)	71756.85	53.831
LATERAL DRAINAGE COLLECTED FROM LAYER 3	2.37403	(1.12686)	8617.722	6.46495
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.00825	(0.00393)	29.939	0.0224
AVERAGE HEAD ON TOP OF LAYER 4	0.976 (0.464)		
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.00826	(0.00344)	29.974	0.0224
CHANGE IN WATER STORAGE	-0.010	(1.5949)	-36.62	-0.027

.....

PEAK DAILY VALUES FOR YEARS	1 THROUGH 100	
	(INCHES)	(CU. FT.)
PRECIPITATION	4.44	16117.200
RUNOFF	4.061	14741.8955
DRAINAGE COLLECTED FROM LAYER 3	0.03216	116.75305
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.000113	0.40978
AVERAGE HEAD ON TOP OF LAYER 4	4.822	
MAXIMUM HEAD ON TOP OF LAYER 4	9.482	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	0.0 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.00071	0.25644
SNOW WATER	5.36	19474.3164
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.44	42
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.27	70
*** Maximum heads are computed using M	cEnroe's equati	ons. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kanasa ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

.....

.....

	FINAL WATER	STORAGE AT	END OF YEAR 100	
	LAYER	(INCHES)	(VOL/VOL)	
	1	9.8034	0.4085	
	2	224.4000	0.1870	
	3	1.9374	0.1076	
	4	0.0000	0.0000	
	5	0.1875	0.7500	
	6	2.3580	0.3930	
	7	0.6300	0.1050	
:	SNOW WATER	0.015		

		**
		* .
*	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	*
	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	*
*	DEVELOPED BY ENVIRONMENTAL LABORATORY	*
	USAE WATERWAYS EXPERIMENT STATION	*
*	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	*
*		*
*		*

PRECIPITATION DATA FILE:	C:\HELP\PITBGH.D4
TEMPERATURE DATA FILE:	C:\HELP\PITBGH.D7
SOLAR RADIATION DATA FILE:	C:\HELP\PITBGH.D13
EVAPOTRANSPIRATION DATA:	C:\HELP\PITBGH.D11
SOIL AND DESIGN DATA FILE:	C:\HELP\GCL4SSF3.D10
OUTPUT DATA FILE:	C:\HELP\GCL4SSF3.OUT

TIME: 17:37 DATE: 1/ 3/2019

TITLE: AEP Mitchell - GCL, 250' waste, 25% slopes, cap

.....

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL MATERIAL TEXT	PERCOLATION LAYER
THICKNESS	= 24.00 INCHES
POROSITY	= 0.4450 VOL/VOL
FIELD CAPACITY	= 0.3930 VOL/VOL
WILTING POINT	= 0.2770 VOL/VOL
INITIAL SOIL WATER CONTENT	= 0.4065 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.999999975000E-05 CM/SEC

LAYER 2

PEF	COLATION LAYER
URE	NUMBER 0
=	3000.00 INCHES
=	0.5410 VOL/VOL
=	0.1870 VOL/VOL
=	0.0470 VOL/VOL
=	0.1872 VOL/VOL
=	0.13000000000E-02 CM/SEC
	URE = = = = =

LAYER 3

TYPE 2 - LATERAI	L DF	RAINAGE LAYER
MATERIAL TEXT	JRE	NUMBER 0
THICKNESS	=	18.00 INCHES
POROSITY	=	0.5780 VOL/VOL
FIELD CAPACITY	=	0.0760 VOL/VOL
WILTING POINT	=	0.0250 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.1363 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.449999981000E-02 CM/SEC
SLOPE	=	25.00 PERCENT
DRAINAGE LENGTH	=	900.0 FEET

LAYER 4

TYPE 4 - FLEXIE	LE	MEMBRANE LINER
MATERIAL TEXT	URE	NUMBER 37
THICKNESS	=	0.03 INCHES
POROSITY		0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.199999999000E-10 CM/SEC
FML PINHOLE DENSITY	=	2.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	4.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	3 - GOOD

LAYER 5

MATERIAL TEXT	
THICKNESS POROSITY	= 0.25 INCHES = 0.7500 VOL/VOL
	= 0.7470 VOL/VOL
WILTING POINT INITIAL SOIL WATER CONTENT	= 0.4000 VOL/VOL = 0.7500 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.499999997000E-08 CM/SEC

LAYER 6

TYPE 1 - VERTICAL	PEI	RCOLATION LAYER
MATERIAL TEXT	URE	NUMBER 0
THICKNESS	=	6.00 INCHES
POROSITY	=	0.4450 VOL/VOL
FIELD CAPACITY	=	0.3930 VOL/VOL
WILTING POINT	=	0.2770 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.3930 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.999999975000E-05 CM/SEC

LAYER 7

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 4 THICKNESS = 6.00 INCHES POROSITY = 0.4370 VOL/VOL

FIEL WILT INIT EFFE	D CAPACITY ING POINT IAL SOIL WAT CTIVE SAT. P	YER CONTENT	= 0. = 0. = 0. = 0.1700	1050 VOL/ 0470 VOL/ 1052 VOL/ 00002000E	VOL VOL VOL -02 CM/SEC
			EVAPORATIV		
NOTE :	SCS RUNOFF	CURVE NUMBI	ER WAS USER	-SPECIFIE:	D.
FRACTION AREA PRO EVAPORA INITIAL	DFF CURVE NU N OF AREA AI JJECTED ON I WATER IN EV INIT OF EVAN SNOW WATER WATER IN LJ WATER IN LJ UNITIAL WATER JBSURFACE IN	LOWING RUNG IORIZONTAL E PTH VAPORATIVE 2	PLANE = = ZONE =	1.000 8.0 3.468	INCHES INCHES
NOTE:				INED FROM	
MAI STJ ENI EVJ AVI	ATION LATITU ART OF GROWING OF GROWING APORATIVE ZC ERAGE ANNUAI ERAGE 1ST QU ERAGE 2ND QU ERAGE 2ND QU ERAGE 4TH QU	IDE REA INDEX NG SEASON (JU SEASON (JU NE DEPTH WIND SPEEL ARTER RELAT	(JULIAN DAT JLIAN DATE) D	= 0 = 3 = 8 = 9 TY = 67	50 DEGREES 00 114 28 10 INCHES 20 MPH 00 % 00 % 00 %
NOTE :	COEFFICIE	NTS FOR	PITTSBURGH		RATED USING PENNSYLVANIA
TAN / THE	NORMAL ME		PRECIPITAT		ES) NOV JUN/DEC
JAN/JUL 2.86 3.83	2.40 3.31	3.58 2.80			54 3.30
NOTE:	TEMPERATURE COEFFICIE		SYNTHETICAL PITTSBURGH		FED USING PENNSYLVANIA
NOI	RMAL MEAN MO	NTHLY TEMPI	ERATURE (DE	GREES FAH	RENHEIT)
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/1	NOV JUN/DEC
26.70 72.00	28.80 70.60	38.50 64.10	50.10 52.50	59. 41.	70 68.10
NOTE:	COEFFICIE	NTS FOR			NERATED USING PENNSYLVANIA S

AVERAGE MONTHLY						
			MAR/SEP			
RECIPITATION						
TOTALS	2 00	0 00	2 65	3.47	3.44	3.30
TOTALS	3.84	3.44	3.65 2.68	2.56		
STD. DEVIATIONS	1.10 1.61	0.89 1.77	1.06 1.45	1.28 1.23	1.56 0.95	1.20 1.00
UNOFF						
TOTALS	1.269 1.375	2.055 1.332	3.449 0.948	0.887 0.645	0.874 0.365	0.883 0.500
STD. DEVIATIONS	1.207 1.037	1.393 1.103	1.791 0.836	0.754 0.582	0.660 0.411	0.629 0.661
VAPOTRANSPIRATION						
TOTALS	0.603 2.485		1.022 1.607			
STD. DEVIATIONS	0.184 0.901	0.144 0.811	0.610 0.806	0.765 0.600	1.029 0.327	0.890 0.246
ATERAL DRAINAGE COLLE						
TOTALS	0.2114	0.2506	0.2585 0.1158	0.2500		0.267 0.139
STD. DEVIATIONS		0.1522 0.1105	0.1981 0.0819	0.1739 0.0715		
ERCOLATION/LEAKAGE TH						
TOTALS	0.0007	0.0009	0.0009			
STD. DEVIATIONS			0.0007			0.000
ERCOLATION/LEAKAGE TH						
TOTALS	0.0007		0.0006	0.0006		0.000
STD. DEVIATIONS			0.0005 0.0006			
AVERAGES	OF MONTHL	Y AVERAGE	D DAILY H	EADS (INC	HES)	
AILY AVERAGE HEAD ON						

AVERAGES 1.0223 1.3289 1.2503 1.2495 1.5021 1.3358 1.0277 0.7577 0.5790 0.4901 0.4980 0.6761

STD. DEVIATIONS	0.8055		0.7732 0.4066

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 100

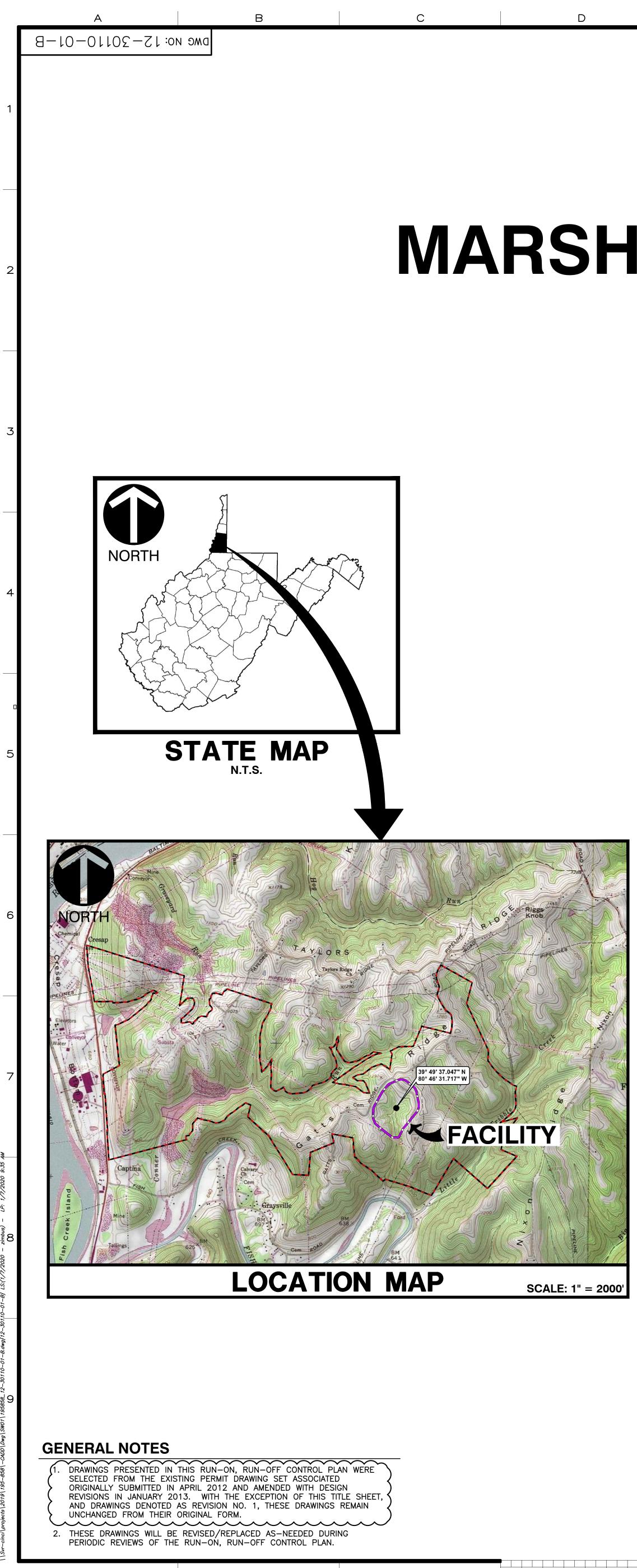
				CU. FEET	
PRECIPITATION				133299.0	
RUNOFF	14.582	(2.9123)	52931.12	39.709
EVAPOTRANSPIRATION	19.768	(2.2736)	71756.85	53.831
LATERAL DRAINAGE COLLECTED FROM LAYER 3	2.37407	(1.12580)	8617.873	6.46507
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.00825	(0.00393)	29.939	0.0224
AVERAGE HEAD ON TOP OF LAYER 4	0.976 (0.463)		
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.00826	(0.00345)	29.973	0.0224
CHANGE IN WATER STORAGE	-0.010	(1.5948)	-36.77	-0.028

.....

PEAK DAILY VALUES FOR YEARS	1 THROUGH 10	0
	(INCHES)	(CU. FT.)
PRECIPITATION	4.44	16117.200
RUNOFF	4.061	14741.8955
DRAINAGE COLLECTED FROM LAYER 3	0.03158	114.65276
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.000111	0.40231
AVERAGE HEAD ON TOP OF LAYER 4	4.736	
MAXIMUM HEAD ON TOP OF LAYER 4	9.320	
LOCATION OF MAXIMUM HEAD IN LAYER 3 (DISTANCE FROM DRAIN)	0.0 FEET	
PERCOLATION/LEAKAGE THROUGH LAYER 7	0.00071	0.25705
SNOW WATER	5.36	19474.3164
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.4	442
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.2	770
*** Maximum heads are computed using	McEnroe's equat	ions. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kanaaa ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

.....

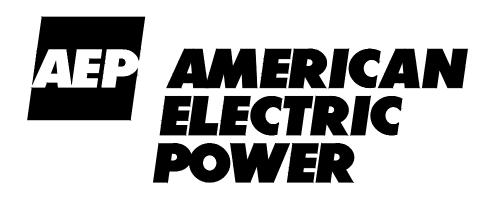

.....

	FINAL WATER ST	ORAGE AT END OF	YEAR 100
	LAYER	(INCHES) (VOL/VOL)
	1	9.8034	0.4085
	2	561.0000	0.1870
	3	1.9378	0.1077
	4	0.0000	0.0000
	5	0.1875	0.7500
	6	2.3580	0.3930
	7	0.6300	0.1050
s	NOW WATER	0.015	

APPENDIX C

SUPPORTING FIGURES

(Select drawings taken from the Solid Waste/NPDES Permit Application for the Mitchell Landfill)

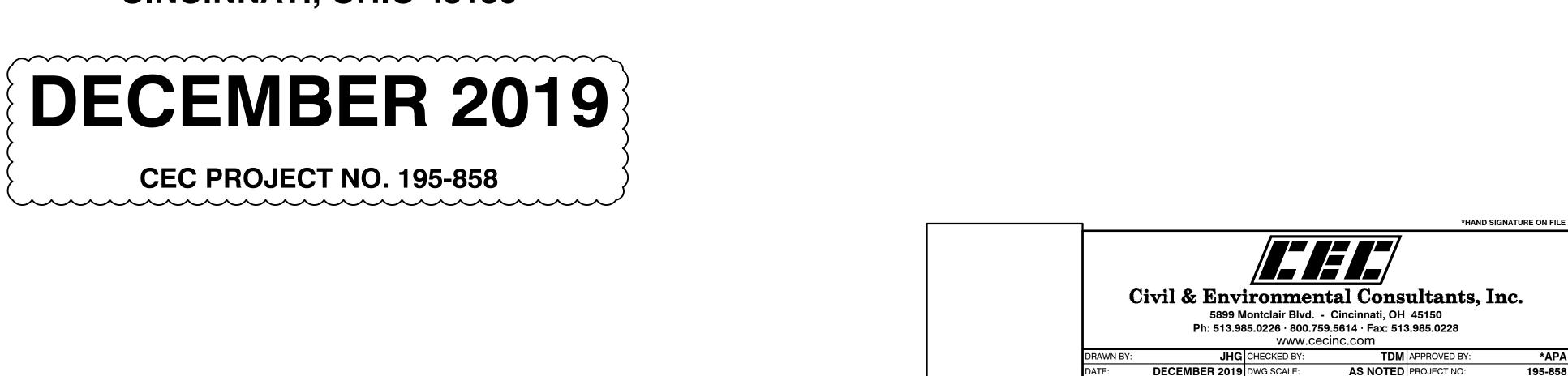


IGS0506

MITCHELL LANDFILL MARSHALL COUNTY, WEST VIRGINIA

RUN-ON, RUN-OFF **CONTROL PLAN**

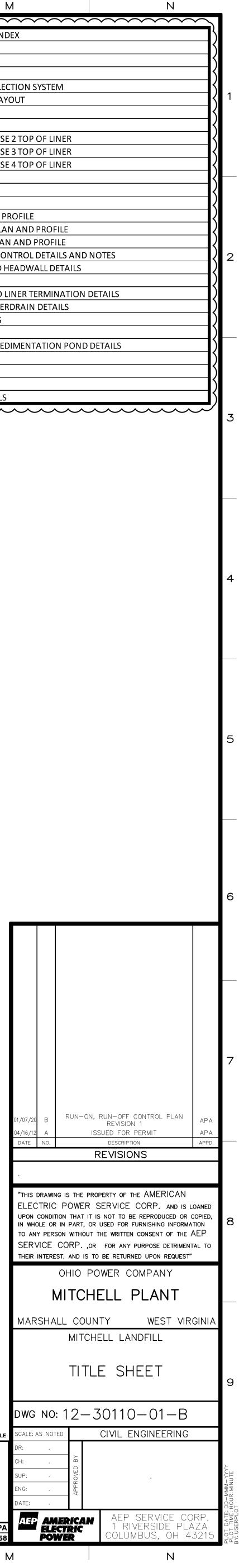
PREPARED FOR:

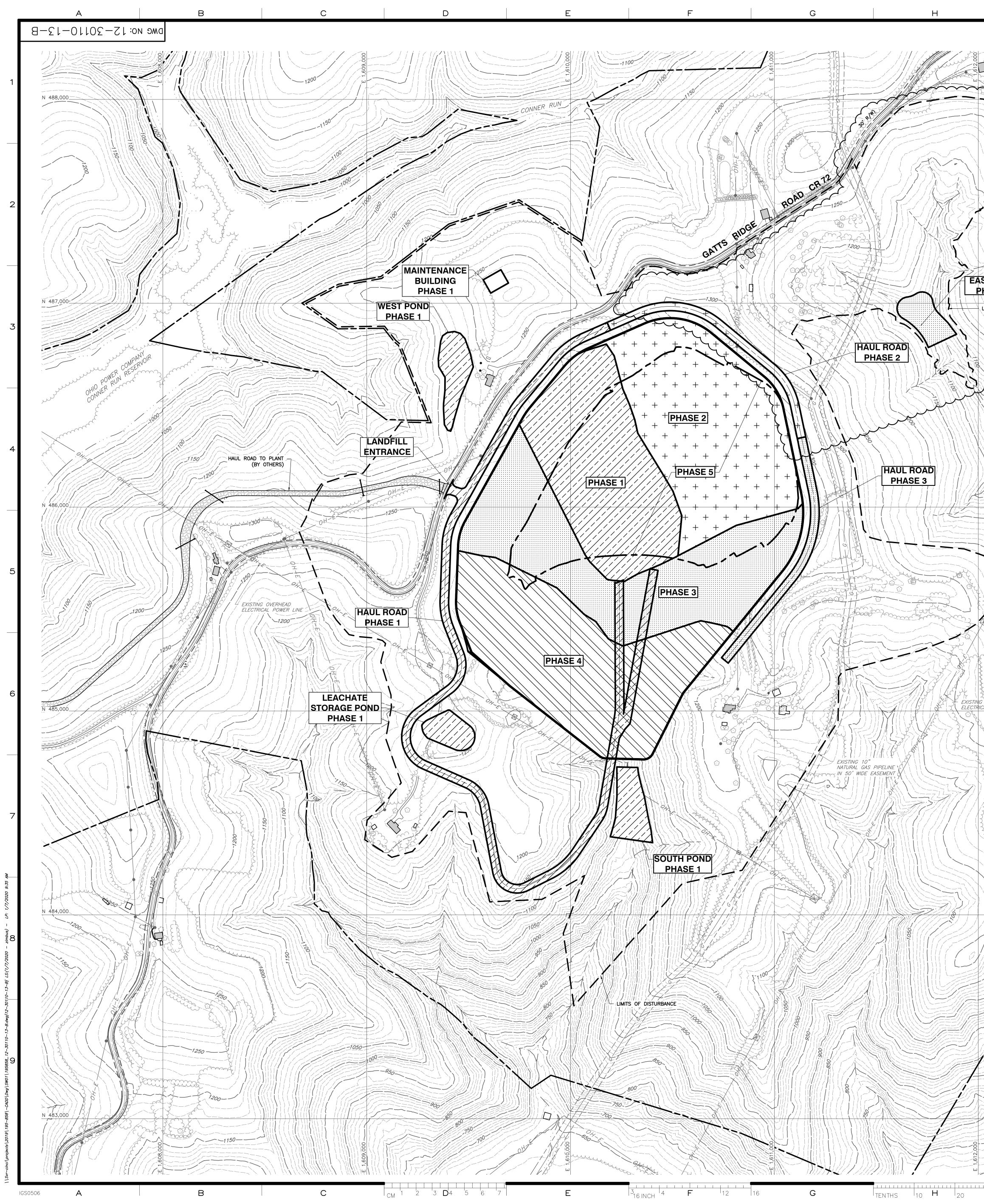

APPLICANT/OWNER/OPERATOR :

OHIO POWER COMPANY d/b/a AMERICAN ELECTRIC POWER, INC. **1 RIVERSIDE PLAZA COLUMBUS, OH 43215**

PREPARED BY:

CIVIL & ENVIRONMENTAL CONSULTANTS, INC. 5899 MONTCLAIR BOULEVARD CINCINNATI, OHIO 45150




12

|_{CM} '1 '2 '3 **D**'4 '5 '6 '7 |

			IVI
6	$\sim \sim \sim \sim$	$\sim \sim \sim \sim$	
			SHEET INDEX
	DRAWING NO.	SHEET TITLE	
	12-30110-01-B	TITLE SHEET	
	12-30110-13-В	GENERAL PHAS	ING PLAN
	12-30110-15-B	LINER PLAN WI	TH LEACHATE COLLECTION
	12-30110-16-A	LEACHATE COLL	ECTION SYSTEM LAYOUT
	12-30110-18-В	TOP OF FINAL C	COVER PLAN
	12-30110-21-B	PHASE 1 TOP O	F LINER PLAN
	12-30110-22-B	PHASE 1 TOP O	F WASTE AND PHASE 2 TOF
	12-30110-23-B	PHASE 2 TOP O	F WASTE AND PHASE 3 TOF
	12-30110-24-B	PHASE 3 TOP O	F WASTE AND PHASE 4 TOF
	12-30110-25-B	PHASE 4 TOP O	F WASTE
	12-30110-26-B	PHASE 5 TOP O	FWASTE
	12-30110-27-A	WEST POND PL	AN AND SECTIONS
	12-30110-28-B	EAST SEDIMENT	FPOND PLAN AND PROFILE
	12-30110-40-A	SOUTHWEST DR	AINAGE SWALE PLAN AND
	12-30110-41-A	SOUTHEAST DR	AINAGE SWALE PLAN AND
	12-30110-43-A	EROSION AND S	SEDIMENTATION CONTROL
	12-30110-44-A	DOWNCHUTE, C	CATCH BASIN, AND HEADW
	12-30110-45-B	STORM AND DR	AINAGE DETAILS
	12-30110-46-B	TYPICAL PERIM	ETER SECTION AND LINER 1
	12-30110-47-B	LEACHATE COLL	ECTION AND UNDERDRAIN
	12-30110-48-B	LANDFILL LINER	AND CAP DETAILS
	12-30110-49-B	SEDIMENTATIO	N POND DETAILS
	12-30110-50-B	LEACHATE STOP	RAGE POND AND SEDIMEN
	DR-1-A	SOUTH POND P	LAN
	DR-2-B	POND DETAILS	
	DR-4-A	LEACHATE STOP	RAGE PLAN
	DR-5-B	LEACHATE STOP	RAGE POND DETAILS
_			

