Annual Groundwater Monitoring Report

Appalachian Power Company Mountaineer Plant Bottom Ash Pond CCR Management Unit Letart, WV

January 2020

Prepared by: American Electric Power Service Corporation 1 Riverside Plaza Columbus, Ohio 43215

An AEP Company

BOUNDLESS ENERGY[™]

Table of Contents

Page

I.	Overview1
II.	Groundwater Monitoring Well Locations and Identification Numbers
III.	Monitoring Wells Installed or Decommissioned
IV.	Groundwater Quality Data and Static Water Elevation Data and Flow Rate
V.	Groundwater Quality Data Statistical Analysis
VI.	Alternative Source Demonstrations
VII.	Discussion About Transition Between Monitoring Requirements or Alternate Monitoring Frequency
VIII.	Other Information Required
IX.	Description of Any Problems Encountered in 2019 and Actions Taken
X.	A Projection of Key Activities for the Upcoming Year

Appendix 1 – GW Quality Data, GW Flow Directions, GW Flow Rates

- Appendix 2 GW Quality Data Statistical Analyses
- Appendix 3 Alternative Source Demonstrations
- Appendix 4 Notices for Monitoring Program Transitions
- Appendix 5 Well Installation / Decommissioning Logs

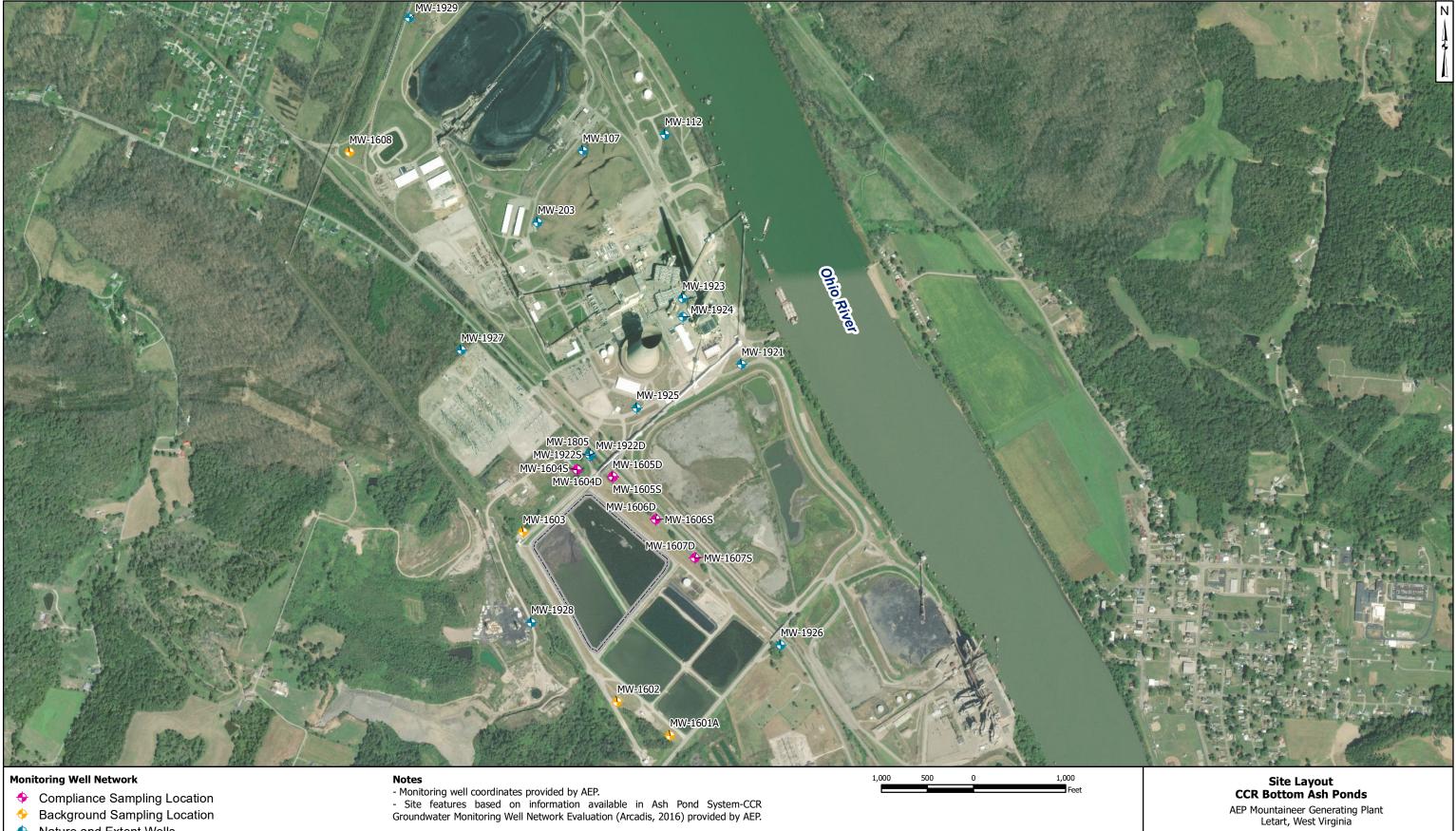
I. <u>Overview</u>

This *Annual Groundwater Monitoring and Corrective Action Report* (Report) has been prepared to report the status of activities for the preceding year for the bottom ash pond CCR unit at Appalachian Power Company's, a wholly-owned subsidiary of American Electric Power Company (AEP), Mountaineer Power Plant. The USEPA's CCR rules require that the Annual Groundwater Monitoring and Corrective Action Report be posted to the operating record for the preceding year no later than January 31.

In general, the following activities were completed in 2019:

- Groundwater samples were collected and analyzed for Appendix III and Appendix IV constituents, as specified in 40 CFR 257.95 *et seq.* and AEP's *Groundwater Sampling and Analysis Plan*;
- Groundwater was sampled in April, June, and September 2019 as part of the Assessment Monitoring Program requirements;
- Groundwater data underwent various validation tests, including tests for completeness, valid values, transcription errors, and consistent units;
- Notification of a statistically significant level (SSL) of constituent above groundwater protection standard (GWPS) was completed;
- Assessment of Corrective Action was initiated, an Assessment of Corrective Measures report was completed, and a corrective action public meeting was held. Evaluation of selection of remedy is ongoing.
- Monitoring wells were installed and developed as part of the Nature and Extent Study and Assessment of Corrective Measures around the CCR unit in accordance with the requirements of 40 CFR 257.95;

The major components of this annual report, to the extent applicable at this time, are presented in sections that follow:


- A map, aerial photograph or a drawing showing the CCR management unit(s), all groundwater monitoring wells and monitoring well identification numbers.
- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a statement as to why that happened.
- All of the monitoring data collected, including the rate and direction of groundwater flow, plus a summary showing the number of samples collected per monitoring well, the dates the samples were collected and whether the sample was collected as part of detection monitoring or assessment monitoring programs (Attached as **Appendix 1**).

- A summary of any transition between monitoring programs or an alternate monitoring frequency, for example the date and circumstances for transitioning from detection monitoring to assessment monitoring, in addition to identifying the constituents detected at a statistically significant increase over background concentrations (**Appendix 4**).
- Other information required to be included in the annual report such as alternate source demonstration or assessment of corrective measures, if applicable

In addition, this report summarizes key actions completed, and where applicable, describes any problems encountered and actions taken to resolve those problems. The report includes a projection of key activities for the upcoming year.

II. <u>Groundwater Monitoring Well Locations and Identification Numbers</u>

The figure that follows depicts the PE-certified groundwater monitoring network, the monitoring well locations and their corresponding identification numbers. The total groundwater monitoring network includes 4 up-gradient wells and 8 down-gradient wells. The monitoring well distribution adequately cover down-gradient and up-gradient areas as detailed in the *Ground Water Monitoring Well Network Evaluation* report that was placed in the American Electric Power CCR public internet site on March 9, 2017. Additional wells are shown in the figure that were installed as part of the Nature and Extent Characterization study.

- Nature and Extent Wells
- Bottom Ash Ponds

Geosy	ntec⊳	Figure
con	sultants	1
Columbus, Ohio	2020/01/24	-

III. Monitoring Wells Installed or Decommissioned

There was installation of 10 additional groundwater monitoring wells at the Mountaineer Bottom Ash Pond as part of the characterization of nature and extent of a release from the BAP. These are:

 MW-1921, MW-1922S, MW-1922D, MW-1923, MW-1924, MW-1925, MW-1926, MW-1927, MW-1928, MW-1929

An additional monitoring well was also installed in 2018 and included in the 2019 nature and extent study.

• MW-1805

Additionally, three monitoring wells that were installed as part of a subsurface investigation in 2006 have been included in the sampling and analysis as a part of the nature and extent characterization.

• MW-107, MW-112, MW-203

Boring logs and well construction forms for these 14 monitoring wells are included in **Appendix 5**.

IV. Groundwater Quality Data and Static Water Elevation Data and Flow Rate

Appendix 1 contains tables showing the groundwater quality data collected during the establishment of background quality, detection monitoring, and assessment monitoring. Static water elevation data from each monitoring event also are shown in **Appendix 1**, along with the groundwater velocity calculations, groundwater flow direction and potentiometric maps developed after each sampling event. It is important to note that MW-1928 although installed, was unable to be sampled due to very low groundwater yield the first attempt and the monitoring well being dry and not recovering on the following attempts.

V. Groundwater Quality Data Statistical Analysis

Statistical analysis of the first 257.95(d)(1) (assessment monitoring of all Appendix III and detected Appendix IV parameters) resulted in a SSL above the GWPS for lithium on January 8, 2019. A notice of this SSL was placed in the facility electronic operating record and on the publicly available internet site. The next 257.95(d)(1) sampling and analysis continued to result in a SSL above the lithium GWPS on July 12, 2019 and a notice was subsequently made and placed in the facility electronic operating record and on the publicly available internet site. The second 257.95(d)(1) groundwater sampling, laboratory analysis, and statistical analysis resulted

in a SSL above the lithium GWPS on December 23, 2019 and a notice was subsequently made and placed in the facility electronic operating record and will be placed on the publically available internet site within 30 days of the operating record notice. The notice of statistically significant levels above the groundwater protection standard can be found in **Appendix 4** and on the publicly available internet site at <u>https://www.aep.com/environment/ccr</u>. The statistical analysis reports completed in 2019 related to the September 2018 assessment monitoring, April 2019 assessment monitoring, and September 2019 sampling events can be found in **Appendix 2** of this report.

VI. <u>Alternative Source Demonstrations</u>

No alternative source demonstrations were completed related to the assessment monitoring sampling events and statistical analysis.

VII. <u>Discussion About Transition Between Monitoring Requirements or Alternate</u> <u>Monitoring Frequency</u>

The Mountaineer Bottom Ash Pond CCR Unit transitioned from the Assessment Monitoring program to the Assessment of Corrective Measures program on March 26, 2019 due to the SSL above a GWPS on January 8, 2019. An Assessment of Corrective Measures Report was completed on June 24, 2019. A public meeting was held to present the assessment of corrective measure options. At this time, the selection of remedy is on-going and a semi-annual report describing the progress in selecting and designing the remedy will be completed in early 2020. Semi-annual assessment monitoring sampling and analysis will continue during the assessment of corrective measures can be found in **Appendix 4** of this report and on the publicly available internet site at https://www.aep.com/environment/ccr.

Regarding defining an alternate monitoring frequency, the groundwater velocity and monitoring well production is high enough at this facility that no modification to the monitoring frequency is needed.

VIII. <u>Other Information Required</u>

All required information has been included in this annual groundwater monitoring report.

IX. Description of Any Problems Encountered in 2019 and Actions Taken

No significant problems were encountered. The low flow sampling effort went smoothly and the schedule was met to support this annual groundwater report preparation.

X. <u>A Projection of Key Activities for the Upcoming Year</u>

Key activities for 2020 include:

- Assessment monitoring on a twice per year schedule;
- Continue evaluation of the selection of remedy;
- Prepare a selection of remedy semi-annual progress report;
- Responding to any new data received in light of what the CCR rule requires; and
- Preparation of the next annual groundwater report.

Tables follow that show the groundwater monitoring data collected and rate and direction of groundwater flow. The dates that the samples were collected are also shown.

Table 1 - Groundwater Data Summary: MW-107 Mountaineer - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
4/10/2019	Assessment	0.614	270	71.4	0.21	6.8	1270	518
6/18/2019	Assessment	0.592	245	71.7	0.22	6.8	1250	545
9/10/2019	Assessment	0.696	316	79.7	0.19	7.1	1410	631

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-107 Mountaineer - BAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
4/10/2019	Assessment	<0.10 U	1.08	68.3	<0.1 U	0.05 J	0.4 J	1.03	1.854	0.21	0.4 J	0.02 J	<0.002 U	<2 U	0.7 J	<0.5 U
6/18/2019	Assessment	0.03 J	0.44	69.4	<0.02 U	0.05	0.08 J	1.45	0.2284	0.22	0.04 J	<0.009 U	<0.002 U	<0.4 U	0.6	<0.1 U
9/10/2019	Assessment	0.02 J	0.44	67.8	<0.02 U	0.04 J	0.07 J	1.08	3.5	0.19	<0.05 U	0.00358	<0.002 U	<0.4 U	0.8	<0.1 U

Notes:

µg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-112 Mountaineer - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
6/19/2019	Assessment	0.283	142	37.2	0.24	7.17	668	255

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-112 **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/19/2019	Assessment	<0.02 U	0.40	76.9	<0.02 U	<0.01 U	0.2 J	0.02 J	0.0507	0.24	0.02 J	<0.009 U	<0.002 U	11.2	1.5	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag. J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-203 Mountaineer - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate	
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L	
6/18/2019	Assessment	0.1 J	115	31.4	0.22	7.2	472	86.8	
9/11/2019	Assessment	0.104	106	10.1	0.22	7.1	435	65.5	

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-203 **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/18/2019	Assessment	<0.02 U	0.30	34.7	<0.02 U	<0.01 U	0.2 J	0.054	0.1139	0.22	0.113	<0.009 U	<0.002 U	2 J	1.4	<0.1 U
9/11/2019	Assessment	0.02 J	0.33	31.6	<0.02 U	<0.01 U	0.2 J	0.139	0.381	0.22	0.2 J	0.00230	<0.002 U	1 J	1.1	<0.1 U

Notes:

µg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1601A Mountaineer - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
9/28/2016	Background	0.211	141	21.8	0.17	7.6	538	130
11/1/2016	Background	0.170	122	17.3	0.19	7.2	534	136
12/19/2016	Background	0.196	130	20.4	0.18	7.2	544	141
2/20/2017	Background	0.253	117	31.0	0.20	7.2	568	135
3/27/2017	Background	0.515	119	42.1	0.19	7.1	530	148
4/18/2017	Background	0.259	130	55.3	0.19	7.1	580	169
5/15/2017	Background	0.224	159	74.4	0.18	7.7	676	197
6/12/2017	Background	0.285	138	57.7	0.18	6.9	586	170
10/30/2017	Detection	0.224	137	49.4	0.19	7.1	564	169
5/10/2018	Assessment				0.16	7.3		
9/20/2018	Assessment	0.251	148	51.0	0.19	7.1	638	189
4/9/2019	Assessment	0.224	155	44.4	0.1 J	7.1	692	176
6/20/2019	Assessment	0.160	165	48.6	0.16	7.3	730	207
9/11/2019	Assessment	0.153	164	45.8	0.14	7.0	749	221

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1601A **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
9/28/2016	Background	0.05	0.62	46.6	<0.005 U	0.01 J	0.3	0.116	0.43758	0.17	0.132	0.002	<0.002 U	2.61	1.3	0.053
11/1/2016	Background	0.05 J	0.61	45.2	<0.005 U	0.02 J	1.3	0.086	2.011	0.19	0.108	0.001	<0.002 U	2.36	1.1	0.058
12/19/2016	Background	0.05 J	0.65	47.0	<0.005 U	0.02 J	0.806	0.282	1.544	0.18	0.383	<0.0002 U	<0.002 U	0.93	1.1	0.04 J
2/20/2017	Background	0.03 J	0.55	41.4	<0.005 U	0.02 J	0.198	0.132	0.313	0.20	0.139	0.005	<0.002 U	1.42	1.4	0.070
3/27/2017	Background	0.03 J	0.49	40.2	<0.005 U	0.01 J	0.225	0.097	0.495	0.19	0.069	0.006	<0.002 U	2.85	1.0	0.03 J
4/18/2017	Background	0.03 J	0.59	47.5	<0.004 U	0.01 J	0.170	0.093	0.814	0.19	0.052	0.007	0.003 J	1.53	1.5	0.04 J
5/15/2017	Background	0.04 J	0.79	56.9	<0.004 U	0.02 J	0.166	0.154	1.279	0.18	0.141	<0.0002 U	<0.002 U	2.04	1.3	0.04 J
6/12/2017	Background	0.04 J	0.61	49.0	<0.004 U	0.02 J	0.152	0.098	0.599	0.18	0.063	0.004	<0.002 U	1.13	1.5	0.04 J
5/10/2018	Assessment	0.03 J	0.55	63.9	<0.004 U	0.02 J	0.153	0.083	0.767	0.16	0.034	0.004	<0.002 U	0.99	1.5	0.03 J
9/20/2018	Assessment	0.03 J	0.58	55.3	<0.004 U	0.02 J	0.131	0.059	0.696	0.19	0.005 J	0.004	<0.002 U	0.76	1.1	0.04 J
4/9/2019	Assessment	<0.10 U	0.61	52.0	<0.1 U	<0.05 U	0.2 J	0.2 J	1.168	0.1 J	<0.1 U	0.02 J	<0.002 U	<2 U	1.1	<0.5 U
6/20/2019	Assessment	0.03 J	0.63	63.1	<0.02 U	0.02 J	0.314	0.03 J	0.45	0.16	0.07 J	<0.009 U	<0.002 U	0.9 J	1.3	<0.1 U
9/11/2019	Assessment	0.03 J	0.62	65.3	<0.02 U	0.02 J	0.370	0.03 J	1.168	0.14	<0.05 U	0.00184	<0.002 U	0.9 J	1.1	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1602 Mountaineer - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
9/28/2016	Background	0.141	74.9	7.95	0.17	7.3	412	167
11/1/2016	Background	0.115	71.1	8.70	0.18	6.6	424	178
12/19/2016	Background	0.120	74.7	9.91	0.18	6.9	470	188
2/20/2017	Background	0.093	69.6	9.76	0.19	6.5	494	193
3/27/2017	Background	0.240	86.6	12.0	0.19	6.3	504	231
4/17/2017	Background	0.107	91.1	12.1	0.20	6.7	520	248
5/15/2017	Background	0.115	105	12.6	0.19	7.0	598	273
6/12/2017	Background	0.153	94.0	11.8	0.20	6.8	588	269
10/30/2017	Detection	0.093	78.1	8.41	0.23	6.7	468	184
5/10/2018	Assessment				0.23	7.0		
9/20/2018	Assessment	0.109	81.6	10.5	0.25	7.1	502	195
4/9/2019	Assessment	0.09 J	99.8	11.4	0.20	6.6	595	221
6/20/2019	Assessment	0.1 J	91.2	10.7	0.23	7.0	606	267
9/11/2019	Assessment	0.111	95.1	10.4	0.21	6.7	603	259

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1602 **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
9/28/2016	Background	0.02 J	0.40	27.1	<0.005 U	0.02 J	0.2	0.217	0.275	0.17	0.255	0.013	<0.002 U	0.90	0.08 J	0.092
11/1/2016	Background	0.02 J	0.35	28.7	<0.005 U	0.02 J	0.6	0.108	2.086	0.18	0.070	0.014	<0.002 U	1.48	0.1	0.116
12/19/2016	Background	0.02 J	0.43	28.9	<0.005 U	0.01 J	1.65	0.225	0.7053	0.18	0.272	0.008	<0.002 U	0.56	0.08 J	0.02 J
2/20/2017	Background	<0.01 U	0.35	26.9	<0.005 U	0.01 J	0.194	0.052	0.75	0.19	0.052	0.013	<0.002 U	0.63	0.1	0.02 J
3/27/2017	Background	0.01 J	0.34	29.9	<0.005 U	0.02 J	0.456	0.059	0.679	0.19	0.063	0.019	<0.002 U	1.49	0.2	0.01 J
4/17/2017	Background	0.02 J	0.36	32.1	<0.004 U	0.01 J	0.240	0.049	0.337	0.20	0.087	0.017	0.002 J	0.66	0.1	0.01 J
5/15/2017	Background	0.02 J	0.42	33.2	<0.004 U	0.02 J	0.136	0.072	1.9116	0.19	0.078	0.009	<0.002 U	1.28	0.1	0.04 J
6/12/2017	Background	0.03 J	0.36	33.1	<0.004 U	0.01 J	0.408	0.066	0.2898	0.20	0.061	0.018	<0.002 U	0.53	0.1	0.02 J
5/10/2018	Assessment	0.02 J	0.34	31.2	0.005 J	0.01 J	0.121	0.036	0.342	0.23	0.038	0.015	<0.002 U	0.71	0.1	0.03 J
9/20/2018	Assessment	0.01 J	0.32	26.7	<0.004 U	0.01 J	0.210	0.02 J	0.683	0.25	0.01 J	0.012	<0.002 U	0.84	0.07 J	0.02 J
4/9/2019	Assessment	<0.10 U	0.4 J	29.0	<0.1 U	<0.05 U	<0.2 U	<0.1 U	1.0509	0.20	<0.1 U	0.02 J	<0.002 U	3 J	0.2 J	<0.5 U
6/20/2019	Assessment	0.02 J	0.33	29.5	<0.02 U	0.01 J	0.2 J	0.03 J	0.1531	0.23	0.07 J	0.01 J	<0.002 U	0.9 J	0.1 J	<0.1 U
9/11/2019	Assessment	<0.02 U	0.31	27.3	<0.02 U	0.01 J	0.2 J	<0.02 U	0.451	0.21	<0.05 U	0.00979	<0.002 U	1 J	0.1 J	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1603 Mountaineer - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
9/28/2016	Background	0.327	124	15.7	0.07 J	7.3	618	388
11/2/2016	Background	0.334	146	22.8	0.08 J	6.6	814	483
12/19/2016	Background	0.495	164	30.1	0.1 J	7.4	908	504
2/20/2017	Background	0.543	169	27.4	0.1 J	6.8	962	485
3/28/2017	Background	0.781	181	25.2	0.1 J	6.6	918	476
4/17/2017	Background	0.519	170	22.9	0.1 J	6.9	910	474
5/15/2017	Background	0.546	187	24.7	0.1 J	7.4	910	470
6/12/2017	Background	0.535	176	20.5	0.1 J	7.0	878	482
10/30/2017	Detection	0.360	171	13.1	0.1 J	6.6	872	553
5/10/2018	Assessment				0.09 J	6.6		
9/20/2018	Assessment	0.324	167	14.0	0.09	6.6	920	524
4/9/2019	Assessment	0.408	182	15.8	0.11	6.8	918	429
6/20/2019	Assessment	0.299	162	10.9	0.09	7.0	878	434
9/11/2019	Assessment	0.308	156	10.0	0.09	6.7	853	421