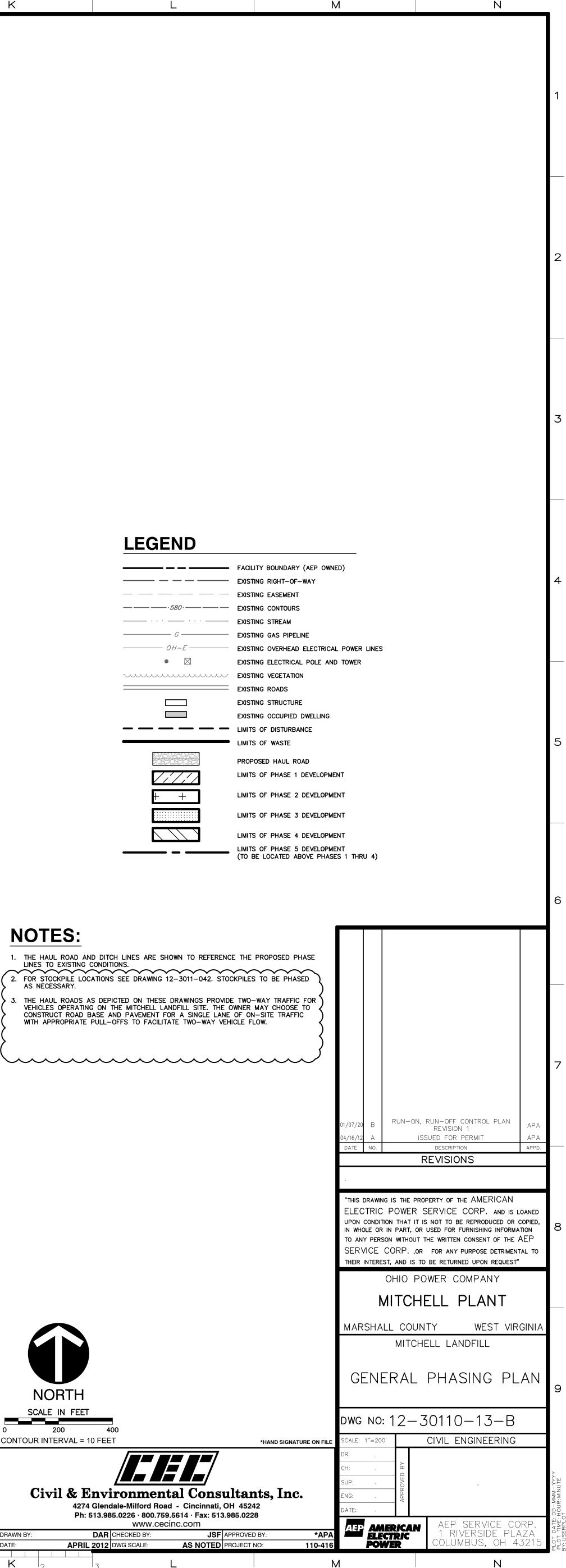
K INCHES

EAST POND

EXISTING OVERHEAD

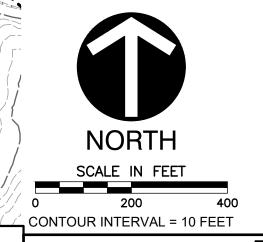
PHASE 3

LIMITS OF DISTURBANCE


488,000

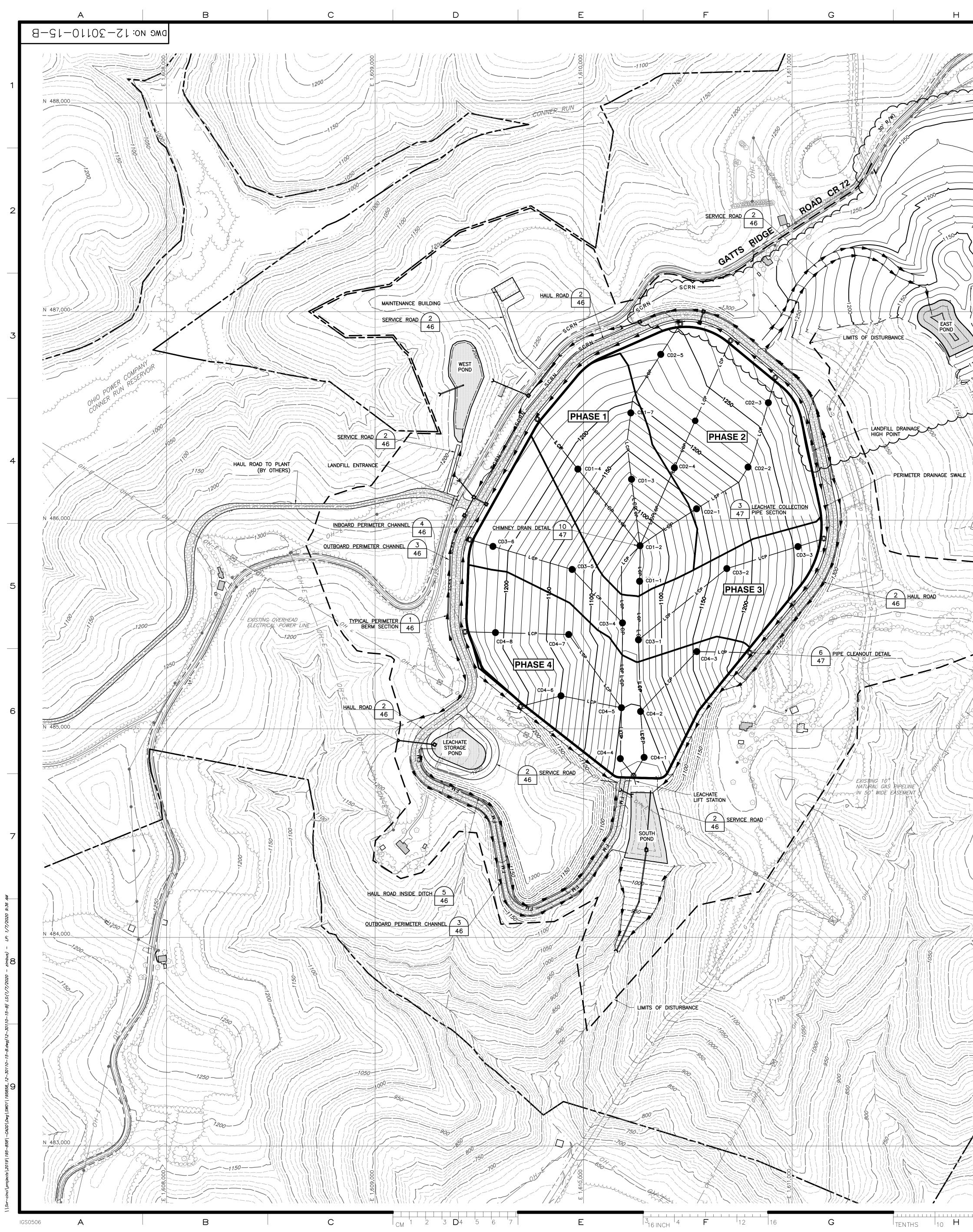
N 486,000

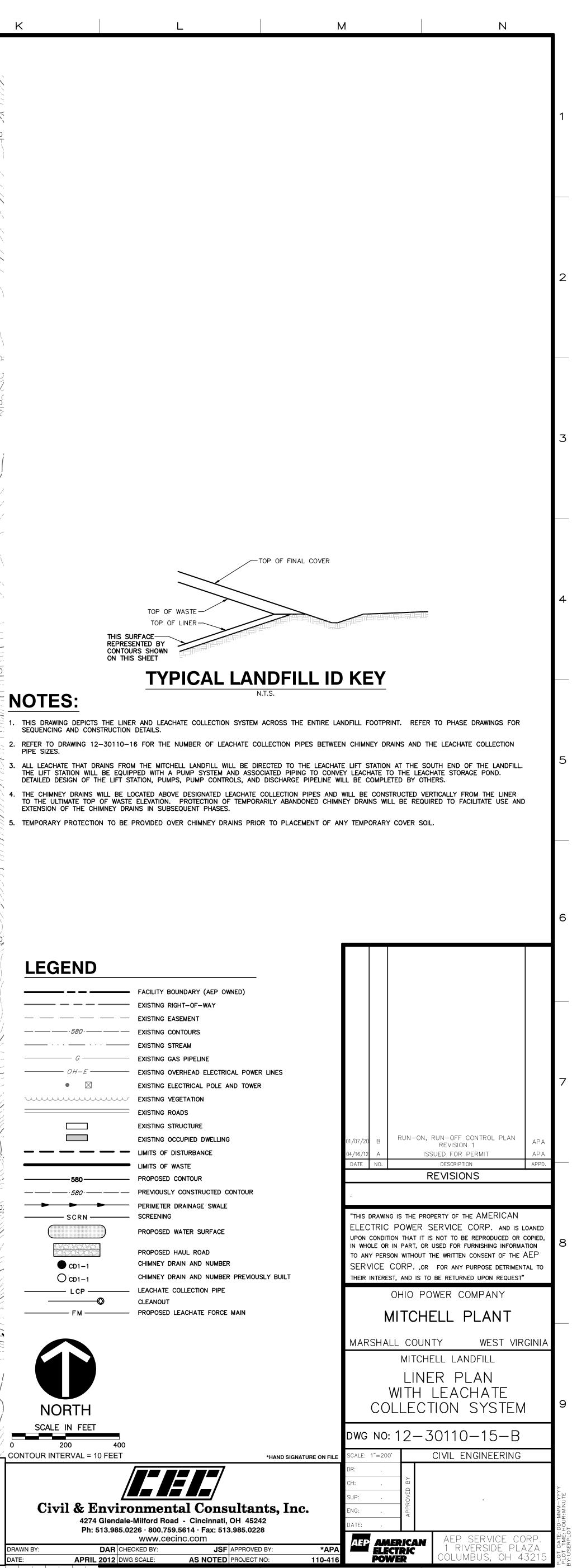
N 485.00


N 484,000

LEGEND

NOTES:

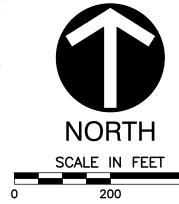

- THE HAUL ROAD AND DITCH LINES ARE SHOWN TO REFERENCE THE PROPOSED PHASE LINES TO EXISTING CONDITIONS.
 FOR STOCKPILE LOCATIONS SEE DRAWING 12-3011-042. STOCKPILES TO BE PHASED AS NECESSARY.
- 3. THE HAUL ROADS AS DEPICTED ON THESE DRAWINGS PROVIDE TWO-WAY TRAFFIC FOR VEHICLES OPERATING ON THE MITCHELL LANDFILL SITE. THE OWNER MAY CHOOSE TO CONSTRUCT ROAD BASE AND PAVEMENT FOR A SINGLE LANE OF ON-SITE TRAFFIC WITH APPROPRIATE PULL-OFFS TO FACILITATE TWO-WAY VEHICLE FLOW.



DAR CHECKED BY:

Civil & Environmental Consultants, Inc. 4274 Glendale-Milford Road - Cincinnati, OH 45242 Ph: 513.985.0226 · 800.759.5614 · Fax: 513.985.0228 www.cecinc.com

NOTES:


N 486,000

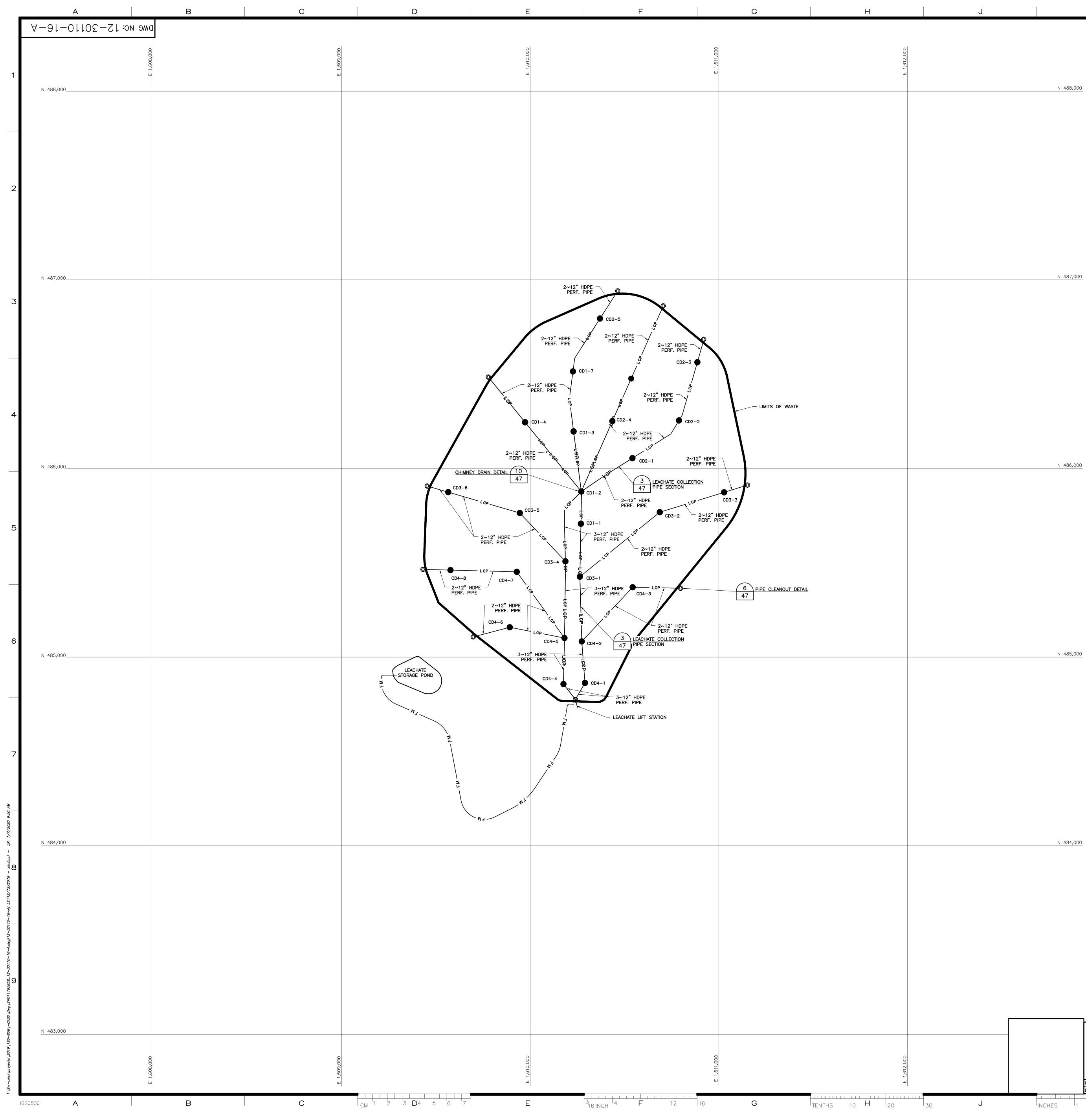
N 485,000

N 484.000

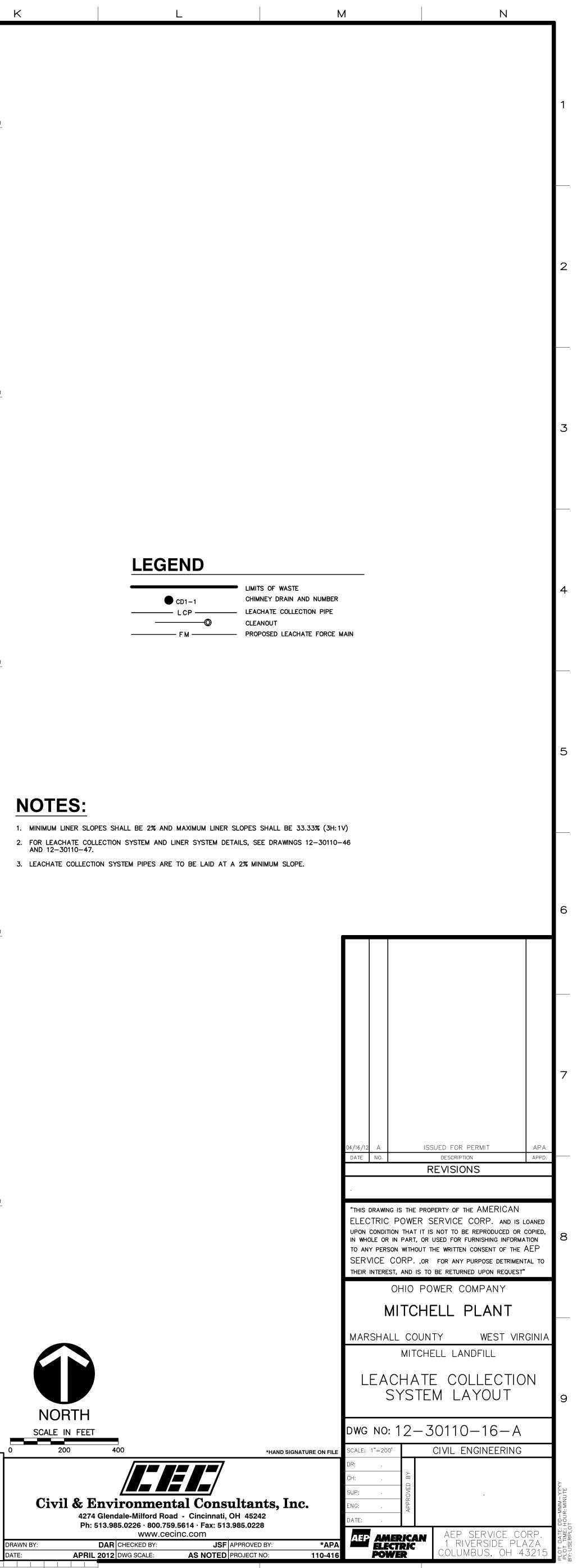
LEGEND

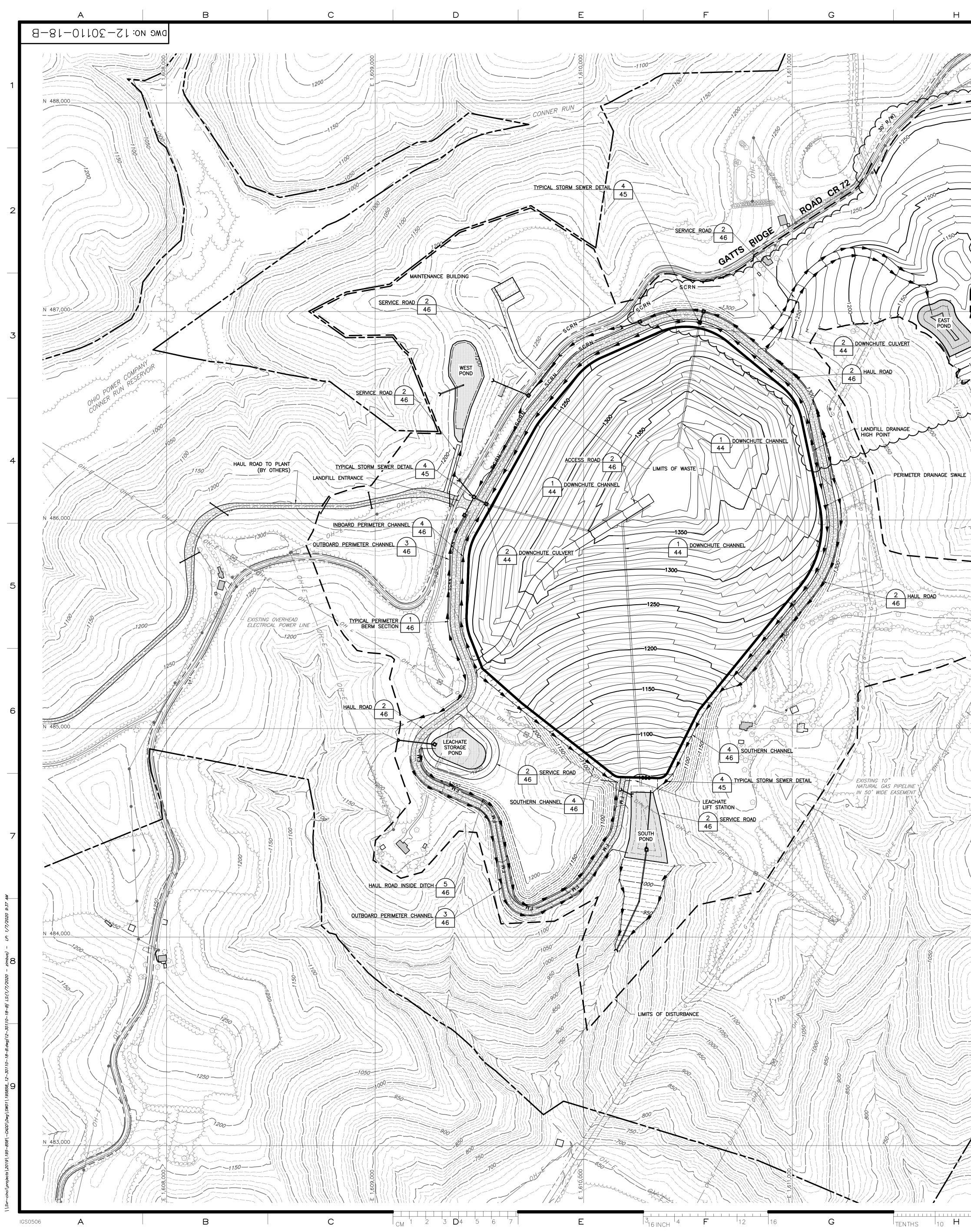
	FACILITY BOUNDARY (AEP OWNED)
	EXISTING RIGHT-OF-WAY
	EXISTING EASEMENT
	EXISTING CONTOURS
· · · · · · ·	EXISTING STREAM
<i>G</i>	EXISTING GAS PIPELINE
OH_E	EXISTING OVERHEAD ELECTRICAL POWER LINES
	EXISTING ELECTRICAL POLE AND TOWER
	EXISTING VEGETATION
	EXISTING ROADS
	EXISTING STRUCTURE
	EXISTING OCCUPIED DWELLING
	LIMITS OF DISTURBANCE
	LIMITS OF WASTE
	PROPOSED CONTOUR
<i>·580 ·</i>	PREVIOUSLY CONSTRUCTED CONTOUR
 	PERIMETER DRAINAGE SWALE
SCRN	SCREENING
	PROPOSED WATER SURFACE
	PROPOSED HAUL ROAD
• CD1-1	CHIMNEY DRAIN AND NUMBER
O cd1-1	CHIMNEY DRAIN AND NUMBER PREVIOUSLY BUILT
L CP	LEACHATE COLLECTION PIPE
(CLEANOUT
	PROPOSED LEACHATE FORCE MAIN

CONTOUR INTERVAL = 10 FEET



- EXISTING OVERHEAD ELECTRICAL ROWER LINE


N 483.0

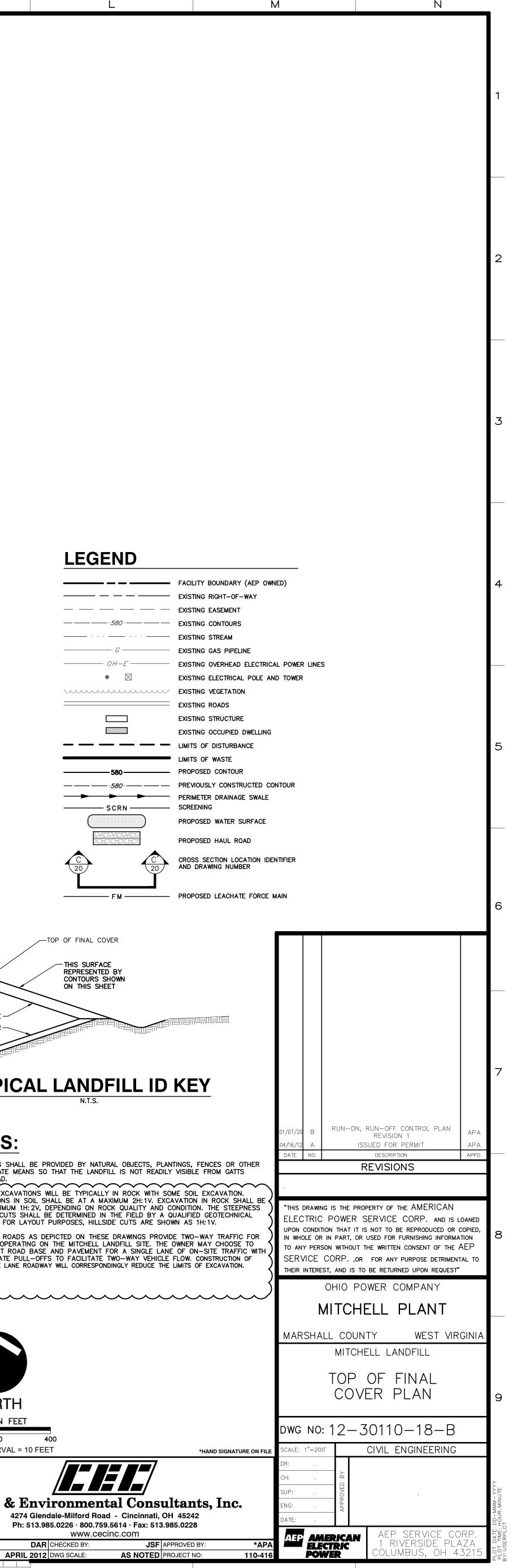

INCHES 1 K

Μ

0	1				
1,612,000					
Е 1 6					
		N 488,000			
		N 487,000			
				LEGEND	
					LIMITS OF WASTE
				• CD1-1	CHIMNEY DRAIN AND NUMBER
				L CP	 LEACHATE COLLECTION PIPE CLEANOUT
				F M	- PROPOSED LEACHATE FORCE MAIN
		N 486,000			
			NOTES:		
			NOTES: 1. MINIMUM LINER SLOPES S	SHALL BE 2% AND MAXIMUM LINER	SLOPES SHALL BE 33.33% (3H:1V)
			1. MINIMUM LINER SLOPES		SLOPES SHALL BE 33.33% (3H:1V) TAILS, SEE DRAWINGS 12-30110-46
			1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.		TAILS, SEE DRAWINGS 12-30110-46
			1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46
			1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46
			1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46
		N 485,000	1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46
		N 485,000	1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46
		N 485,000	1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46
		N 485,000	1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46
		<u>N 485,000</u>	1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46
		N 485,000	1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46
		N 485,000	1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46
		N 485,000	1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46
		N 485,000	1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46
		<u>N 485,000</u>	1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46
		N 485,000	1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46
		<u>N 485,000</u>	1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
		<u>N 485,000</u>	1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46
		<u>N 485,000</u>	1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
			1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
		<u>N 485,000</u>	1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
			1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
			1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
			1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
			1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
			1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
			1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
			1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
			 MINIMUM LINER SLOPES 1 FOR LEACHATE COLLECTION S LEACHATE COLLECTION S 	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
			 MINIMUM LINER SLOPES 1 FOR LEACHATE COLLECTION S LEACHATE COLLECTION S 	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
			1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTI AND 12-30110-47.	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
			 MINIMUM LINER SLOPES 1 FOR LEACHATE COLLECTION S LEACHATE COLLECTION S 	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
			 MINIMUM LINER SLOPES S FOR LEACHATE COLLECTION S LEACHATE COLLECTION S LEACHATE COLLECTION S 	ION SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
		N 484,000	1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTION 5 3. LEACHATE COLLECTION 5 NORTH SCALE IN FEET 0 200	ON SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
		N 484,000	1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTION 5 3. LEACHATE COLLECTION 5 NORTH SCALE IN FEET 0 200	ON SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
		N 484,000	1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTION 5 3. LEACHATE COLLECTION 5 NORTH SCALE IN FEET 0 200	ON SYSTEM AND LINER SYSTEM DE	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
8		N 484,000	1. MINIMUM LINER SLOPES 3 2. FOR LEACHATE COLLECTION S 3. LEACHATE COLLECTION S NORTH SCALE IN FEET 0 200 Civil & Env		TAILS, SEE DRAWINGS 12–30110–46 A 2% MINIMUM SLOPE. 04/
		N 484,000	1. MINIMUM LINER SLOPES 1 2. FOR LEACHATE COLLECTI AND 12-30110-47. 3. LEACHATE COLLECTION S SCALE IN FEET 0 200 Civil & Env 4274 Glen	400	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.
E 1,612,000		N 484,000	1. MINIMUM LINER SLOPES 2. FOR LEACHATE COLLECTION S 3. LEACHATE COLLECTION S WINDER SCALE IN FEET D 200 Civil & Envi RAWN BY:	Ton System AND LINER System Det System PIPES ARE TO BE LAID AT A00 Tonental Const indale-Milford Road - Cincinnati, 0 385.0226 · 800.759.5614 · Fax: 513 www.cecinc.com	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE. A 2% MINIMUM SLOPE
		N 484,000	1. MINIMUM LINER SLOPES 2. FOR LEACHATE COLLECTION S 3. LEACHATE COLLECTION S WINDER SCALE IN FEET D 200 Civil & Envi RAWN BY:	400	TAILS, SEE DRAWINGS 12-30110-46 A 2% MINIMUM SLOPE.