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1603 **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
9/28/2016	Background	0.02 J	0.36	29.5	<0.005 U	0.02 J	0.3	0.317	0.0927	0.07 J	0.253	0.021	<0.002 U	1.21	0.1	0.02 J
11/2/2016	Background	0.02 J	0.36	34.1	<0.005 U	0.01 J	0.4	0.166	2.593	0.08 J	0.131	0.022	<0.002 U	2.47	0.4	0.04 J
12/19/2016	Background	0.03 J	0.40	33.1	<0.005 U	0.01 J	2.37	0.134	0.966	0.1 J	0.084	0.010	<0.002 U	0.36	0.3	0.063
2/20/2017	Background	0.01 J	0.37	31.7	<0.005 U	0.01 J	0.229	0.105	0.384	0.1 J	0.077	0.012	<0.002 U	0.37	0.4	0.02 J
3/28/2017	Background	0.02 J	0.36	32.9	<0.005 U	0.01 J	0.545	0.093	0.2071	0.1 J	0.080	0.020	<0.002 U	0.72	0.2	<0.01 U
4/17/2017	Background	0.03 J	0.52	33.7	0.005 J	0.01 J	0.304	0.377	0.6154	0.1 J	0.308	0.018	0.003 J	0.27	0.2	0.01 J
5/15/2017	Background	0.03 J	0.43	33.0	<0.004 U	0.01 J	0.415	0.101	1.6052	0.1 J	0.079	0.012	<0.002 U	0.71	0.1	0.02 J
6/12/2017	Background	0.03 J	0.35	32.0	<0.004 U	0.01 J	0.963	0.085	0.776	0.1 J	0.059	0.021	<0.002 U	0.29	0.1	0.01 J
5/10/2018	Assessment	0.02 J	0.31	41.3	0.007 J	0.01 J	0.099	0.054	0.363	0.09 J	0.042	0.021	<0.002 U	0.14	0.2	0.02 J
9/20/2018	Assessment	0.02 J	0.26	35.9	<0.004 U	0.01 J	0.102	0.032	0.881	0.09	0.02 J	0.022	<0.002 U	0.07 J	0.4	0.01 J
4/9/2019	Assessment	<0.10 U	0.56	32.4	<0.1 U	<0.05 U	0.4 J	0.622	2.389	0.11	0.5 J	0.030	<0.002 U	<2 U	0.4 J	<0.5 U
6/20/2019	Assessment	0.03 J	0.41	30.7	<0.02 U	0.01 J	0.249	0.204	0.2974	0.09	0.176	<0.009 U	<0.002 U	0.9 J	0.3	<0.1 U
9/11/2019	Assessment	0.03 J	0.35	30.9	<0.02 U	0.01 J	0.205	0.112	1.07	0.09	0.1 J	0.015	<0.002 U	0.5 J	0.2	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1604D Mountaineer - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
9/26/2016	Background	3.54	306	111	0.18	7.3	1650	865
11/1/2016	Background	2.98	277	116	0.19	7.3	1580	866
12/20/2016	Background	3.07	289	118	0.17	7.4	1630	863
2/21/2017	Background	3.01	260	111	0.21	7.2	1640	823
3/28/2017	Background	4.18	293	112	0.19	7.2	1660	814
4/19/2017	Background	2.97	269	109	0.20	7.2	1570	797
5/16/2017	Background	2.95	300	112	0.18	7.9	1610	828
6/13/2017	Background	2.98	283	118	0.18	7.5	1620	856
10/30/2017	Detection	2.60	295	116	0.20	7.2	1570	833
1/22/2018	Detection	3.07	291	118		7.2	1620	862
5/9/2018	Assessment				0.21	7.1		
9/19/2018	Assessment	1.33	144	41.3	0.19	7.2	838	313
4/9/2019	Assessment	2.82	236	100	0.15	6.9	1300	539
6/19/2019	Assessment	1.66	196	93.0	0.14	7.2	1110	461
9/9/2019	Assessment	2.18	217	82.2	0.17	7.0	1210	551

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1604D **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
9/26/2016	Background	0.14	0.48	29.1	<0.005 U	0.14	0.4	1.76	1.38	0.18	0.106	0.059	<0.002 U	19.8	0.9	0.235
11/1/2016	Background	0.15	0.59	28.4	<0.005 U	0.17	0.5	1.78	1.056	0.19	0.039	0.057	0.036	20.0	1.0	0.261
12/20/2016	Background	0.14	0.57	30.3	<0.005 U	0.17	0.798	1.92	1.45	0.17	0.02 J	0.045	<0.002 U	20.8	1.0	0.283
2/21/2017	Background	0.11	0.45	26.2	<0.005 U	0.13	0.297	1.85	0.824	0.21	0.02 J	0.050	<0.002 U	17.4	0.7	0.264
3/28/2017	Background	0.13	0.41	28.9	<0.005 U	0.13	0.416	1.74	0.806	0.19	0.022	0.064	<0.002 U	18.2	0.7	0.336
4/19/2017	Background	0.12	0.49	27.9	<0.004 U	0.09	0.323	1.60	1.537	0.20	0.584	0.051	0.003 J	17.4	0.7	0.217
5/16/2017	Background	0.13	0.54	27.5	<0.004 U	0.10	0.079	1.60	3.489	0.18	0.027	0.052	<0.002 U	18.1	0.5	0.231
6/13/2017	Background	0.15	0.46	27.9	<0.008 U	0.15	0.180	1.95	1.058	0.18	0.03 J	0.058	<0.002 U	18.3	0.8	0.256
5/9/2018	Assessment	0.04 J	0.34	32.0	<0.004 U	0.04	0.195	0.314	0.687	0.21	0.035	0.024	<0.002 U	2.05	1.4	0.02 J
9/19/2018	Assessment	0.04 J	0.29	37.0	<0.004 U	0.03	0.169	0.203	0.316	0.19	0.303	0.016	<0.002 U	1.57	3.8	0.02 J
4/9/2019	Assessment	<0.10 U	0.4 J	42.5	<0.1 U	0.05 J	0.2 J	0.345	0.957	0.15	<0.1 U	0.038	<0.002 U	<2 U	2.0	<0.5 U
6/19/2019	Assessment	0.04 J	0.28	52.9	<0.02 U	0.04 J	0.212	0.242	0.1922	0.14	0.07 J	<0.009 U	<0.002 U	1 J	3.1	<0.1 U
9/9/2019	Assessment	0.03 J	0.30	55.6	<0.02 U	0.03 J	0.345	0.181	0.464	0.17	<0.05 U	0.0188	<0.002 U	2 J	3.4	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1604S Mountaineer - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
9/26/2016	Background	2.12	178	83.9	0.20	7.0	1280	602
11/1/2016	Background	1.90	167	99.4	0.21	7.1	1310	626
12/20/2016	Background	2.35	165	99.9	0.19	7.2	1300	618
2/21/2017	Background	3.08	168	112	0.21	7.0	1430	634
3/28/2017	Background	4.04	180	116	0.20	6.9	1420	663
4/19/2017	Background	3.68	191	130	0.21	7.0	1500	716
5/16/2017	Background	3.63	202	122	0.19	7.7	1510	708
6/13/2017	Background	3.48	182	112	0.20	7.5	1400	685
10/30/2017	Detection	2.17	167	85.3	0.21	7.1	1150	544
1/22/2018	Detection	2.36		105		6.9	1312	602
5/9/2018	Assessment				0.22	7.4		
9/19/2018	Assessment	2.49	262	109	0.22	7.3	1500	742
4/9/2019	Assessment	3.50	301	132	0.19	7.1	1650	703
6/19/2019	Assessment	3.15	278	127	0.16	7.3	1580	741
9/9/2019	Assessment	3.23	267	128	0.20	7.3	1520	770

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1604S **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
9/26/2016	Background	0.04 J	0.39	29.4	<0.005 U	0.03	0.2	0.358	0.136	0.20	0.114	0.034	<0.002 U	3.20	3.1	0.03 J
11/1/2016	Background	0.04 J	0.46	27.2	<0.005 U	0.04	0.3	0.307	0.769	0.21	0.065	0.035	<0.002 U	2.47	2.5	0.02 J
12/20/2016	Background	0.04 J	0.42	26.6	<0.005 U	0.04	1.97	0.390	0.5256	0.19	0.093	0.023	<0.002 U	2.71	2.7	0.03 J
2/21/2017	Background	0.03 J	0.42	26.7	<0.005 U	0.04	0.379	0.501	0.92	0.21	0.140	0.033	<0.002 U	2.52	2.2	0.03 J
3/28/2017	Background	0.03 J	0.37	31.6	<0.005 U	0.03	0.692	0.308	0.585	0.20	0.055	0.042	<0.002 U	2.53	2.2	0.119
4/19/2017	Background	0.03 J	0.44	28.9	<0.004 U	0.04	0.158	0.317	0.722	0.21	0.051	0.041	0.003 J	2.53	1.7	0.02 J
5/16/2017	Background	0.04 J	0.51	32.2	<0.004 U	0.04	0.098	0.317	2.577	0.19	0.100	0.033	<0.002 U	2.54	2.0	0.04 J
6/13/2017	Background	0.03 J	0.41	28.7	<0.004 U	0.04	0.149	0.308	0.598	0.20	0.033	0.038	<0.002 U	2.41	2.5	0.02 J
5/9/2018	Assessment	0.13	0.33	28.7	0.024	0.15	0.107	1.83	1.173	0.22	0.034	0.051	<0.002 U	16.2	1.0	0.22
9/19/2018	Assessment	0.13	0.32	26.6	<0.004 U	0.15	0.093	1.88	1.159	0.22	0.02 J	0.052	<0.002 U	15.6	0.8	0.251
4/9/2019	Assessment	0.20 J	0.54	29.1	<0.1 U	0.27	0.3 J	2.41	1.472	0.19	<0.1 U	0.061	<0.002 U	17.8	1.2	<0.5 U
6/19/2019	Assessment	0.15	0.33	29.0	<0.02 U	0.21	0.09 J	2.16	1.256	0.16	<0.02 U	0.032	<0.002 U	16.6	1.0	0.3 J
9/9/2019	Assessment	0.14	0.34	29.0	<0.02 U	0.21	0.1 J	2.14	1.15	0.20	<0.05 U	0.0476	<0.002 U	16.3	1.0	0.3 J

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1605D Mountaineer - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
9/27/2016	Background	12.2	462	195	0.18	7.6	2650	1480
11/2/2016	Background	9.96	381	195	0.19	7.4	2510	1500
12/20/2016	Background	9.35	341	168	0.18	7.4	2300	1290
2/21/2017	Background	9.16	318	163	0.20	7.3	2290	1190
3/28/2017	Background	11.6	344	169	0.20	7.2	2350	1200
4/18/2017	Background	9.06	360	172	0.20	7.5	2280	1180
5/16/2017	Background	8.77	374	187	0.20	7.9	2240	1130
6/13/2017	Background	9.09	351	196	0.17		2260	1190
10/31/2017	Detection	7.83	324	198	0.21	7.3	2170	1170
1/22/2018	Detection	9.33	321	197		7.2	2060	1070
5/9/2018	Assessment				0.23	7.5		
9/19/2018	Assessment	9.11	278	188	0.22	7.6	1960	972
4/9/2019	Assessment	6.90	247	169	0.22	7.3	1710	791
6/19/2019	Assessment	6.57	265	165	0.19	7.5	1890	877
9/10/2019	Assessment	8.57	283	168	0.17	7.2	2050	974

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1605D **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
9/27/2016	Background	0.03 J	2.29	31.5	<0.01 U	0.04	0.1	1.91	1.06	0.18	0.080	0.085	<0.002 U	54.6	0.2	0.06 J
11/2/2016	Background	0.03 J	2.48	30.6	<0.01 U	0.04	0.2	1.79	1.925	0.19	0.044	0.078	<0.002 U	52.4	0.2	0.05 J
12/20/2016	Background	0.03 J	2.26	28.2	<0.01 U	0.04 J	2.29	1.75	2.662	0.18	0.03 J	0.063	<0.002 U	54.7	0.3	0.05 J
2/21/2017	Background	0.04 J	2.23	25.9	<0.005 U	0.03	0.282	1.84	1.033	0.20	0.021	0.071	<0.002 U	46.8	0.2	0.138
3/28/2017	Background	0.04 J	2.01	27.9	<0.005 U	0.03	0.556	1.69	0.578	0.20	0.02 J	0.086	<0.002 U	44.6	0.2	0.090
4/18/2017	Background	0.03 J	2.25	25.8	<0.008 U	0.02 J	0.127	1.69	0.821	0.20	0.02 J	0.077	0.002 J	43.2	0.2 J	0.04 J
5/16/2017	Background	0.03 J	2.45	26.3	<0.004 U	0.02 J	0.099	1.63	3.433	0.20	0.01 J	0.075	<0.002 U	48.1	0.2	0.04 J
6/13/2017	Background	0.04 J	1.99	27.2	<0.008 U	0.04	0.120	1.86	0.668	0.17	0.02 J	0.081	<0.002 U	45.5	0.4	0.05 J
5/9/2018	Assessment	0.03 J	2.22	21.6	<0.004 U	0.01 J	0.067	1.51	0.523	0.23	0.02 J	0.062	<0.002 U	46.4	0.2	0.04 J
9/19/2018	Assessment	0.04 J	2.51	25.9	<0.004 U	0.02 J	0.229	1.80	0.759	0.22	0.01 J	0.060	<0.002 U	47.9	0.3	0.05 J
4/9/2019	Assessment	0.04 J	2.81	26.4	<0.02 U	0.01 J	0.06 J	1.56	0.543	0.22	0.03 J	0.075	<0.002 U	40.6	0.2	<0.1 U
6/19/2019	Assessment	<0.04 U	2.67	28.6	<0.04 U	0.02 J	0.2 J	1.65	0.831	0.19	<0.04 U	0.02 J	<0.002 U	40.0	0.2 J	<0.2 U
9/10/2019	Assessment	0.03 J	2.78	33.1	<0.02 U	0.03 J	0.04 J	1.69	1.641	0.17	<0.05 U	0.0561	<0.002 U	39.7	0.3	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1605S Mountaineer - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
9/27/2016	Background	8.30	224	150	0.24	7.5	1910	965
11/1/2016	Background	6.55	220	159	0.25	7.3	1930	1010
12/20/2016	Background	7.30	279	173	0.22	7.4	2160	1180
2/21/2017	Background	9.04	249	179	0.25	7.2	2220	1110
3/28/2017	Background	10.8	261	212	0.25	7.1	2250	1110
4/18/2017	Background	8.69	244	180	0.23	7.4	2120	1100
5/16/2017	Background	8.75	251	217	0.26	7.7	2160	1060
6/13/2017	Background	8.80	218	191	0.24	7.8	1980	1000
10/31/2017	Detection	5.88	212	222	0.25	7.2	2000	1040
1/22/2018	Detection	10.1	231	220		7.1	1970	976
5/9/2018	Assessment				0.30	7.2		
9/19/2018	Assessment	7.75	182	171	0.32	7.4	1650	793
4/9/2019	Assessment	9.39	164	140	0.33	7.2	1450	599
6/19/2019	Assessment	7.02	156	140	0.23	7.4	1510	649
9/10/2019	Assessment	8.05	174	149	0.26	7.2	1470	694

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1605S **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
9/27/2016	Background	0.16	1.38	49.6	0.02 J	0.13	0.6	3.16	0.777	0.24	2.18	0.086	<0.002 U	25.8	1.1	0.174
11/1/2016	Background	0.07	0.93	38.2	0.009 J	0.08	0.7	1.26	2.692	0.25	0.793	0.084	<0.002 U	23.9	0.9	0.055
12/20/2016	Background	0.07 J	0.88	37.0	<0.01 U	0.08	2.85	0.861	0.337	0.22	0.410	0.076	<0.002 U	22.9	0.7	0.05 J
2/21/2017	Background	0.04 J	0.86	36.0	0.007 J	0.08	0.39	1.10	0.785	0.25	0.636	0.068	<0.002 U	17.5	1.1	0.055
3/28/2017	Background	0.03 J	0.63	32.5	<0.005 U	0.06	0.349	0.448	0.466	0.25	0.181	0.076	<0.002 U	15.4	1.0	0.102
4/18/2017	Background	0.06 J	0.74	31.9	<0.008 U	0.08	0.245	0.715	0.827	0.23	0.285	0.067	0.003 J	20.8	3.0	0.04 J
5/16/2017	Background	0.06 J	0.88	33.3	<0.008 U	0.08	0.585	0.647	2.733	0.26	0.382	0.076	<0.002 U	18.6	1.7	0.06 J
6/13/2017	Background	0.05 J	0.75	30.8	<0.008 U	0.08	0.387	0.708	0.611	0.24	0.541	0.071	<0.002 U	17.8	1.7	0.05 J
5/9/2018	Assessment	0.04 J	0.50	23.5	<0.004 U	0.06	0.083	0.518	0.3045	0.30	0.056	0.051	<0.002 U	15.6	2.0	0.04 J
9/19/2018	Assessment	0.04 J	0.49	23.1	<0.004 U	0.05	0.644	0.360	0.347	0.32	0.093	0.049	<0.002 U	15.1	1.0	0.04 J
4/9/2019	Assessment	0.05 J	0.64	25.2	<0.02 U	0.05	0.293	0.631	0.369	0.33	0.331	0.079	<0.002 U	15.9	0.7	<0.1 U
6/19/2019	Assessment	0.04 J	0.47	23.6	<0.02 U	0.05 J	0.1 J	0.279	0.424	0.23	0.08 J	0.040	<0.002 U	13.6	0.6	<0.1 U
9/10/2019	Assessment	0.04 J	0.59	29.6	<0.02 U	0.05 J	0.237	0.379	0.542	0.26	0.202	0.0524	<0.002 U	14.2	0.4	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1606D Mountaineer - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
9/27/2016	Background	4.29	278	190	0.25	7.2	1710	813
11/2/2016	Background	3.97	252	201	0.28	7.4	1720	796
12/20/2016	Background	4.96	260	206	0.24	7.5	1690	796
2/21/2017	Background	5.48	242	190	0.26	7.3	1670	759
3/28/2017	Background	6.90	247	187	0.26	7.2	1700	739
4/18/2017	Background	5.46	274	104	0.26	7.4	1690	385
5/16/2017	Background	5.26	278	218	0.26	8.0	1730	764
6/13/2017	Background	5.90	262	219	0.24	7.5	1680	752
10/31/2017	Detection	7.03	287	213	0.24	7.3	1590	770
1/23/2018	Detection	9.59	322	237		7.4	1730	760
5/9/2018	Assessment				0.26	7.4		
9/19/2018	Assessment	7.27	260	201	0.26	7.2	1610	722
4/8/2019	Assessment	7.32	265	214	0.26	7.2	1600	682
6/19/2019	Assessment	7.79	281	231	0.1 J	7.4	1690	693
9/10/2019	Assessment	6.38	281	244	0.49	7.4	1700	588

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1606D **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
9/27/2016	Background	0.19	0.71	64.0	0.005 J	0.07	0.3	2.20	8.459	0.25	0.522	0.129	<0.002 U	81.4	1.8	0.123
11/2/2016	Background	0.19	0.84	62.6	<0.005 U	0.07	0.9	1.92	3.659	0.28	0.491	0.120	<0.002 U	81.2	4.7	0.092
12/20/2016	Background	0.16	0.63	58.4	<0.005 U	0.06	0.736	1.52	1.179	0.24	0.164	0.110	<0.002 U	83.2	3.6	0.094
2/21/2017	Background	0.16	0.51	52.6	<0.005 U	0.07	0.300	1.33	1.71	0.26	0.082	0.109	<0.002 U	76.6	4.1	0.119
3/28/2017	Background	0.15	0.44	53.6	<0.005 U	0.05	0.541	1.17	1.459	0.26	0.087	0.130	<0.002 U	73.3	3.6	0.113
4/18/2017	Background	0.25	1.38	64.2	0.01 J	0.08	0.853	4.26	1.212	0.26	2.04	0.119	0.004 J	71.5	4.1	0.097
5/16/2017	Background	0.19	0.63	56.7	0.031	0.07	0.163	1.39	3.18	0.26	0.162	0.124	<0.002 U	79.1	5.9	0.095
6/13/2017	Background	0.16	0.52	52.0	<0.008 U	0.08	0.153	1.46	1.026	0.24	0.084	0.132	<0.002 U	77.8	8.1	0.09 J
5/9/2018	Assessment	0.16	0.44	53.0	<0.004 U	0.07	0.198	1.40	0.972	0.26	0.115	0.112	<0.002 U	70.3	2.6	0.086
9/19/2018	Assessment	0.15	0.38	48.9	0.004 J	0.07	0.151	1.17	0.4378	0.26	0.01 J	0.107	<0.002 U	65.3	3.3	0.108
4/8/2019	Assessment	0.15	0.35	47.3	<0.02 U	0.07	0.1 J	1.25	0.94	0.26	0.03 J	0.124	<0.002 U	71.8	8.1	<0.1 U
6/19/2019	Assessment	0.14	0.37	49.4	<0.02 U	0.09	0.07 J	1.36	0.933	0.1 J	<0.02 U	0.058	<0.002 U	68.3	9.6	0.1 J
9/10/2019	Assessment	0.15	0.40	51.4	<0.02 U	0.08	0.1 J	1.09	2.2714	0.49	<0.05 U	0.0835	<0.002 U	68.5	1.0	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1606S Mountaineer - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
9/27/2016	Background	5.25	219	182	0.50	6.0	1470	621
11/2/2016	Background	4.57	183	183	0.57	7.2	1470	638
12/20/2016	Background	5.35	200	170	0.46	7.3	1420	621
2/21/2017	Background	5.03	211	231	0.46	7.1	1500	578
3/28/2017	Background	6.67	217	226	0.45	7.0	1500	589
4/18/2017	Background	5.80	228	217	0.43	7.2	1540	615
5/16/2017	Background	5.72	228	227	0.45	7.7	3230	635
6/13/2017	Background	6.12	230	230	0.45	7.4	1540	643
10/31/2017	Detection	9.54	226	187	0.46	7.1	1410	644
1/23/2018	Detection	6.62	218	184	0.43	7.2	1450	660
5/9/2018	Assessment				0.44	6.9		
9/19/2018	Assessment	5.87	199	219	0.46	7.1	1370	571
4/8/2019	Assessment	7.68	229	223	0.54	6.8	1480	592
6/19/2019	Assessment	6.08	223	232	0.25	7.2	1490	581
9/10/2019	Assessment	6.19	229	221	0.28	7.3	1460	705

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1606S **Mountaineer - BAP** Appendix IV Constituents

Collection Date		Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
9/27/2016	Background	0.16	0.88	76.7	<0.005 U	0.08	0.2	0.466	0.592	0.50	0.234	0.116	<0.002 U	112	1.2	0.074
11/2/2016	Background	0.17	0.94	69.7	<0.005 U	0.07	0.4	0.432	1.55	0.57	0.207	0.103	<0.002 U	112	1.0	0.06
12/20/2016	Background	0.16	0.83	71.6	<0.005 U	0.07	1.26	0.280	1.656	0.46	0.084	0.102	<0.002 U	101	0.9	0.063
2/21/2017	Background	0.15	0.88	77.2	<0.005 U	0.08	0.384	0.372	0.993	0.46	0.158	0.108	<0.002 U	93.1	0.7	0.086
3/28/2017	Background	0.14	0.78	75.7	<0.005 U	0.06	0.742	0.258	0.945	0.45	0.096	0.126	<0.002 U	90.1	0.7	0.100
4/18/2017	Background	0.16	0.86	74.2	<0.004 U	0.07	0.134	0.234	1.303	0.43	0.070	0.117	0.002 J	92.4	0.8	0.062
5/16/2017	Background	0.16	0.90	74.1	<0.004 U	0.07	0.093	0.241	2.167	0.45	0.062	0.110	<0.002 U	90.2	0.9	0.069
6/13/2017	Background	0.16	0.81	77.1	<0.008 U	0.09	0.178	0.281	1.28	0.45	0.090	0.118	<0.002 U	95.7	0.9	0.07 J
5/9/2018	Assessment	0.14	0.72	73.2	<0.004 U	0.08	0.056	0.318	0.3443	0.44	0.040	0.107	<0.002 U	70.2	2.0	0.076
9/19/2018	Assessment	0.13	0.69	64.8	0.005 J	0.06	0.297	0.260	0.439	0.46	0.02 J	0.096	<0.002 U	70.6	2.8	0.112
4/8/2019	Assessment	0.15	0.70	63.1	<0.02 U	0.07	0.08 J	0.320	0.595	0.54	0.107	0.117	<0.002 U	67.7	1.4	<0.1 U
6/19/2019	Assessment	0.15	0.63	67.2	<0.02 U	0.08	0.08 J	0.171	1.0123	0.25	0.111	0.056	<0.002 U	58.9	1.3	0.1 J
9/10/2019	Assessment	0.13	0.67	70.4	<0.02 U	0.07	0.08 J	0.312	2.682	0.28	<0.05 U	0.0877	<0.002 U	54.9	2.7	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1607D Mountaineer - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
9/27/2016	Background	1.64	141	88.3	0.54	6.9	744	285
11/2/2016	Background	1.42	155	103	0.61	7.8	856	376
12/20/2016	Background	1.46	187	118	0.50	7.7	1050	474
1/23/2017	Background					7.5		
2/21/2017	Background	1.54	165	107	0.51	7.6	1010	415
3/29/2017	Background	1.89	162	106	0.52	7.6	938	393
4/18/2017	Background	1.58	168	104	0.52	7.6	904	383
5/16/2017	Background	1.54	156	102	0.52	8.4	876	347
6/14/2017	Background	1.50	159	104	0.49	7.6	872	365
10/31/2017	Detection	1.76	214	138	0.47	7.6	1290	626
1/23/2018	Detection	2.34	244	150	0.44	7.5	1380	668
5/10/2018	Assessment				0.54	7.5		
9/20/2018	Assessment	2.44	222	163	0.52	7.7	1450	662
4/8/2019	Assessment	3.10	232	162	0.52	7.4	1480	656
6/19/2019	Assessment	3.14	234	167	0.40	7.8	1600	710
9/10/2019	Assessment	3.65	233	174	0.56	7.7	1610	699

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag. J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1607D **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
9/27/2016	Background	0.04 J	0.91	117	<0.005 U	0.02 J	0.3	0.439	0.86	0.54	0.179	0.068	<0.002 U	96.2	0.1	0.05 J
11/2/2016	Background	0.03 J	1.02	155	<0.005 U	0.02 J	0.7	0.396	3.997	0.61	0.058	0.069	<0.002 U	91.1	0.07 J	0.04 J
12/20/2016	Background	0.03 J	1.02	168	<0.005 U	0.005 J	2.07	0.526	1.689	0.50	0.038	0.075	<0.002 U	89.6	0.03 J	0.04 J
2/21/2017	Background	0.03 J	1.14	133	<0.005 U	<0.004 U	0.090	0.481	0.883	0.51	0.041	0.072	<0.002 U	87.7	0.03 J	0.04 J
3/29/2017	Background	0.05	1.24	140	0.008 J	0.03	0.602	0.805	1.872	0.52	0.628	0.087	0.002 J	85.9	0.5	0.062
4/18/2017	Background	0.03 J	1.00	126	<0.004 U	<0.005 U	0.133	0.414	1.535	0.52	0.070	0.079	0.002 J	81.8	0.05 J	0.02 J
5/16/2017	Background	0.03 J	1.11	129	<0.004 U	<0.005 U	0.078	0.399	1.265	0.52	0.041	0.087	<0.002 U	91.2	0.04 J	0.02 J
6/14/2017	Background	0.03 J	0.98	131	<0.004 U	<0.005 U	0.141	0.439	1.764	0.49	0.124	0.088	<0.002 U	90.8	0.03 J	0.04 J
5/10/2018	Assessment	0.03 J	1.15	73.5	<0.004 U	<0.005 U	0.051	0.521	1.254	0.54	0.043	0.089	<0.002 U	80.9	<0.03 U	0.02 J
9/20/2018	Assessment	0.03 J	1.34	92.3	<0.004 U	<0.005 U	0.158	0.769	0.926	0.52	0.044	0.104	<0.002 U	83.4	<0.03 U	0.04 J
4/8/2019	Assessment	0.03 J	1.31	75.7	<0.02 U	<0.01 U	0.07 J	0.778	1.3269	0.52	0.05 J	0.127	<0.002 U	79.8	0.05 J	<0.1 U
6/19/2019	Assessment	0.03 J	1.61	82.3	<0.02 U	<0.01 U	0.1 J	0.799	1.31	0.40	0.07 J	0.072	<0.002 U	81.8	0.06 J	<0.1 U
9/10/2019	Assessment	0.03 J	1.53	79.3	<0.02 U	0.01 J	0.05 J	0.848	1.855	0.56	<0.05 U	0.110	<0.002 U	82.1	0.09 J	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1607S Mountaineer - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
10/31/2016	Background	1.38	126	90.8	0.31	7.6	670	213
11/2/2016	Background	1.35	126	90.6	0.32	7.6	698	214
12/21/2016	Background	1.02	129	92.7	0.33	7.7	716	246
2/21/2017	Background	1.27	131	91.9	0.29	7.5	746	244
3/28/2017	Background	1.70	131	93.1	0.28	7.4	706	233
4/18/2017	Background	1.65	135	92.6	0.30	7.6	678	225
5/16/2017	Background	1.64	133	97.5	0.29	8.2	746	221
6/14/2017	Background	1.74	136	96.3	0.27	7.5	708	229
10/31/2017	Detection	1.32	165	100	0.28	7.5	860	343
1/23/2018	Detection	1.49		111		7.4		
5/10/2018	Assessment				0.29	7.4		
9/20/2018	Assessment	1.71	220	151	0.28	7.6	1160	478
4/8/2019	Assessment	2.35	226	153	0.26	7.2	1310	504
6/19/2019	Assessment	2.46	233	154	0.19	7.5	1370	524
9/10/2019	Assessment	3.21	198	167	0.27	7.7	1350	465

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1607S **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
10/31/2016	Background	0.46	1.86	56.7	0.01 J	0.06	0.8	2.59	2.504	0.31	1.40	0.098	0.003 J	48.4	7.1	0.060
11/2/2016	Background	0.45	1.30	55.5	<0.005 U	0.04	0.4	0.752	1.338	0.32	0.264	0.092	<0.002 U	50.4	7.0	0.05 J
12/21/2016	Background	0.84	11.2	114	0.123	0.22	3.10	20.1	2.81	0.33	11.0	0.088	0.012	45.7	9.4	0.150
2/21/2017	Background	0.42	1.19	63.9	0.007 J	0.03	0.325	1.21	1.974	0.29	0.267	0.091	<0.002 U	41.3	9.0	0.069
3/28/2017	Background	0.43	1.17	66.8	<0.005 U	0.02	0.390	0.942	1.153	0.28	0.134	0.110	<0.002 U	39.2	9.2	0.052
4/18/2017	Background	0.55	1.62	67.6	0.01 J	0.06	0.514	2.60	1.632	0.30	1.25	0.102	0.003 J	45.1	8.9	0.058
5/16/2017	Background	0.50	1.17	63.7	<0.004 U	0.03	0.226	0.851	2.408	0.29	0.159	0.094	<0.002 U	48.1	9.1	0.05 J
6/14/2017	Background	0.48	1.10	62.9	<0.004 U	0.03	0.200	0.936	1.017	0.27	0.138	0.106	<0.002 U	46.1	9.4	0.05 J
5/10/2018	Assessment	0.44	0.93	71.1	<0.004 U	0.04	0.121	1.18	1.29	0.29	0.128	0.103	<0.002 U	43.2	11.4	0.064
9/20/2018	Assessment	0.42	0.90	80.6	<0.004 U	0.04	0.086	0.840	0.584	0.28	0.094	0.118	<0.002 U	41.5	8.8	0.089
4/8/2019	Assessment	0.40	0.94	72.7	<0.02 U	0.04 J	0.376	1.21	0.723	0.26	0.09 J	0.141	<0.002 U	37.9	7.0	<0.1 U
6/19/2019	Assessment	0.44	0.96	81.0	<0.02 U	0.04 J	0.428	0.990	1.121	0.19	0.108	0.075	<0.002 U	34.6	5.6	<0.1 U
9/10/2019	Assessment	0.41	0.87	67.7	<0.02 U	0.05 J	0.357	0.971	2.765	0.27	0.09 J	0.0990	<0.002 U	35.0	4.3	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Table 1 - Groundwater Data Summary: MW-1608 Mountaineer - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
9/27/2016	Background	0.150	93.8	6.55	0.27	7.4	368	70.6
11/1/2016	Background	0.113	86.2	6.43	0.30	7.3	352	64.3
12/19/2016	Background	0.118	83.0	4.25	0.26	7.3	338	58.3
2/22/2017	Background	0.156	83.3	4.37	0.25	7.1	398	94.4
3/27/2017	Background	0.238	80.3	5.27	0.24	6.8	350	112
4/17/2017	Background	0.233	101	7.08	0.23	7.0	424	168
5/15/2017	Background	0.200	102	8.62	0.23	7.8	475	208
6/12/2017	Background	0.169	110	8.23	0.21	6.7	486	204
10/31/2017	Detection	0.140	94.7	5.13	0.22	7.1	430	131
5/10/2018	Assessment				0.18	6.8		
9/20/2018	Assessment	0.169	128	6.59	0.21	7.2	572	256
4/9/2019	Assessment	0.156	102	6.82	0.20	6.9	451	179
6/18/2019	Assessment	0.116	86.5	5.06	0.16	6.2	416	144
9/10/2019	Assessment	0.124	92.0	4.01	0.20	7.1	369	109

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1608 **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
9/27/2016	Background	0.10	0.82	42.0	0.02 J	0.03	0.9	1.21	0.454	0.27	0.881	0.003	<0.002 U	2.35	1.2	0.03 J
11/1/2016	Background	0.04 J	0.53	33.4	<0.005 U	0.02 J	0.6	0.254	2.282	0.30	0.232	0.004	<0.002 U	2.16	1.3	0.081
12/19/2016	Background	0.04 J	0.68	32.2	0.009 J	0.02	2.78	0.588	0.379	0.26	0.405	<0.0002 U	<0.002 U	1.94	1.1	0.03 J
2/22/2017	Background	0.03 J	0.52	32.4	<0.005 U	0.01 J	0.364	0.240	1.235	0.25	0.205	0.003	<0.002 U	1.40	1.5	0.053
3/27/2017	Background	0.03 J	0.56	31.4	<0.005 U	0.01 J	0.335	0.330	0.417	0.24	0.274	0.006	<0.002 U	2.49	1.3	0.04 J
4/17/2017	Background	0.04 J	0.50	35.3	<0.004 U	0.01 J	0.223	0.196	0.1298	0.23	0.173	0.006	0.002 J	1.89	1.3	0.01 J
5/15/2017	Background	0.04 J	0.49	35.1	<0.004 U	0.008 J	0.151	0.098	0.857	0.23	0.073	0.006	<0.002 U	2.08	1.0	0.01 J
6/12/2017	Background	0.03 J	0.49	36.4	<0.004 U	0.006 J	0.277	0.040	0.146	0.21	0.024	0.016	<0.002 U	1.57	1.1	0.02 J
5/10/2018	Assessment	0.02 J	0.37	46.6	0.009 J	0.01 J	0.126	0.095	0.565	0.18	0.079	0.0003 J	<0.002 U	0.53	0.9	0.02 J
9/20/2018	Assessment	0.03 J	0.42	42.6	<0.004 U	0.008 J	0.264	0.052	0.55	0.21	0.037	0.004	<0.002 U	1.18	1.2	0.02 J
4/9/2019	Assessment	0.04 J	0.56	41.2	<0.02 U	0.02 J	0.372	0.597	0.2435	0.20	0.454	0.01 J	<0.002 U	1 J	1.2	<0.1 U
6/18/2019	Assessment	0.03 J	0.40	32	<0.02 U	0.01 J	0.306	0.05 J	0.104	0.16	0.06 J	<0.009 U	<0.002 U	0.8 J	0.8	<0.1 U
9/10/2019	Assessment	0.03 J	0.52	26.8	0.05 J	<0.01 U	0.327	0.056	1.348	0.20	0.06 J	0.00286	<0.002 U	1 J	1.0	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Table 1 - Groundwater Data Summary: MW-1805 Mountaineer - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
4/10/2019	Assessment	4.24	147	146	0.36	7.8	1500	639
6/19/2019	Assessment	6.38	280	156	0.1 J	7.5	1860	894
9/10/2019	Assessment	6.00	273			7.4		
9/11/2019	Assessment			167	0.24		1880	908

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1805 **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring Program	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Trogram	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
4/10/2019	Assessment	2.14	20.3	54.3	<0.1 U	<0.05 U	1.00	3.31	3.12	0.36	1.21	0.043	<0.002 U	80.1	<0.3 U	<0.5 U
6/19/2019	Assessment	<0.04 U	66.3	42.4	<0.04 U	<0.02 U	0.2 J	4.91	1.412	0.1 J	<0.04 U	0.032	<0.002 U	96.2	0.1 J	<0.2 U
9/10/2019	Assessment	0.07 J	70.4	41.9	<0.02 U	<0.01 U	0.415	3.39	2.7353	0.24*	0.1 J	0.0426	<0.002 U	78.0	0.1 J	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter * Sample collected on 9/11/2019

Table 1 - Groundwater Data Summary: MW-1921Mountaineer - BAPAppendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
4/10/2019	Assessment	0.571	55.9	34.7	0.77	7.6	452	106
6/19/2019	Assessment	0.644	77.7	33.3	0.87	8.2	435	128
9/11/2019	Assessment	0.647	79.6			7.6		
9/13/2019	Assessment			33.2	0.79		438	131

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1921 **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring Program	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	rrogram	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
4/10/2019	Assessment	0.10 J	3.36	68.0	<0.1 U	<0.05 U	1.13	2.64	1.678	0.77	0.944	0.075	0.002 J	478	0.4 J	<0.5 U
6/19/2019	Assessment	0.10	1.19	51.2	<0.02 U	<0.01 U	0.07 J	0.860	0.276	0.87	0.06 J	0.074	<0.002 U	502	0.2 J	<0.1 U
9/11/2019	Assessment	0.10 J	1.25	50.8	<0.02 U	0.03 J	0.1 J	0.692	1.228	0.79*	0.08 J	0.0926	<0.002 U	500	0.1 J	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter * Sample collected on 9/11/2019

Table 1 - Groundwater Data Summary: MW-1922D Mountaineer - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
4/9/2019	Assessment	1.00	145	53.5	0.29	7.5	908	333
6/19/2019	Assessment	0.725	121	44.1	0.31	7.6	724	269
9/10/2019	Assessment	0.44	96.5			7.6		
9/11/2019	Assessment			32.7	0.33		566	167

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1922D **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
4/9/2019	Assessment	0.88	323	69.3	<0.1 U	<0.05 U	0.4 J	1.02	2.64	0.29	0.1 J	0.02 J	<0.002 U	488	<0.2 U	<0.5 U
6/19/2019	Assessment	0.29	716	54.7	<0.02 U	<0.01 U	<0.04 U	0.530	3.332	0.31	<0.02 U	<0.009 U	<0.002 U	515	0.04 J	<0.1 U
9/10/2019	Assessment	1.04	839	51.0	<0.02 U	0.01 J	0.08 J	0.492	3.089	0.33*	<0.05 U	0.0126	<0.002 U	478	0.06 J	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter * Sample collected on 9/11/2019

Table 1 - Groundwater Data Summary: MW-1922SMountaineer - BAPAppendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
4/9/2019	Assessment	7.66	359	171	0.16	7.2	2090	978
6/20/2019	Assessment	6.95	335	169	0.17	7.4	2090	1020
9/10/2019	Assessment	6.34	342			7.3		
9/11/2019	Assessment			179	0.19		2060	1070

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1922S **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
4/9/2019	Assessment	<0.10 U	1.95	30.7	<0.1 U	<0.05 U	0.3 J	1.83	2.124	0.16	0.3 J	0.082	<0.002 U	43.5	<0.2 U	<0.5 U
6/20/2019	Assessment	<0.04 U	1.89	26.9	<0.04 U	<0.02 U	0.2 J	1.37	1.156	0.17	0.08 J	0.03 J	<0.002 U	36.4	0.07 J	<0.2 U
9/10/2019	Assessment	0.02 J	1.75	26.5	<0.02 U	<0.01 U	0.2 J	1.23	2.945	0.19*	0.1 J	0.0556	<0.002 U	33.9	0.08 J	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter * Sample collected on 9/11/2019

Table 1 - Groundwater Data Summary: MW-1923 Mountaineer - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
4/10/2019	Assessment	1.09	113	38.0	0.16	7.6	584	181
6/18/2019	Assessment	0.804	91.4	35.9	0.16	7.3	526	147
9/11/2019	Assessment	0.756	105	38.3	0.13	6.8	545	159

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1923 **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring Program	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	110gram	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
4/10/2019	Assessment	0.20 J	0.55	77.6	<0.1 U	<0.05 U	0.3 J	0.317	0.706	0.16	0.1 J	0.223	<0.002 U	160	23.8	<0.5 U
6/18/2019	Assessment	0.21	0.56	72.9	<0.02 U	0.01 J	0.353	0.657	0.836	0.16	0.255	0.135	<0.002 U	101	14.4	<0.1 U
9/11/2019	Assessment	0.24	0.75	86.6	<0.02 U	0.03 J	0.541	1.01	2.099	0.13	0.543	0.137	<0.002 U	84.2	14.0	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Table 1 - Groundwater Data Summary: MW-1924Mountaineer - BAPAppendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
4/10/2019	Assessment	7.49	286	136	0.42	6.9	1700	766
6/18/2019	Assessment	6.22	243	122	0.38	7.3	1570	721
9/11/2019	Assessment	4.89	238	109	0.44	7.1	1500	662

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1924 **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
4/10/2019	Assessment	0.20 J	0.91	59.8	<0.1 U	0.2 J	0.3 J	2.29	0.921	0.42	0.3 J	0.133	<0.002 U	89.5	1.3	<0.5 U
6/18/2019	Assessment	0.06 J	0.55	69.5	<0.02 U	0.05	0.1 J	2.74	1.417	0.38	0.07 J	0.087	<0.002 U	69.0	3.6	<0.1 U
9/11/2019	Assessment	0.07 J	0.61	54.5	<0.02 U	0.06	0.2 J	4.10	1.719	0.44	0.218	0.102	<0.002 U	76.7	3.5	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Table 1 - Groundwater Data Summary: MW-1925Mountaineer - BAPAppendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
4/10/2019	Assessment	4.17	172	128	0.33	7.2	1460	624
6/19/2019	Assessment	5.21	242	147	0.25	7.6	1520	686
9/10/2019	Assessment	5.86	249	147	0.26	7.2	1500	683

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1925 **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring Program	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	8	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
4/10/2019	Assessment	0.20 J	0.88	46.6	<0.1 U	0.06 J	0.4 J	1.65	2.726	0.33	0.4 J	0.094	<0.002 U	76.0	6.2	<0.5 U
6/19/2019	Assessment	0.18	0.35	48.0	<0.02 U	0.04 J	0.1 J	1.28	1.245	0.25	0.04 J	0.095	<0.002 U	63.5	6.3	<0.1 U
9/10/2019	Assessment	0.20	0.41	45.0	<0.02 U	0.06	0.1 J	1.27	1.041	0.26	0.2 J	0.0947	<0.002 U	54.6	4.1	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Table 1 - Groundwater Data Summary: MW-1926Mountaineer - BAPAppendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
4/10/2019	Assessment	0.263	95.4	57.8	0.25	7.2	506	67.4
6/20/2019	Assessment	0.165	82.1	23.2	0.28	7.3	416	47.8
9/11/2019	Assessment	0.145	87.6			7.3		
9/13/2019	Assessment			8.57	0.24		396	26.4

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1926 **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring Program	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	rrogram	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
4/10/2019	Assessment	0.10 J	0.95	28.8	<0.1 U	0.06 J	0.4 J	5.05	1.327	0.25	0.981	0.01 J	<0.002 U	9 J	0.3 J	<0.5 U
6/20/2019	Assessment	0.08 J	0.38	22.9	<0.02 U	0.05	0.06 J	1.81	0.524	0.28	0.05 J	<0.009 U	<0.002 U	7.05	0.3	<0.1 U
9/11/2019	Assessment	0.07 J	0.37	23.9	<0.02 U	0.06	0.09 J	1.17	0.4608	0.24*	0.07 J	0.00624	<0.002 U	5.38	0.4	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter * Sample collected on 9/11/2019

Table 1 - Groundwater Data Summary: MW-1927Mountaineer - BAPAppendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
4/10/2019	Assessment	0.654	151	20.3	0.18	7.3	898	327
6/20/2019	Assessment	0.513	159	15.6	0.13	7.8	849	335
9/11/2019	Assessment	0.498	143			7.0		
9/13/2019	Assessment			15.2	0.14		839	306

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1927 **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring Program	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Trogram	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
4/10/2019	Assessment	0.30 J	0.4 J	63.4	<0.1 U	<0.05 U	<0.2 U	0.319	1.533	0.18	0.1 J	0.03 J	<0.002 U	7 J	0.8 J	<0.5 U
6/20/2019	Assessment	0.15	0.28	61.5	<0.02 U	0.05 J	0.1 J	0.251	0.866	0.13	0.03 J	<0.009 U	<0.002 U	2.82	0.3	<0.1 U
9/11/2019	Assessment	0.12	0.27	58.7	<0.02 U	0.05	0.08 J	0.225	1.415	0.14*	<0.05 U	0.00638	<0.002 U	2 J	0.4	<0.1 U

Notes:

μg/L: micrograms per liter SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter * Sample collected on 9/11/2019

Table 1 - Groundwater Data Summary: MW-1929 Mountaineer - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
4/10/2019	Assessment	0.243	115	11.7	0.19	7.5	574	214
6/18/2019	Assessment	0.219	97.8	13.6	0.20	7.5	541	237
9/10/2019	Assessment	0.236	113	15.1	0.19	7.6	528	234

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1929 **Mountaineer - BAP** Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
4/10/2019	Assessment	<0.10 U	0.80	56.9	<0.1 U	<0.05 U	0.5 J	3.03	0.823	0.19	1.15	0.01 J	<0.002 U	<2 U	1.3	<0.5 U
6/18/2019	Assessment	0.02 J	0.37	47.6	<0.02 U	0.02 J	0.2 J	0.157	0.398	0.20	0.08 J	<0.009 U	<0.002 U	0.7 J	1.3	<0.1 U
9/10/2019	Assessment	0.03 J	0.47	52.1	<0.02 U	0.01 J	0.280	0.606	2.994	0.19	0.274	0.0048	<0.002 U	0.7 J	1.7	<0.1 U

Notes:

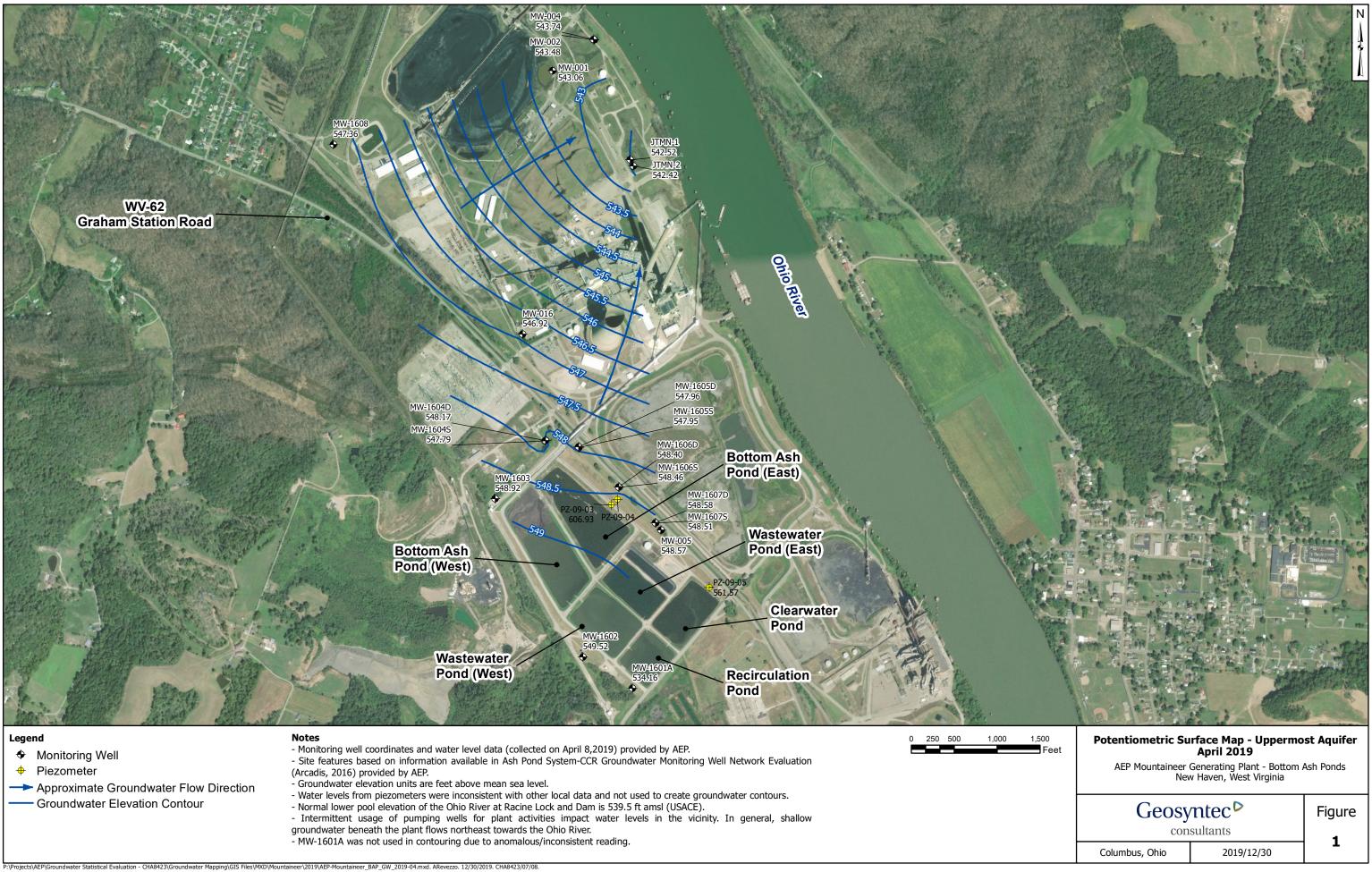
μg/L: micrograms per liter SU: standard unit