LIMITS OF DISTURBANC

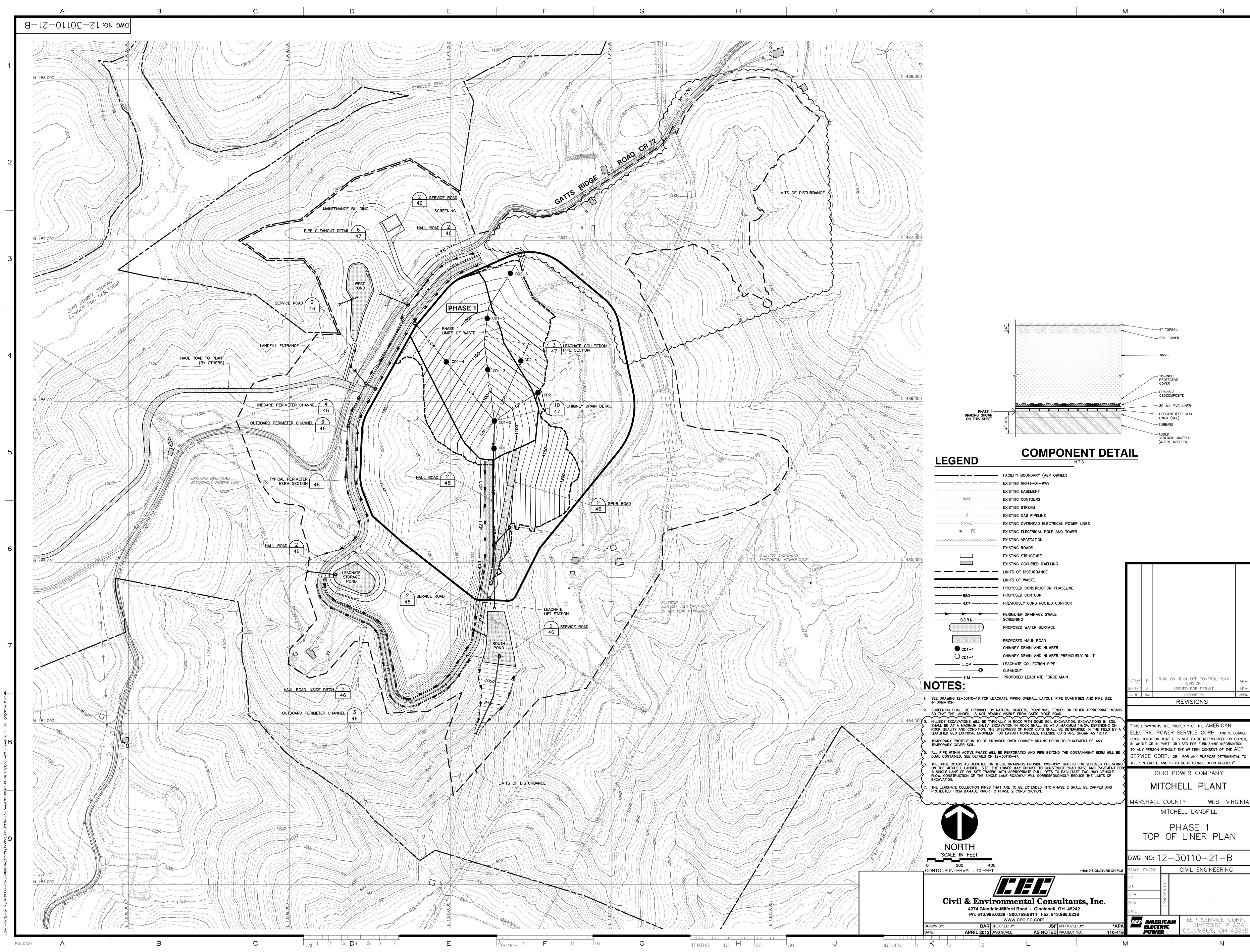
EXISTING OVERHEAD


488.00

N 486,000

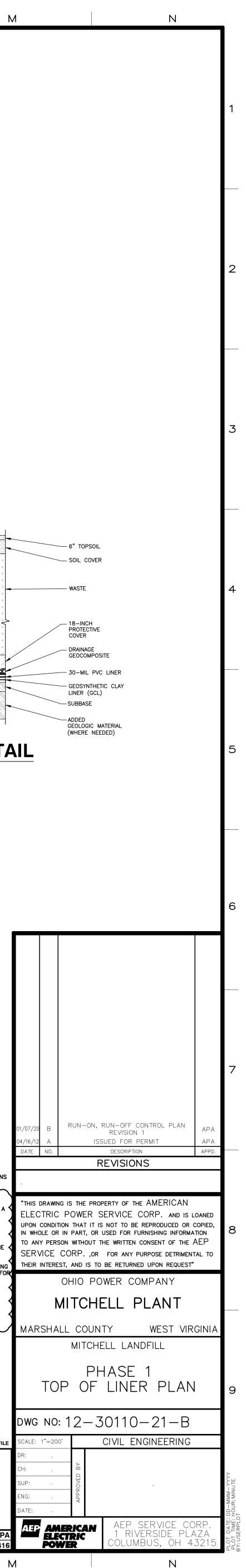
LEGEND

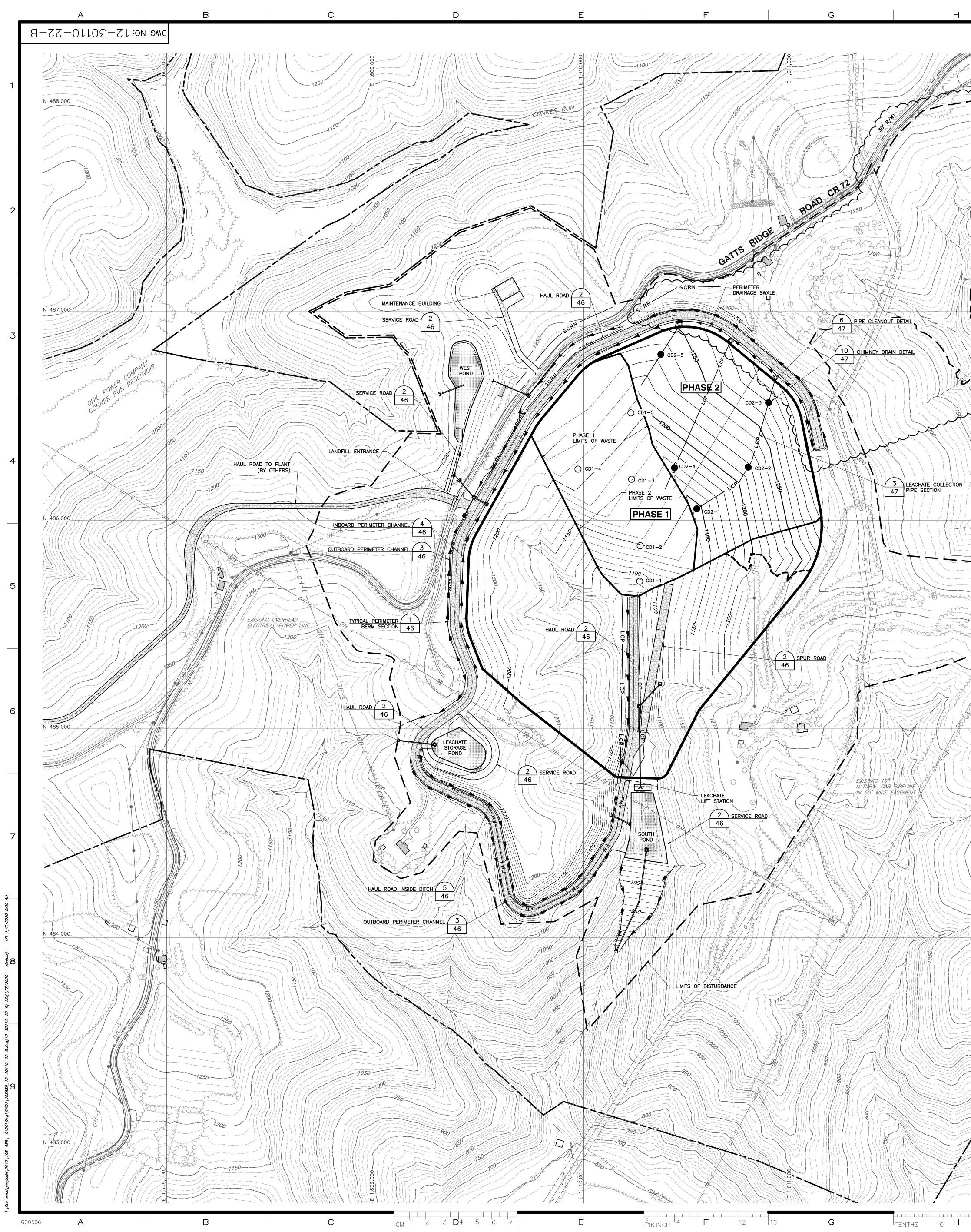
 \bullet

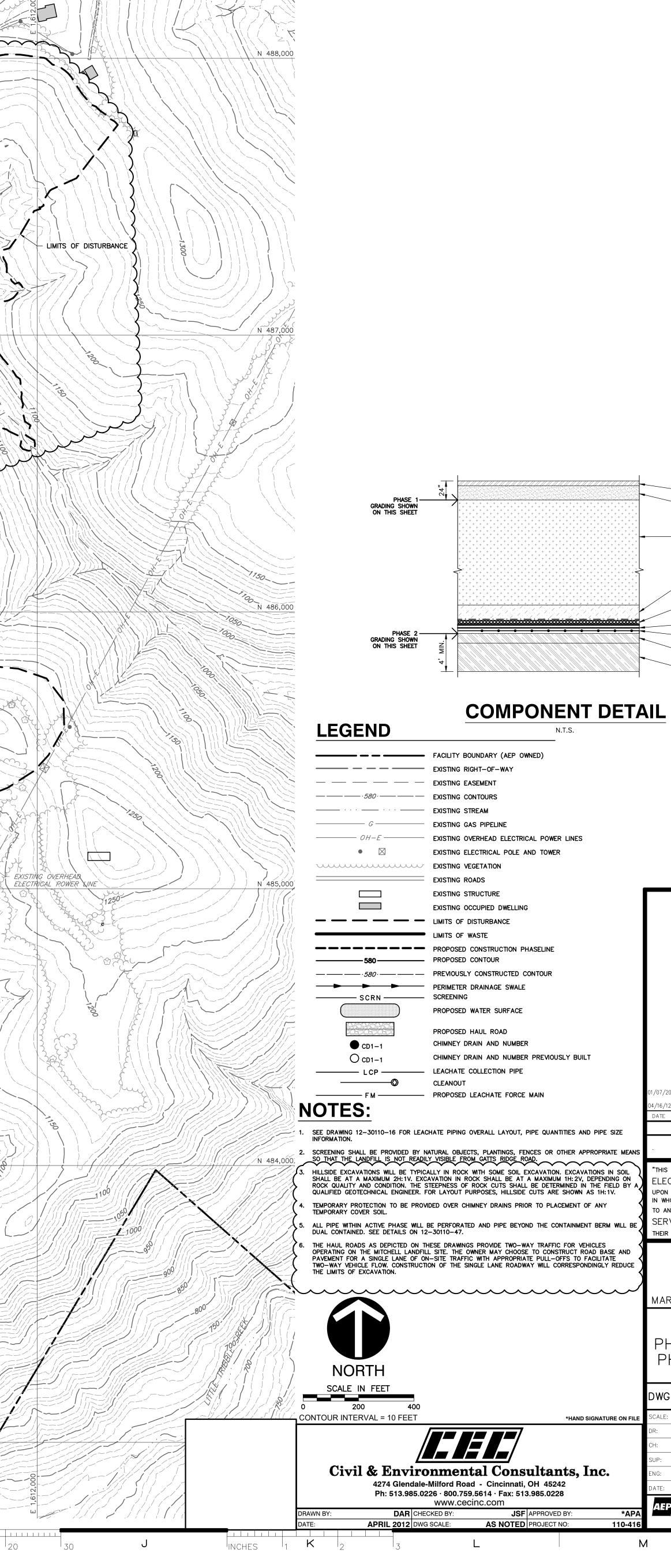


N 485.00C -TOP OF FINAL COVER - THIS SURFACE REPRESENTED BY CONTOURS SHOWN ON THIS SHEET TOP OF WASTE-TOP OF LINER-**TYPICAL LANDFILL ID KEY NOTES:** SCREENING SHALL BE PROVIDED BY NATURAL OBJECTS, PLANTINGS, FENCES OR OTHER APPROPRIATE MEANS SO THAT THE LANDFILL IS NOT READILY VISIBLE FROM GATTS RIDGE ROAD.
 HILLSIDE EXCAVATIONS WILL BE TYPICALLY IN ROCK WITH SOME SOIL EXCAVATION. EXCAVATIONS IN SOIL SHALL BE AT A MAXIMUM 2H:1V. EXCAVATION IN ROCK SHALL BE AT A MAXIMUM 1H:2V, DEPENDING ON ROCK QUALITY AND CONDITION. THE STEEPNESS OF ROCK CUTS SHALL BE DETERMINED IN THE FIELD BY A QUALIFIED GEOTECHNICAL ENGINEER. FOR LAYOUT PURPOSES, HILLSIDE CUTS ARE SHOWN AS 1H:1V. N 484,00 THE HAUL ROADS AS DEPICTED ON THESE DRAWINGS PROVIDE TWO-WAY TRAFFIC FOR VEHICLES OPERATING ON THE MITCHELL LANDFILL SITE. THE OWNER MAY CHOOSE TO CONSTRUCT ROAD BASE AND PAVEMENT FOR A SINGLE LANE OF ON-SITE TRAFFIC WITH APPROPRIATE PULL-OFFS TO FACILITATE TWO-WAY VEHICLE FLOW. CONSTRUCTION OF THE SINGLE LANE ROADWAY WILL CORRESPONDINGLY REDUCE THE LIMITS OF EXCAVATION. NORTH SCALE IN FEET 200 CONTOUR INTERVAL = 10 FEET

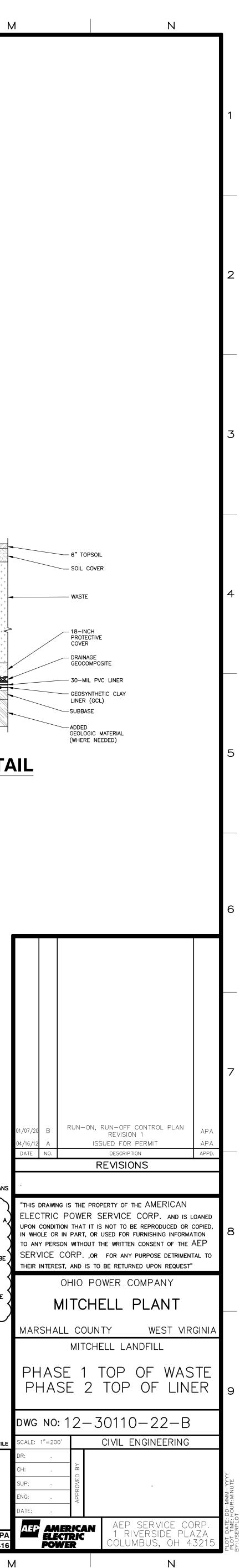
Civil & Environmental Consultants, Inc. 4274 Glendale-Milford Road - Cincinnati, OH 45242 Ph: 513.985.0226 · 800.759.5614 · Fax: 513.985.0228 www.cecinc.com

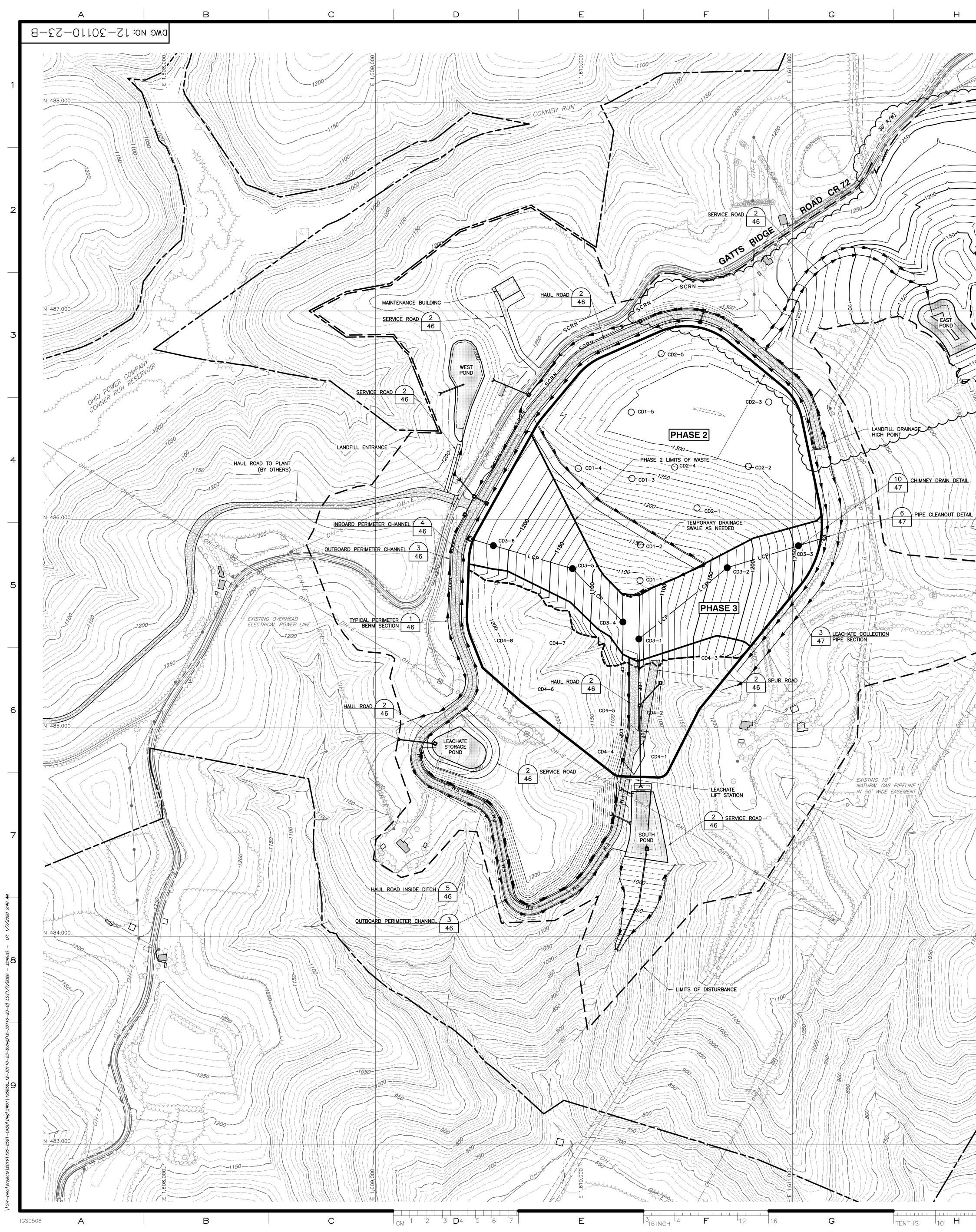

DAR CHECKED BY:



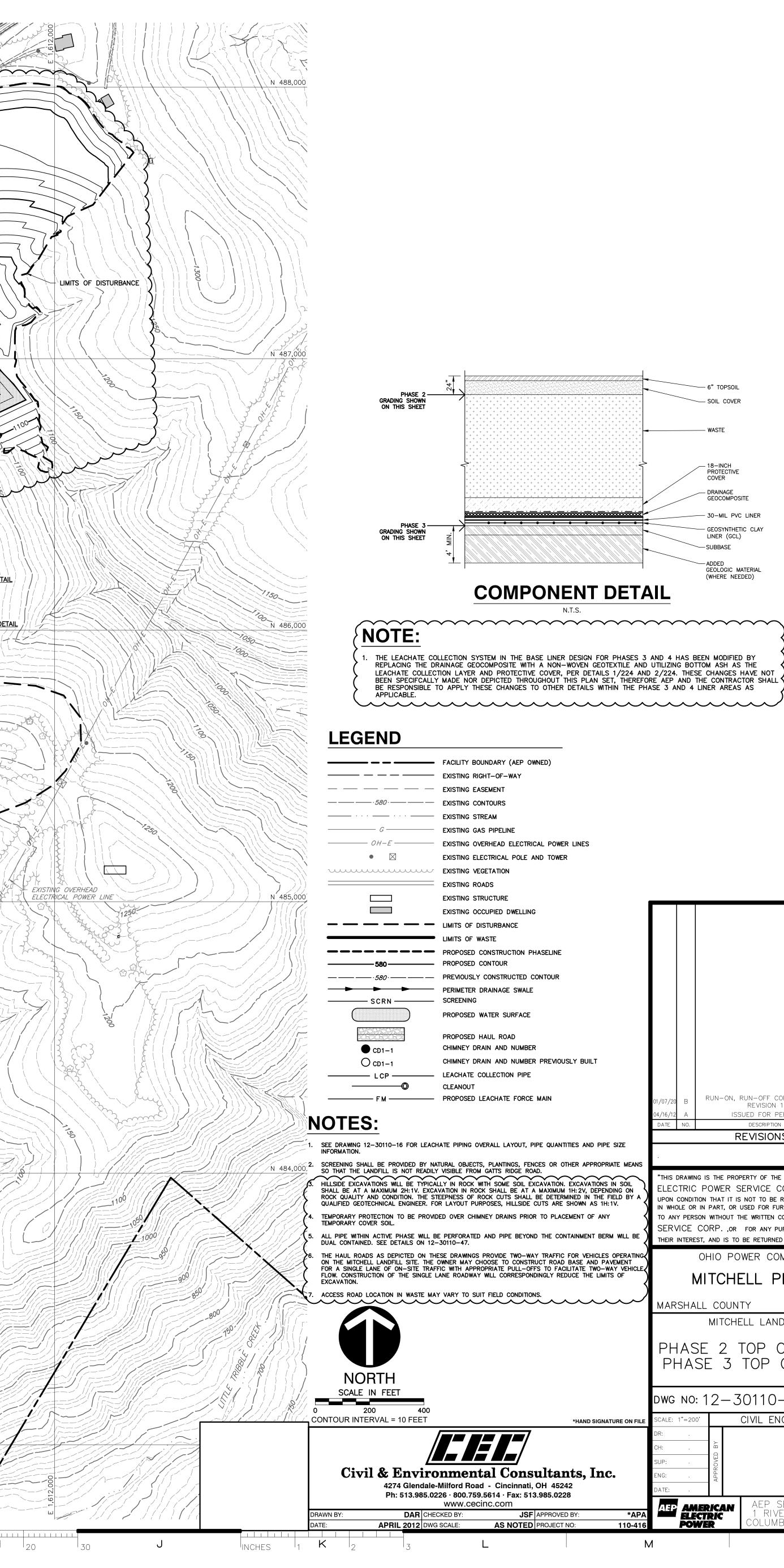

110-416

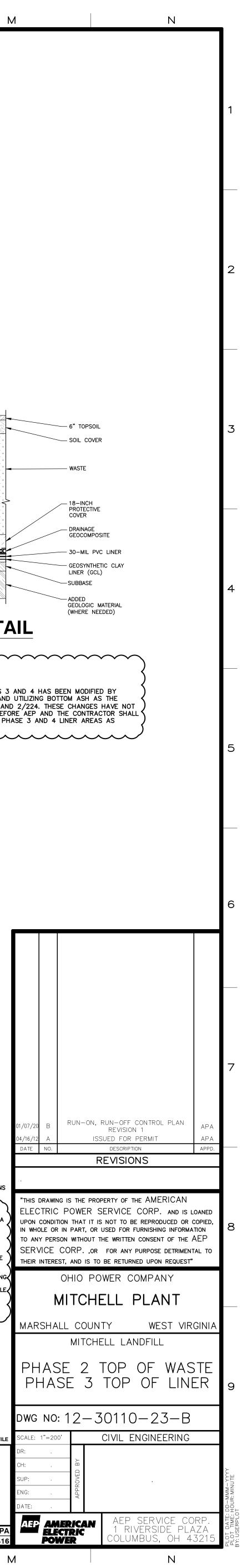
*HAND SIGNATURE ON FILE

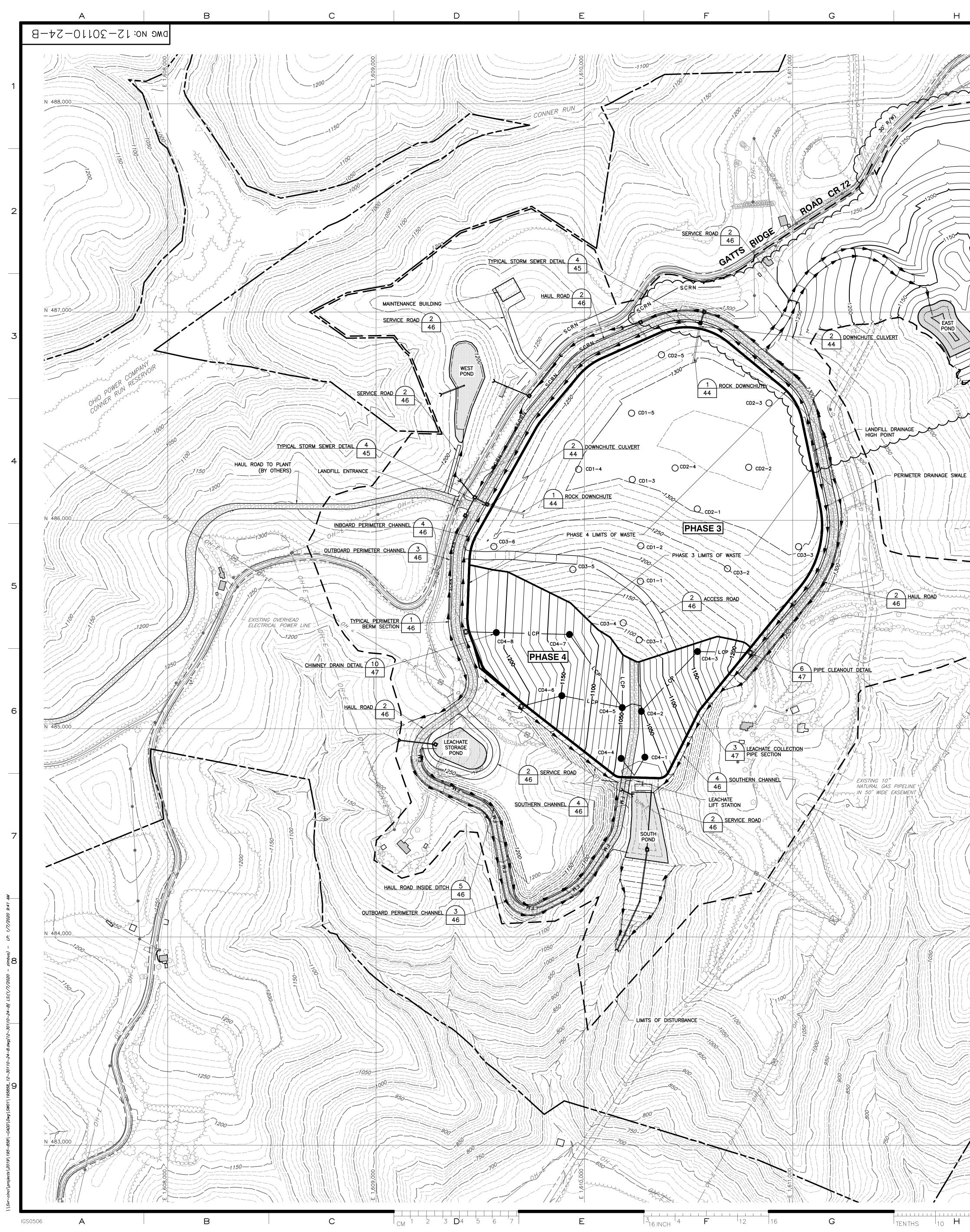




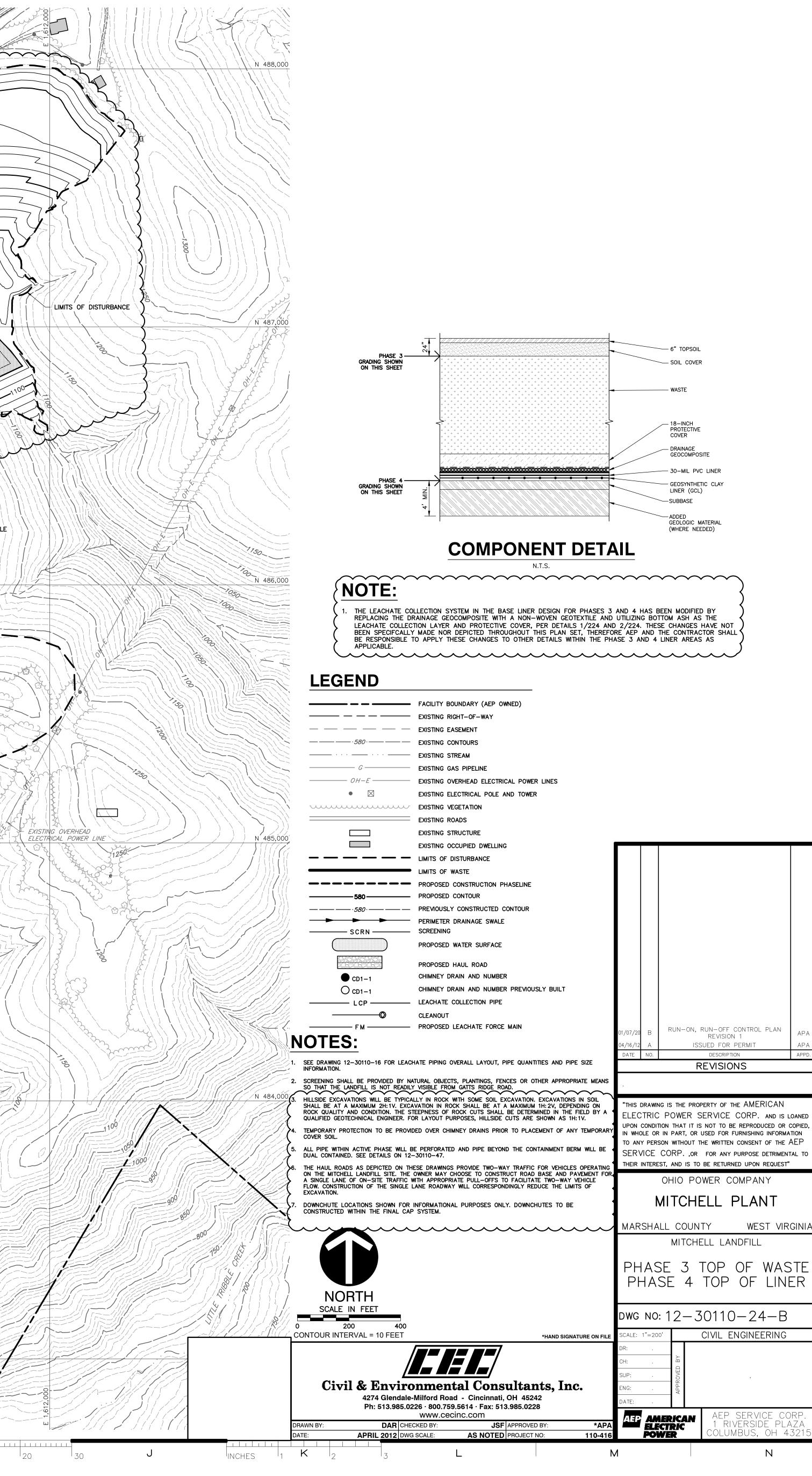
Μ

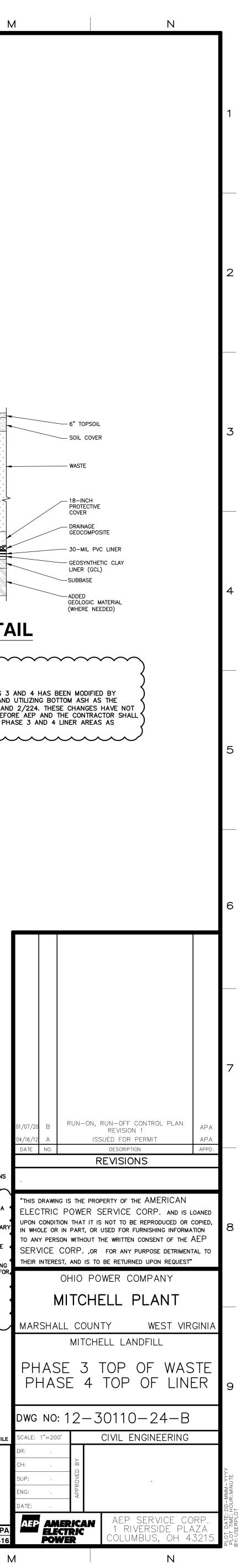

Μ

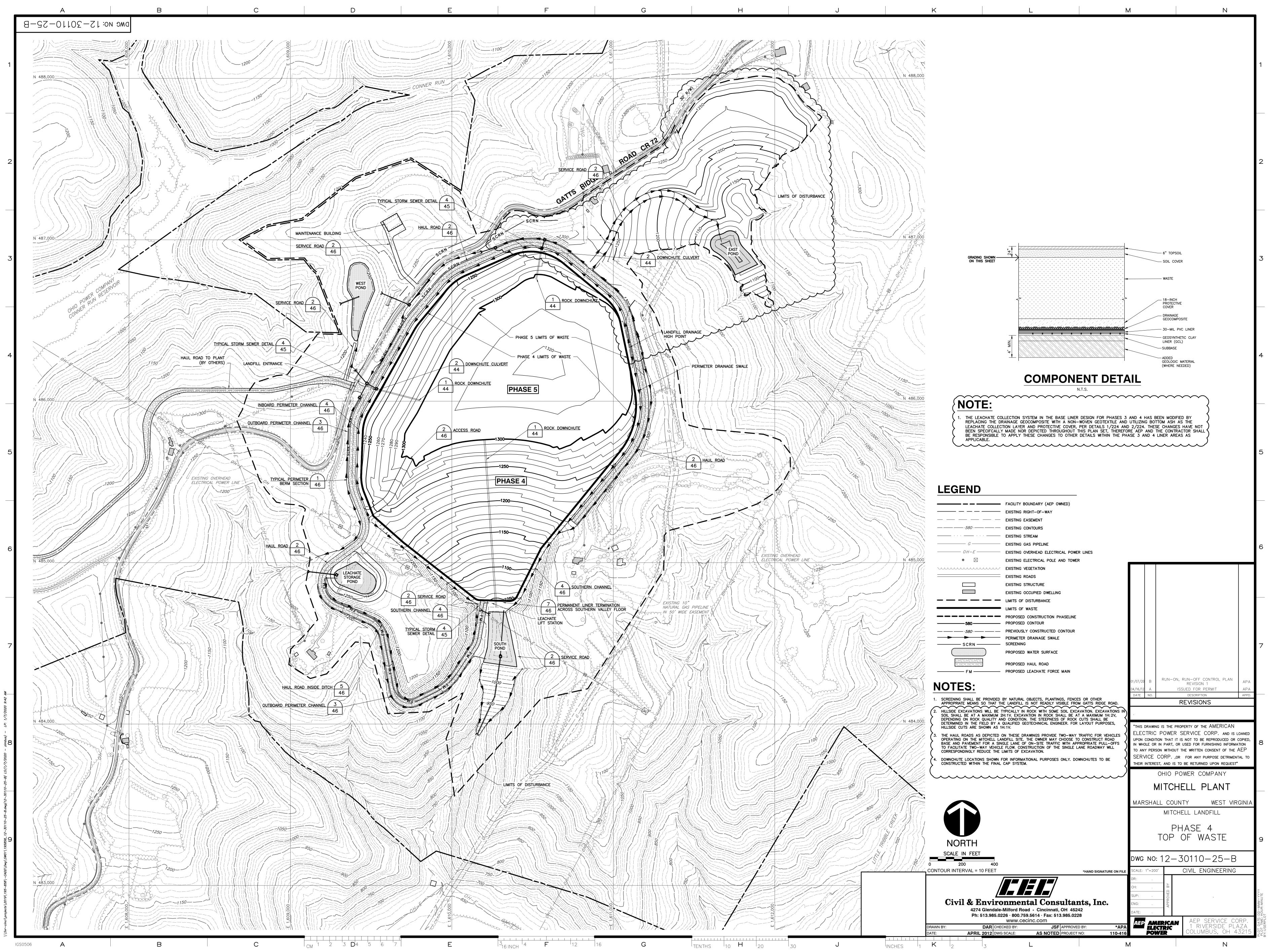


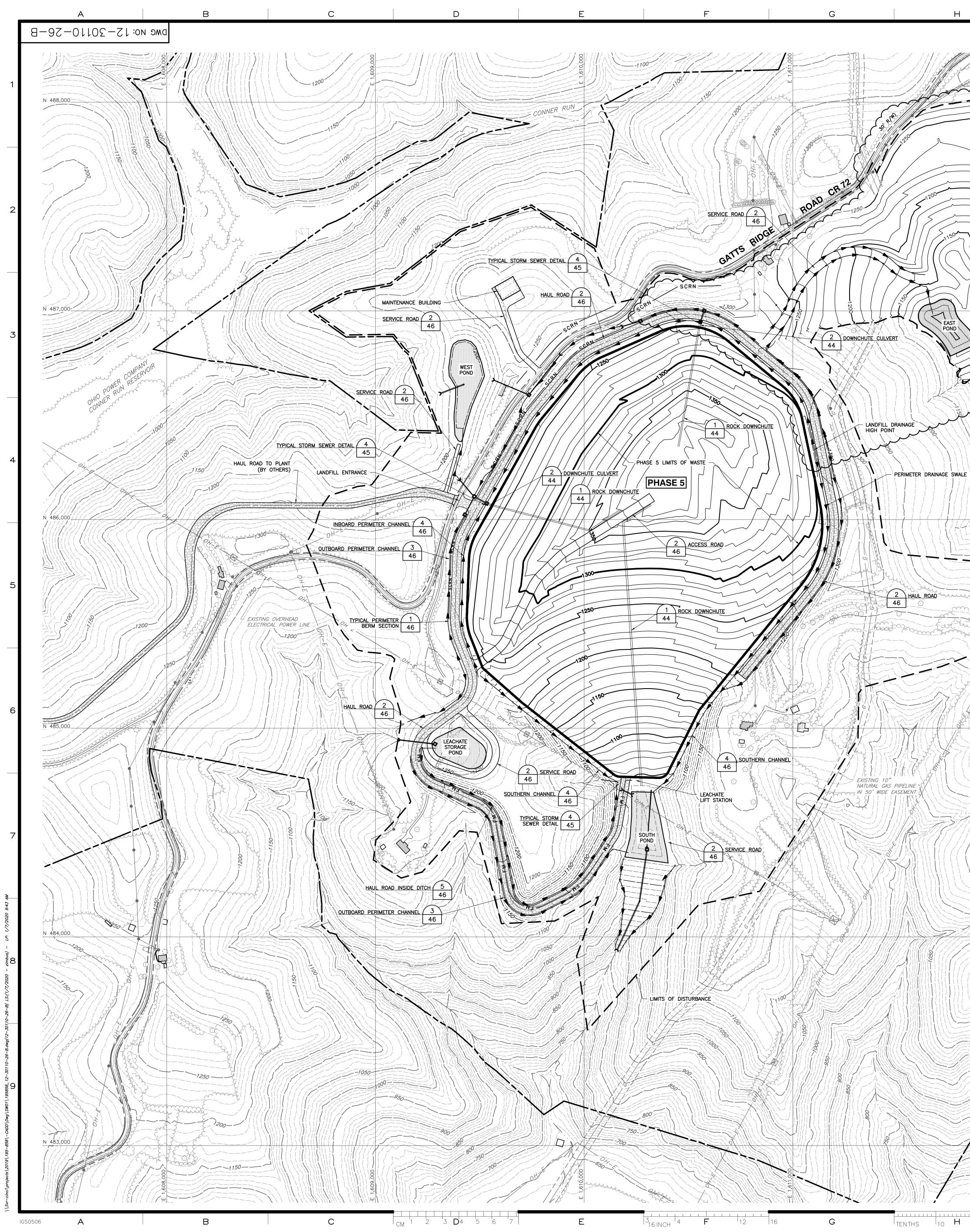


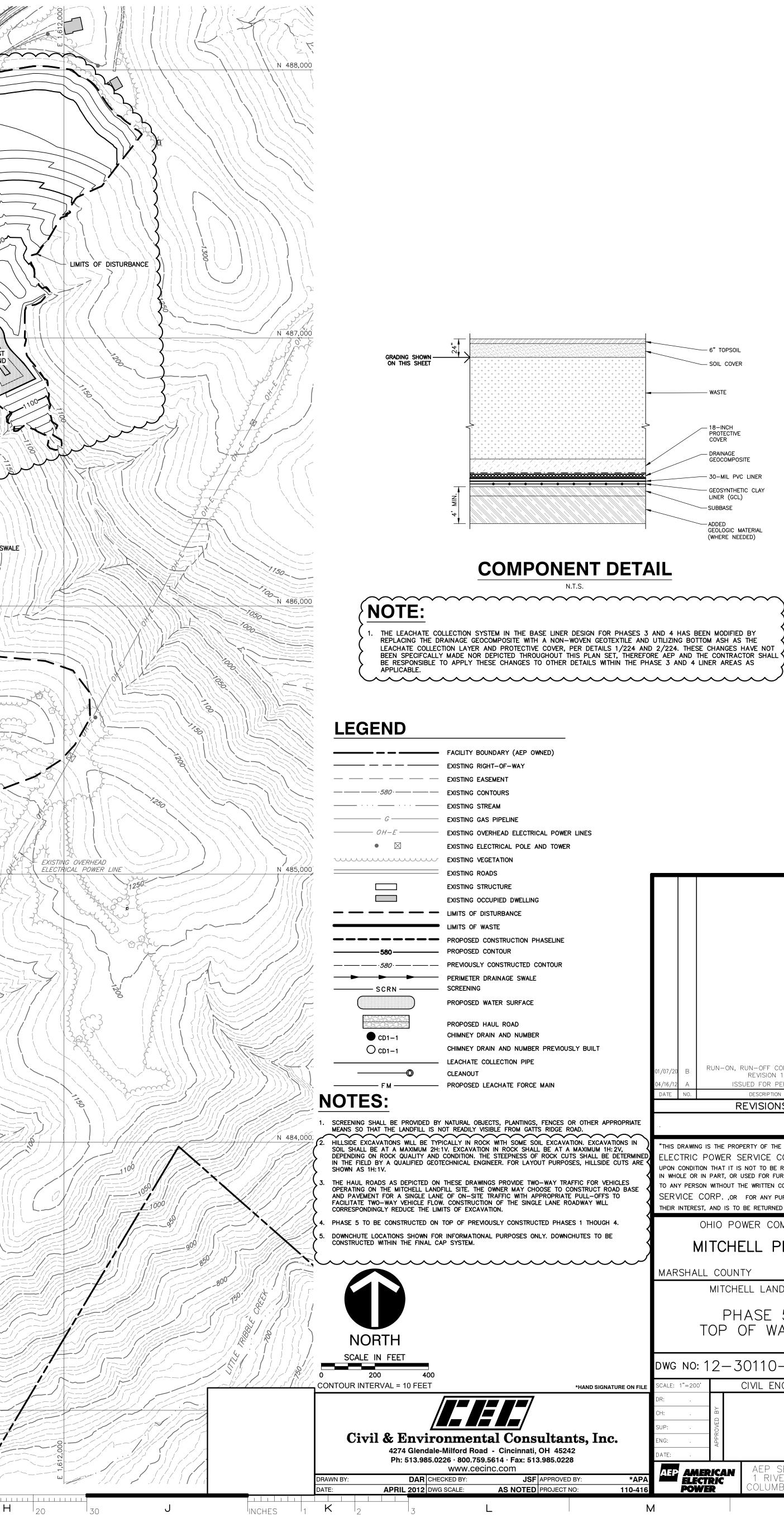
Μ

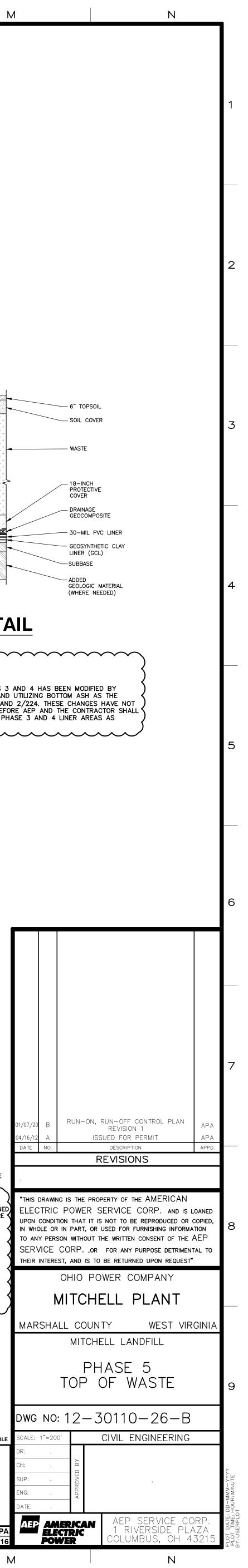


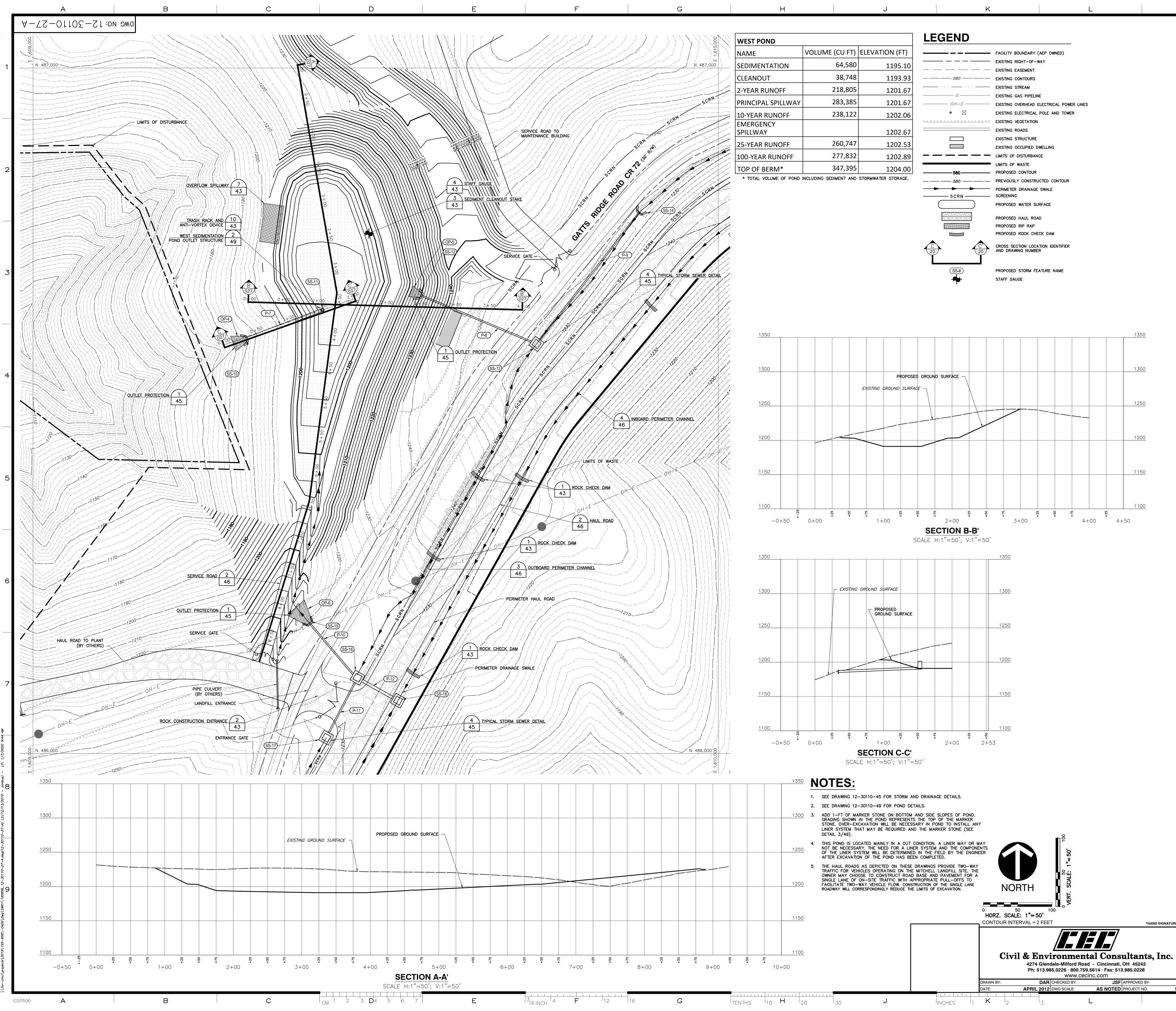

Μ

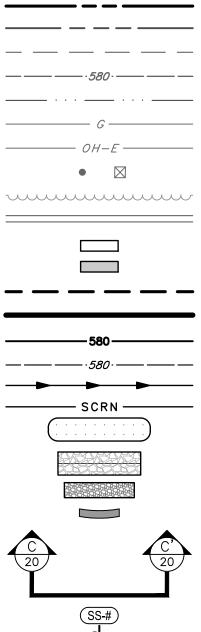




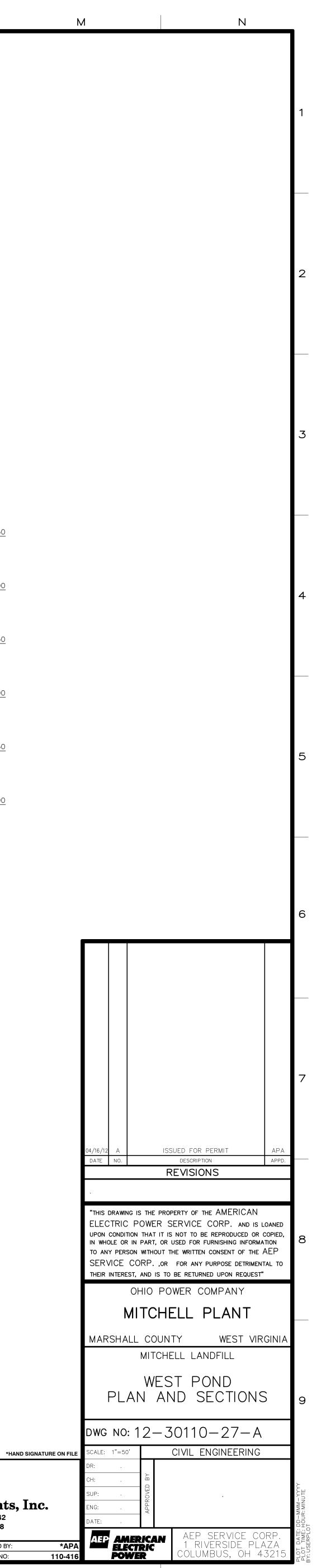


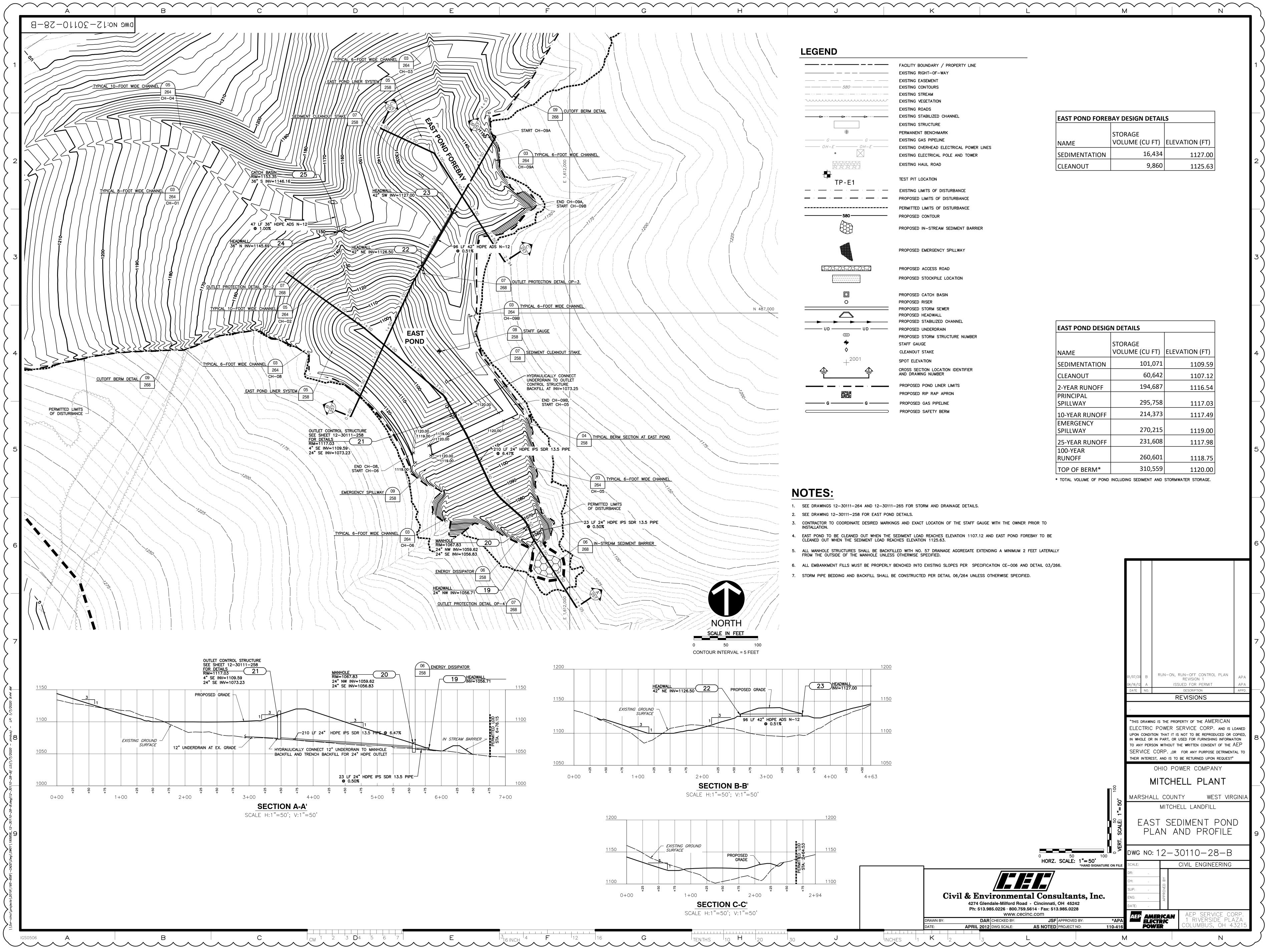


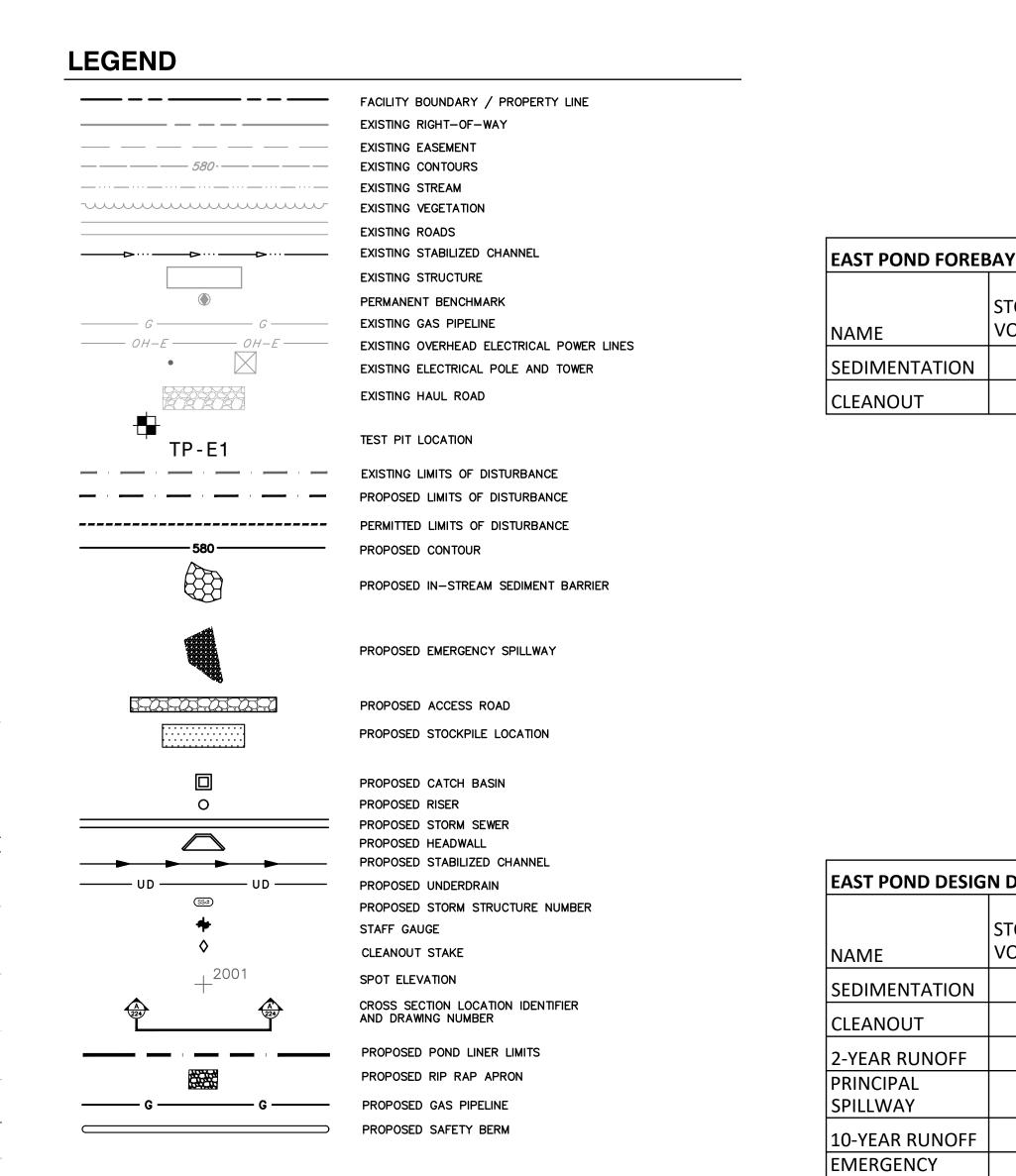

	FACILITY BOUNDARY (AEP OWNED)
	EXISTING RIGHT-OF-WAY
	EXISTING EASEMENT
	EXISTING CONTOURS
· · · · · · · ·	EXISTING STREAM
<i>G</i>	EXISTING GAS PIPELINE
OH_E	EXISTING OVERHEAD ELECTRICAL POWER LINES
	EXISTING ELECTRICAL POLE AND TOWER
	EXISTING VEGETATION
	EXISTING ROADS
	EXISTING STRUCTURE
	EXISTING OCCUPIED DWELLING
	LIMITS OF DISTURBANCE
	LIMITS OF WASTE
	PROPOSED CONSTRUCTION PHASELINE
	PROPOSED CONTOUR
	PREVIOUSLY CONSTRUCTED CONTOUR
	PERIMETER DRAINAGE SWALE
SCRN	SCREENING
	PROPOSED WATER SURFACE
	PROPOSED HAUL ROAD
———— FM ————	PROPOSED LEACHATE FORCE MAIN
1 171	

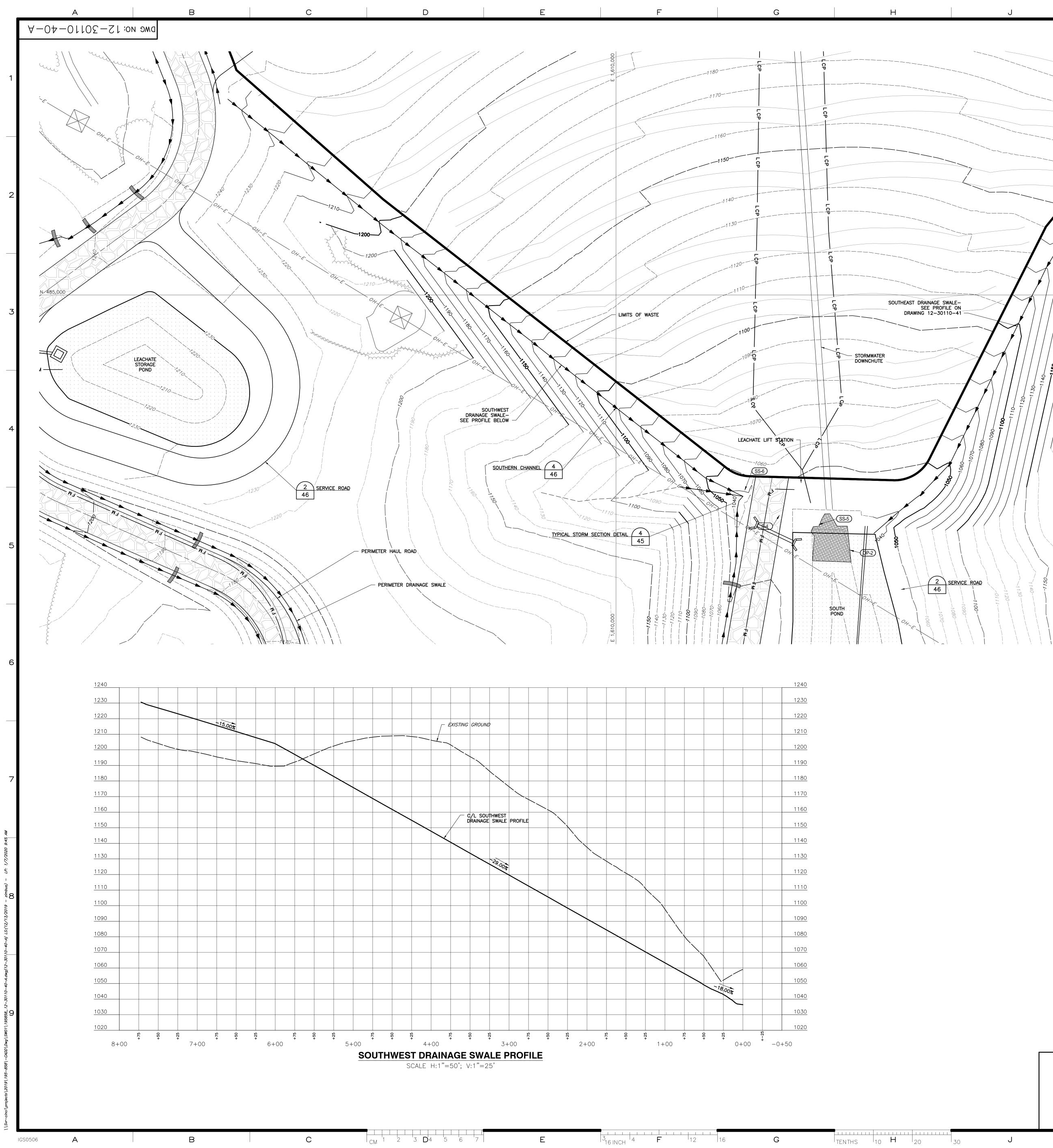


M	


	VOLUME (CU FT)	ELEVATION (FT)
TION	64,580	1195.10
	38,748	1193.93
OFF	218,805	1201.67
PILLWAY	283,385	1201.67
NOFF	238,122	1202.06
,		1202.67
NOFF	260,747	1202.53
JNOFF	277,832	1202.89
M*	347,395	1204.00

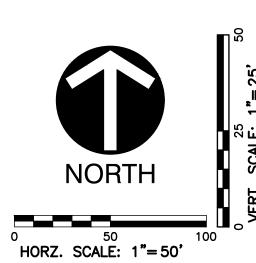



FACILITY BOUNDARY (AEP OWNED)
EXISTING RIGHT-OF-WAY
EXISTING EASEMENT
EXISTING CONTOURS
EXISTING STREAM
EXISTING GAS PIPELINE
EXISTING OVERHEAD ELECTRICAL POWER LINE
EXISTING ELECTRICAL POLE AND TOWER
EXISTING VEGETATION
EXISTING ROADS
EXISTING STRUCTURE
EXISTING OCCUPIED DWELLING
LIMITS OF DISTURBANCE
LIMITS OF WASTE
PROPOSED CONTOUR
PREVIOUSLY CONSTRUCTED CONTOUR
PERIMETER DRAINAGE SWALE SCREENING
PROPOSED WATER SURFACE
PROPOSED HAUL ROAD
PROPOSED RIP RAP
PROPOSED ROCK CHECK DAM
CROSS SECTION LOCATION IDENTIFIER AND DRAWING NUMBER


Ν

*ΔP

N 485,000
SOUTHEAST DRAINAGE SWALE-
SEE PROFILE ON DRAWING 12-30110-41
00
001-0801-0-000-0-000-0-000-0-000-0-000-0-000-0-0
2 SERVICE ROAD 46
-1070 -1070 -1060

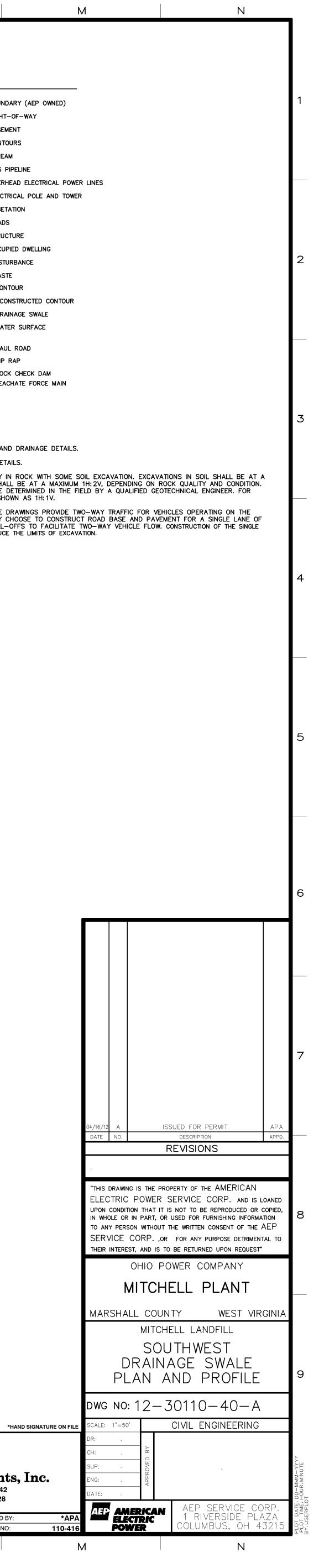

	FACILITY BOUNDARY (AEP OWNED)
	EXISTING RIGHT-OF-WAY
	EXISTING EASEMENT
	EXISTING CONTOURS
· · · · · · · ·	EXISTING STREAM
<i>G</i>	EXISTING GAS PIPELINE
ОН-Е	EXISTING OVERHEAD ELECTRICAL POWER LIN
	EXISTING ELECTRICAL POLE AND TOWER
	EXISTING VEGETATION
	EXISTING ROADS
	EXISTING STRUCTURE