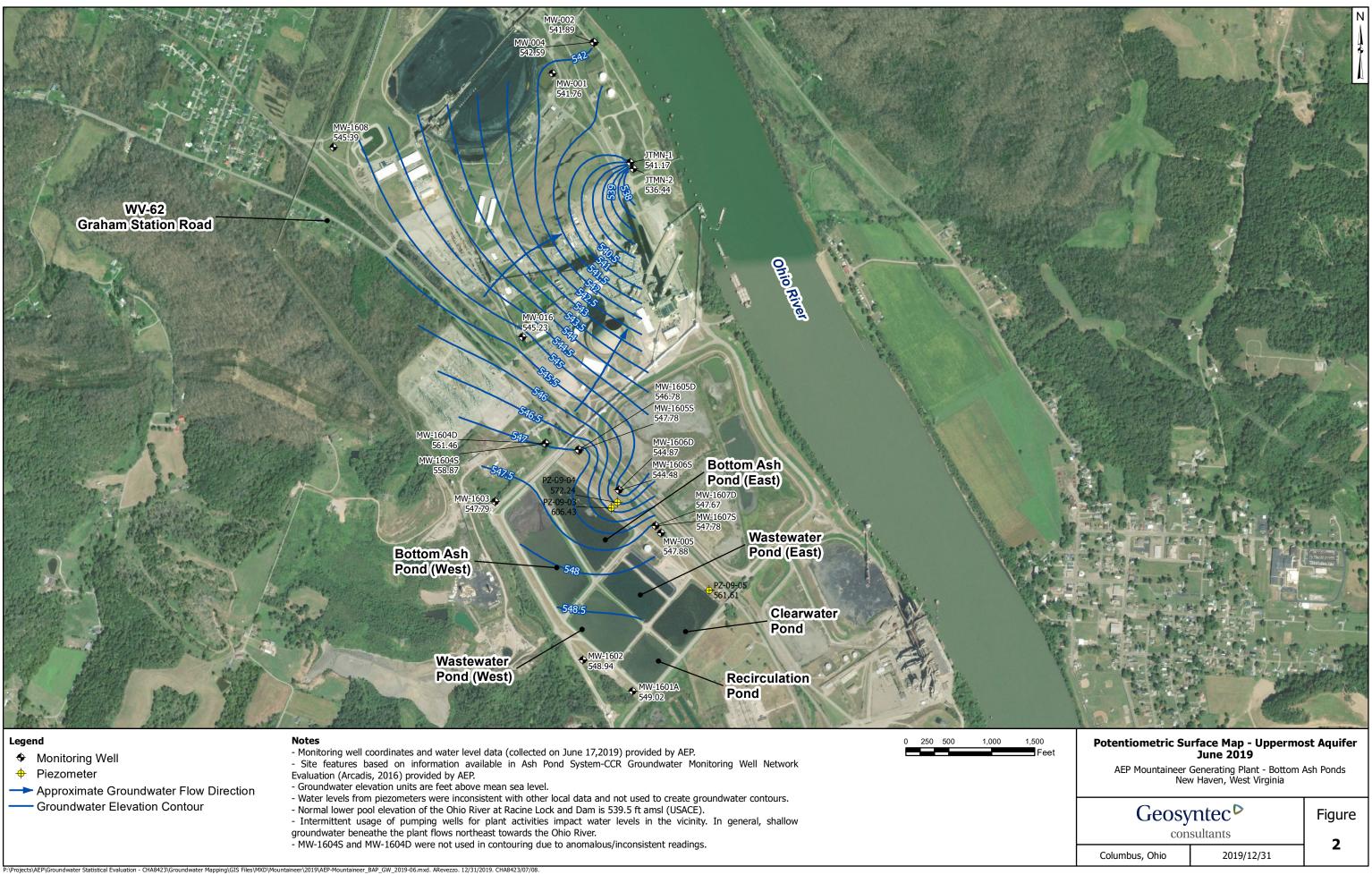
<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

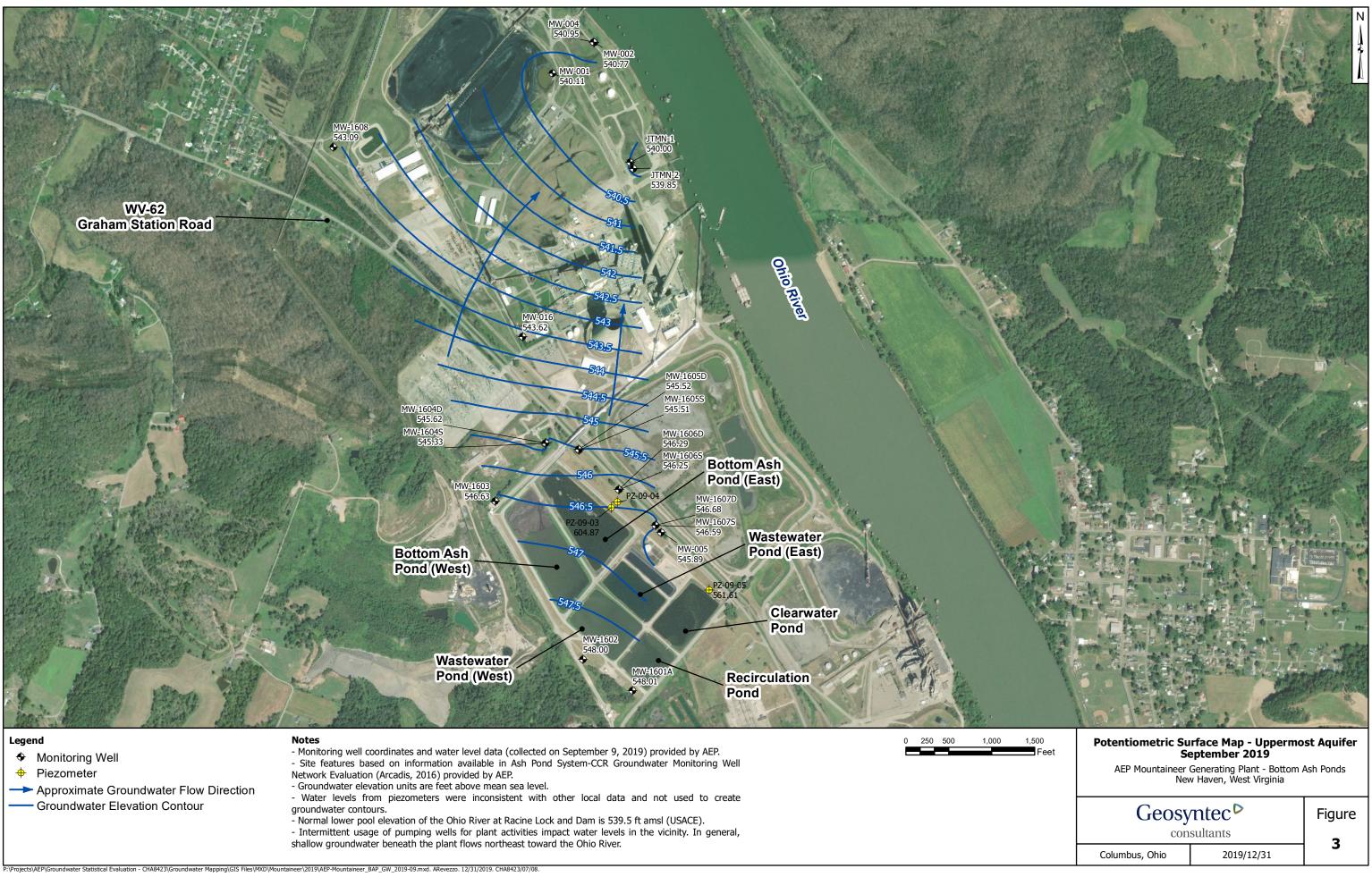
J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter


Table 2: Residence Time Calculation Summary - Bottom AshPond Mountaineer Bottom Ash Pond


			2019-04		2019-06		2019-09	
CCR Management Unit	Monitoring Well	Well Diameter (inches)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)
Bottom Ash Pond	MW-1601A ^[1]	2.0	1,743	0.03	145	0.4	227	0.3
	MW-1602 ^[1]	2.0	120	0.5	177	0.3	208	0.3
	MW-1603 ^[1]	2.0	279	0.2	192	0.3	366	0.2
	MW-1604D ^[2]	2.0	148	0.4	6,426	0.01	231	0.3
	MW-1604S ^[2]	2.0	314	0.2	5,275	0.01	407	0.1
	MW-1605D ^[2]	2.0	252	0.2	234	0.3	355	0.2
	MW-1605S ^[2]	2.0	244	0.2	91.1	0.7	363	0.2
	MW-1606D ^[2]	2.0	293	0.2	1,048	0.1	224	0.3
	MW-1606S ^[2]	2.0	337	0.2	1,697	0.04	267	0.2
	MW-1607D ^[2]	2.0	139	0.4	1,337	0.05	98.5	0.6
	MW-1607S ^[2]	2.0	162	0.4	1,556	0.04	126	0.5
	MW-1608 ^[1]	2.0	343	0.2	294	0.2	238	0.3


Notes:

[1] - Background Well

[2] - Downgradient Well

Appendix 2

The groundwater data statistical analyses completed in 2019 follow.

STATISTICAL ANALYSIS SUMMARY BOTTOM ASH POND Mountaineer Plant New Haven, West Virginia

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

Geosyntec Consultants

engineers | scientists | innovators

941 Chatham Lane Suite 103 Columbus, Ohio 43221

January 8, 2019

CHA8473

TABLE OF CONTENTS

SECTION 1	Execut	ive Summary	
SECTION 2	Bottom	Ash Pond Evaluation	2-1
2.1	Data V	alidation & QA/QC	2-1
2.2	Statistical Analysis2-		2-1
	2.2.1	Establishment of GWPSs	2-1
	2.2.2	Evaluation of Potential Appendix IV SSLs	2-2
2.3	Conclu	sions	2-2
SECTION 3	Referen	nces	3-1

LIST OF TABLES

Table 1	Groundwater Data Summary
Table 2	Groundwater Protection Standards

LIST OF ATTACHMENTS

Attachment A	Certification by Qualified Professional Engineer
Attachment B	Statistical Analysis Output

LIST OF ACRONYMS AND ABBREVIATIONS

AEP	American Electric Power
ASD	Alternative Source Demonstration
BAP	Bottom Ash Pond
CCR	Coal Combustion Residuals
CCV	Continuing Calibration Verification
CFR	Code of Federal Regulations
GWPS	Groundwater Protection Standard
LCL	Lower Confidence Limit
LFB	Laboratory Fortified Blanks
LRB	Laboratory Reagent Blanks
MCL	Maximum Contaminant Level
NELAP	National Environmental Laboratory Accreditation Program
QA	Quality Assurance
QC	Quality Control
RSL	Regional Screening Level
SSI	Statistically Significant Increase
SSL	Statistically Significant Level
TDS	Total Dissolved Solids
UPL	Upper Prediction Limit
USEPA	United States Environmental Protection Agency
UTL	Upper Tolerance Limit

SECTION 1

EXECUTIVE SUMMARY

In accordance with the United States Environmental Protection Agency's (USEPA's) regulations regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (40 CFR 257.90-257.98, "CCR rule"), groundwater monitoring has been conducted at the Bottom Ash Pond (BAP), an existing CCR unit at the Mountaineer Power Plant located in New Haven, West Virginia.

Based on detection monitoring conducted in 2017 and 2018, statistically significant increases (SSIs) over background were concluded for boron, calcium, chloride, total dissolved solids (TDS), and sulfate at the BAP. An alternate source was not identified at the time, so two assessment monitoring events were conducted at the BAP in 2018, in accordance with 40 CFR 257.95.

Groundwater data underwent several validation tests, including those for completeness, sample tracking accuracy, transcription errors, and consistent use of measurement units. No data quality issues were identified which would impact the usability of the data.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. Groundwater protection standards (GWPSs) were established for the Appendix IV parameters. Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether Appendix IV parameters were present at a statistically significant level (SSL) above the GWPS. SSLs were identified for lithium. Thus, either the unit will move to an assessment of corrective measures or an alternative source demonstration (ASD) will be conducted to evaluate if the unit can remain in assessment monitoring. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A.

SECTION 2

BOTTOM ASH POND EVALUATION

2.1 Data Validation & QA/QC

During the assessment monitoring program, two sets of samples were collected for analysis from each upgradient and downgradient well to meet the requirements of 40 CFR 257.95(b) and 257.95(d)(1). Samples from both sampling events were analyzed for the Appendix IV parameters, while samples from the second sampling event were also analyzed for Appendix III parameters. A summary of data collected during assessment monitoring may be found in Table 1.

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program (NELAP). Quality assurance and quality control (QA/QC) samples completed by the analytical laboratory included the use of laboratory reagent blanks (LRBs), continuing calibration verification (CCV) samples, and laboratory fortified blanks (LFBs).

The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.5 statistics software. The export file was checked against the analytical data for transcription errors and completeness. No QA/QC issues were noted which would impact data usability.

2.2 <u>Statistical Analysis</u>

Statistical analyses for the BAP were conducted in accordance with the January 2017 *Statistical Analysis Plan* (AEP, 2017), except where noted below. Time series plots and results for all completed statistical tests are provided in Attachment B.

The data obtained to meet the requirements of 40 CFR 257.95(b) and 257.95(d)(1) were screened for potential outliers. No outliers were identified. Outliers identified from the background and detection monitoring events conducted through January 2018 were summarized in a previous report (Geosyntec, 2018).

2.2.1 Establishment of GWPSs

A GWPS was established for each Appendix IV parameter in accordance with 40 CFR 257.95(h) and the *Statistical Analysis Plan* (AEP, 2017). The established GWPS was determined to be the greater value of the background concentration and the maximum contaminant level (MCL) or regional screening level (RSL) for each Appendix IV parameter. To determine background concentrations, an upper tolerance limit (UTL) was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events.

Tolerance limits were generally calculated parametrically with 95% coverage and 95% confidence. Non-parametric tolerance limits were calculated for antimony, cadmium, and selenium due to apparent non-normal distributions and for beryllium and mercury due to a high non-detect frequency. Tolerance limits and the final GWPSs are summarized in Table 2.

2.2.2 Evaluation of Potential Appendix IV SSLs

A confidence interval was constructed for each Appendix IV parameter at each compliance well. Confidence limits were generally calculated parametrically ($\alpha = 0.01$); however, non-parametric confidence limits were calculated in some cases (e.g., when the data did not appear to be normally distributed or when the non-detect frequency was too high). An SSL was concluded if the lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). Calculated confidence limits are shown in Attachment B.

The following SSLs were identified at the Mountaineer BAP:

LCLs for lithium exceeded the GWPS of 0.04 mg/L at MW-1605D (0.0653 mg/L), MW-1605S (0.0594 mg/L), MW-1606D (0.111 mg/L), MW-1606S (0.102 mg/L), MW-1607D (0.0718 mg/L), MW-1607S (0.0918 mg/L).

As a result, the Mountaineer BAP will either move to an assessment of corrective measures or an alternative source demonstration will be conducted to evaluate if the unit can remain in assessment monitoring.

2.3 <u>Conclusions</u>

Two assessment monitoring events were conducted in 2018 in accordance with the CCR Rule. The laboratory and field data were reviewed prior to statistical analysis, with no QA/QC issues identified that impacted data usability. A review of outliers identified no potential outliers in the 2018 data. GWPSs were established for the Appendix IV parameters. A confidence interval was constructed at each compliance well for each Appendix IV parameter; SSLs were concluded if the entire confidence interval exceeded the GWPS. SSLs were identified for lithium.

Based on this evaluation, the Mountaineer BAP CCR unit will either move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring.

SECTION 3

REFERENCES

American Electric Power (AEP). 2017. Statistical Analysis Plan – Mountaineer Plant. January 2017.

Geosyntec Consultants (Geosyntec). 2018. Statistical Analysis Summary – Bottom Ash Pond, Mountaineer Plant, New Haven, West Virginia. January 15, 2018.

TABLES

Table 1 – Groundwater Data SummaryMountaineer – Bottom Ash Pond

NW-1601A MW-1602 MW-1603 MW-1604D MW-1604S MW-1605D MW-1605S													1(050		
Parameter	Unit										_				
	0	5/10/2018	9/20/2018	5/10/2018	9/20/2018	5/10/2018	9/20/2018	5/9/2018	9/19/2018	5/9/2018	9/19/2018	5/9/2018	9/19/2018	5/9/2018	9/19/2018
Antimony	μg/L	0.0300 J	0.0300 J	0.0200 J	0.0100 J	0.0200 J	0.0200 J	0.0400 J	0.0400 J	0.130	0.130	0.0300 J	0.0400 J	0.0400 J	0.0400 J
Arsenic	μg/L	0.550	0.580	0.340	0.320	0.310	0.260	0.340	0.290	0.330	0.320	2.22	2.51	0.500	0.490
Barium	μg/L	63.9	55.3	31.2	26.7	41.3	35.9	32.0	37.0	28.7	26.6	21.6	25.9	23.5	23.1
Beryllium	μg/L	0.02 U	0.02 U	0.00500 J	0.02 U	0.00700 J	0.02 U	0.02 U	0.02 U	0.0240	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Boron	mg/L	-	0.251	-	0.109	-	0.324	-	1.33	-	2.49	-	9.11	-	7.75
Cadmium	μg/L	0.0200 J	0.0200 J	0.0100 J	0.0100 J	0.0100 J	0.0100 J	0.0400	0.0300	0.150	0.150	0.0100 J	0.0200 J	0.0600	0.0500
Calcium	mg/L	-	148	-	81.6	-	167	-	144	-	262	-	278	-	182
Chloride	mg/L	-	51.0	-	10.5	-	14.0	-	41.3	-	109	-	188	-	171
Chromium	μg/L	0.153	0.131	0.121	0.210	0.0990	0.102	0.195	0.169	0.107	0.0930	0.0670	0.229	0.0830	0.644
Cobalt	μg/L	0.0830	0.0590	0.0360	0.0200 J	0.0540	0.0320	0.314	0.203	1.83	1.88	1.51	1.80	0.518	0.360
Combined Radium	pCi/L	0.767	0.696	0.342	0.683	0.363	0.881	0.687	0.316	1.17	1.16	0.523	0.759	0.305	0.347
Fluoride	mg/L	0.160	0.190	0.230	0.250	0.0900 J	0.0900	0.210	0.190	0.220	0.220	0.230	0.220	0.300	0.320
Lead	μg/L	0.0340	0.00500 J	0.0380	0.0100 J	0.0420	0.0200 J	0.0350	0.303	0.0340	0.0200 J	0.0200 J	0.0100 J	0.0560	0.0930
Lithium	mg/L	0.00400	0.00400	0.0150	0.0120	0.0210	0.0220	0.0240	0.0160	0.0510	0.0520	0.0620	0.0600	0.0510	0.0490
Mercury	μg/L	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U					
Molybdenum	μg/L	0.990	0.760	0.710	0.840	0.140	0.0700 J	2.05	1.57	16.2	15.6	46.4	47.9	15.6	15.1
Selenium	μg/L	1.50	1.10	0.100	0.0700 J	0.200	0.400	1.40	3.80	1.00	0.800	0.200	0.300	2.00	1.00
Total Dissolved Solids	mg/L	-	638	-	502	-	920	-	838	-	1500	-	1960	-	1650
Sulfate	mg/L	-	189	-	195	-	524	-	313	-	742	-	972	-	793
Thallium	μg/L	0.0300 J	0.0400 J	0.0300 J	0.0200 J	0.0200 J	0.0100 J	0.0200 J	0.0200 J	0.220	0.251	0.0400 J	0.0500 J	0.0400 J	0.0400 J
pН	SU	7.30	7.14	7.01	7.14	6.55	6.58	7.09	7.21	7.43	7.30	7.46	7.57	7.21	7.35

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Parameter was not present in concentrations above method detection limit and is reported as the reporting limit

J: Estimated value. Parameter was detected in concentrations below the reporting limit

-: Not sampled

Table 1 – Groundwater Data Summary Mountaineer – Bottom Ash Pond

Demonster	Unit	MW-	1606D	MW-	1606S	MW-	1607D	MW-	1607S	MW-1608		
Parameter	Unit	5/9/2018	9/19/2018	5/9/2018	9/19/2018	5/10/2018	9/20/2018	5/10/2018	9/20/2018	5/10/2018	9/20/2018	
Antimony	μg/L	0.160	0.150	0.140	0.130	0.0300 J	0.0300 J	0.440	0.420	0.0200 J	0.0300 J	
Arsenic	μg/L	0.440	0.380	0.720	0.690	1.15	1.34	0.930	0.900	0.370	0.420	
Barium	μg/L	53.0	48.9	73.2	64.8	73.5	92.3	71.1	80.6	46.6	42.6	
Beryllium	μg/L	0.02 U	0.00400 J	0.02 U	0.00500 J	0.02 U	0.02 U	0.02 U	0.02 U	0.00900 J	0.02 U	
Boron	mg/L	-	7.27	-	5.87	-	2.44	-	1.71	-	0.169	
Cadmium	μg/L	0.0700	0.0700	0.0800	0.0600	0.02 U	0.02 U	0.0400	0.0400	0.0100 J	0.00800 J	
Calcium	mg/L	-	260	-	199	-	222	-	220	-	128	
Chloride	mg/L	-	201	-	219	-	163	-	151	-	6.59	
Chromium	μg/L	0.198	0.151	0.0560	0.297	0.0510	0.158	0.121	0.0860	0.126	0.264	
Cobalt	μg/L	1.40	1.17	0.318	0.260	0.521	0.769	1.18	0.840	0.0950	0.0520	
Combined Radium	pCi/L	0.972	0.438	0.344	0.439	1.25	0.926	1.29	0.584	0.565	0.550	
Fluoride	mg/L	0.260	0.260	0.440	0.460	0.540	0.520	0.290	0.280	0.180	0.210	
Lead	μg/L	0.115	0.0100 J	0.0400	0.0200 J	0.0430	0.0440	0.128	0.0940	0.0790	0.0370	
Lithium	mg/L	0.112	0.107	0.107	0.0960	0.0890	0.104	0.103	0.118	0.000300 J	0.00400	
Mercury	μg/L	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	
Molybdenum	μg/L	70.3	65.3	70.2	70.6	80.9	83.4	43.2	41.5	0.530	1.18	
Selenium	μg/L	2.60	3.30	2.00	2.80	0.10 U	0.10 U	11.4	8.80	0.900	1.20	
Total Dissolved Solids	mg/L	-	1610	-	1370	-	1450	-	1160	-	572	
Sulfate	mg/L	-	722	-	571	-	662	-	478	-	256	
Thallium	μg/L	0.0860	0.108	0.0760	0.112	0.0200 J	0.0400 J	0.0640	0.0890	0.0200 J	0.0200 J	
pН	SU	7.43	7.19	6.93	7.10	7.54	7.73	7.40	7.57	6.78	7.17	

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Parameter was not present in concentrations above method detection limit and is reported as the reporting limit

J: Estimated value. Parameter was detected in concentrations below the reporting limit

-: Not sampled

Geosyntec Consultants, Inc.