	EXISTING OCCUPIED DWELLING
	LIMITS OF DISTURBANCE
	LIMITS OF WASTE
	PROPOSED CONTOUR
	PREVIOUSLY CONSTRUCTED CONTOUR
	PERIMETER DRAINAGE SWALE
	PROPOSED WATER SURFACE
	PROPOSED HAUL ROAD
	PROPOSED RIP RAP
	PROPOSED ROCK CHECK DAM

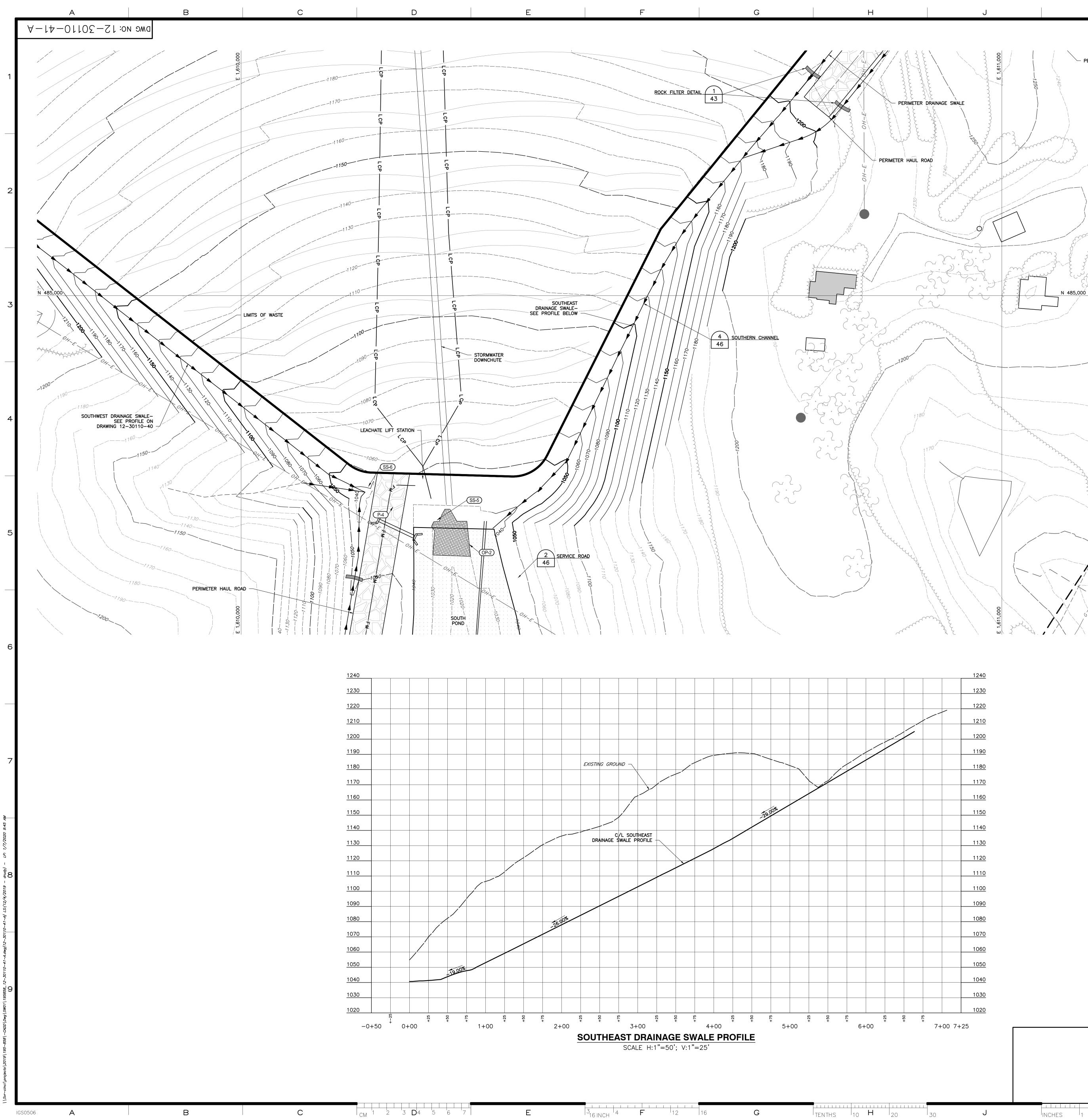
NOTES:

- 1. SEE DRAWING 12-30110-45 FOR STORM AND DRAINAGE DETAILS.
- 2. SEE DRAWING 12-30110-50 FOR POND DETAILS.

------- FM -------- PROPOSED LEACHATE FORCE MAIN

- 3. HILLSIDE EXCAVATIONS WILL BE TYPICALLY IN ROCK WITH SOME SOIL EXCAVATION. EXCAVATIONS IN SOIL SHALL BE AT A MAXIMUM 2H:1V. EXCAVATION IN ROCK SHALL BE AT A MAXIMUM 1H:2V, DEPENDING ON ROCK QUALITY AND CONDITION. THE STEEPNESS OF ROCK CUTS SHALL BE DETERMINED IN THE FIELD BY A QUALIFIED GEOTECHNICAL ENGINEER. FOR LAYOUT PURPOSES, HILLSIDE CUTS ARE SHOWN AS 1H:1V.
- 4. THE HAUL ROADS AS DEPICTED ON THESE DRAWINGS PROVIDE TWO-WAY TRAFFIC FOR VEHICLES OPERATING ON THE MITCHELL LANDFILL SITE. THE OWNER MAY CHOOSE TO CONSTRUCT ROAD BASE AND PAVEMENT FOR A SINGLE LANE OF ON-SITE TRAFFIC WITH APPROPRIATE PULL-OFFS TO FACILITATE TWO-WAY VEHICLE FLOW. CONSTRUCTION OF THE SINGLE LANE ROADWAY WILL CORRESPONDINGLY REDUCE THE LIMITS OF EXCAVATION.


CONTOUR INTERVAL = 10 FEET


RAWN א

Civil & Environmental Consultants, Inc. 4274 Glendale-Milford Road - Cincinnati, OH 45242 Ph: 513.985.0226 · 800.759.5614 · Fax: 513.985.0228 www.cecinc.com

 DAR
 CHECKED BY:
 JSF
 APPROVED BY:

 APRIL 2012
 DWG SCALE:
 AS NOTED
 PROJECT NO:

LEGEND	
	FACILITY BOUNDARY (AEP OWNED)
	EXISTING RIGHT-OF-WAY
	EXISTING EASEMENT
	EXISTING CONTOURS
· · · · · · · ·	EXISTING STREAM
<i>G</i>	EXISTING GAS PIPELINE
ОН-Е	EXISTING OVERHEAD ELECTRICAL POWER L
	EXISTING ELECTRICAL POLE AND TOWER
	EXISTING VEGETATION
	EXISTING ROADS
	EXISTING STRUCTURE
	EXISTING OCCUPIED DWELLING
	LIMITS OF DISTURBANCE
	LIMITS OF WASTE
	PROPOSED CONTOUR
	PREVIOUSLY CONSTRUCTED CONTOUR
	PERIMETER DRAINAGE SWALE
	PROPOSED WATER SURFACE
	PROPOSED HAUL ROAD
	PROPOSED RIP RAP

NOTES:

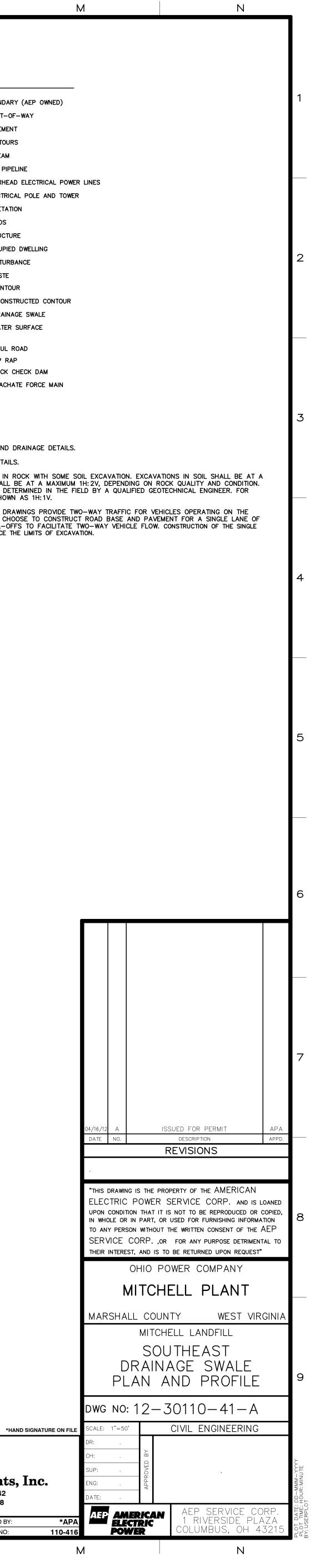
- 1. SEE DRAWING 12-30110-45 FOR STORM AND DRAINAGE DETAILS.
- 2. SEE DRAWING 12-30110-50 FOR POND DETAILS.

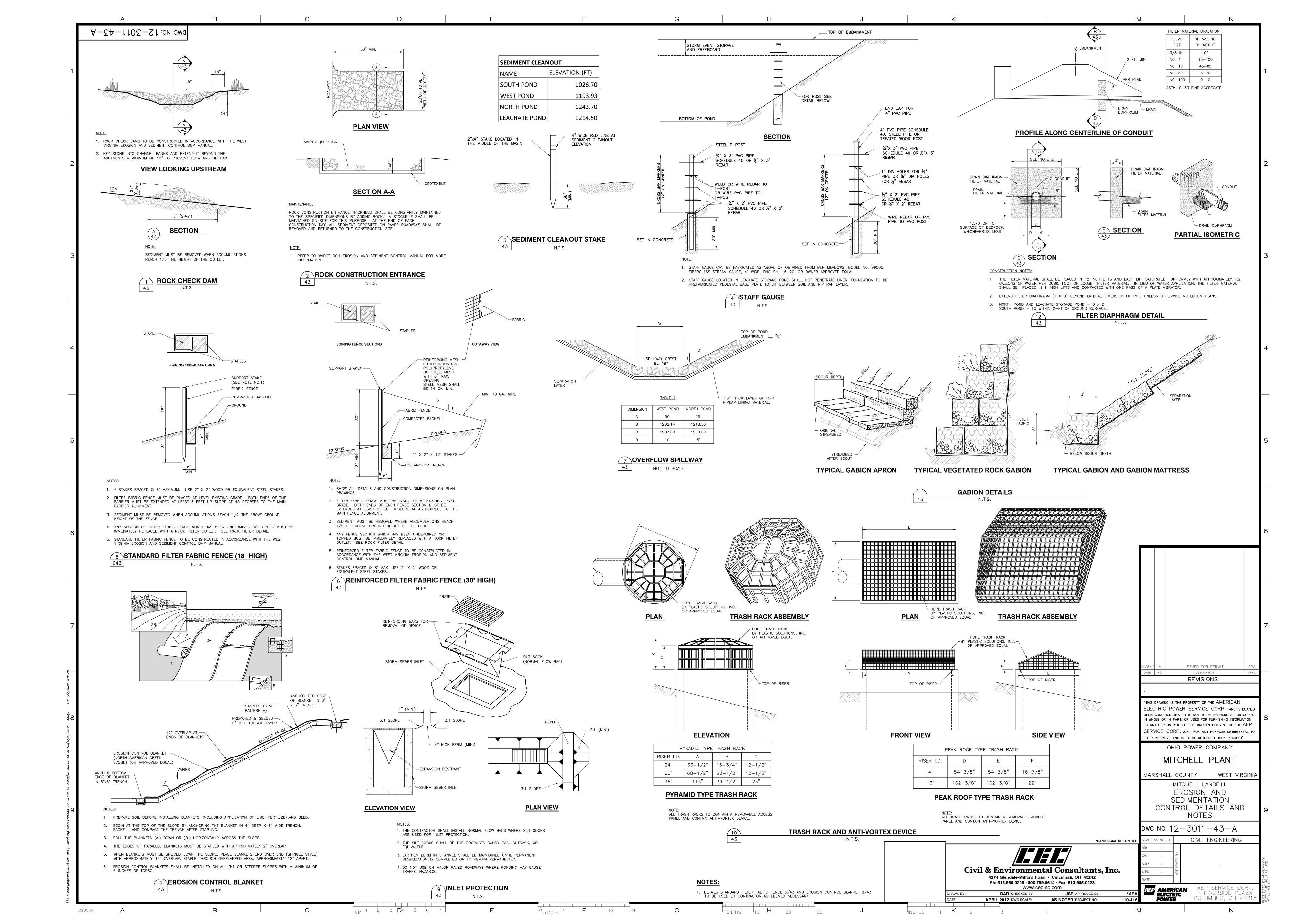
3. HILLSIDE EXCAVATIONS WILL BE TYPICALLY IN ROCK WITH SOME SOIL EXCAVATION. EXCAVATIONS IN SOIL SHALL BE AT A MAXIMUM 2H:1V. EXCAVATION IN ROCK SHALL BE AT A MAXIMUM 1H:2V, DEPENDING ON ROCK QUALITY AND CONDITION. THE STEEPNESS OF ROCK CUTS SHALL BE DETERMINED IN THE FIELD BY A QUALIFIED GEOTECHNICAL ENGINEER. FOR LAYOUT PURPOSES, HILLSIDE CUTS ARE SHOWN AS 1H:1V.