Table 2: Groundwater Protection Standards Mountaineer Plant - Bottom Ash Pond

Constituent Name	MCL	CCR Rule-Specified	Background Limit
Antimony, Total (mg/L)	0.006		0.0001
Arsenic, Total (mg/L)	0.01		0.00075
Barium, Total (mg/L)	2		0.058
Beryllium, Total (mg/L)	0.004		0.00002
Cadmium, Total (mg/L)	0.005		0.00003
Chromium, Total (mg/L)	0.1		0.0019
Cobalt, Total (mg/L)	n/a	0.006	0.00066
Combined Radium, Total (pCi/L)	5		2.36
Fluoride, Total (mg/L)	4		0.3
Lead, Total (mg/L)	n/a	0.015	0.00052
Lithium, Total (mg/L)	n/a	0.04	0.031
Mercury, Total (mg/L)	0.002		0.000005
Molybdenum, Total (mg/L)	n/a	0.1	0.0029
Selenium, Total (mg/L)	0.05		0.0015
Thallium, Total (mg/L)	0.002		0.000093

Notes:

Grey cell indicates calculated UTL is higher than MCL.

MCL = Maximum Contaminant Level

Calculated UTL (Upper Tolerance Limit) represents site-specific background values.

The higher of the calculated UTL or MCL/RSL is used as the GWPS.

ATTACHMENT A Certification by Qualified Professional Engineer

Certification by Qualified Professional Engineer

I certify that the selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Mountaineer Bottom Ash Pond CCR management area and that the requirements of 40 CFR 257.93(f) have been met.

DAVID ANTHONY MILLER

Printed Name of Licensed Professional Engineer

avid Anthony Milles

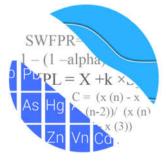
Signature

22663

WEST VIRGINIA

License Number

Licensing State



01.08.19

Date

ATTACHMENT B Statistical Analysis Output

GROUNDWATER STATS CONSULTING

December 3, 2018

Geosyntec Consultants Attn: Ms. Allison Kreinberg 941 Chatham Lane, #103 Columbus, OH 43221

Re: Mountaineer BAP Assessment Monitoring Event – September 2018

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the statistical analysis of the September 2018 groundwater data for American Electric Power Inc.'s Mountaineer Bottom Ash Pond. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the USEPA Unified Guidance (2009).

Sampling began at the site for the CCR program in 2016. The monitoring well network, as provided by Geosyntec Consultants, consists of the following:

- **Upgradient wells:** MW-1601A, MW-1602, MW-1603, MW-1608; and
- Downgradient wells: MW-1604D, MW-1604S, MW-1605D, MW-1605S, MW-1606D, MW-1606S, MW-1607D, MW-1607S.

Data were sent electronically, and the statistical analysis was conducted according to the Statistical Analysis Plan and screening evaluation prepared by GSC and approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC.

The CCR program consists of the following constituents:

 Appendix III (Detection Monitoring) - boron, calcium, chloride, fluoride, pH, sulfate, and TDS; Appendix IV (Assessment Monitoring) – antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium.

Time series plots for Appendix III and IV parameters are provided for all wells and constituents; and are used to evaluate concentrations over the entire record. Values previously flagged during the screening as outliers may be seen in a lighter font and disconnected symbol on the time series graphs.

Evaluation of Appendix III Parameters

Interwell prediction limits combined with a 1-of-2 verification strategy were constructed for boron, calcium, chloride, fluoride, sulfate and TDS; and intrawell prediction limits combined with a 1-of-2 verification strategy were constructed for pH. The statistical method selected for each parameter was determined based on the results of the screening analysis performed in December 2017.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified and further research would be required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered a false positive result and, therefore, no further action is necessary. SSIs were noted for several of the Appendix III parameters and the results of those findings may be found in the Prediction Limit Summary tables following this letter.

When a statistically significant increase is identified, the data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing or stable. Upgradient wells are included in the trend analyses to identify whether similar patters exist upgradient of the site which is an indication of natural variability in groundwater unrelated to practices at the site.

Statistically significant increasing trends were found for several constituents in both upgradient and downgradient wells. A statistically significant increasing trend was noted for calcium in well MW-1607S; however, with the exception of the most recent sample, historical concentrations are similar and, in some cases, lower than those reported in upgradient wells. Further research beyond the scope of this analysis would be required to identify the cause for any changing groundwater concentrations in downgradient wells

(i.e. result of practices at the site, natural variation, or an off-site source). A Trend Test summary table follows this letter.

Evaluation of Appendix IV Parameters

Parametric tolerance limits were used to calculate background limits from pooled upgradient well data for Appendix IV parameters with a target of 95% confidence and 95% coverage to determine the Alternate Contaminant Level (ACL). The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. These limits were compared to the Maximum Contaminant Levels (MCLs) and Regional Screening Levels (RSLs) in the Groundwater Protection Standard (GWPS) table following this letter to determine the highest limit for use as the GWPS in the Confidence Interval comparisons.

Confidence intervals were then constructed on downgradient wells for each of the Appendix IV parameters using the highest limit of either the MCL, RSL, or ACL as discussed above. Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard. No confidence interval exceedances were found except for lithium in wells MW-1605D, MW1605S, MW-1606D, MW-1606S, MW-1607D and MW-1607S. A summary of the confidence interval results follows this letter.

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Mountaineer BAP. If you have any questions or comments, please feel free to contact me.

For Groundwater Stats Consulting,

Kristina Rayner

Kristina L. Rayner Groundwater Statistician

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was reviewed by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to Groundwater Stats Consulting.

The following constituents were evaluated: Appendix III parameters – boron, calcium, chloride, fluoride, pH, sulfate, and TDS; and Appendix IV parameters - antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 & 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium.

Time series plots for Appendix III and IV parameters at all wells are provided for the purpose of screening data at these wells (Figure A). Additionally, box plots are included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells.

Data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves are provided to demonstrate that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance recommendations as discussed below.

Summary of Statistical Method:

- 1) Intrawell prediction limits, combined with a 1-of-2 resample plan for pH; and
- 2) Interwell prediction limits combined with a 1-of-2 resample plan for boron, calcium, chloride, fluoride, sulfate, and TDS.

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are nondetects, a nonparametric test is utilized. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits.

• No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).

- When data contain <15% nondetects in background, simple substitution of onehalf the reporting limit is utilized in the statistical analysis. The reporting limit utilized for nondetects is the practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% nondetects, the Kaplan-Meier nondetect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% nondetects.

Background Screening

Outlier Evaluation

Time series plots are used to identify suspected outliers, or extreme values that would result in limits that are not conservative from a regulatory perspective, in proposed background data. Suspected outliers at all wells for Appendix III and Appendix IV parameters were formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits (Figure C).

Tukey's outlier test noted a few outliers as may be seen on the Outlier Summary Table and accompanying graphs. Any values flagged as outliers are plotted in a lighter font on the time series graph. The test identified two outliers for chloride and one low outlier for pH in well MW-1607D; however, these values were not flagged due to all concentrations being consistent over time and similar to concentrations in neighboring wells. The high value identified as an outlier for pH at well MW-1607D was, however, flagged in the database. A substitution of the most recent reporting limit was applied when varying detection limits existed in data.

No true seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release.

While trends may be visual, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test was used to evaluate all data at each well to identify statistically significant increasing or decreasing trends (Figure D). In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, earlier data are evaluated to determine whether earlier concentration levels are significantly different than current reported concentrations and will be deselected as necessary. When the historical records of data are truncated for the reasons above, a summary report will be provided to show the date ranges used in construction of the statistical limits.

The results of the trend analyses showed a handful of statistically significant trends as may be seen on the Trend Test Summary table that accompanies the trend tests. All trends were relatively low in magnitude when compared to average concentrations. One exception is chloride in upgradient well MW-1601A which shows a statistically significant increasing trend over time. However, concentrations in this well are similar to neighboring upgradient well concentrations and, therefore, required no adjustment at this time. This well will continue to be monitored and re-evaluated as more data are collected.

Appendix III – Determination of Spatial Variation

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells, which assists in identifying the most appropriate statistical approach (Figure E). Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells would not be conservative from a regulatory perspective; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA identified variation for all Appendix III parameters; therefore, these data were further evaluated as described for the appropriateness of intrawell testing to accommodate the groundwater quality. A summary table of the ANOVA results is included with the reports.

Appendix III - Statistical Limits

Intrawell limits constructed from carefully screened background data from within each well serve to provide statistical limits that are conservative (i.e. lower) from a regulatory perspective, and that will rapidly identify a change in more recent compliance data from within a given well. This statistical method removes the element of variation from across wells and eliminates the chance of mistaking natural spatial variation for a release from the facility. Prior to performing intrawell prediction limits, several steps are required to reasonably demonstrate downgradient water quality does not have existing impacts from the practices of the facility.

Exploratory data analysis was used as a general comparison of concentrations in downgradient wells for all Appendix III parameters recommended for intrawell analyses to concentrations reported in upgradient wells. Upper tolerance limits are used in conjunction with confidence intervals to determine whether the estimated averages in downgradient wells are higher than observed levels upgradient of the facility. The upper tolerance limits were constructed to represent the extreme upper range of possible background levels at the site.

In cases where downgradient average concentrations are higher than observed concentrations upgradient for a given constituent, an independent study and hydrogeological investigation would be required to identify local geochemical conditions and expected groundwater quality for the region to justify an intrawell approach. Such an assessment is beyond the scope of services provided by Groundwater Stats Consulting. When there is not an obvious explanation for observed concentration differences in downgradient wells relative to reported concentrations in upgradient wells, interwell prediction limits will initially be selected for the statistical method until further evidence shows that concentrations are due to natural variation rather than a result of the facility.

Parametric tolerance limits were constructed with a target of 99% confidence and 95% coverage using pooled upgradient well data for each of the Appendix III parameters (Figure F). The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. As more data are collected, the background population is better represented and the confidence and coverage levels increase.

Confidence intervals were constructed on downgradient wells for each of the Appendix III parameters, using the tolerance limits discussed above, to determine intrawell eligibility (Figure G). When the entire confidence interval is above a background

standard for a given parameter, interwell methods are initially recommended as the statistical method. Therefore, only parameters with confidence intervals which did not exceed background standards are eligible for intrawell prediction limits.

Confidence intervals for the above parameters were found to be within their respective background limit for pH; while confidence intervals were above their respective background limits in at least one well for all other Appendix III parameters. Therefore, intrawell methods are recommended for pH, and interwell methods are initially recommended for boron, calcium, chloride, fluoride, sulfate and TDS. As mentioned earlier, if a demonstration supports natural variation in groundwater, intrawell methods will be considered for all parameters.

All available data through June 2017 at each well were used to establish intrawell background limits based on a 1-of-2 resample plan that will be used for future comparisons (Figure H). Interwell prediction limits, combined with a 1-of-2 resample plan, were constructed from upgradient wells (Figure I). Downgradient measurements will be compared to these background limits during each subsequent semi-annual sampling event.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits will be necessary to accommodate these types of changes In the interwell case, newer data will be included in background when a minimum of 2 new samples are available. In the intrawell case, data for all wells and constituents are re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. In some cases, the earlier portion of data are deselected prior to construction of limits in order to provide sensitive limits that will rapidly detect changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of an additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified and further research would be required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered to be a false positive result and, therefore, no further action is necessary. A summary table of the background prediction limits follows this letter.

<u>Appendix IV – Assessment Monitoring Program</u>

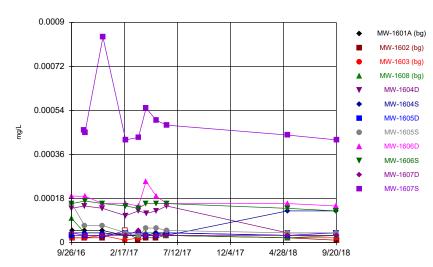
During an Assessment Monitoring program confidence intervals are constructed at all wells for detected Appendix IV parameters. A minimum of 4 samples is required to construct confidence intervals; however, 8 samples are generally recommended for better representation of the true average population. Established Maximum Contaminant Levels (MCLs) are used as the GWPS comparisons, unless background limits are higher as discussed below. Parametric confidence intervals are constructed with 99% confidence when data follow a normal or transformed-normal distribution. For all other cases, nonparametric confidence intervals are constructed, with the confidence level based on the number of samples available. The GWPS is exceeded only when the entire confidence interval exceeds its respective GWPS.

Background limits are established for the Appendix IV parameters using upper tolerance limits constructed with 95% confidence/95% coverage using pooled upgradient well data, for comparison against established MCLs. When background limits, or Alternate Contaminant Levels (ACLs), are higher than established MCLs, the CCR Rule recommends using these ACLs as the GWPS for the confidence interval comparisons. Additionally, tolerance limits are also recommended to establish ACLs for Appendix IV parameters, cobalt, lithium, and molybdenum, which do not have established MCLs. Since the scope of this project included screening and development of background limits for Appendix III Detection Monitoring statistics, comparison of the Appendix IV parameters with confidence intervals was not included in this report.

Recommendations

In summary, as a result of the background screening described in this letter, intrawell prediction limits combined with a 1-of-2 resample plan are recommended for pH; and interwell prediction limits combined with a 1-of-2 resample plan are recommended for boron, calcium, chloride, fluoride, sulfate, and TDS. The statistical analyses will be constructed according to the USEPA Unified Guidance, based on seven Appendix III parameters and eight downgradient wells.

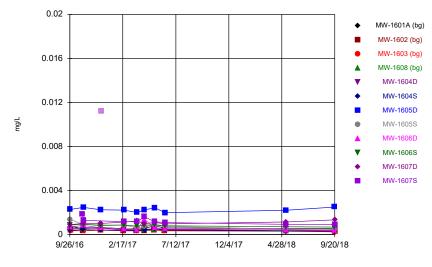
Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Mountaineer Bottom Ash Pond. If you have any questions or comments, please feel free to contact me.


For Groundwater Stats Consulting,

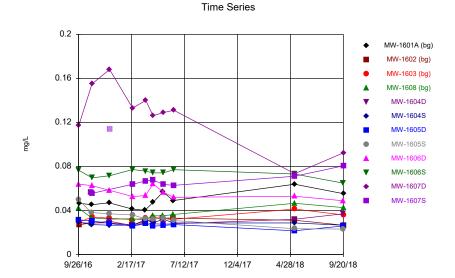
L. Ryon

Kristina L. Rayner Groundwater Statistician

Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

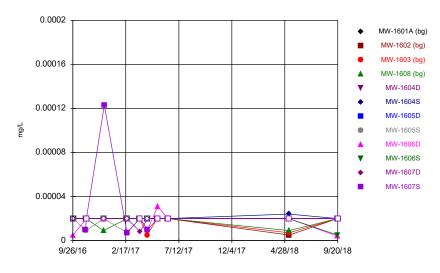


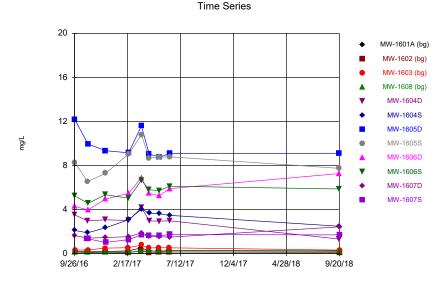
Constituent: Antimony, total Analysis Run 12/3/2018 8:23 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



Time Series

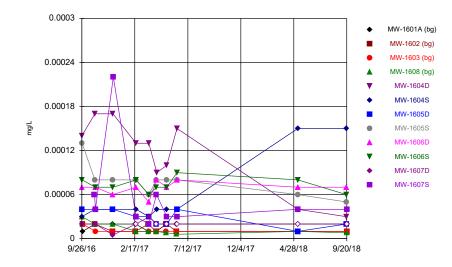
Constituent: Arsenic, total Analysis Run 12/3/2018 8:23 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

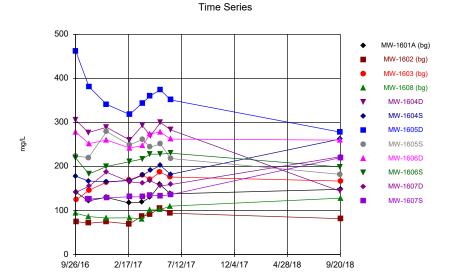

Constituent: Barium, total Analysis Run 12/3/2018 8:23 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

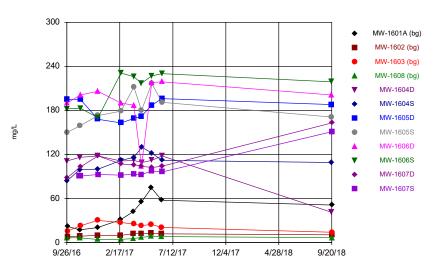
Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

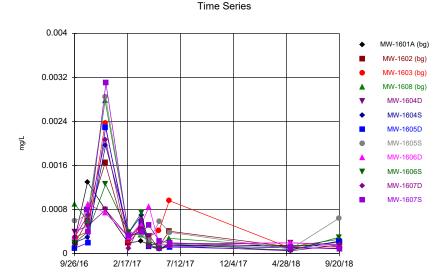

Constituent: Beryllium, total Analysis Run 12/3/2018 8:23 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Boron, total Analysis Run 12/3/2018 8:23 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

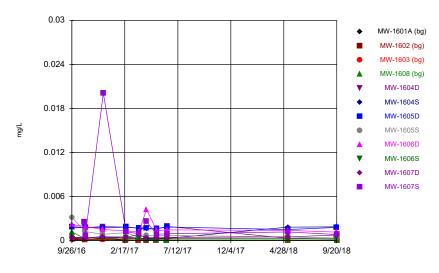

Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Cadmium, total Analysis Run 12/3/2018 8:23 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

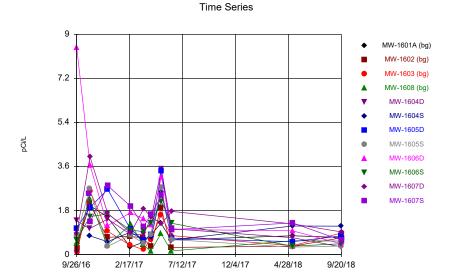

Constituent: Calcium, total Analysis Run 12/3/2018 8:23 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series



Constituent: Chloride, total Analysis Run 12/3/2018 8:23 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

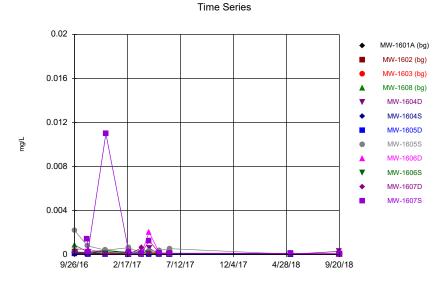

Constituent: Chromium, total Analysis Run 12/3/2018 8:23 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Time Series

Constituent: Cobalt, total Analysis Run 12/3/2018 8:23 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

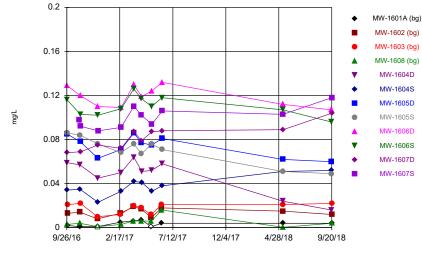

Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Combined Radium 226 + 228 Analysis Run 12/3/2018 8:23 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

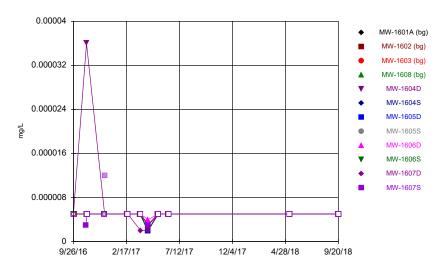
Time Series

Constituent: Fluoride, total Analysis Run 12/3/2018 8:23 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

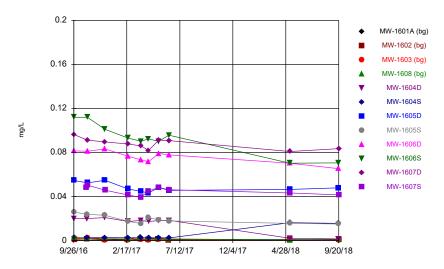
Constituent: Lead, total Analysis Run 12/3/2018 8:23 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

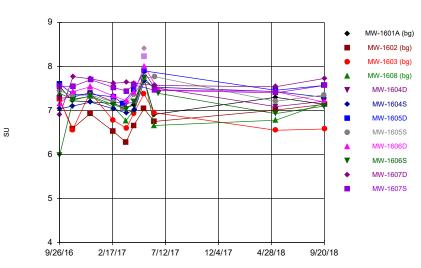


Constituent: Lithium, total Analysis Run 12/3/2018 8:23 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

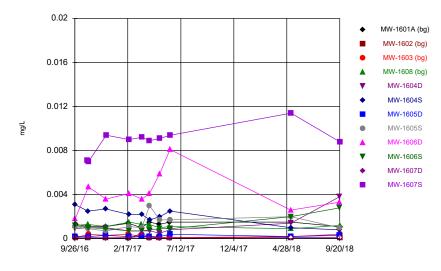


Constituent: Mercury, total Analysis Run 12/3/2018 8:23 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

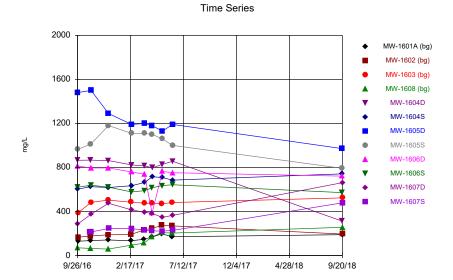

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series

Constituent: Molybdenum, total Analysis Run 12/3/2018 8:23 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

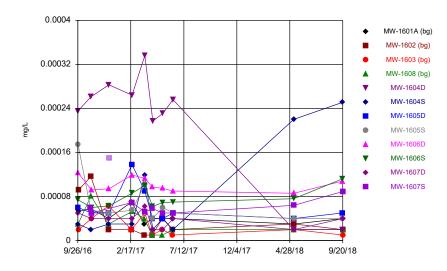

Time Series

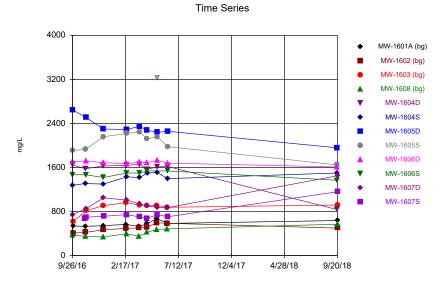
Constituent: pH, field Analysis Run 12/3/2018 8:23 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

Constituent: Selenium, total Analysis Run 12/3/2018 8:23 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Sulfate, total Analysis Run 12/3/2018 8:24 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

Constituent: Thallium, total Analysis Run 12/3/2018 8:24 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/3/2018 8:24 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Interwell Prediction Limit Summary Table - Significant Results