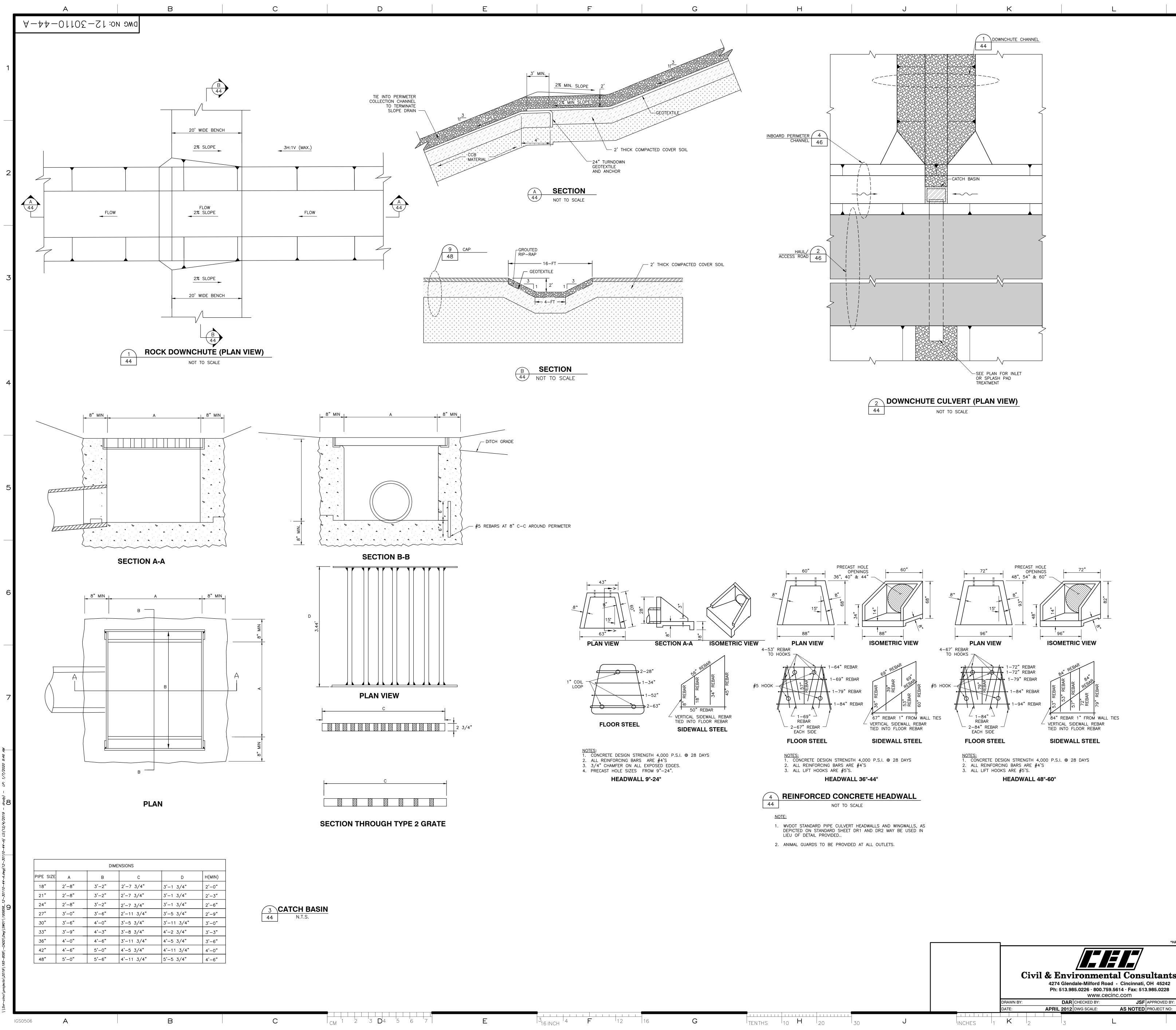
PROPOSED ROCK CHECK DAM

4. THE HAUL ROADS AS DEPICTED ON THESE DRAWINGS PROVIDE TWO-WAY TRAFFIC FOR VEHICLES OPERATING ON THE MITCHELL LANDFILL SITE. THE OWNER MAY CHOOSE TO CONSTRUCT ROAD BASE AND PAVEMENT FOR A SINGLE LANE OF ON-SITE TRAFFIC WITH APPROPRIATE PULL-OFFS TO FACILITATE TWO-WAY VEHICLE FLOW. CONSTRUCTION OF THE SINGLE LANE ROADWAY WILL CORRESPONDINGLY REDUCE THE LIMITS OF EXCAVATION.

Civil & Environmental Consultants, Inc. 4274 Glendale-Milford Road - Cincinnati, OH 45242 Ph: 513.985.0226 · 800.759.5614 · Fax: 513.985.0228 www.cecinc.com DAR CHECKED BY:
 DAR
 CHECKED BY:
 JSF
 APPROVED BY:

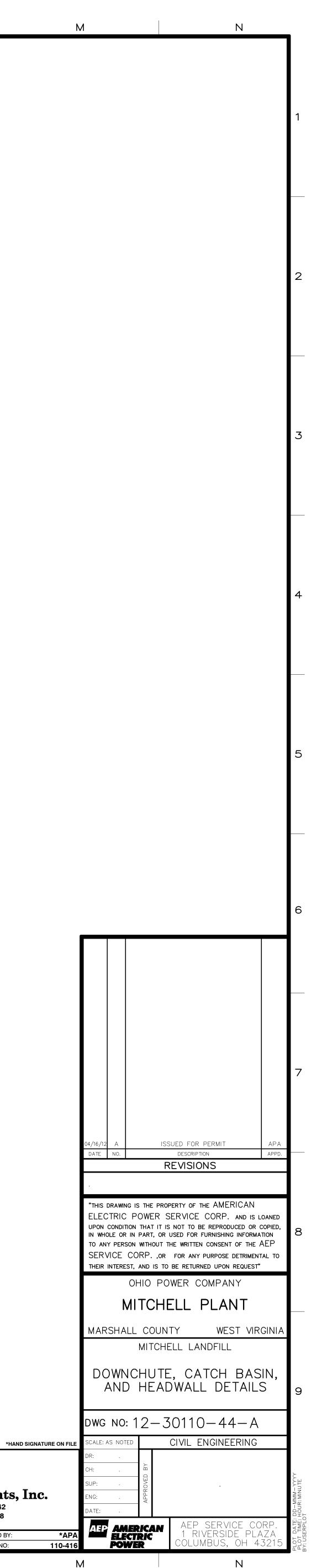

 APRIL 2012
 DWG SCALE:
 AS NOTED
 PROJECT NO:
 INCHES 1 K 2

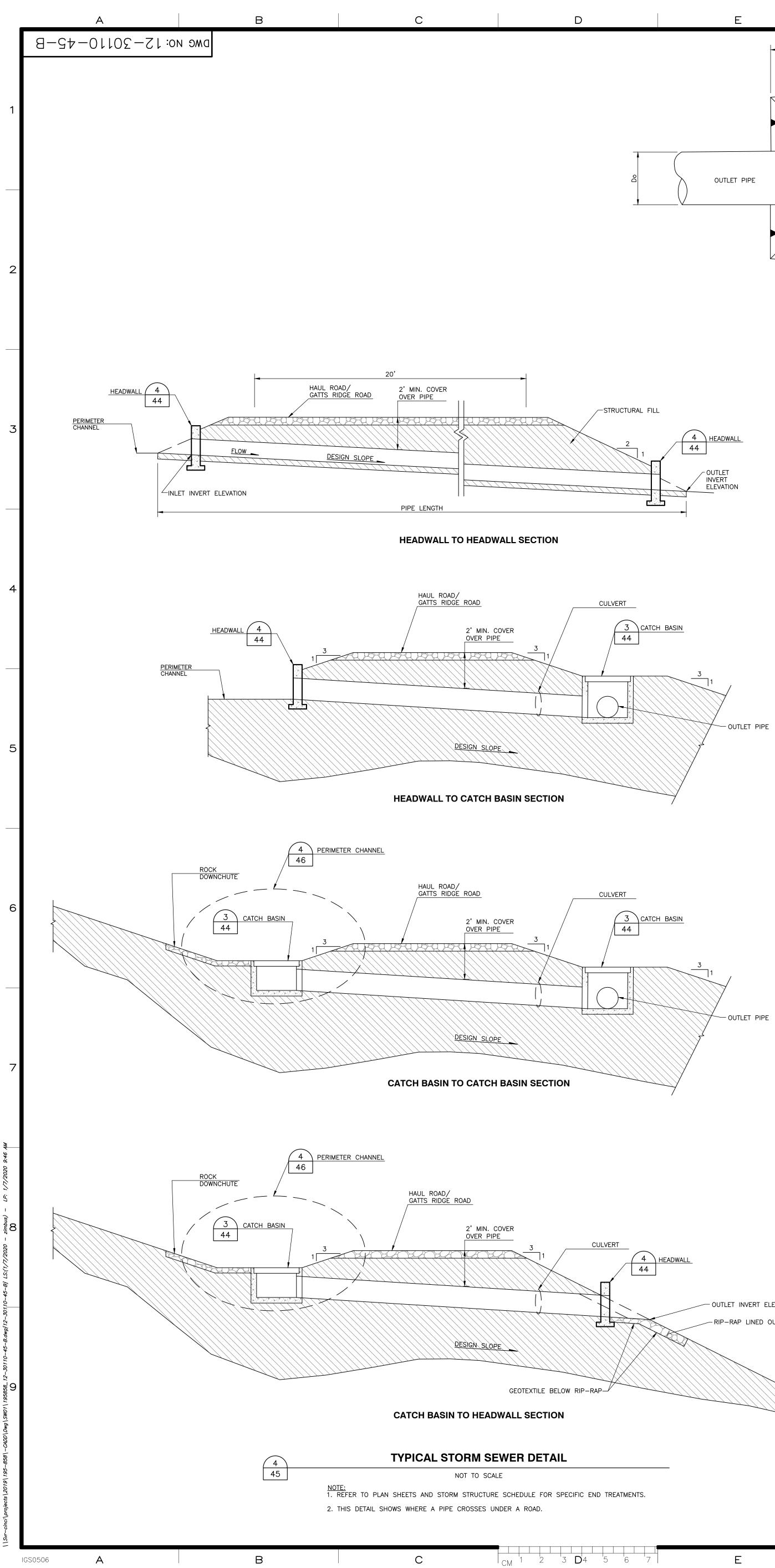

NORTH

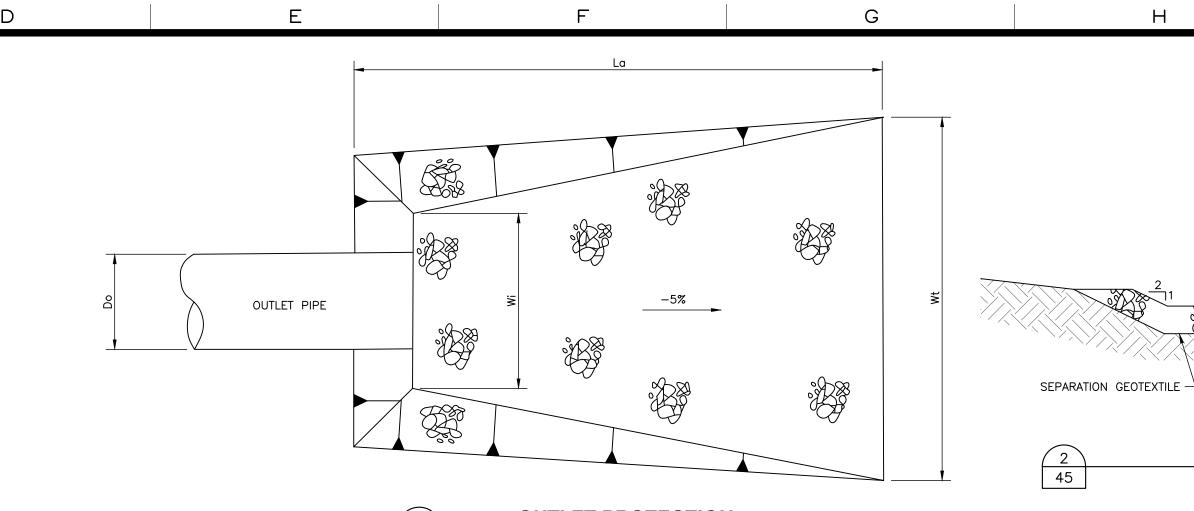

0 50 100 HORZ. SCALE: 1"= 50' CONTOUR INTERVAL = 10 FEET

∎ß

*ΔP







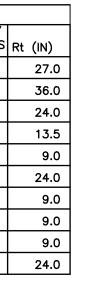
Civil & Environmental Consultants, Inc. 4274 Glendale-Milford Road - Cincinnati, OH 45242 Ph: 513.985.0226 · 800.759.5614 · Fax: 513.985.0228 www.cecinc.com JSF APPROVED BY:

*AP

OUTLET PROTECTION 45 NOT TO SCALE

		C	UTLET PR	OTECTION			
ID	STORM STRUCTURE	Do (IN)	Wi (FT)	Wt (FT)	La (FT)	D50	RIPRAP CLASS/ GROUTED CLASS
OP-1	SS-1	48	12.0	44.0	40	18	G-7
OP-2	SS-5	42	10.5	48.5	45	24	G-8
OP-3	SS-7	36	9.0	33.0	30	15	G—6
OP-4	SS-10	36	9.0	23.0	20	9	R-5
0P-5	SS-12	24	6.0	17.0	15	6	R-4
OP-6	SS-15	42	10.5	33.5	30	15	G—6
0P-7	SS-19	12	3.0	6.0	5	6	R-4
0P-8	SS-21	24	6.0	12.0	10	6	R-4
0P-9	SS-23	30	7.5	22.5	20	6	R-4
0P-10	SS-26	36	9.0	45	42	15	R-6
NOTE:							

1. RIPRAP SIZES SPECIFIED IN THIS TABLE REPRESENT NATIONAL CRUSHED STONE ASSOCIATION RIPRAP CLASSIFICATIONS. 2. RIPRAP WITH "G" DESIGNATION IS TO BE GROUTED RIPRAP OR OTHER APPROVED HARD


ARMOR EROSION CONTROL PRODUCT. 3. GROUTED RIPRAP AND/OR OTHER HARD ARMOUR EROSION CONTROL PRODUCTS WILL NOT

REQUIRE BEDDING STONE. REFER TO CONSTRUCTION DRAWINGS FOR PHASES 1, 2, 3, 4, AND/OR 5 DEVELOPMENT FOR UPDATES TO THE OUTLET PROTECTION SCHEDULE.

		ST	ORM STRUCTURE SCHEDULE		
STRUCTURE	STRUCTURE TYPE	RIM ELEVATION	INCOMING PIPES	OUTGOING PIPES	STRUCTURE DEPTH
SS-1	HEADWALL		P-1, 48" INV IN=867.38		
SS-2	CLEANOUT	966.71	P-2, 48" INV IN=950.71	P-1, 48" INV OUT=950.71	16.00
SS-3	13'X13' CATCH BASIN	1038.88	P-3, 48" INV IN=1015.00 P-18, 36" INV IN=1000.00	P-2, 48" INV OUT=980.00	58.88
SS-4	8' DIA. RISER	1039.88		P-3, 48" INV OUT=1016.00	23.88
SS-5	HEADWALL		P-4, 42" INV IN=1034.00		
SS-6	HEADWALL			P-4, 42" INV OUT=1036.00	
SS-7	HEADWALL		P-5, 36" INV IN=1035.33		
SS-8	CATCH BASIN	1055.04	P-6, 12" INV IN=1045.00	P-5, 36" INV OUT=1045.00	10.04
SS-9	3'X3' CATCH BASIN	1091.99		P-6, 12" INV OUT=1070.00	21.99
SS-10	HEADWALL		P-7, 36" INV IN=1185.00		
SS-11	6' DIA. RISER	1201.56		P-7, 36" INV OUT=1190.00	11.56
SS-12	HEADWALL		P-8, 24" INV IN=1214.00		
SS-13	3'X3' CATCH BASIN	1222.98	P-9, 18" INV IN=1219.00	P-8, 24" INV OUT=1218.00	4.98
SS-14	HEADWALL			P-9, 18" INV OUT=1223.90	
SS-15	HEADWALL		P-10, 42" INV IN=1215.16		
SS-16	4' X 4' CATCH BASIN	1224.50	P-12, 36" INV IN=1217.00 P-11, 18" INV IN=1218.00	P-10, 42" INV OUT=1217.00	7.50
SS-17	3'X3' CATCH BASIN	1226.53		P-11, 18" INV OUT=1220.00	6.53
SS-18	6'X6' CATCH BASIN	1224.81		P-12, 36" INV OUT=1218.00	6.81
SS-19	HEADWALL		P-13, 12" INV IN=1238.92		
SS-20	3'X3' CATCH BASIN	1244.49		P-13, 12" INV OUT=1240.00	4.49
SS-21	HEADWALL		P-14, 24" INV IN=1193.29		
SS-22	2' DIA. RISER	1247.57		P-14, 24" INV OUT=1241.00	6.57
SS-23	HEADWALL		P-15, 30" INV IN=1245.00		
SS-24	4'X4' CATCH BASIN	1258.06	P-16, 30" INV IN=1247.42	P-15, 30" INV OUT=1247.42	10.64
SS-25	4'X4' CATCH BASIN	1254.94		P-16, 30" INV OUT=1248.00	6.94
SS-26	HEADWALL			P-17, 36" INV OUT=1201.00	
SS-27	4'X4' CATCH BASIN	1229.00	P-17, 36" INV IN=1210.00		19.00
	CONSTRUCTION DRAWIN	NGS FOR PH	IASES 1, 2, 3, 4, AND/OR 5	DEVELOPMENT FOR UPDATES T	O THE STORM

- OUTLET INVERT ELEVATION -RIP-RAP LINED OUTLET

SECTION NOT TO SCALE

3 45 NOT TO SCALE CHANNEL SCHEDULE AREA RIPRAP CLASS/ CHANNEL DRAINAGE DOWNSTREAM L1 (FT) (ACRES) LOCATION GROUTED CLASS AREA ID DESCRIPTION STRUCTURE ID SOUTH 9.8 SOUTHEAST CHANNEL G-6 CH-1 SOUTH POND ٦ ٦ CH-2 2.4 R-6 EAST EAST OUTBOARD CHANNEL CH-1 1 | 2 EAST CH-3 2.5 EAST INBOARD CHANNEL R-5 CH-1 マ ٦ SOUTH CH-4 6.0 SOUTHWEST CHANNEL P-4 G-6 3 3 SOUTH CH-5 6.1 SOUTH INBOARD CHANNEL G-6 P-4 1 4 35.7 SOUTH CH-6 SOUTH MIDDLE SWALE R-7 P-4 2 1 4 1.4 SOUTH OUTBOARD CHANNEL SOUTH CH-7 SOUTH POND R-5 2.5 1 33.3 SOUTH CH-9 SOUTH POND G-6 SOUTH DOWNCHUTE CHANNEL 3 3 4 3.8 NORTH CH-10 NORTH OUTBOARD CHANNEL P-9 R-5 2 2 1 13.9 G-7 WEST CH-11 WEST DOWNCHUTE P-12 3 3 4 1.2 NORTH CH-12 NORTH OUTBOARD CHANNEL P-15 R-4 2 1 2.7 NORTH CH-13 NORTH OUTBOARD CHANNEL P-16 R-5 3 3 3.8 NORTH DOWNCHUTE CHANNEL G-6 NORTH CH-14 P-16 3 3 4 3.8 R-4 WEST CH-15 WEST INBOARD CHANNEL P-12 3 WEST INBOARD CHANNEL 4.5 R-4 WEST CH-16 P-12 3 3 WEST OUTBOARD CHANNEL -4.1

P-11

P-11

WEST POND

R-3

R-3

G-6

7

RIPRAP -

NOTE:

WEST

WEST

CH-17

CH-18

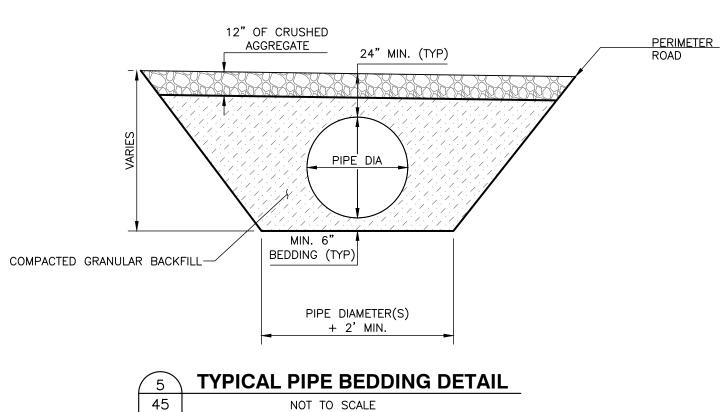
WEST CH-19

1. RIPRAP SIZES SPECIFIED IN THIS TABLE REPRESENT NATIONAL CRUSHED STONE ASSOCIATION RIPRAP CLASSIFICATIONS.

SOUTH WEST OUTBOARD CHANNEL -

NORTH

WEST SWALE


2. RIPRAP WITH "G" DESIGNATION IS TO BE GROUTED RIPRAP OR OTHER APPROVED HARD ARMOR EROSION CONTROL PRODUCT.

0.9

27.9

3. GROUTED RIPRAP AND/OR OTHER HARD ARMOUR EROSION CONTROL PRODUCTS WILL NOT REQUIRE BEDDING STONE.

4. REFER TO CONSTRUCTION DRAWINGS FOR PHASES 1, 2, 3, 4, AND/OR 5 DEVELOPMENT FOR UPDATES TO THE CHANNEL SCHEDULE.

CULVERT NAME	DIAMETER	PIPE MATERIAL	NO. OF BARRELS	INLET EL.	OUTLET EL.	LENGTH
P-1	48	RCP	1	950.71	867.38	257
P-2	48	RCP	1	980.00	950.71	251
P-3	48	HDPE	1	1016.00	1015.00	12
P-4	42	HDPE	2	1036.00	1034.00	92
P-5	36	HDPE	1	1045.00	1035.33	388
P-6	12	HDPE	1	1070.00	1045.00	147
P-7	36	HDPE	1	1190.00	1185.00	119
P-8	24	HDPE	1	1218.00	1214.00	183
P-9	18	HDPE	1	1223.90	1219.00	244
P-10	42	HDPE	1	1217.00	1215.16	106
P-11	18	HDPE	1	1220.00	1218.00	99
P-12	36	HDPE	1	1218.00	1217.00	68
P-13	12	HDPE	1	1240.00	1238.92	91
P-14	24	HDPE	1	1241.00	1193.29	214
P-15	30	HDPE	1	1247.42	1245.00	161
P-16	30	HDPE	1	1248.00	1247.42	57
P-17	36	HDPE	1	1201.00	1210.00	173
P-18	36	HDPE	1	1016.50	1000.00	330

. REFER TO CONSTRUCTION DRAWINGS FOR PHASES 1, 2, 3, 4, AND/OR 5 DEVELOPMENT FOR UPDATES TO THE PIPE SCHEDULE. \cdots

DAR CHECKED BY:

4274 Glendale-Milford Road - Cincinnati, OH 45242 Ph: 513.985.0226 · 800.759.5614 · Fax: 513.985.0228 www.cecinc.com

JSF APPROVED BY:

1

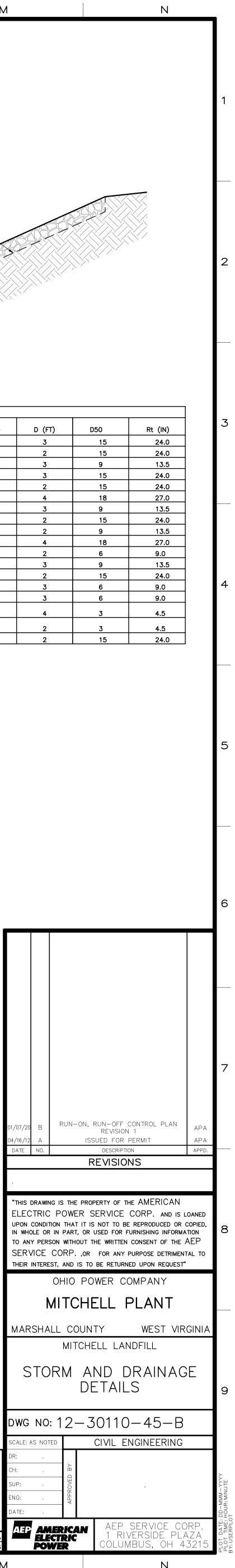
Μ

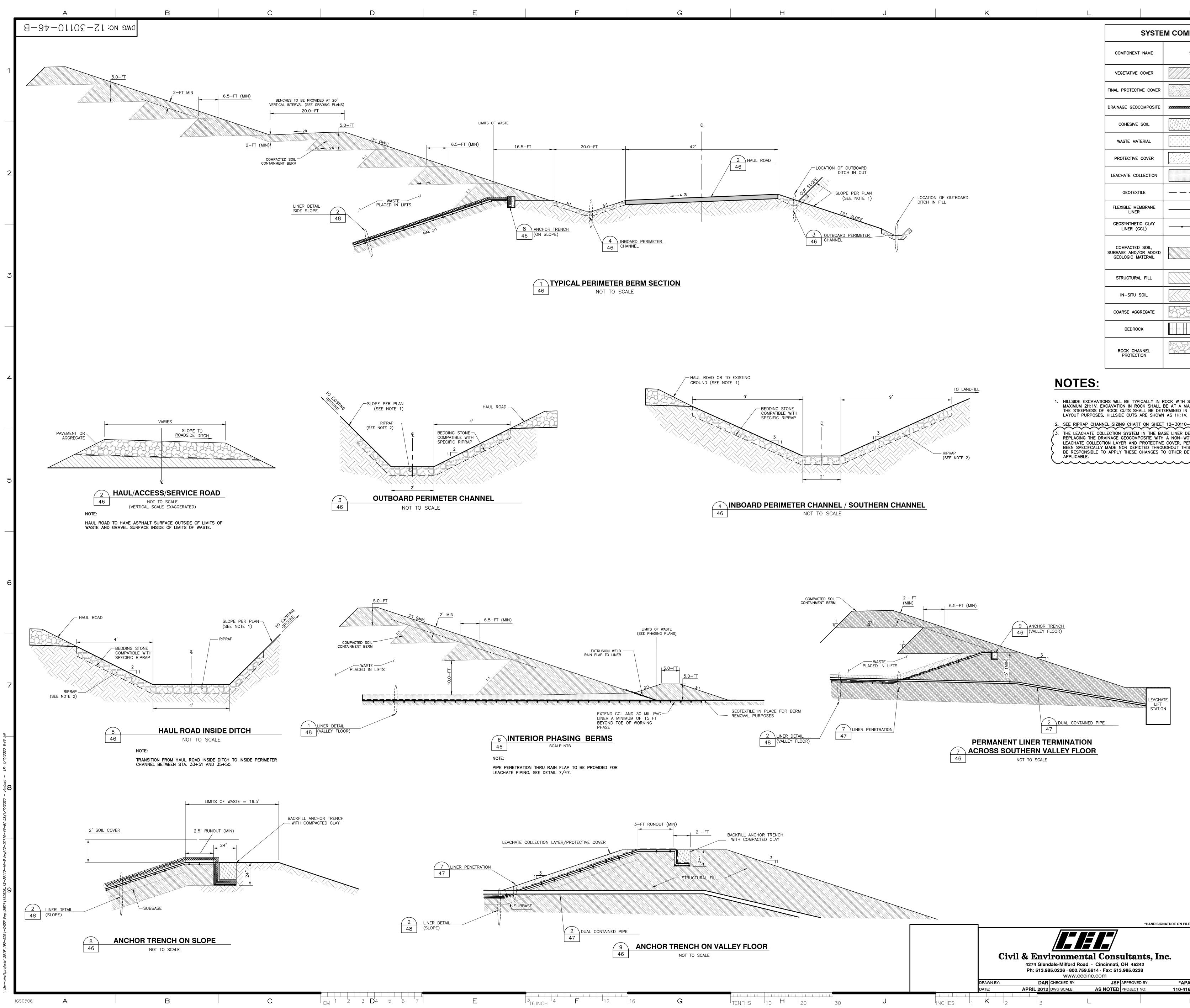
BEDDING STONE

COMPATIBLE WITH

SPECIFIC RIPRAP

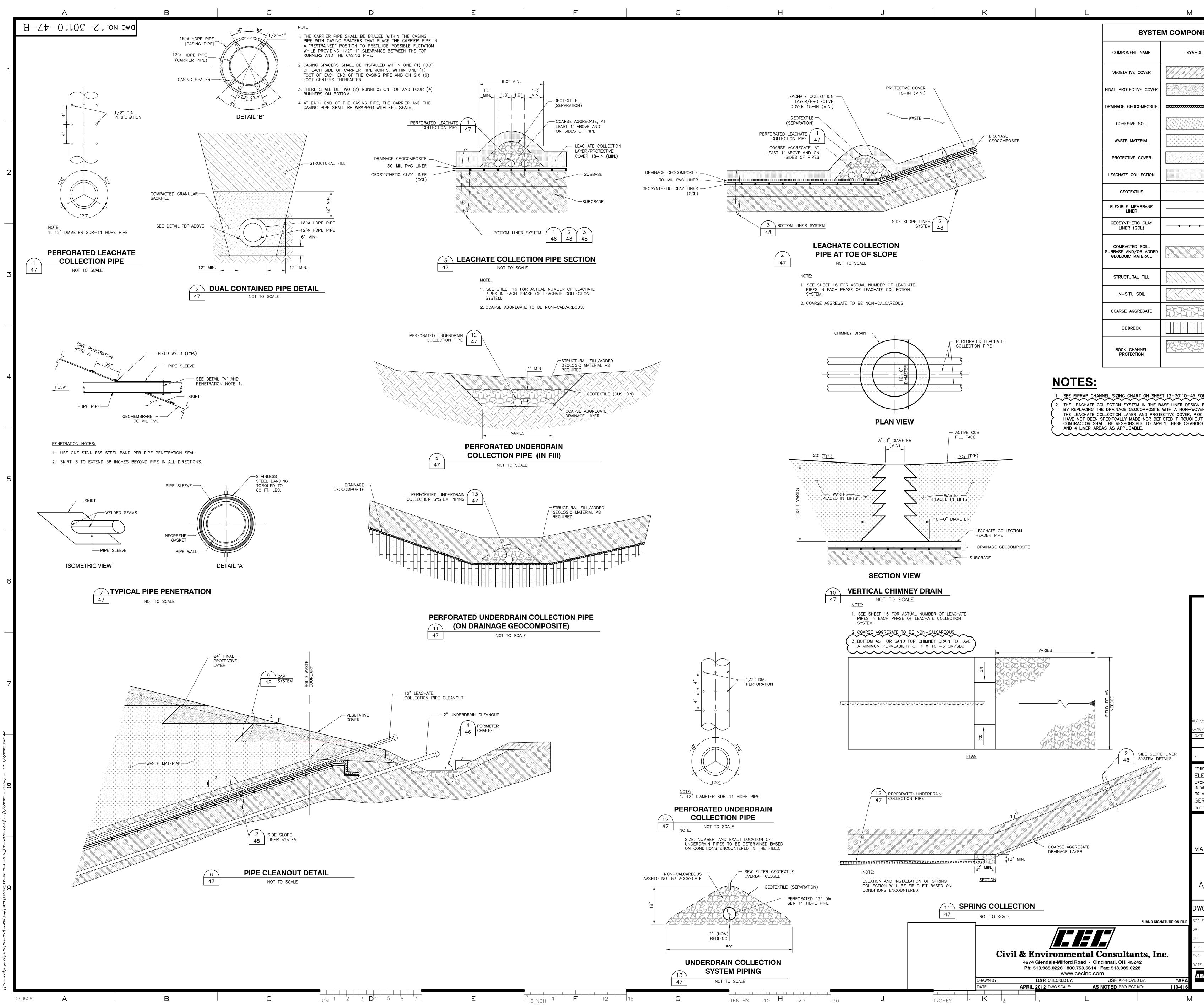
CHANNEL DETAILS

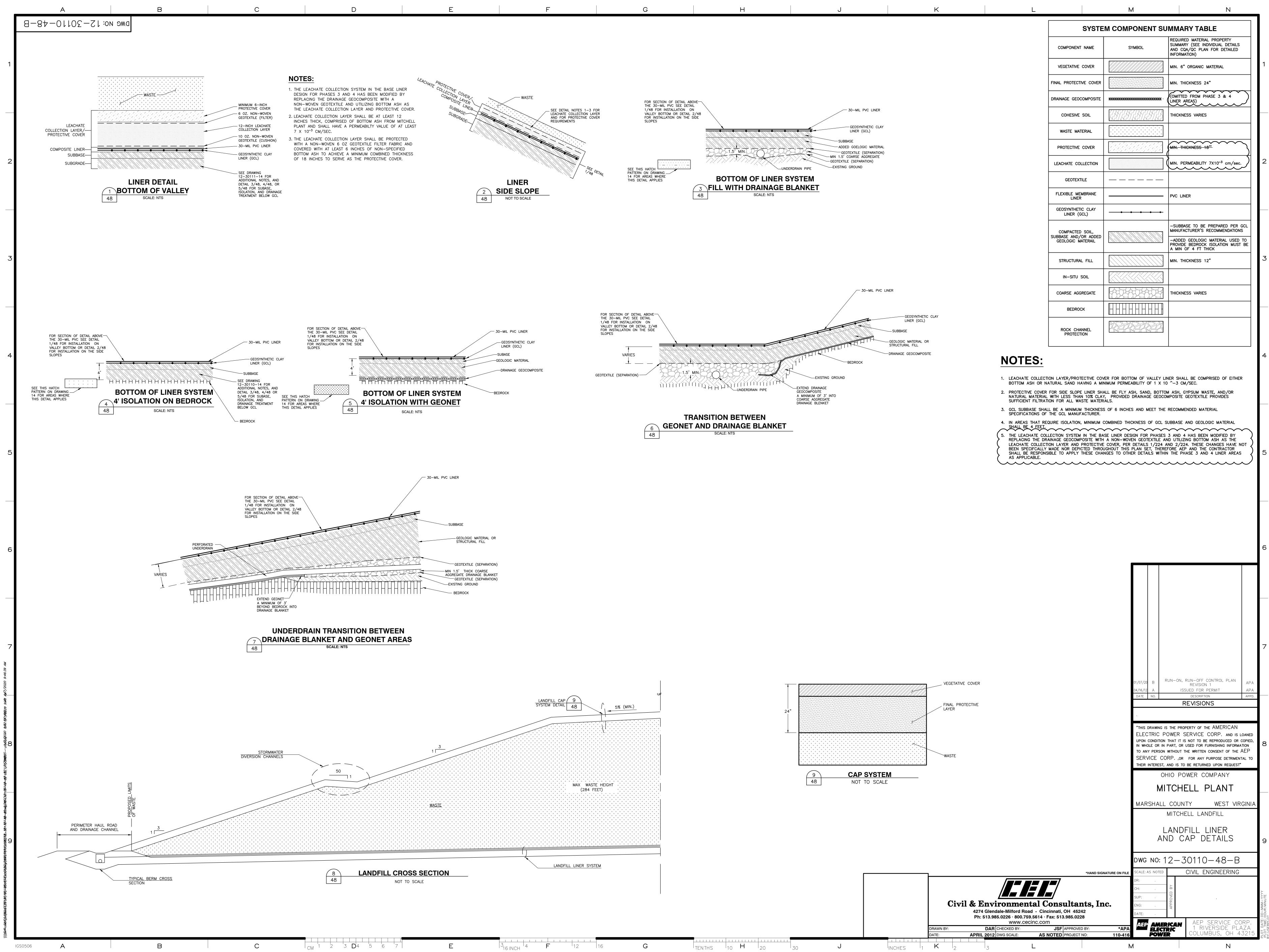

***HAND SIGNATURE ON FILE**


110-416

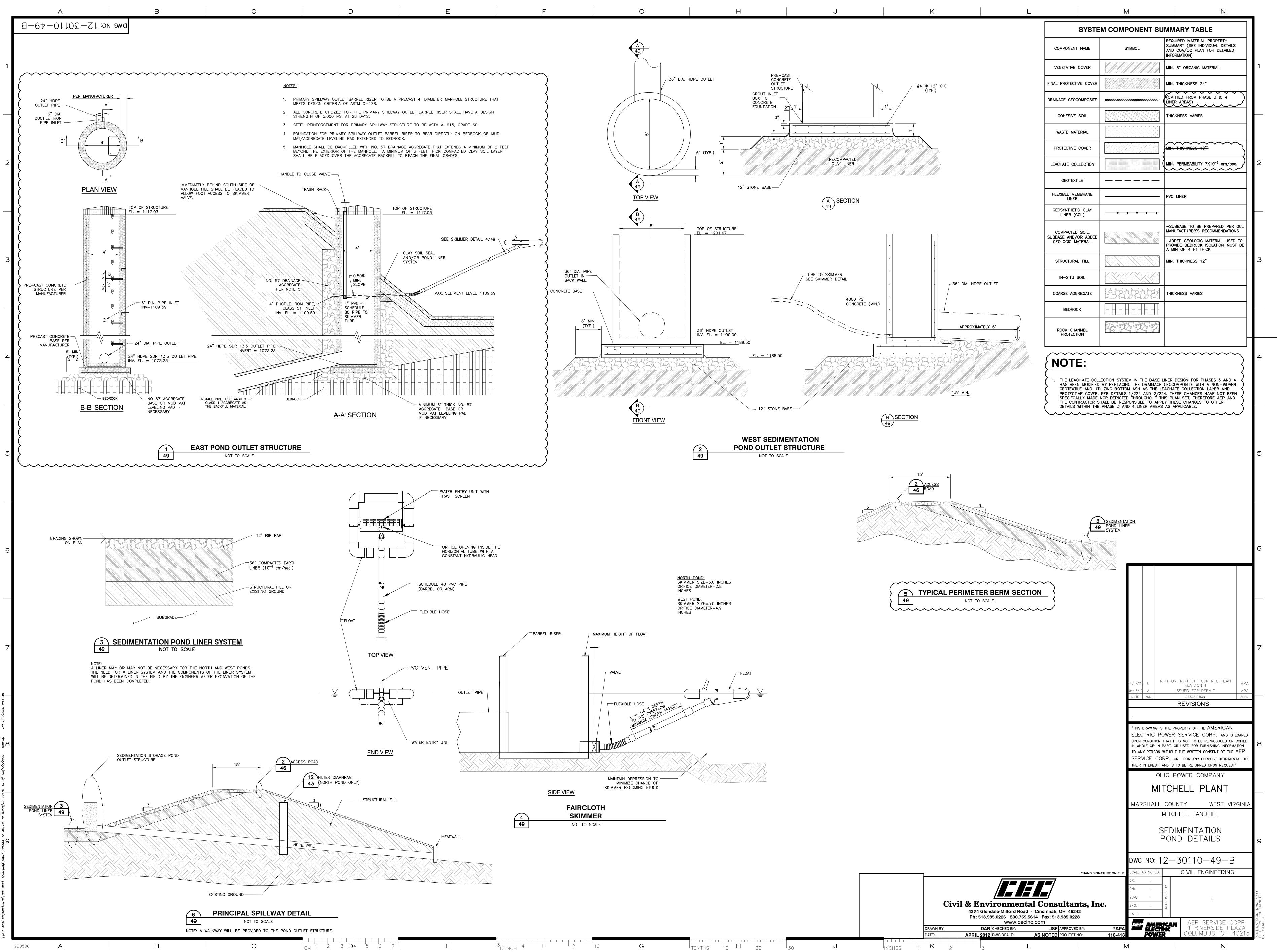
Μ

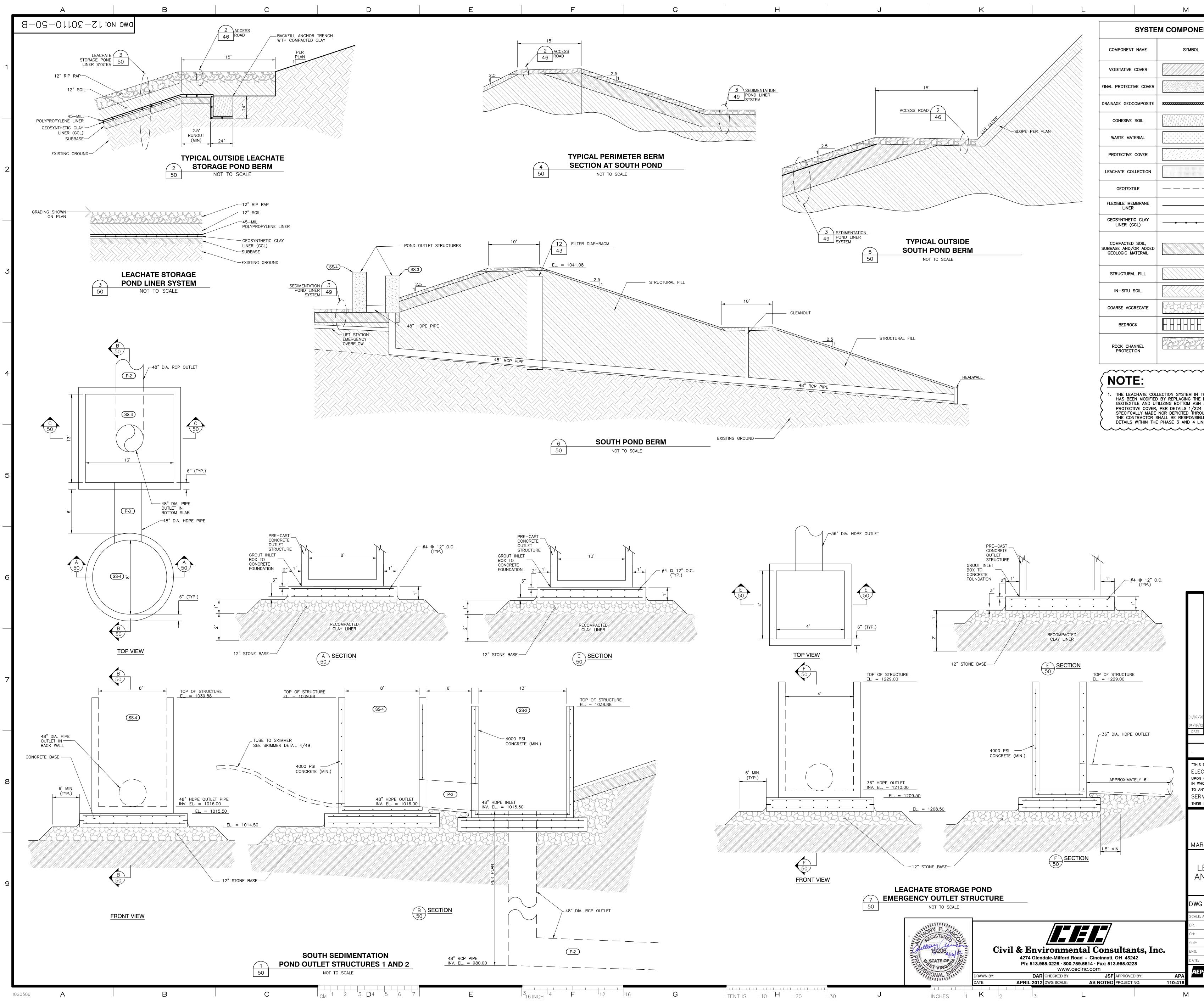
APRIL 2012 DWG SCALE: AS NOTED PROJECT NO: T_{INCHES} 1 K


J

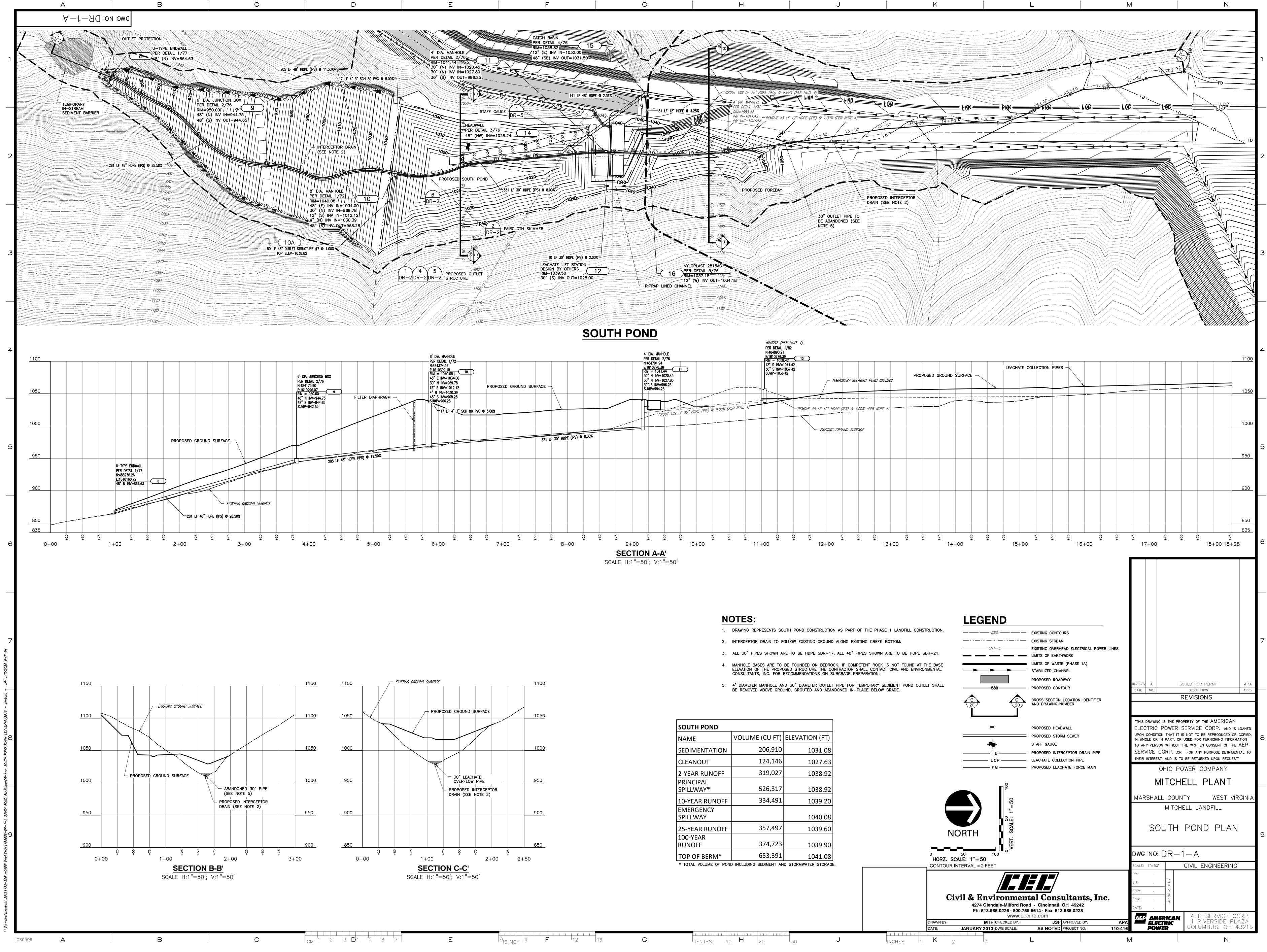


	M COMPONENT SU	
COMPONENT NAME	SYMBOL	REQUIRED MATERIAL PROPERTY SUMMARY (SEE INDIVIDUAL DETAILS AND CQA/QC PLAN FOR DETAILED INFORMATION)
VEGETATIVE COVER		MIN. 6" ORGANIC MATERIAL
INAL PROTECTIVE COVER		MIN. THICKNESS 24"
DRAINAGE GEOCOMPOSITE	<u>xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</u>	(OMITTED FROM PHASE 3 & 4 LINER AREAS)
COHESIVE SOIL		THICKNESS VARIES
WASTE MATERIAL	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
PROTECTIVE COVER		MIN. THICKNESS 18"
LEACHATE COLLECTION		MIN. PERMEABILITY 7X10 ⁻³ cm/sec.
GEOTEXTILE		
FLEXIBLE MEMBRANE LINER		PVC LINER
GEOSYNTHETIC CLAY LINER (GCL)		
		-SUBBASE TO BE PREPARED PER GCL MANUFACTURER'S RECOMMENDATIONS
COMPACTED SOIL, SUBBASE AND/OR ADDED GEOLOGIC MATERAIL		-ADDED GEOLOGIC MATERIAL USED TO PROVIDE BEDROCK ISOLATION MUST BE A MIN OF 4 FT THICK
STRUCTURAL FILL		MIN. THICKNESS 12"
IN-SITU SOIL		
COARSE AGGREGATE		THICKNESS VARIES
BEDROCK		
ROCK CHANNEL PROTECTION		
AVATION IN ROCK SHALL	BE AT A MAXIMUM 1H:2V, DEPI ERMINED IN THE FIELD BY A Q	TION. EXCAVATIONS IN SOIL SHALL BE AT A ENDING ON ROCK QUALITY AND CONDITION. UALIFIED GEOTECHNICAL ENGINEER. FOR
AVATION IN ROCK SHALL OCK CUTS SHALL BE DET ILLSIDE CUTS ARE SHOWN SIZING CHART ON SHEET CTION SYSTEM IN THE BA	BE AT A MAXIMUM 1H: 2V, DEPI ERMINED IN THE FIELD BY A Q I AS 1H: 1V. 12-30110-45 FOR RIPRAP SI SE LINER DESIGN FOR PHASES	ENDING ON ROCK QUALITY AND CONDITION. UALIFIED GEOTECHNICAL ENGINEER. FOR ZES. 3 AND 4 HAS BEEN MODIFIED BY
AVATION IN ROCK SHALL OCK CUTS SHALL BE DET ILLSIDE CUTS ARE SHOWN SIZING CHART ON SHEET CTION SYSTEM IN THE BA IAGE GEOCOMPOSITE WITH N LAYER AND PROTECTIVE ADE NOR DEPICTED THROU	BE AT A MAXIMUM 1H: 2V, DEPI ERMINED IN THE FIELD BY A Q I AS 1H: 1V. SE LINER DESIGN FOR PHASES A NON-WOVEN GEOTEXTILE AI COVER, PER DETAILS 1/224 A JGHOUT THIS PLAN SET, THERE	ENDING ON ROCK QUALITY AND CONDITION. UALIFIED GEOTECHNICAL ENGINEER. FOR
AVATION IN ROCK SHALL OCK CUTS SHALL BE DET ILLSIDE CUTS ARE SHOWN SIZING CHART ON SHEET CTION SYSTEM IN THE BA IAGE GEOCOMPOSITE WITH N LAYER AND PROTECTIVE ADE NOR DEPICTED THROU	BE AT A MAXIMUM 1H: 2V, DEPI ERMINED IN THE FIELD BY A Q I AS 1H: 1V. SE LINER DESIGN FOR PHASES A NON-WOVEN GEOTEXTILE AI COVER, PER DETAILS 1/224 A JGHOUT THIS PLAN SET, THERE	ENDING ON ROCK QUALITY AND CONDITION. UALIFIED GEOTECHNICAL ENGINEER. FOR ZES. 3 AND 4 HAS BEEN MODIFIED BY ND UTILIZING BOTTOM ASH AS THE AND 2/224. THESE CHANGES HAVE NOT FORE AEP AND THE CONTRACTOR SHALL
AVATION IN ROCK SHALL OCK CUTS SHALL BE DET ILLSIDE CUTS ARE SHOWN SIZING CHART ON SHEET CTION SYSTEM IN THE BA IAGE GEOCOMPOSITE WITH N LAYER AND PROTECTIVE ADE NOR DEPICTED THROU	BE AT A MAXIMUM 1H: 2V, DEPI ERMINED IN THE FIELD BY A Q I AS 1H: 1V. SE LINER DESIGN FOR PHASES A NON-WOVEN GEOTEXTILE AI COVER, PER DETAILS 1/224 A JGHOUT THIS PLAN SET, THERE	ENDING ON ROCK QUALITY AND CONDITION. UALIFIED GEOTECHNICAL ENGINEER. FOR ZES. 3 AND 4 HAS BEEN MODIFIED BY ND UTILIZING BOTTOM ASH AS THE AND 2/224. THESE CHANGES HAVE NOT FORE AEP AND THE CONTRACTOR SHALL
AVATION IN ROCK SHALL OCK CUTS SHALL BE DET ILLSIDE CUTS ARE SHOWN SIZING CHART ON SHEET CTION SYSTEM IN THE BA IAGE GEOCOMPOSITE WITH N LAYER AND PROTECTIVE ADE NOR DEPICTED THROU	BE AT A MAXIMUM 1H: 2V, DEPI ERMINED IN THE FIELD BY A Q I AS 1H: 1V. SE LINER DESIGN FOR PHASES A NON-WOVEN GEOTEXTILE AI COVER, PER DETAILS 1/224 A JGHOUT THIS PLAN SET, THERE	ENDING ON ROCK QUALITY AND CONDITION. UALIFIED GEOTECHNICAL ENGINEER. FOR ZES. 3 AND 4 HAS BEEN MODIFIED BY ND UTILIZING BOTTOM ASH AS THE AND 2/224. THESE CHANGES HAVE NOT FORE AEP AND THE CONTRACTOR SHALL
AVATION IN ROCK SHALL OCK CUTS SHALL BE DET ILLSIDE CUTS ARE SHOWN SIZING CHART ON SHEET CTION SYSTEM IN THE BA IAGE GEOCOMPOSITE WITH N LAYER AND PROTECTIVE ADE NOR DEPICTED THROU	BE AT A MAXIMUM 1H: 2V, DEPI ERMINED IN THE FIELD BY A Q I AS 1H: 1V. SE LINER DESIGN FOR PHASES A NON-WOVEN GEOTEXTILE AI COVER, PER DETAILS 1/224 A JGHOUT THIS PLAN SET, THERE	ENDING ON ROCK QUALITY AND CONDITION. UALIFIED GEOTECHNICAL ENGINEER. FOR ZES. 3 AND 4 HAS BEEN MODIFIED BY ND UTILIZING BOTTOM ASH AS THE AND 2/224. THESE CHANGES HAVE NOT FORE AEP AND THE CONTRACTOR SHALL
AVATION IN ROCK SHALL OCK CUTS SHALL BE DET ILLSIDE CUTS ARE SHOWN SIZING CHART ON SHEET CTION SYSTEM IN THE BA IAGE GEOCOMPOSITE WITH N LAYER AND PROTECTIVE ADE NOR DEPICTED THROU	BE AT A MAXIMUM 1H: 2V, DEPI ERMINED IN THE FIELD BY A Q I AS 1H: 1V. SE LINER DESIGN FOR PHASES A NON-WOVEN GEOTEXTILE AI COVER, PER DETAILS 1/224 A JGHOUT THIS PLAN SET, THERE	ENDING ON ROCK QUALITY AND CONDITION. UALIFIED GEOTECHNICAL ENGINEER. FOR ZES. 3 AND 4 HAS BEEN MODIFIED BY ND UTILIZING BOTTOM ASH AS THE AND 2/224. THESE CHANGES HAVE NOT FORE AEP AND THE CONTRACTOR SHALL
AVATION IN ROCK SHALL OCK CUTS SHALL BE DET ILLSIDE CUTS ARE SHOWN SIZING CHART ON SHEET CTION SYSTEM IN THE BA IAGE GEOCOMPOSITE WITH N LAYER AND PROTECTIVE ADE NOR DEPICTED THROU	BE AT A MAXIMUM 1H: 2V, DEPI ERMINED IN THE FIELD BY A Q I AS 1H: 1V. SE LINER DESIGN FOR PHASES A NON-WOVEN GEOTEXTILE AI COVER, PER DETAILS 1/224 A JGHOUT THIS PLAN SET, THERE	ENDING ON ROCK QUALITY AND CONDITION. UALIFIED GEOTECHNICAL ENGINEER. FOR ZES. 3 AND 4 HAS BEEN MODIFIED BY ND UTILIZING BOTTOM ASH AS THE AND 2/224. THESE CHANGES HAVE NOT FORE AEP AND THE CONTRACTOR SHALL