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Printed 12/3/2018, 6:38 AM

		Wountail			Syntee Du	a. mountai		111100 12/0/2	2010, 0			
Constituent	Well	Upper Lim.	Lower Lin	<u>Date</u>	Observ.	<u>Sig. Bg N</u>	<u>Bg Mean</u>	Std. Dev.	<u>%NDs</u>	ND AdjTransform	<u>Alpha</u>	Method
Boron, total (mg/L)	MW-1604D	0.6495	n/a	9/19/2018	1.33	Yes 36	0.6179	0.1221	0	None x^(1/3)	0.0009403	Param 1 of 2
Boron, total (mg/L)	MW-1604S	0.6495	n/a	9/19/2018	2.49	Yes 36	0.6179	0.1221	0	None x^(1/3)	0.0009403	Param 1 of 2
Boron, total (mg/L)	MW-1605D	0.6495	n/a	9/19/2018	9.11	Yes 36	0.6179	0.1221	0	None x^(1/3)	0.0009403	Param 1 of 2
Boron, total (mg/L)	MW-1605S	0.6495	n/a	9/19/2018	7.75	Yes 36	0.6179	0.1221	0	None x^(1/3)	0.0009403	Param 1 of 2
Boron, total (mg/L)	MW-1606D	0.6495	n/a	9/19/2018	7.27	Yes 36	0.6179	0.1221	0	None x^(1/3)	0.0009403	Param 1 of 2
Boron, total (mg/L)	MW-1606S	0.6495	n/a	9/19/2018	5.87	Yes 36	0.6179	0.1221	0	None x^(1/3)	0.0009403	Param 1 of 2
Boron, total (mg/L)	MW-1607D	0.6495	n/a	9/20/2018	2.44	Yes 36	0.6179	0.1221	0	None x^(1/3)	0.0009403	Param 1 of 2
Boron, total (mg/L)	MW-1607S	0.6495	n/a	9/20/2018	1.71	Yes 36	0.6179	0.1221	0	None x^(1/3)	0.0009403	Param 1 of 2
Calcium, total (mg/L)	MW-1604S	192.1	n/a	9/19/2018	262	Yes 36	119.6	35.73	0	None No	0.0009403	Param 1 of 2
Calcium, total (mg/L)	MW-1605D	192.1	n/a	9/19/2018	278	Yes 36	119.6	35.73	0	None No	0.0009403	Param 1 of 2
Calcium, total (mg/L)	MW-1606D	192.1	n/a	9/19/2018	260	Yes 36	119.6	35.73	0	None No	0.0009403	Param 1 of 2
Calcium, total (mg/L)	MW-1606S	192.1	n/a	9/19/2018	199	Yes 36	119.6	35.73	0	None No	0.0009403	Param 1 of 2
Calcium, total (mg/L)	MW-1607D	192.1	n/a	9/20/2018	222	Yes 36	119.6	35.73	0	None No	0.0009403	Param 1 of 2
Calcium, total (mg/L)	MW-1607S	192.1	n/a	9/20/2018	220	Yes 36	119.6	35.73	0	None No	0.0009403	Param 1 of 2
Chloride, total (mg/L)	MW-1604S	59.92	n/a	9/19/2018	109	Yes 36	2.553	0.6694	0	None x^(1/3)	0.0009403	Param 1 of 2
Chloride, total (mg/L)	MW-1605D	59.92	n/a	9/19/2018	188	Yes 36	2.553	0.6694	0	None x^(1/3)	0.0009403	Param 1 of 2
Chloride, total (mg/L)	MW-1605S	59.92	n/a	9/19/2018	171	Yes 36	2.553	0.6694	0	None x^(1/3)	0.0009403	Param 1 of 2
Chloride, total (mg/L)	MW-1606D	59.92	n/a	9/19/2018	201	Yes 36	2.553	0.6694	0	None x^(1/3)	0.0009403	Param 1 of 2
Chloride, total (mg/L)	MW-1606S	59.92	n/a	9/19/2018	219	Yes 36	2.553	0.6694	0	None x^(1/3)	0.0009403	Param 1 of 2
Chloride, total (mg/L)	MW-1607D	59.92	n/a	9/20/2018	163	Yes 36	2.553	0.6694	0	None x^(1/3)	0.0009403	Param 1 of 2
Chloride, total (mg/L)	MW-1607S	59.92	n/a	9/20/2018	151	Yes 36	2.553	0.6694	0	None x^(1/3)	0.0009403	Param 1 of 2
Fluoride, total (mg/L)	MW-1605S	0.2944	n/a	9/19/2018	0.32	Yes 40	0.178	0.05788	0	None No	0.0009403	Param 1 of 2
Fluoride, total (mg/L)	MW-1606S	0.2944	n/a	9/19/2018	0.46	Yes 40	0.178	0.05788	0	None No	0.0009403	Param 1 of 2
Fluoride, total (mg/L)	MW-1607D	0.2944	n/a	9/20/2018	0.52	Yes 40	0.178	0.05788	0	None No	0.0009403	Param 1 of 2
Sulfate, total (mg/L)	MW-1604S	610.7	n/a	9/19/2018	742	Yes 36	6.043	1.202	0	None x^(1/3)	0.0009403	Param 1 of 2
Sulfate, total (mg/L)	MW-1605D	610.7	n/a	9/19/2018	972	Yes 36	6.043	1.202	0	None x^(1/3)	0.0009403	Param 1 of 2
Sulfate, total (mg/L)	MW-1605S	610.7	n/a	9/19/2018	793	Yes 36	6.043	1.202	0	None x^(1/3)	0.0009403	Param 1 of 2
Sulfate, total (mg/L)	MW-1606D	610.7	n/a	9/19/2018	722	Yes 36	6.043	1.202	0	None x^(1/3)	0.0009403	Param 1 of 2
Sulfate, total (mg/L)	MW-1607D	610.7	n/a	9/20/2018	662	Yes 36	6.043	1.202	0	None x^(1/3)	0.0009403	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1604S	1016	n/a	9/19/2018	1500	Yes 36	8.31	0.8575	0	None x^(1/3)	0.0009403	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1605D	1016	n/a	9/19/2018	1960	Yes 36	8.31	0.8575	0	None x^(1/3)	0.0009403	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1605S	1016	n/a	9/19/2018	1650	Yes 36	8.31	0.8575	0	None x^(1/3)	0.0009403	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1606D	1016	n/a	9/19/2018	1610	Yes 36	8.31	0.8575	0	None x^(1/3)	0.0009403	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1606S	1016	n/a	9/19/2018	1370	Yes 36	8.31	0.8575	0	None x^(1/3)	0.0009403	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1607D	1016	n/a	9/20/2018	1450	Yes 36	8.31	0.8575	0	None x^(1/3)	0.0009403	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1607S	1016	n/a	9/20/2018	1160	Yes 36	8.31	0.8575	0	None x^(1/3)	0.0009403	Param 1 of 2

Interwell Prediction Limit Summary Table - All Results

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Printed 12/3/2018, 6:38 AM

		Mountainee	er BAP (Jient: Geosy	ntec Data	: Mountaine	er bap Pr	Inted 12/3/20	J 18, 6:3	S8 AIVI		
Constituent	Well	Upper Lim.	Lower Lir	<u>nDate</u>	Observ.	<u>Sig. Bg N</u>	<u>Bg Mean</u>	Std. Dev.	<u>%NDs</u>	ND AdjTransform	<u>Alpha</u>	Method
Boron, total (mg/L)	MW-1604D	0.6495	n/a	9/19/2018	1.33	Yes 36	0.6179	0.1221	0	None x^(1/3)	0.0009403	Param 1 of 2
Boron, total (mg/L)	MW-1604S	0.6495	n/a	9/19/2018	2.49	Yes 36	0.6179	0.1221	0	None x^(1/3)	0.0009403	Param 1 of 2
Boron, total (mg/L)	MW-1605D	0.6495	n/a	9/19/2018	9.11	Yes 36	0.6179	0.1221	0	None x^(1/3)	0.0009403	Param 1 of 2
Boron, total (mg/L)	MW-1605S	0.6495	n/a	9/19/2018	7.75	Yes 36	0.6179	0.1221	0	None x^(1/3)	0.0009403	Param 1 of 2
Boron, total (mg/L)	MW-1606D	0.6495	n/a	9/19/2018	7.27	Yes 36	0.6179	0.1221	0	None x^(1/3)	0.0009403	Param 1 of 2
Boron, total (mg/L)	MW-1606S	0.6495	n/a	9/19/2018	5.87	Yes 36	0.6179	0.1221	0	None x^(1/3)	0.0009403	Param 1 of 2
Boron, total (mg/L)	MW-1607D	0.6495	n/a	9/20/2018	2.44	Yes 36	0.6179	0.1221	0	None x^(1/3)	0.0009403	Param 1 of 2
Boron, total (mg/L)	MW-1607S	0.6495	n/a	9/20/2018	1.71	Yes 36	0.6179	0.1221	0	None x^(1/3)	0.0009403	Param 1 of 2
Calcium, total (mg/L)	MW-1604D	192.1	n/a	9/19/2018	144	No 36	119.6	35.73	0	None No	0.0009403	Param 1 of 2
Calcium, total (mg/L)	MW-1604S	192.1	n/a	9/19/2018	262	Yes 36	119.6	35.73	0	None No	0.0009403	Param 1 of 2
Calcium, total (mg/L)	MW-1605D	192.1	n/a	9/19/2018	278	Yes 36	119.6	35.73	0	None No	0.0009403	Param 1 of 2
Calcium, total (mg/L)	MW-1605S	192.1	n/a	9/19/2018	182	No 36	119.6	35.73	0	None No	0.0009403	Param 1 of 2
Calcium, total (mg/L)	MW-1606D	192.1	n/a	9/19/2018	260	Yes 36	119.6	35.73	0	None No	0.0009403	Param 1 of 2
Calcium, total (mg/L)	MW-1606S	192.1	n/a	9/19/2018	199	Yes 36	119.6	35.73	0	None No	0.0009403	Param 1 of 2
Calcium, total (mg/L)	MW-1607D	192.1	n/a	9/20/2018	222	Yes 36	119.6	35.73	0	None No	0.0009403	Param 1 of 2
Calcium, total (mg/L)	MW-1607S	192.1	n/a	9/20/2018	220	Yes 36	119.6	35.73	0	None No	0.0009403	Param 1 of 2
Chloride, total (mg/L)	MW-1604D	59.92	n/a	9/19/2018	41.3	No 36	2.553	0.6694	0	None x^(1/3)	0.0009403	Param 1 of 2
Chloride, total (mg/L)	MW-1604S	59.92	n/a	9/19/2018	109	Yes 36	2.553	0.6694	0	None x^(1/3)	0.0009403	Param 1 of 2
Chloride, total (mg/L)	MW-1605D	59.92	n/a	9/19/2018	188	Yes 36	2.553	0.6694	0	None x^(1/3)	0.0009403	Param 1 of 2
Chloride, total (mg/L)	MW-1605S	59.92	n/a	9/19/2018	171	Yes 36	2.553	0.6694	0	None x^(1/3)	0.0009403	Param 1 of 2
Chloride, total (mg/L)	MW-1606D	59.92	n/a	9/19/2018	201	Yes 36	2.553	0.6694	0	None x^(1/3)	0.0009403	Param 1 of 2
Chloride, total (mg/L)	MW-1606S	59.92	n/a	9/19/2018	219	Yes 36	2.553	0.6694	0	None x^(1/3)	0.0009403	Param 1 of 2
Chloride, total (mg/L)	MW-1607D	59.92	n/a	9/20/2018	163	Yes 36	2.553	0.6694	0	None x^(1/3)	0.0009403	Param 1 of 2
Chloride, total (mg/L)	MW-1607S	59.92	n/a	9/20/2018	151	Yes 36	2.553	0.6694	0	None x^(1/3)	0.0009403	Param 1 of 2
Fluoride, total (mg/L)	MW-1604D	0.2944	n/a	9/19/2018	0.19	No 40	0.178	0.05788	0	None No	0.0009403	Param 1 of 2
Fluoride, total (mg/L)	MW-1604S	0.2944	n/a	9/19/2018	0.22	No 40	0.178	0.05788	0	None No	0.0009403	Param 1 of 2
Fluoride, total (mg/L)	MW-1605D	0.2944	n/a	9/19/2018	0.22	No 40	0.178	0.05788	0	None No	0.0009403	Param 1 of 2
Fluoride, total (mg/L)	MW-1605S	0.2944	n/a	9/19/2018	0.32	Yes 40	0.178	0.05788	0	None No	0.0009403	Param 1 of 2
Fluoride, total (mg/L)	MW-1606D	0.2944	n/a	9/19/2018	0.26	No 40	0.178	0.05788	0	None No	0.0009403	Param 1 of 2
Fluoride, total (mg/L)	MW-1606S	0.2944	n/a	9/19/2018	0.46	Yes 40	0.178	0.05788	0	None No	0.0009403	Param 1 of 2
Fluoride, total (mg/L)	MW-1607D	0.2944	n/a	9/20/2018	0.52	Yes 40	0.178	0.05788	0	None No	0.0009403	Param 1 of 2
Fluoride, total (mg/L)	MW-1607S	0.2944	n/a	9/20/2018	0.28	No 40	0.178	0.05788	0	None No	0.0009403	Param 1 of 2
Sulfate, total (mg/L)	MW-1604D	610.7	n/a	9/19/2018	313	No 36	6.043	1.202	0	None x^(1/3)	0.0009403	Param 1 of 2
Sulfate, total (mg/L)	MW-1604S	610.7	n/a	9/19/2018	742	Yes 36	6.043	1.202	0	None x^(1/3)	0.0009403	Param 1 of 2
Sulfate, total (mg/L)	MW-1605D	610.7	n/a	9/19/2018	972	Yes 36	6.043	1.202	0	None x^(1/3)	0.0009403	Param 1 of 2
Sulfate, total (mg/L)	MW-1605S	610.7	n/a	9/19/2018	793	Yes 36	6.043	1.202	0	None x^(1/3)	0.0009403	Param 1 of 2
Sulfate, total (mg/L)	MW-1606D	610.7	n/a	9/19/2018	722	Yes 36	6.043	1.202	0	None x^(1/3)	0.0009403	Param 1 of 2
Sulfate, total (mg/L)	MW-1606S	610.7	n/a	9/19/2018	571	No 36	6.043	1.202	0	None x^(1/3)	0.0009403	Param 1 of 2
Sulfate, total (mg/L)	MW-1607D	610.7	n/a	9/20/2018	662	Yes 36	6.043	1.202	0	None x^(1/3)	0.0009403	Param 1 of 2
Sulfate, total (mg/L)	MW-1607S	610.7	n/a	9/20/2018	478	No 36	6.043	1.202	0	None x^(1/3)	0.0009403	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1604D	1016	n/a	9/19/2018	838	No 36	8.31	0.8575	0	None x^(1/3)	0.0009403	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1604S	1016	n/a	9/19/2018	1500	Yes 36	8.31	0.8575	0	None x^(1/3)	0.0009403	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1605D	1016	n/a	9/19/2018	1960	Yes 36	8.31	0.8575	0	None x^(1/3)	0.0009403	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1605S	1016	n/a	9/19/2018	1650	Yes 36	8.31	0.8575	0	None x^(1/3)	0.0009403	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1606D	1016	n/a	9/19/2018	1610	Yes 36	8.31	0.8575	0	None x^(1/3)	0.0009403	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1606S	1016	n/a	9/19/2018	1370	Yes 36	8.31	0.8575	0	None x^(1/3)	0.0009403	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1607D	1016	n/a	9/20/2018	1450	Yes 36	8.31	0.8575	0	None x^(1/3)	0.0009403	Param 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1607S	1016	n/a	9/20/2018	1160	Yes 36	8.31	0.8575	0	None x^(1/3)	0.0009403	Param 1 of 2

Exceeds Limit: MW-1604D, MW-1604S.

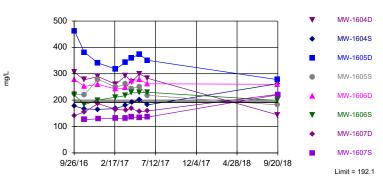
MW-1605D, MW-1605S, MW-1606D, MW-1

20

16

12

8


0

Ja/L

Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Exceeds Limit: MW-1604S, MW-1605D, MW-1606D, MW-1606S, MW-1607D, MW-1

Prediction Limit

Background Data Summary: Mean=119.6, Std. Dev.=35.73, n=36. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9272, critical = 0.912. Kappa = 2.031 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.009403. Comparing 8 points to limit.

Constituent: Boron, total Analysis Run 12/3/2018 6:35 AM View: PL's - Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

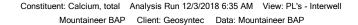
9/20/18

MW-1604D

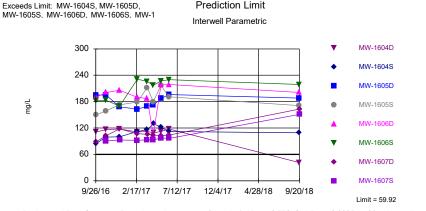
MW-1604S

MW-1605D

MW-1605S


MW-1606D

MW-1606S


MW-1607D

MW-1607S

Limit = 0.6495

Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

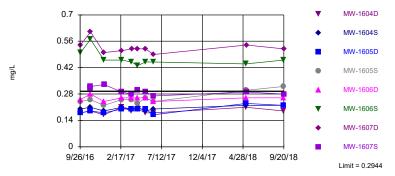
Prediction Limit

Interwell Parametric

Background Data Summary (based on cube root transformation): Mean=0.6179, Std. Dev.=0.1221, n=36. Normality

test: Shapiro Wilk @alpha = 0.01, calculated = 0.9135, critical = 0.912. Kappa = 2.031 (c=7, w=8, 1 of 2, event alpha

= 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0009403. Comparing 8 points to limit.


9/26/16 2/17/17 7/12/17 12/4/17 4/28/18

Background Data Summary (based on cube root transformation): Mean=2.553, Std. Dev.=0.6694, n=36. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9317, critical = 0.912. Kappa = 2.031 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.009403. Comparing 8 points to limit.

Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

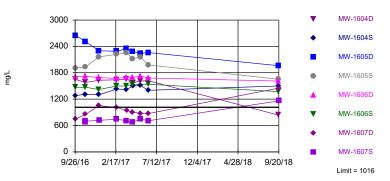
Exceeds Limit: MW-1605S, MW-1606S, MW-1607D

Prediction Limit

Background Data Summary: Mean=0.178, Std. Dev.=0.05788, n=40. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9253, critical = 0.919. Kappa = 2.012 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.009403. Comparing 8 points to limit.

mg/L

Prediction Limit Exceeds Limit: MW-1604S, MW-1605D. MW-1605S, MW-1606D, MW-1607D Interwell Parametric MW-1604D 2000 V MW-1604S 1600 MW-1605D 1200 . MW-1605S MW-1606D 800 MW-1606S V 400 MW-1607D 0 MW-1607S 9/26/16 2/17/17 7/12/17 12/4/17 4/28/18 9/20/18 Limit = 610.7

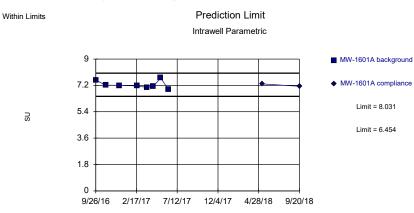

Background Data Summary (based on cube root transformation): Mean=6.043, Std. Dev.=1.202, n=36. Normality test: Šhapiro Wilk @alpha = 0.01, calculated = 0.9171, critical = 0.912. Kappa = 2.031 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0009403. Comparing 8 points to limit.

> Constituent: Sulfate, total Analysis Run 12/3/2018 6:35 AM View: PL's - Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

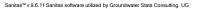
Exceeds Limit: MW-1604S, MW-1605D. MW-1605S, MW-1606D, MW-1606S, MW-1

Prediction Limit Interwell Parametric

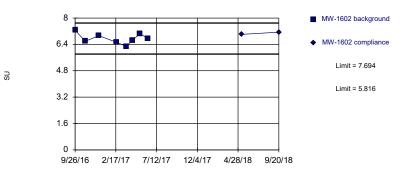

Background Data Summary (based on cube root transformation): Mean=8.31, Std. Dev.=0.8575, n=36. Normality test: Šhapiro Wilk @alpha = 0.01, calculated = 0.9144, critical = 0.912. Kappa = 2.031 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0009403. Comparing 8 points to limit.

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/3/2018 6:35 AM View: PL's - Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Intrawell Prediction Limit Summary Table - All Results (No Significant Results)

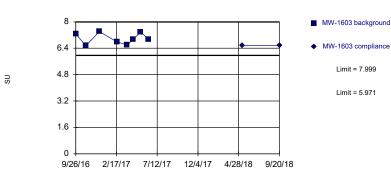

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Printed 12/3/2018, 6:44 AM

Constituent	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig. Bg N</u>	<u>Bg Mean</u>	Std. Dev.	<u>%ND</u>	s ND AdjTransform	Alpha	Method
pH, field (SU)	MW-1601A	8.031	6.454	9/20/2018	7.14	No 8	7.243	0.2615	0	None No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1602	7.694	5.816	9/20/2018	7.14	No 8	6.755	0.3115	0	None No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1603	7.999	5.971	9/20/2018	6.58	No 8	6.985	0.3366	0	None No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1608	8.216	6.092	9/19/2018	7.17	No 8	7.154	0.3523	0	None No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1604D	8.08	6.653	9/19/2018	7.21	No 8	7.366	0.2368	0	None No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1604S	7.991	6.389	9/19/2018	7.3	No 8	7.19	0.2657	0	None No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1605D	8.258	6.653	9/19/2018	7.57	No 7	7.456	0.2388	0	None No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1605S	8.152	6.66	9/19/2018	7.35	No 8	7.406	0.2476	0	None No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1606D	8.222	6.671	9/19/2018	7.19	No 8	7.446	0.2573	0	None No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1606S	8.662	5.6	9/19/2018	7.1	No 8	7.131	0.508	0	None No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1607D	7.77	6.9	9/20/2018	7.73	No 7	n/a	n/a	0	n/a n/a	0.05531	NP (normality) 1 of 2
pH, field (SU)	MW-1607S	7.831	7.255	9/20/2018	7.57	No 7	7.543	0.08577	0	None No	0.0004701	Param 1 of 2


Background Data Summary: Mean=7.243, Std. Dev.=0.2615, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.002, critical = 0.749. Kappa = 3.014 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.

Constituent: pH, field Analysis Run 12/3/2018 6:40 AM View: PL's - Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

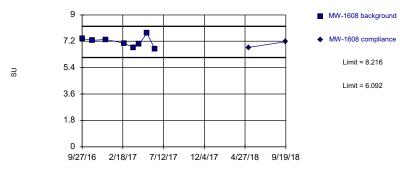
Prediction Limit

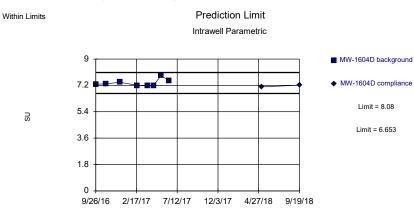

Background Data Summary: Mean=6.755, Std. Dev.=0.3115, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9867, critical = 0.749. Kappa = 3.014 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.

Constituent: pH, field Analysis Run 12/3/2018 6:40 AM View: PL's - Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

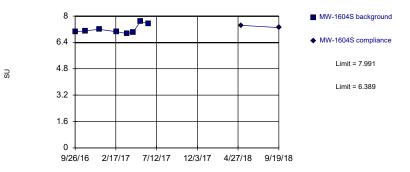
Within Limits


Prediction Limit Intrawell Parametric


Background Data Summary: Mean=6.985, Std. Dev.=0.3366, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9063, critical = 0.749. Kappa = 3.014 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403. Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit

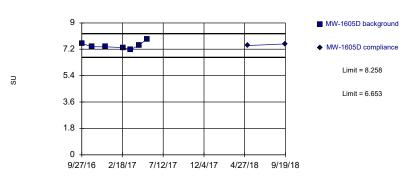
Background Data Summary: Mean=7.154, Std. Dev.=0.3523, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9751, critical = 0.749. Kappa = 3.014 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.


Background Data Summary: Mean=7.366, Std. Dev.=0.2368, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8333, critical = 0.749. Kappa = 3.014 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.

> Constituent: pH, field Analysis Run 12/3/2018 6:40 AM View: PL's - Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit

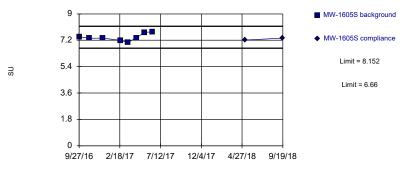

Background Data Summary: Mean=7.19, Std. Dev =0.2657, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8184, critical = 0.749. Kappa = 3.014 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.

Constituent: pH, field Analysis Run 12/3/2018 6:40 AM View: PL's - Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

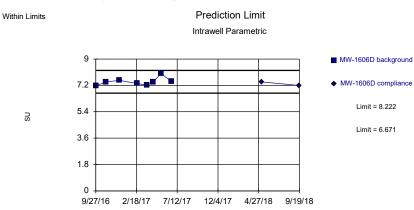
Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Within Limits

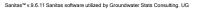
Prediction Limit



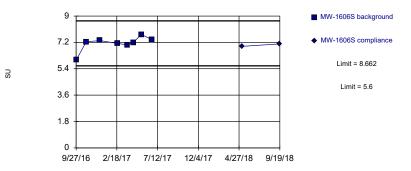
Background Data Summary: Mean=7.456, Std. Dev.=0.2388, n=7. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9315, critical = 0.73. Kappa = 3.361 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.


Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit



Background Data Summary: Mean=7.406, Std. Dev.=0.2476, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9237, critical = 0.749. Kappa = 3.014 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.


Background Data Summary: Mean=7.446, Std. Dev.=0.2573, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8686, critical = 0.749. Kappa = 3.014 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.

> Constituent: pH, field Analysis Run 12/3/2018 6:40 AM View: PL's - Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Prediction Limit Intrawell Parametric

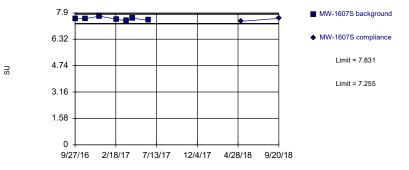
Background Data Summary: Mean=7.131, Std. Dev.=0.508, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8107, critical = 0.749. Kappa = 3.014 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.