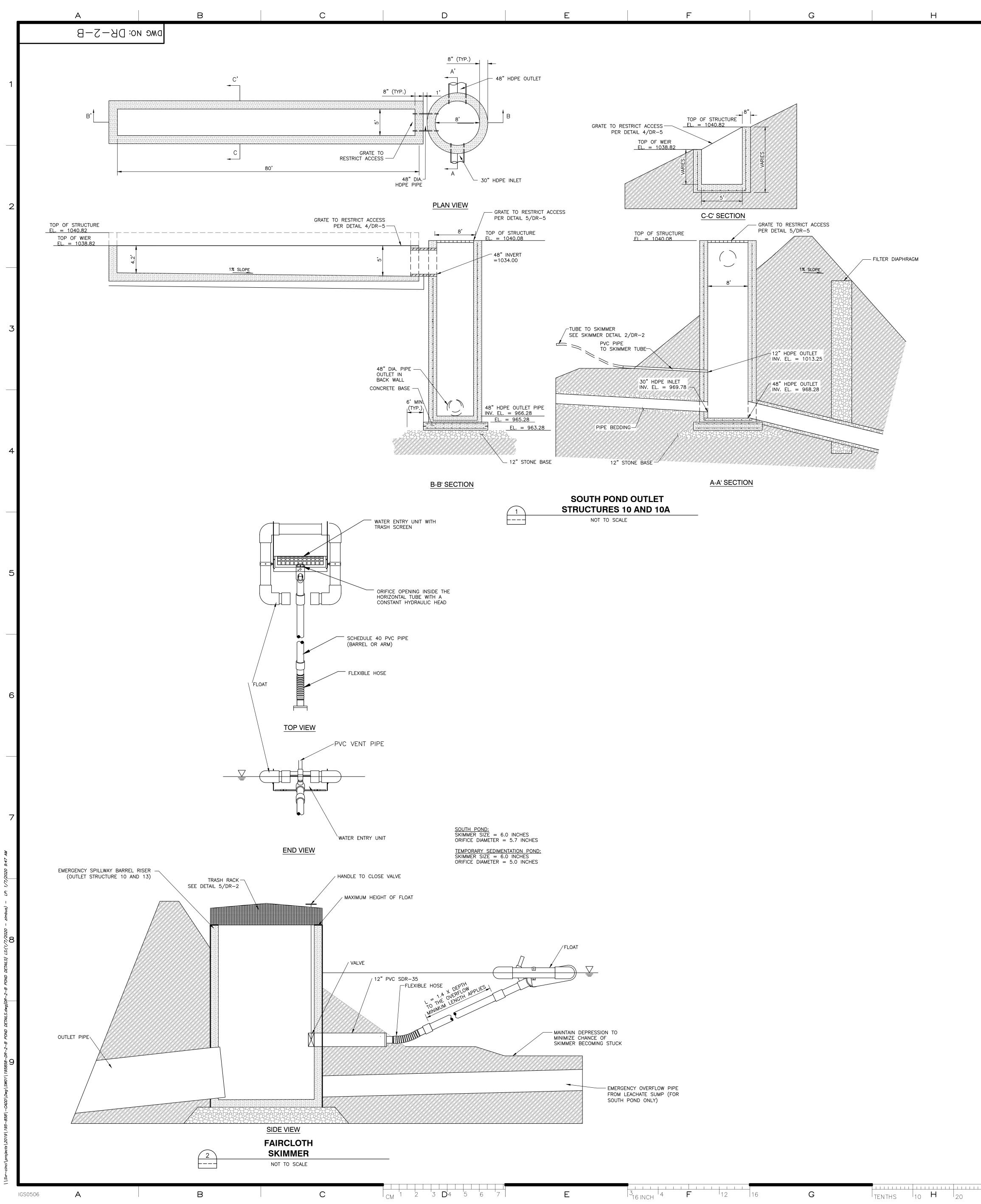

				7
/20 B RUN [.] /12 A	,	RUN-OFF CONTROL PLAN REVISION 1 SUED FOR PERMIT	APA APA	
E NO.		DESCRIPTION	APPD.	
	F	EVISIONS		
ECTRIC POW IN CONDITION THA WHOLE OR IN PAR ANY PERSON WITH RVICE CORP IR INTEREST, AND	ER S T IT IS T, OR HOUT T , OR IS TO	PERTY OF THE AMERICAN SERVICE CORP. AND IS L S NOT TO BE REPRODUCED OR O USED FOR FURNISHING INFORMA HE WRITTEN CONSENT OF THE / FOR ANY PURPOSE DETRIMENT BE RETURNED UPON REQUEST"	COPIED, TION AEP	8
		WER COMPANY		
		ELL PLANT		
RSHALL C			GINIA	
PICAL	PEF NEF	ELL LANDFILL RIMETER SECT R TERMINATIO DETAILS		9
g no: 12		50110-46-B		
E: AS NOTED	-	CIVIL ENGINEERING		
		·		DATE: DD-MMM-YYYY TIME: HOUR: MINUTE
AMERIC ELECTRIC POWER	AN	AEP SERVICE CC 1 RIVERSIDE PLA COLUMBUS, OH 4.		PLOT DATE: I
		Ν		



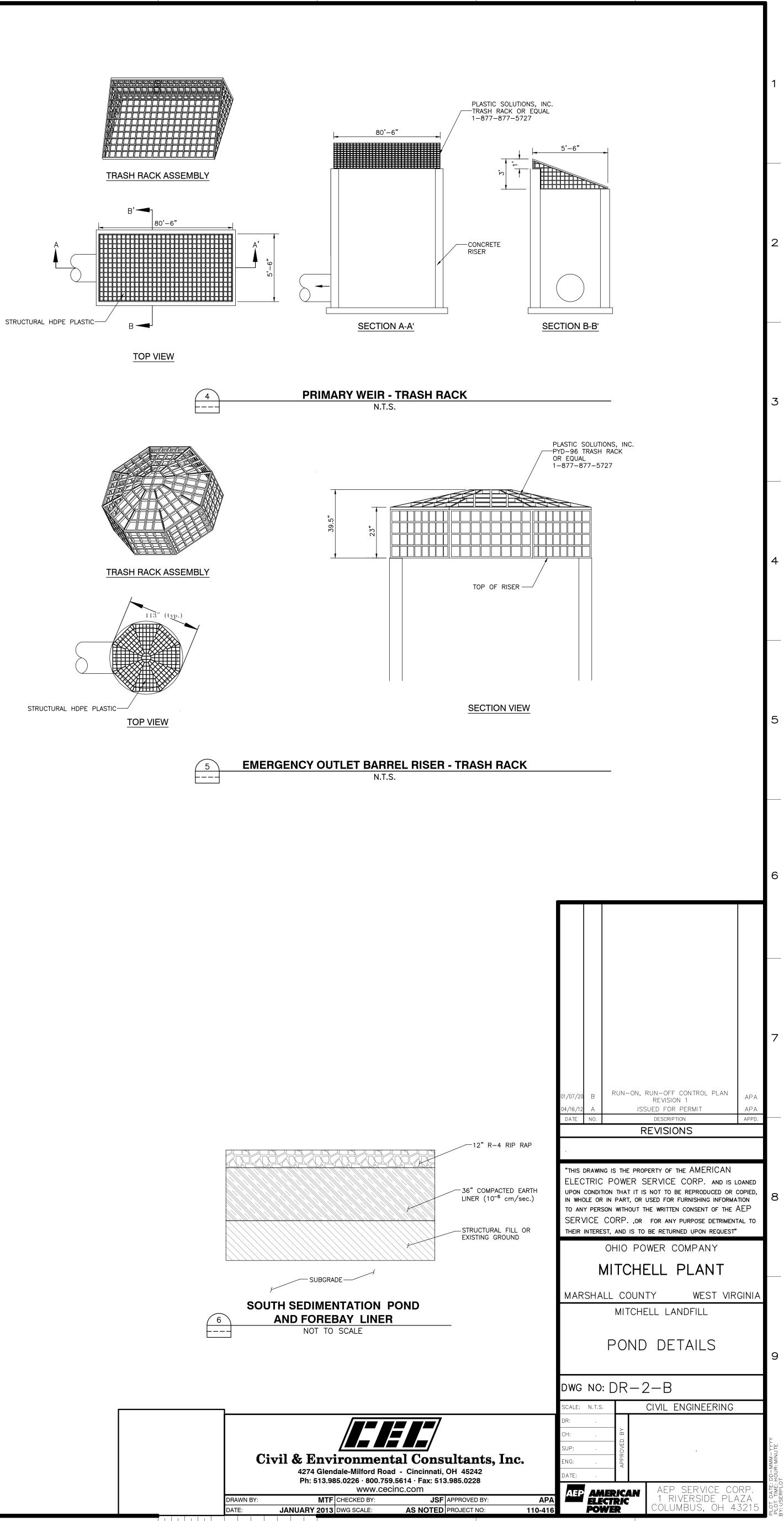
	N	
ENT SU		
-	REQUIRED MATERIAL PROPERTY SUMMARY (SEE INDIVIDUAL DETAILS AND CQA/QC PLAN FOR DETAILED INFORMATION)	
	MIN. 6" ORGANIC MATERIAL	1
	MIN. THICKNESS 24"	
××××××××××××××××××××××××××××××××××××××	(OMITTED FROM PHASE 3 & 4 LINER AREAS)	
	THICKNESS VARIES	
+ 		
	MIN. THICKNESS 18"	2
(MIN. PERMEABILITY 7X10 ⁻³ cm/sec.	2
	PVC LINER	
- _		
	-SUBBASE TO BE PREPARED PER GCL MANUFACTURER'S RECOMMENDATIONS	
	-ADDED GEOLOGIC MATERIAL USED TO PROVIDE BEDROCK ISOLATION MUST BE A MIN OF 4 FT THICK	
	MIN. THICKNESS 12"	3
	THICKNESS VARIES	
		4
IN GEOTEXTIL	3 AND 4 HAS BEEN MODIFIED E AND UTILIZING BOTTOM ASH AS	
T THIS PLAN	224 AND 2/224. THESE CHANGES SET, THEREFORE AEP AND THE DETAILS WITHIN THE PHASE 3	
~~~~		
		5
		Ũ
		6
		-
		7
/20 B RI	UN-ON, RUN-OFF CONTROL PLAN AP	A
/12 A E NO.	ISSUED FOR PERMIT AP DESCRIPTION APP	
	REVISIONS	-
	THE PROPERTY OF THE AMERICAN OWER SERVICE CORP. and is loaned	
ON CONDITION . WHOLE OR IN F	THAT IT IS NOT TO BE REPRODUCED OR COPIEL PART, OR USED FOR FURNISHING INFORMATION WITHOUT THE WRITTEN CONSENT OF THE AEP	
RVICE COP	RP. ,or for any purpose detrimental to and is to be returned upon request"	C
	NO POWER COMPANY	
	TCHELL PLANT	•
	COUNTY WEST VIRGINI	<u>A</u>
	HATE COLLECTION	
and U	NDERDRAIN DETAILS	9
	2-30110-47-B	
E: AS NOTED	CIVIL ENGINEERING	-
	APPROVED B.	M-YYY iNUTE
: .		E: DD-MMM-ΥΥ E: HOUR: MINUTE LOT
ELECTR POWE	AEP SERVICE CORP. 1 RIVERSIDE PLAZA COLUMBUS, OH 4321	




		VEGETATIVE COVER
L" %		FINAL PROTECTIVE LAYER
	r	
- - - - - -		WASTE
_	9 CAP SYSTEM 48 NOT TO SCALE	

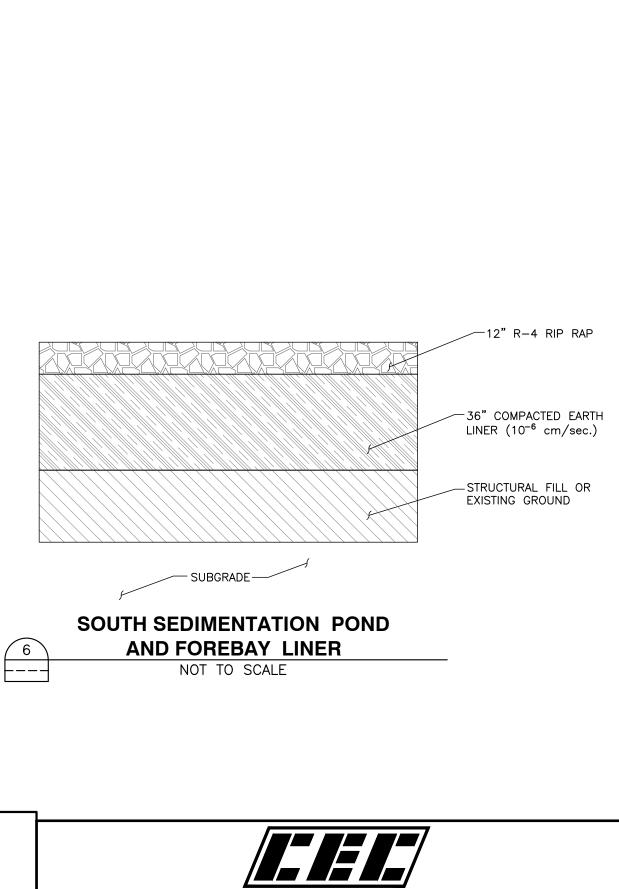






	N	
FNT SU	MMARY TABLE	
	REQUIRED MATERIAL PROPERTY	
	SUMMARY (SEE INDIVIDUAL DETAILS AND CQA/QC PLAN FOR DETAILED INFORMATION)	
	MIN. 6" ORGANIC MATERIAL	1
	MIN. THICKNESS 24"	
	(OMITTED FROM PHASE 3 & 4	
	LINER AREAS)	
	THICKNESS VARIES	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	MIN. THICKNESS 18"	
	MIN. PERMEABILITY 7X10 ⁻³ cm/sec.	2
\		
	PVC LINER	
	-SUBBASE TO BE PREPARED PER GCL MANUFACTURER'S RECOMMENDATIONS	
	-ADDED GEOLOGIC MATERIAL USED TO PROVIDE BEDROCK ISOLATION MUST BE	
	A MIN OF 4 FT THICK	3
	MIN. THICKNESS 12"	5
	THICKNESS VARIES	
$\sim$		4
THE BASE I	INER DESIGN FOR PHASES 3 AND 4	
E DRAINAGE H AS THE LE	GEOCOMPOSITE WITH A NON-WOVEN ACHATE COLLECTION LAYER AND 4. THESE CHANGES HAVE NOT BEEN	
OUGHOUT TH BLE TO APPI	IIS PLAN SET, THEREFORE AEP AND Y THESE CHANGES TO OTHER AS APPLICABLE.	
$\sim$		
		5
		6
		7
	JN-ON, RUN-OFF CONTROL PLAN	
/12 A	REVISION 1 APA ISSUED FOR PERMIT APA	
E NO.	DESCRIPTION APPD.	
	THE PROPERTY OF THE AMERICAN OWER SERVICE CORP. and is loaned	
N CONDITION	THAT IT IS NOT TO BE REPRODUCED OR COPIED, PART, OR USED FOR FURNISHING INFORMATION	8
	WITHOUT THE WRITTEN CONSENT OF THE AEP RP. ,or for any purpose detrimental to	
	ND IS TO BE RETURNED UPON REQUEST"	
	IO POWER COMPANY	
MI	TCHELL PLANT	-
	COUNTY WEST VIRGINIA	
	ATE STORAGE POND	
	EDIMENTATION POND	
	DETAILS	9
g no: 1	2-30110-50-B	
E: AS NOTED	CIVIL ENGINEERING	
	ΒΥ	<b>~</b>
	APPROVED .	IM-YYY 1INUTE
	₫ ₹	DATE: DD-MMM-YYYY TIME: HOUR: MINUTE SERPLOT
	CAN AEP SERVICE CORP. 1 RIVERSIDE PLAZA	PLOT DATE: C PLOT TIME: H BY: USERPLOT
POWE	COLUMBUS, OH 43215	PLO' PLO' BY: U
	N	

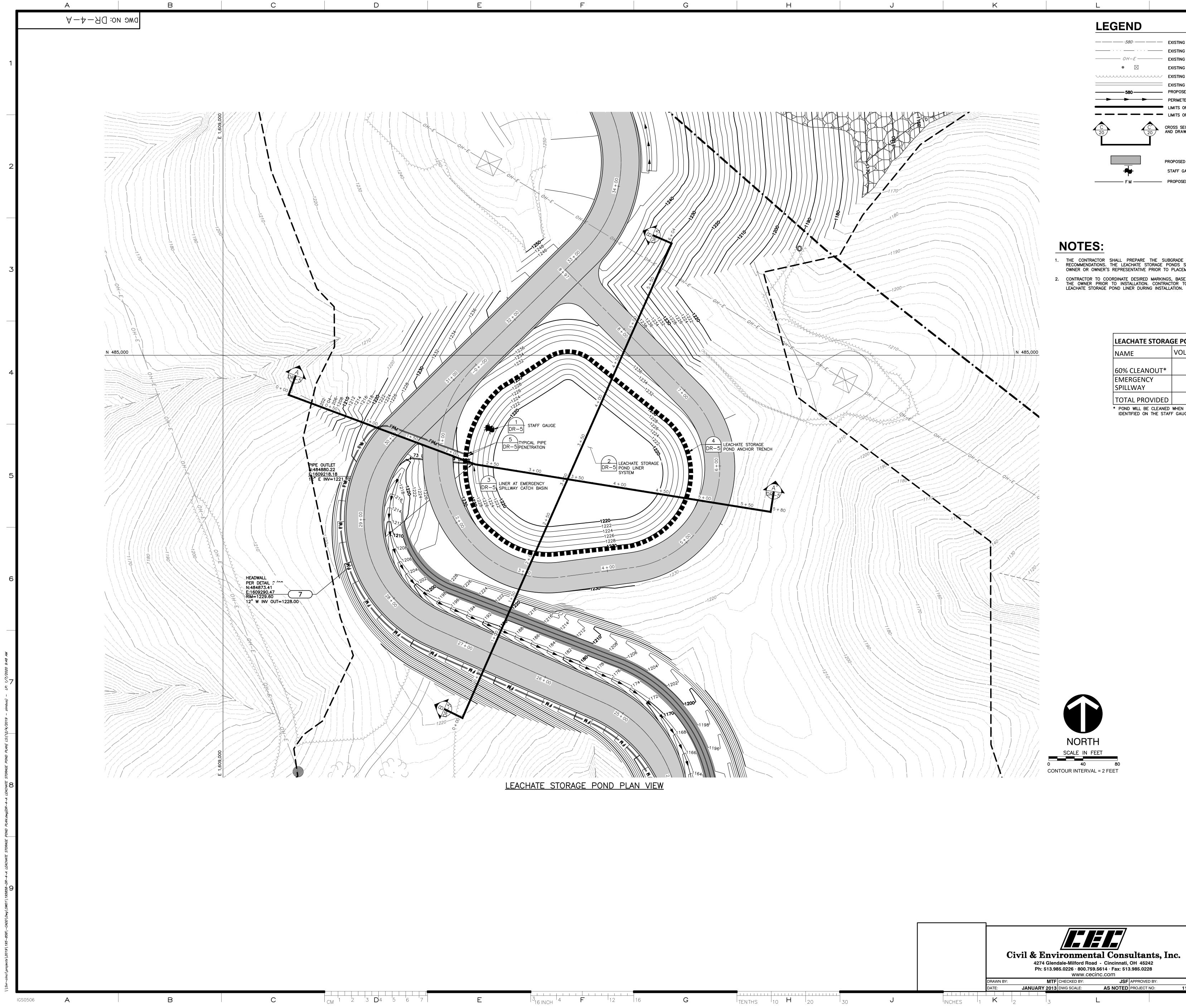


SOUTH POND					
NAME	VOLUME (CU FT)	ELEVATION (FT)			
SEDIMENTATION	206,910	1031.08			
CLEANOUT	124,146	1027.63			
2-YEAR RUNOFF	319,027	1038.92			
PRINCIPAL SPILLWAY*	526,317	1038.92			
10-YEAR RUNOFF	334,491	1039.20			
EMERGENCY SPILLWAY		1040.08			
25-YEAR RUNOFF	357,497	1039.60			
100-YEAR RUNOFF	374,723	1039.90			
TOP OF BERM*	653,391	1041.08			
* TOTAL VOLUME OF POND INCLUDING SEDIMENT AND STORMWATER STORAGE					



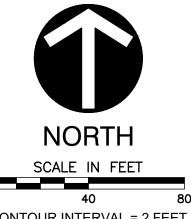

	$\begin{pmatrix} 1 \end{pmatrix}$	SOUTH POND OUTLET STRUCTURES 10 AND 10A
WITH		NOT TO SCALE

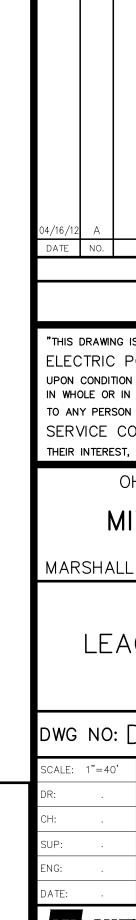








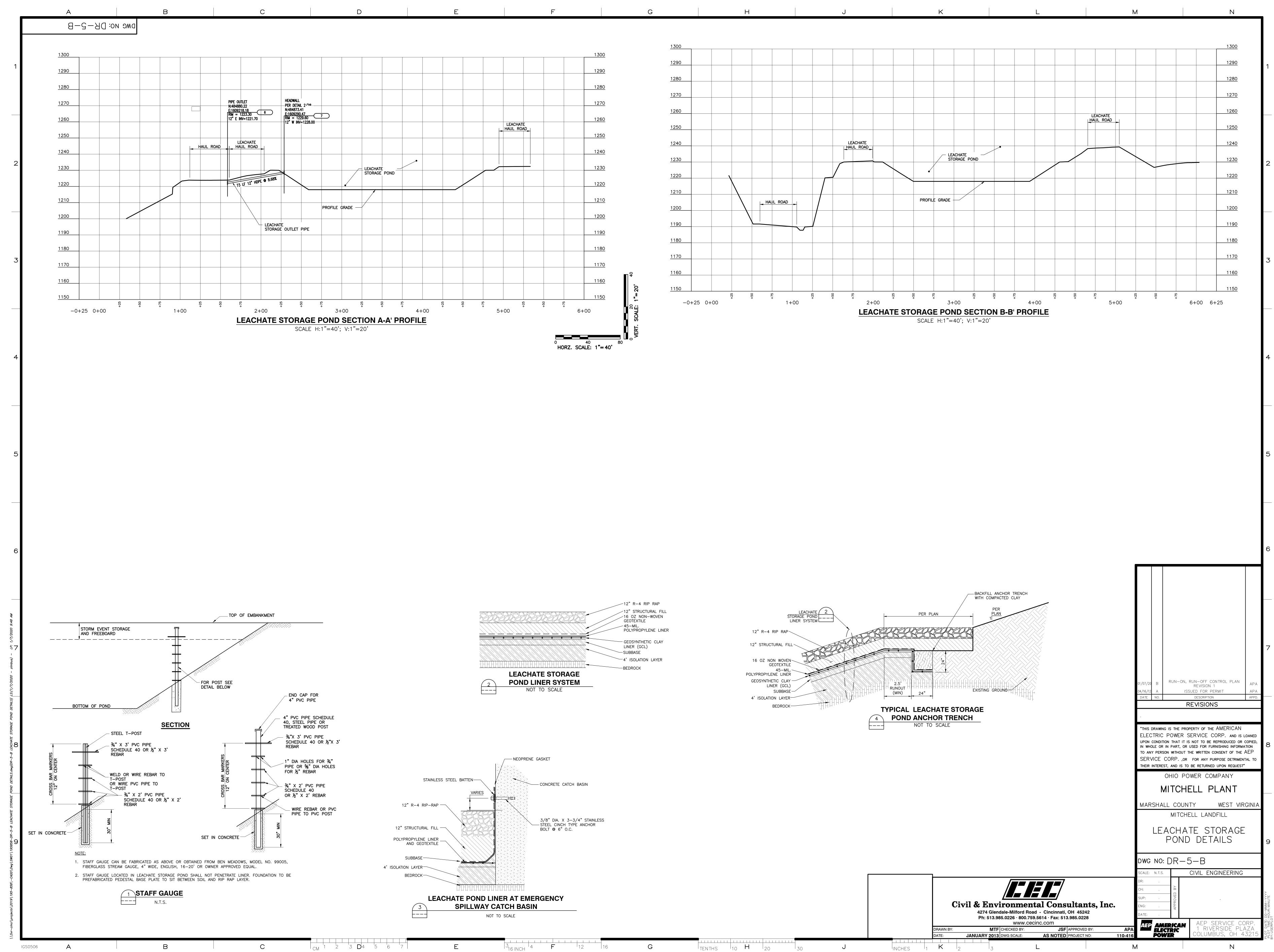


Ν


Μ



L	М
LEGEND	
	EXISTING ELECTRICAL PO
	PROPOSED HAUL ROAD STAFF GAUGE PROPOSED LEACHATE FO

	М		N
GEND			
	<ul> <li>EXISTING CONTOURS</li> <li>EXISTING STREAM</li> <li>EXISTING OVERHEAD ELECTR EXISTING ELECTRICAL POLE</li> <li>EXISTING VEGETATION</li> <li>EXISTING ROADS</li> <li>PROPOSED CONTOUR</li> <li>PERIMETER DRAINAGE SWAL</li> <li>LIMITS OF WASTE</li> <li>LIMITS OF DISTURBANCE</li> <li>CROSS SECTION LOCATION ID AND DRAWING NUMBER</li> </ul>	AND TOWER	1
F M	PROPOSED HAUL ROAD STAFF GAUGE - PROPOSED LEACHATE FORC	E MAIN	2
THE LEACHATE STORAG REPRESENTATIVE PRIOR	SUBGRADE PER THE GEOS E PONDS SUBGRADE SHALL TO PLACEMENT OF THE LINE KINGS, BASE TYPE, AND EXAC TRACTOR TO ENSURE BASE STALLATION.	BE CERTIFIED AND APPROV ER SYSTEM.	ED BY THE
LEACHATE STO		) ELEVATION (FT)	
60% CLEANOU	T* 190,85	1 1225.68	2
EMERGENCY SPILLWAY TOTAL PROVID	318,08 ED 361,21		
			Ę
			ε
			FRMIT APA
	04/16/12 DATE	A ISSUED FOR P NO. DESCRIPTION REVISION	N APPD.
80 EET	ELECT UPON CO IN WHOLI TO ANY SERVIO	RAWING IS THE PROPERTY OF THE RIC POWER SERVICE ( DNDITION THAT IT IS NOT TO BE E OR IN PART, OR USED FOR FU PERSON WITHOUT THE WRITTEN CE CORP., OR FOR ANY P TEREST, AND IS TO BE RETURNE OHIO POWER CC	CORP. AND IS LOANED REPRODUCED OR COPIED, IRNISHING INFORMATION CONSENT OF THE AEP URPOSE DETRIMENTAL TO D UPON REQUEST"
	MARS	MITCHELL F	
	L	MITCHELL LAN	






LEACHATE STORAGE POND PLAN DWG NO: DR - 4 - ACIVIL ENGINEERING

a

APA APA 110-416
AEP SERVICE CORP 1 RIVERSIDE PLAZA COLUMBUS, OH 4321 Ν