> Constituent: pH, field Analysis Run 12/3/2018 6:40 AM View: PL's - Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Within Limits

Prediction Limit Intrawell Non-parametric


♦ MW-1607D compliance Limit = 7.77

Limit = 6.9

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Within Limits

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=7.543, Std. Dev.=0.08577, n=7. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9302, critical = 0.73. Kappa = 3.361 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 7 background values. Well-constituent pair annual alpha = 0.1091. Individual comparison alpha = 0.05531 (1 of 2).

> Constituent: pH, field Analysis Run 12/3/2018 6:40 AM View: PL's - Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

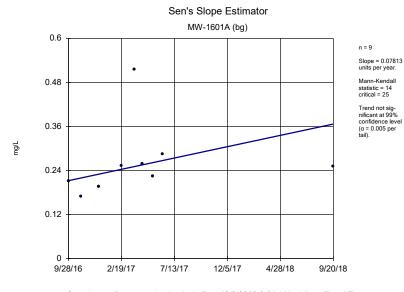
Trend Test Summary Table - Significant Results

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Printed 12/3/2018, 8:36 AM

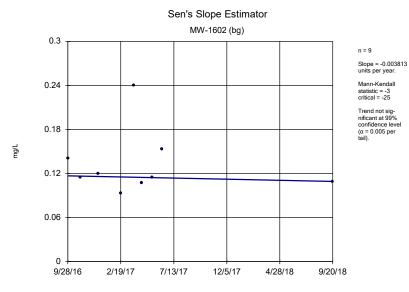
Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium, total (mg/L)	MW-1607S	16.37	32	25	Yes	9	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1607S	12.46	26	25	Yes	9	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1602 (bg)	0.03724	38	30	Yes	10	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1608 (bg)	-0.06348	-39	-30	Yes	10	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1601A (bg)	52.31	28	25	Yes	9	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1602 (bg)	140.9	26	25	Yes	9	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1608 (bg)	191.7	28	25	Yes	9	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1604S	100.2	28	25	Yes	9	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1605D	-336.3	-27	-25	Yes	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1602 (bg)	203.2	26	25	Yes	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1605D	-320.7	-30	-25	Yes	9	0	n/a	n/a	0.01	NP

Trend Test Summary Table - All Results

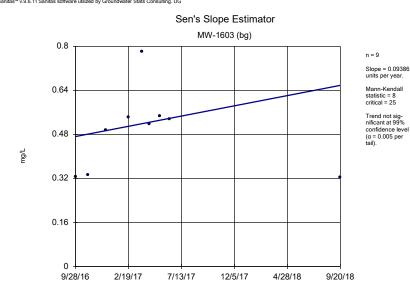
Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Printed 12/3/2018, 8:36 AM


		ent. Geosyntee Di	ata. Mounta		THILEG	12/3/20	10, 0.50				
Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron, total (mg/L)	MW-1601A (bg)	0.07813	14	25	No	9	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1602 (bg)	-0.003813	-3	-25	No	9	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1603 (bg)	0.09386	8	25	No	9	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1608 (bg)	0.03387	13	25	No	9	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1604D	-0.3259	-19	-25	No	9	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1604S	2.133	12	25	No	9	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1605D	-1.432	-20	-25	No	9	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1605S	0.7029	8	25	No	9	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1606D	1.645	22	25	No	9	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1606S	0.9538	18	25	No	9	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1607D	0.2427	9	25	No	9	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1607S	0.5123	18	25	No	9	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1601A (bg)	15.24	11	25	No	9	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1602 (bg)	28.4	16	25	No	9	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1603 (bg)	47.47	20	25	No	9	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1608 (bg)	22.55	18	25	No	9	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1604S	45.11	24	25	No	9	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1605D	-51.95	-12	-25	No	9	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1606D	2.086	2	25	No	9	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1606S	43.85	13	25	No	9	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-16000	24.49	12	25	No	9	0	n/a	n/a	0.01	NP
	MW-1607S	16.37	32	25	Yes	9	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)			32 24	25		9	0			0.01	NP
Chloride, total (mg/L)	MW-1601A (bg)	60.97			No	9	0	n/a	n/a		NP
Chloride, total (mg/L)	MW-1602 (bg)	5.271	20	25	No			n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1603 (bg)	-5.669	-10	-25	No	9	0	n/a	n/a	0.01	
Chloride, total (mg/L)	MW-1608 (bg)	1.415	14	25	No	9	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1604S	41.14	17	25	No	9	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1605D	2.681	7	25	No	9	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1605S	48.88	18	25	No	9	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1606D	8.223	6	25	No	9	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1606S	33.57	14	25	No	9	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1607D	10.3	7	25	No	9	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1607S	12.46	26	25	Yes	9	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1601A (bg)	0	-4	-30	No	10	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1602 (bg)	0.03724	38	30	Yes	10	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1603 (bg)	0	5	30	No	10	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1608 (bg)	-0.06348	-39	-30	Yes	10	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1605S	0.04044	21	30	No	10	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1606S	-0.02483	-21	-30	No	10	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1607D	0	-4	-30	No	10	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1601A (bg)	52.31	28	25	Yes	9	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1602 (bg)	140.9	26	25	Yes	9	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1603 (bg)	16.59	4	25	No	9	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1608 (bg)	191.7	28	25	Yes	9	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1604S	100.2	28	25	Yes	9	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1605D	-336.3	-27	-25	Yes	9	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1605S	-168.5	-11	-25	No	9	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1606D	-75.65	-23	-25	No	9	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1607D	70.09	4	25	No	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1601A (bg)	74.12	22	25	No	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1602 (bg)	203.2	26	25	Yes	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1603 (bg)	20.19	13	25	No	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1608 (bg)	149	24	25	No	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1604S	188.5	21	25	No	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1605D	-320.7	-30	-25	Yes	9	0	n/a	n/a	0.01	NP

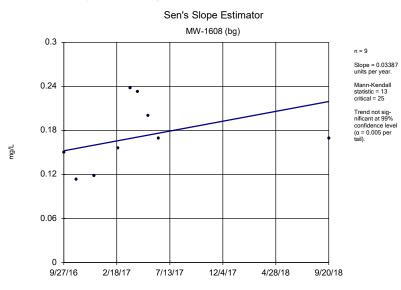
Trend Test Summary Table - All Results


Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Printed 12/3/2018, 8:36 AM

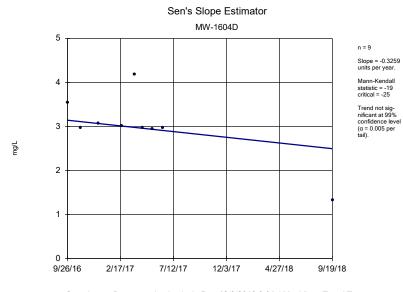
Well	Slope	Calc.	Critical	<u>Sig.</u>	N	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
MW-1605S	-61.34	-1	-25	No	9	0	n/a	n/a	0.01	NP
MW-1606D	-47.88	-13	-25	No	9	0	n/a	n/a	0.01	NP
MW-1606S	74.74	7	21	No	8	0	n/a	n/a	0.01	NP
MW-1607D	142.3	6	25	No	9	0	n/a	n/a	0.01	NP
MW-1607S	112	17	25	No	9	0	n/a	n/a	0.01	NP
	MW-1605S MW-1606D MW-1606S MW-1607D	MW-1605S -61.34 MW-1606D -47.88 MW-1606S 74.74 MW-1607D 142.3	MW-1605S -61.34 -1 MW-1606D -47.88 -13 MW-1606S 74.74 7 MW-1607D 142.3 6	MW-1605S -61.34 -1 -25 MW-1606D -47.88 -13 -25 MW-1606S 74.74 7 21 MW-1607D 142.3 6 25	MW-1605S -61.34 -1 -25 No MW-1606D -47.88 -13 -25 No MW-1606S 74.74 7 21 No MW-1607D 142.3 6 25 No	MW-1605S -61.34 -1 -25 No 9 MW-1606D -47.88 -13 -25 No 9 MW-1606S 74.74 7 21 No 8 MW-1607D 142.3 6 25 No 9	MW-1605S -61.34 -1 -25 No 9 0 MW-1606D -47.88 -13 -25 No 9 0 MW-1606S 74.74 7 21 No 8 0 MW-1607D 142.3 6 25 No 9 0	MW-1605S -61.34 -1 -25 No 9 0 n/a MW-1606D -47.88 -13 -25 No 9 0 n/a MW-1606S 74.74 7 21 No 8 0 n/a MW-1607D 142.3 6 25 No 9 0 n/a	MW-1605S -61.34 -1 -25 No 9 0 n/a n/a MW-1606D -47.88 -13 -25 No 9 0 n/a n/a MW-1606S 74.74 7 21 No 8 0 n/a n/a MW-1606D 142.3 6 25 No 9 0 n/a n/a	MW-1605S -61.34 -1 -25 No 9 0 n/a n/a 0.01 MW-1606D -47.88 -13 -25 No 9 0 n/a n/a 0.01 MW-1606S 74.74 7 21 No 8 0 n/a n/a 0.01 MW-1606D 142.3 6 25 No 9 0 n/a n/a 0.01

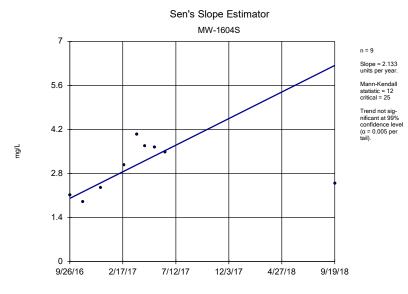


Constituent: Boron, total Analysis Run 12/3/2018 8:31 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

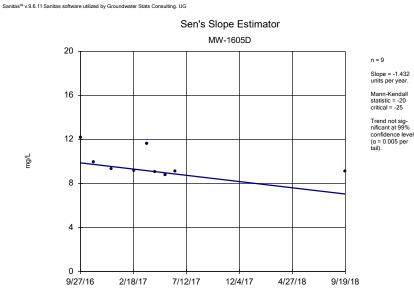

Constituent: Boron, total Analysis Run 12/3/2018 8:31 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

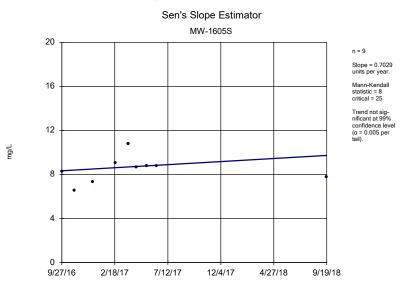

Constituent: Boron, total Analysis Run 12/3/2018 8:31 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



Constituent: Boron, total Analysis Run 12/3/2018 8:31 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

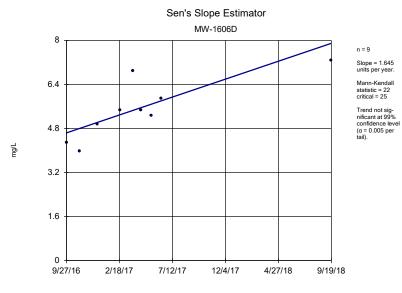


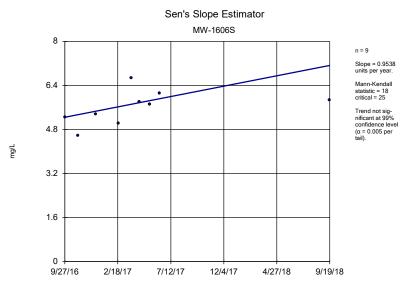
Constituent: Boron, total Analysis Run 12/3/2018 8:31 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



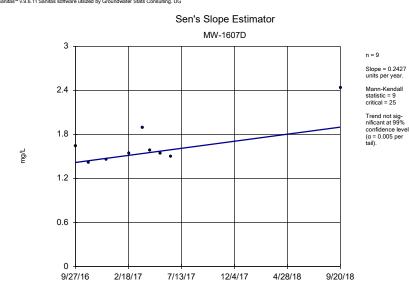
Constituent: Boron, total Analysis Run 12/3/2018 8:31 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Boron, total Analysis Run 12/3/2018 8:31 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

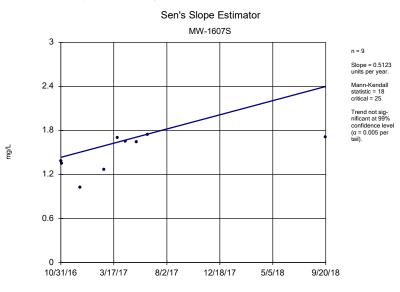



Constituent: Boron, total Analysis Run 12/3/2018 8:31 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

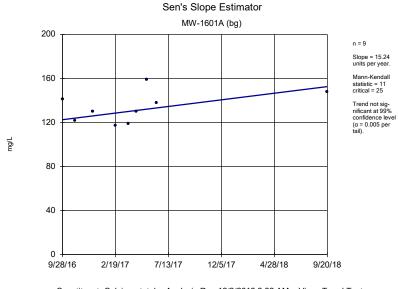
Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG


Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

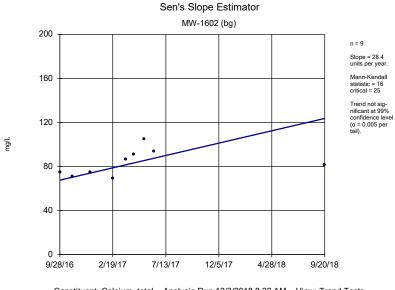
Constituent: Boron, total Analysis Run 12/3/2018 8:31 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



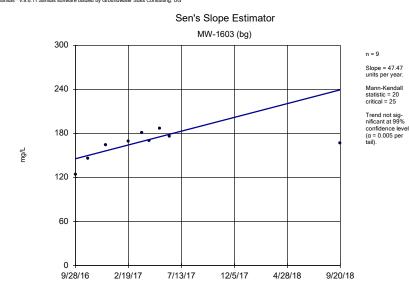
Constituent: Boron, total Analysis Run 12/3/2018 8:31 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Boron, total Analysis Run 12/3/2018 8:31 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

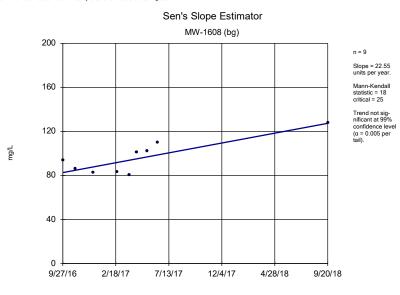
Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: Boron, total Analysis Run 12/3/2018 8:31 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



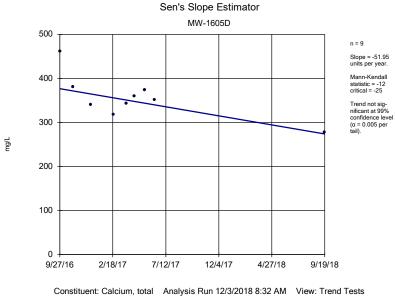
Constituent: Calcium, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



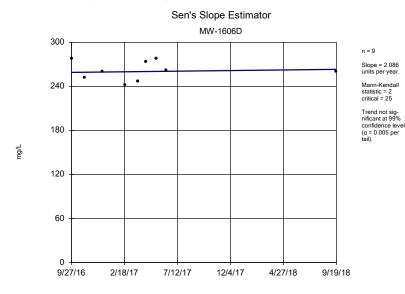
Constituent: Calcium, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Calcium, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

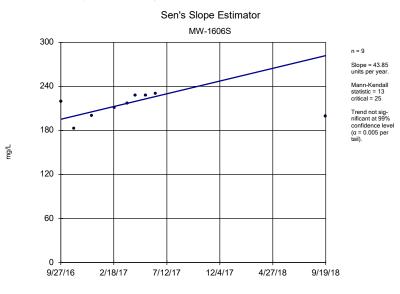
Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG



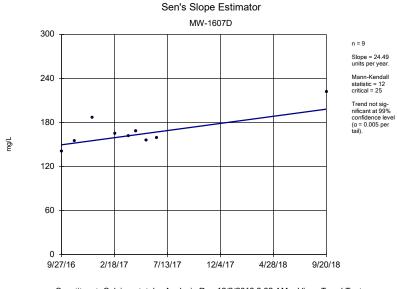
Constituent: Calcium, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

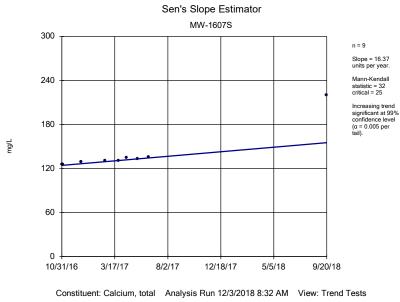


Constituent: Calcium, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

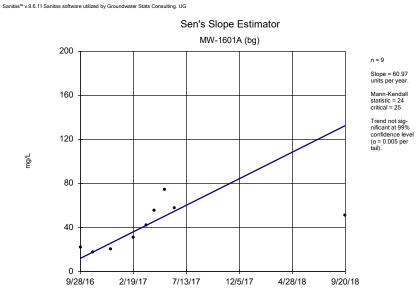


Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

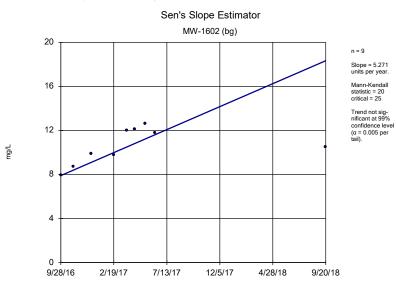

Constituent: Calcium, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



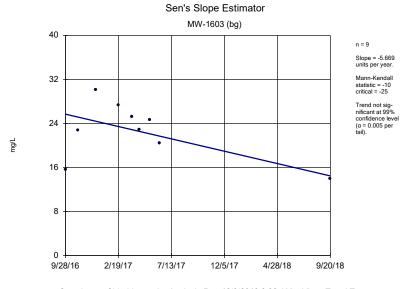
Constituent: Calcium, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

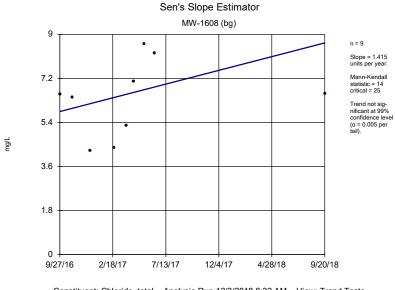


Constituent: Calcium, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

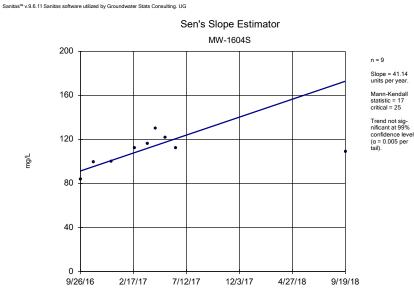


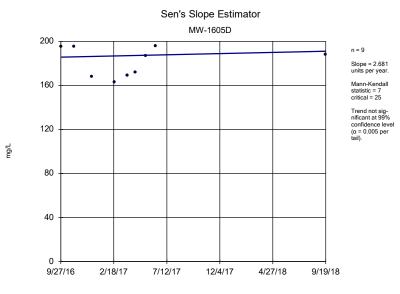
Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Chloride, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

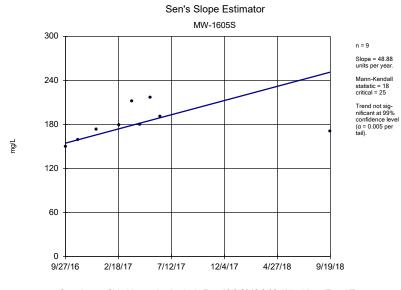


Constituent: Chloride, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

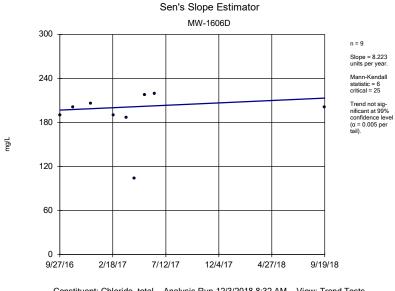



Constituent: Chloride, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Chloride, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

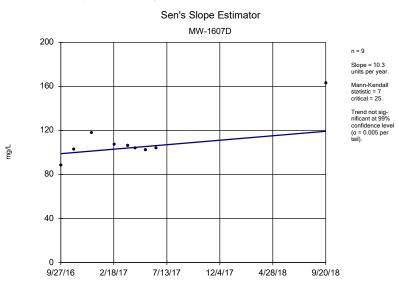


Constituent: Chloride, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

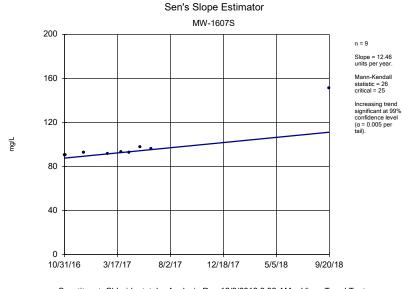


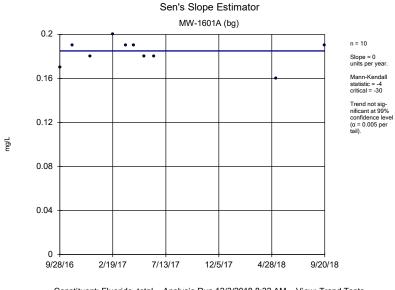
Constituent: Chloride, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Chloride, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

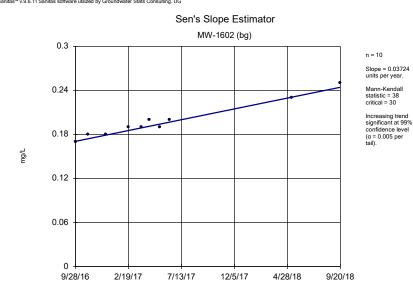


Constituent: Chloride, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

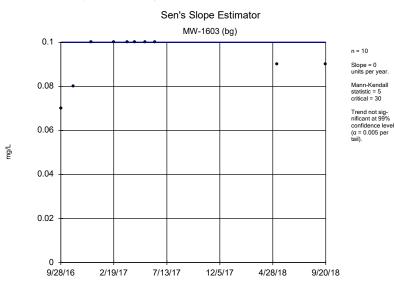

Constituent: Chloride, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



Constituent: Chloride, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

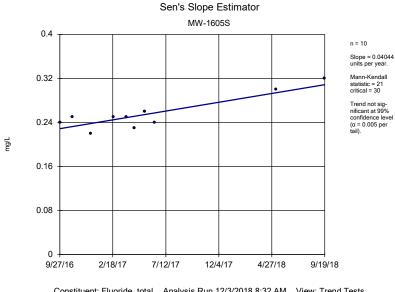


Constituent: Chloride, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

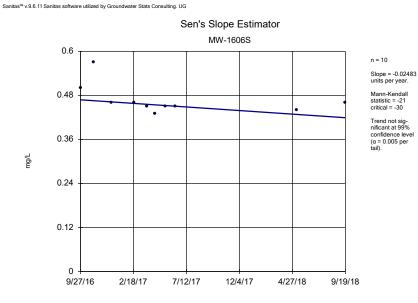


Constituent: Fluoride, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

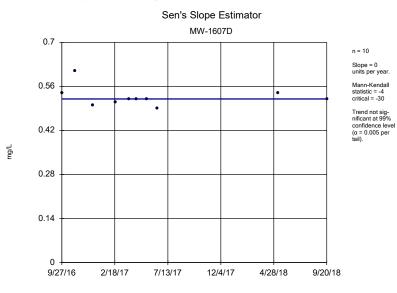
Constituent: Fluoride, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Fluoride, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

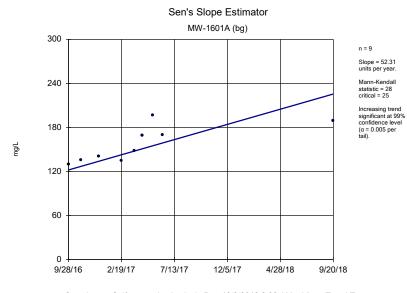
Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

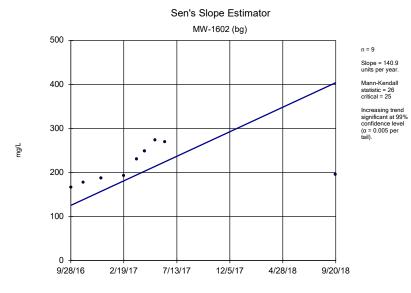

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Fluoride, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

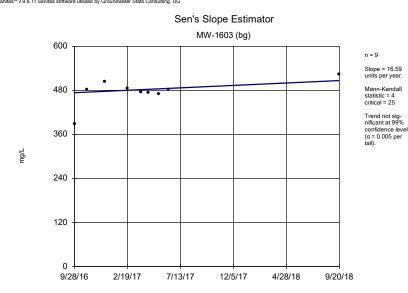


Constituent: Fluoride, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

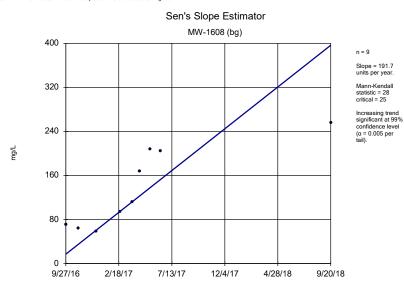

Constituent: Fluoride, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



Constituent: Fluoride, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



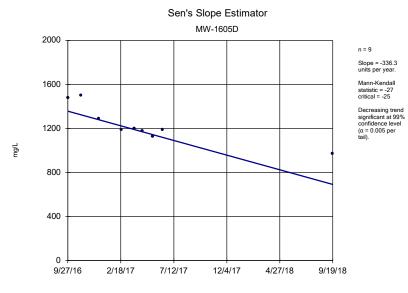
Constituent: Sulfate, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



Constituent: Sulfate, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Sulfate, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

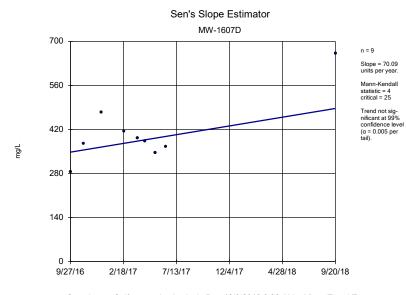

Constituent: Sulfate, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

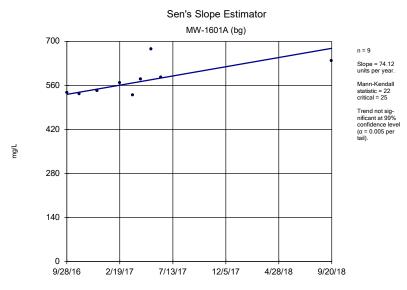
Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Sulfate, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Sulfate, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Sulfate, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

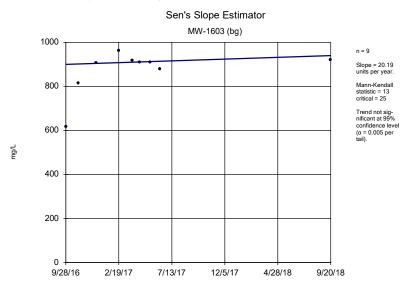
Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: Sulfate, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

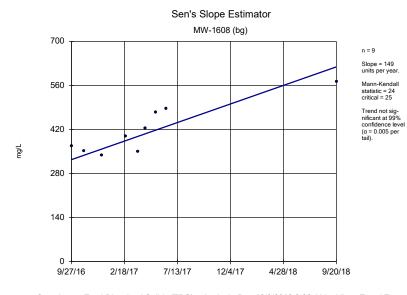


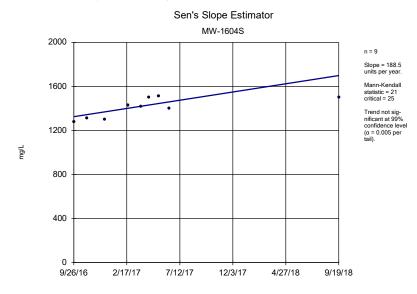
Constituent: Sulfate, total Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



Constituent: Total Dissolved Solids [TDS] Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

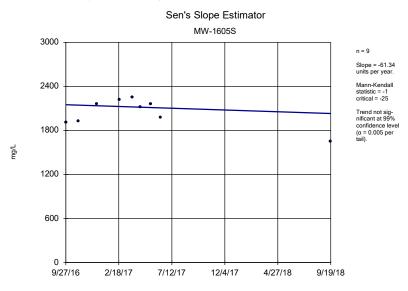

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Total Dissolved Solids [TDS] Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

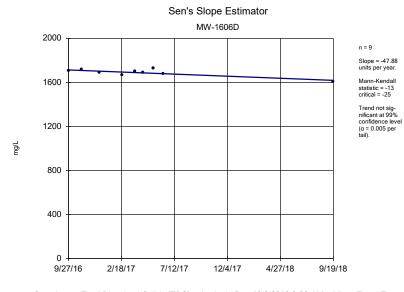

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

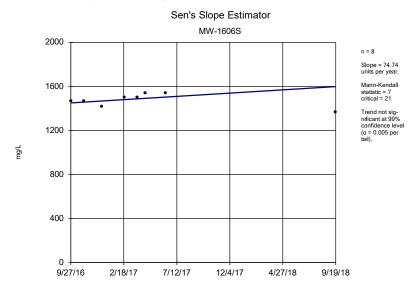
Constituent: Total Dissolved Solids [TDS] Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



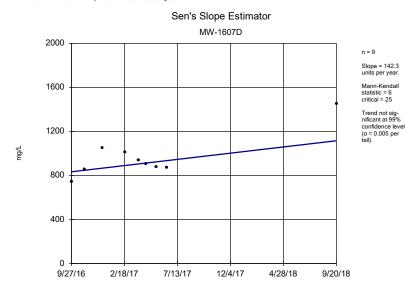
Constituent: Total Dissolved Solids [TDS] Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

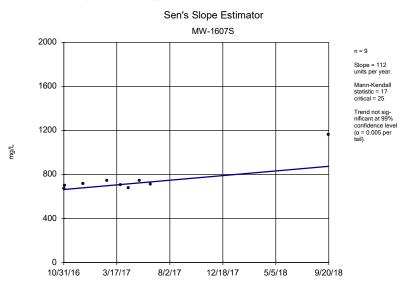

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Total Dissolved Solids [TDS] Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: Total Dissolved Solids [TDS] Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



Constituent: Total Dissolved Solids [TDS] Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/3/2018 8:32 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Upper Tolerance Limits

Constituent	Upper Lim.	<u>Bg N</u>	<u>Bg Mean</u>	Std. Dev.	<u>%NDs</u>	<u>ND Adj.</u>	Transform	<u>Alpha</u>	Method
Antimony, total (mg/L)	0.0001	40	n/a	n/a	2.5	n/a	n/a	0.1285	NP Inter(normality)
Arsenic, total (mg/L)	0.0007528	40	0.0004703	0.0001329	0	None	No	0.05	Inter
Barium, total (mg/L)	0.05785	40	-3.311	0.2167	0	None	ln(x)	0.05	Inter
Beryllium, total (mg/L)	0.00002	40	n/a	n/a	85	n/a	n/a	0.1285	NP Inter(NDs)
Cadmium, total (mg/L)	0.00003	40	n/a	n/a	0	n/a	n/a	0.1285	NP Inter(normality)
Chromium, total (mg/L)	0.00193	40	-8.045	0.8441	0	None	ln(x)	0.05	Inter
Cobalt, total (mg/L)	0.0006586	40	-9.087	0.8285	0	None	ln(x)	0.05	Inter
Combined Radium 226 + 228 (pCi/L)	2.36	40	0.8419	0.3265	0	None	sqrt(x)	0.05	Inter
Fluoride, total (mg/L)	0.301	40	0.178	0.05788	0	None	No	0.05	Inter
Lead, total (mg/L)	0.0005165	40	0.04708	0.01559	0	None	x^(1/3)	0.05	Inter
Lithium, total (mg/L)	0.03084	40	0.0924	0.03915	7.5	None	sqrt(x)	0.05	Inter
Mercury, total (mg/L)	0.000005	40	n/a	n/a	90	n/a	n/a	0.1285	NP Inter(NDs)
Molybdenum, total (mg/L)	0.002886	40	0.001248	0.0007705	0	None	No	0.05	Inter
Selenium, total (mg/L)	0.0015	40	n/a	n/a	0	n/a	n/a	0.1285	NP Inter(normality)
Thallium, total (mg/L)	0.00009255	40	0.005606	0.001888	2.5	None	sqrt(x)	0.05	Inter

Confidence Intervals - Significant Results

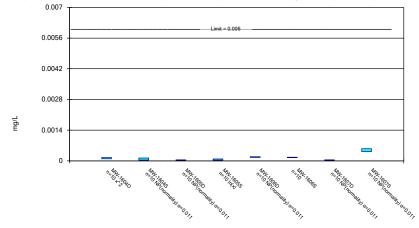
Constituent	Well	Upper Lim.	Lower Lim.	<u>Compliance</u>	<u>Sig.</u>	N	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Lithium, total (mg/L)	MW-1605D	0.08226	0.06534	0.04	Yes	10	0	No	0.01	Param.
Lithium, total (mg/L)	MW-1605S	0.08143	0.05937	0.04	Yes	10	0	No	0.01	Param.
Lithium, total (mg/L)	MW-1606D	0.1276	0.1108	0.04	Yes	10	0	No	0.01	Param.
Lithium, total (mg/L)	MW-1606S	0.1183	0.1023	0.04	Yes	10	0	No	0.01	Param.
Lithium, total (mg/L)	MW-1607D	0.09185	0.07175	0.04	Yes	10	0	No	0.01	Param.
Lithium, total (mg/L)	MW-1607S	0.1086	0.09178	0.04	Yes	10	0	No	0.01	Param.

Confidence Intervals - All Results

	N	Iountaineer BAP	Client: Geosyn	tec Data: Mo	ountaine	eer BAP	Printed 1	2/3/2018, 6:57 AM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Antimony, total (mg/L)	MW-1604D	0.000147	0.00008903	0.006	No	10	0	x^2	0.01	Param.
Antimony, total (mg/L)	MW-1604S	0.00013	0.00003	0.006	No	10	0	No	0.011	NP (normality)
Antimony, total (mg/L)	MW-1605D	0.00004	0.00003	0.006	No	10	0	No	0.011	NP (normality)
Antimony, total (mg/L)	MW-1605S	0.0000839	0.00003655	0.006	No	10	0	ln(x)	0.01	Param.
Antimony, total (mg/L)	MW-1606D	0.00019	0.00015	0.006	No	10	0	No	0.011	NP (normality)
Antimony, total (mg/L)	MW-1606S	0.0001642	0.0001418	0.006	No	10	0	No	0.01	Param.
Antimony, total (mg/L)	MW-1607D	0.00004	0.00003	0.006	No	10	0	No	0.011	NP (normality)
Antimony, total (mg/L)	MW-1607S	0.00055	0.00042	0.006	No	10	0	No	0.011	NP (normality)
Arsenic, total (mg/L)	MW-1604D	0.0005475	0.0003765	0.01	No	10	0	No	0.01	Param.
Arsenic, total (mg/L)	MW-1604S	0.0004585	0.0003555	0.01	No	10	0	No	0.01	Param.
Arsenic, total (mg/L)	MW-1605D	0.002428	0.00211	0.01	No	10	0	No	0.01	Param.
Arsenic, total (mg/L)	MW-1605S	0.001033	0.0005754	0.01	No	10	0	No	0.01	Param.
Arsenic, total (mg/L)	MW-1606D	0.0008752	0.0004153	0.01	No	10	0	sqrt(x)	0.01	Param.
Arsenic, total (mg/L)	MW-1606S	0.0009003	0.0007577	0.01	No	10	0	No	0.01	Param.
Arsenic, total (mg/L)	MW-1607D	0.001208	0.0009743	0.01	No	10	0	No	0.01	Param.
Arsenic, total (mg/L)	MW-1607S	0.001549	0.0009483	0.01	No	9	0	No	0.01	Param.
Barium, total (mg/L)	MW-1604D	0.03213	0.02689	2	No	10	0	x^(1/3)	0.01	Param.
Barium, total (mg/L)	MW-1604S	0.03045	0.02687	2	No	10	0	No	0.01	Param.
Barium, total (mg/L)	MW-1605D	0.02956	0.02462	2	No	10	0	No	0.01	Param.
Barium, total (mg/L)	MW-1605S	0.04036	0.02682	2	No	10	0	No	0.01	Param.
Barium, total (mg/L)	MW-1606D	0.06149	0.05171	2	No	10	0	No	0.01	Param.
Barium, total (mg/L)	MW-1606S	0.0769	0.06996	2	No	10	0	No	0.01	Param.
Barium, total (mg/L)	MW-1607D	0.1511	0.1019	2	No	10	0	No	0.01	Param.
Barium, total (mg/L)	MW-1607B	0.07271	0.05814	2	No	9	0	No	0.01	Param.
	MW-1604D	0.00002	0.00002	2	No	5 10	100	No	0.01	NP (NDs)
Beryllium, total (mg/L)				0.004		10	90			. ,
Beryllium, total (mg/L) Beryllium, total (mg/L)	MW-1604S MW-1605D	0.00002	0.00002 0.00002	0.004	No No	10	90 100	No No	0.011 0.011	NP (NDs) NP (NDs)
,	MW-1605D	0.00002	0.00002		No	10	70	No	0.011	. ,
Beryllium, total (mg/L)				0.004						NP (normality)
Beryllium, total (mg/L)	MW-1606D	0.00002	0.000004	0.004	No	10	60	No	0.011	NP (normality)
Beryllium, total (mg/L)	MW-1606S	0.00002	0.000005	0.004	No	10	90	No	0.011	NP (NDs)
Beryllium, total (mg/L)	MW-1607D	0.00002	0.000008	0.004	No	10	90	No	0.011	NP (NDs)
Beryllium, total (mg/L)	MW-1607S	0.00002	0.000007	0.004	No	10	60	No	0.011	NP (normality)
Cadmium, total (mg/L)	MW-1604D	0.0001592	0.00007084	0.005	No	10	0	No	0.01	Param.
Cadmium, total (mg/L)	MW-1604S	0.00015	0.00003	0.005	No	10	0	No	0.011	NP (normality)
Cadmium, total (mg/L)	MW-1605D	0.00003882	0.00001918	0.005	No	10	0	No	0.01	Param.
Cadmium, total (mg/L)	MW-1605S	0.00008	0.00005	0.005	No	10	0	No	0.011	NP (normality)
Cadmium, total (mg/L)	MW-1606D	0.00007638	0.00006205	0.005	No	10	0	x^3	0.01	Param.
Cadmium, total (mg/L)	MW-1606S	0.00008146	0.00006454	0.005	No	10	0	No	0.01	Param.
Cadmium, total (mg/L)	MW-1607D	0.00002	0.000005	0.005	No	10	60	No	0.011	NP (normality)
Cadmium, total (mg/L)	MW-1607S	0.00006	0.00002	0.005	No	10	0	No	0.011	NP (normality)
Chromium, total (mg/L)	MW-1604D	0.0005216	0.0001498	0.1	No	10	0	No	0.01	Param.
Chromium, total (mg/L)	MW-1604S	0.0005807	0.0001015	0.1	No	10	0	ln(x)	0.01	Param.
Chromium, total (mg/L)	MW-1605D	0.0005311	0.00008298	0.1	No	10	0	ln(x)	0.01	Param.
Chromium, total (mg/L)	MW-1605S	0.001104	0.0001965	0.1	No	10	0	x^(1/3)	0.01	Param.
Chromium, total (mg/L)	MW-1606D	0.0006749	0.0001734	0.1	No	10	0	sqrt(x)	0.01	Param.
Chromium, total (mg/L)	MW-1606S	0.0006344	0.00009926	0.1	No	10	0	sqrt(x)	0.01	Param.
Chromium, total (mg/L)	MW-1607D	0.0007252	0.00006417	0.1	No	10	0	x^(1/3)	0.01	Param.
Chromium, total (mg/L)	MW-1607S	0.0008722	0.0001432	0.1	No	10	0	ln(x)	0.01	Param.
Cobalt, total (mg/L)	MW-1604D	0.001902	0.001301	0.006	No	10	0	x^3	0.01	Param.
Cobalt, total (mg/L)	MW-1604S	0.00183	0.000307	0.006	No	10	0	No	0.011	NP (normality)
Cobalt, total (mg/L)	MW-1605D	0.001854	0.00164	0.006	No	10	0	No	0.01	Param.
Cobalt, total (mg/L)	MW-1605S	0.001475	0.0004285	0.006	No	10	0	x^(1/3)	0.01	Param.
Cobalt, total (mg/L)	MW-1606D	0.0022	0.00117	0.006	No	10	0	No	0.011	NP (normality)
Cobalt, total (mg/L)	MW-1606S	0.0003873	0.0002411	0.006	No	10	0	No	0.01	Param.
Cobalt, total (mg/L)	MW-1607D	0.000769	0.000396	0.006	No	10	0	No	0.011	NP (normality)

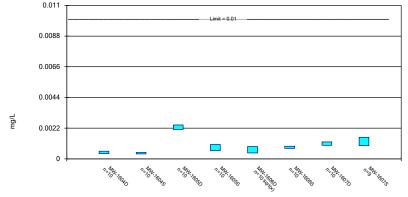
Confidence Intervals - All Results

	M	ountaineer BAP	Client: Geosynte	ec Data: Mo	untaine	er BAP	Printed 1	2/3/2018, 6:57 AM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Cobalt, total (mg/L)	MW-1607S	0.0026	0.000752	0.006	No	10	0	No	0.011	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-1604D	1.909	0.5872	5	No	10	0	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1604S	1.424	0.5484	5	No	9	0	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1605D	2.096	0.5645	5	No	10	0	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1605S	1.458	0.3561	5	No	10	0	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1606D	3.902	0.6694	5	No	10	0	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1606S	1.644	0.6102	5	No	10	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1607D	2.246	0.9231	5	No	10	0	x^(1/3)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1607S	2.32	1.022	5	No	10	0	No	0.01	Param.
Fluoride, total (mg/L)	MW-1604D	0.2019	0.1781	4	No	10	0	No	0.01	Param.
Fluoride, total (mg/L)	MW-1604S	0.2146	0.1954	4	No	10	0	No	0.01	Param.
Fluoride, total (mg/L)	MW-1605D	0.2133	0.1807	4	No	10	0	No	0.01	Param.
Fluoride, total (mg/L)	MW-1605S	0.2836	0.2284	4	No	10	0	No	0.01	Param.
Fluoride, total (mg/L)	MW-1606D	0.26	0.24	4	No	10	0	No	0.011	NP (normality)
Fluoride, total (mg/L)	MW-1606S	0.5	0.43	4	No	10	0	No	0.011	NP (normality)
Fluoride, total (mg/L)	MW-1607D	0.54	0.49	4	No	10	0	No	0.011	NP (normality)
Fluoride, total (mg/L)	MW-1607S	0.3129	0.2791	4	No	10	0	No	0.01	Param.
Lead, total (mg/L)	MW-1604D	0.000303	0.00002	0.015	No	10	0	No	0.011	NP (normality)
Lead, total (mg/L)	MW-1604S	0.0001057	0.00003526	0.015	No	10	0	No	0.01	Param.
Lead, total (mg/L)	MW-1605D	0.00004138	0.00001242	0.015	No	10	0	x^(1/3)	0.01	Param.
Lead, total (mg/L)	MW-1605S	0.0009624	0.0001231	0.015	No	10	0	sqrt(x)	0.01	Param.
Lead, total (mg/L)	MW-1606D	0.0006317	0.00003806	0.015	No	10	0	x^(1/3)	0.01	Param.
Lead, total (mg/L)	MW-1606S	0.0001693	0.00004293	0.015	No	10	0	No	0.01	Param.
Lead, total (mg/L)	MW-1607D	0.000179	0.000038	0.015	No	10	0	No	0.011	NP (normality)
Lead, total (mg/L)	MW-1607S	0.0014	0.000094	0.015	No	10	0	No	0.011	NP (normality)
Lithium, total (mg/L)	MW-1604D	0.05993	0.03714	0.04	No	10	0	x^2	0.01	Param.
Lithium, total (mg/L)	MW-1604S	0.04601	0.03039	0.04	No	10	0	No	0.01	Param.
		0 08226	0.06534	0.04	Voc	10	0	No	0.01	
Lithium, total (mg/L)	MW-1605D	0.08226	0.06534	0.04	Yes	10 10	0	No	0.01	Param.
Lithium, total (mg/L) Lithium, total (mg/L)	MW-1605D MW-1605S	0.08143	0.05937	0.04	Yes	10	0	No	0.01	Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L)	MW-1605D MW-1605S MW-1606D	0.08143 0.1276	0.05937 0.1108	0.04 0.04	Yes Yes	10 10	0 0	No No	0.01 0.01	Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L)	MW-1605D MW-1605S MW-1606D MW-1606S	0.08143 0.1276 0.1183	0.05937 0.1108 0.1023	0.04 0.04 0.04	Yes Yes Yes	10 10 10	0 0 0	No No No	0.01 0.01 0.01	Param. Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L)	MW-1605D MW-1605S MW-1606D MW-1606S MW-1607D	0.08143 0.1276 0.1183 0.09185	0.05937 0.1108 0.1023 0.07175	0.04 0.04 0.04 0.04	Yes Yes Yes Yes	10 10 10 10	0 0 0	No No No	0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L)	MW-1605D MW-1605S MW-1606D MW-1606S MW-1607D MW-1607S	0.08143 0.1276 0.1183 0.09185 0.1086	0.05937 0.1108 0.1023 0.07175 0.09178	0.04 0.04 0.04 0.04 0.04	Yes Yes Yes Yes Yes	10 10 10 10 10	0 0 0 0	No No No No	0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L)	MW-1605D MW-1605S MW-1606D MW-1606S MW-1607D MW-1607S MW-1604D	0.08143 0.1276 0.1183 0.09185 0.1086 0.000005	0.05937 0.1108 0.1023 0.07175 0.09178 0.000003	0.04 0.04 0.04 0.04 0.04 0.002	Yes Yes Yes Yes Yes No	10 10 10 10 10 10	0 0 0 0 0 80	No No No No	0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1606S MW-1607D MW-1607D MW-1604D MW-1604S	0.08143 0.1276 0.1183 0.09185 0.1086 0.000005 0.000005	0.05937 0.1108 0.1023 0.07175 0.09178 0.000003 0.000003	0.04 0.04 0.04 0.04 0.04 0.002 0.002	Yes Yes Yes Yes No No	10 10 10 10 10 10 10	0 0 0 0 80 90	No No No No No	0.01 0.01 0.01 0.01 0.01 0.011 0.011	Param. Param. Param. Param. Param. NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1606S MW-1607D MW-1604D MW-1604S MW-1605D	0.08143 0.1276 0.1183 0.09185 0.1086 0.000005 0.000005 0.000005	0.05937 0.1108 0.1023 0.07175 0.09178 0.000003 0.000003 0.000002	0.04 0.04 0.04 0.04 0.04 0.002 0.002 0.002	Yes Yes Yes Yes No No No	 10 10 10 10 10 10 10 10 10 	0 0 0 0 80 90	No No No No No	0.01 0.01 0.01 0.01 0.01 0.011 0.011	Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1606S MW-1607D MW-1607D MW-1604S MW-1605D MW-1605D	0.08143 0.1276 0.1183 0.09185 0.1086 0.000005 0.000005 0.000005 0.000005	0.05937 0.1108 0.1023 0.07175 0.09178 0.000003 0.000003 0.000002 0.000002	0.04 0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002	Yes Yes Yes Yes No No No	 10 	0 0 0 0 0 80 90 90	No No No No No No	0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011	Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1607D MW-1607D MW-1607S MW-1604D MW-1605D MW-1605D MW-1605D	0.08143 0.1276 0.1183 0.09185 0.1086 0.000005 0.000005 0.000005 0.000005	0.05937 0.1108 0.1023 0.07175 0.09178 0.000003 0.000003 0.000002 0.000003 0.000003	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002	Yes Yes Yes Yes No No No No	 10 	0 0 0 0 8 0 90 90 90	No No No No No No	0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011	Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1607D MW-1607D MW-1607D MW-1604D MW-1605D MW-1605D MW-1606D MW-1606D	0.08143 0.1276 0.1183 0.09185 0.1086 0.000005 0.000005 0.000005 0.000005 0.000005	0.05937 0.1108 0.1023 0.07175 0.09178 0.000003 0.000003 0.000002 0.000003 0.000004 0.000004	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002	Yes Yes Yes Yes No No No No No	 10 	0 0 0 0 80 90 90 90 90	No No No No No No No	0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011	Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L)	MW-1605D MW-1606D MW-1606S MW-1607D MW-1607D MW-1604D MW-1604D MW-1605D MW-1605D MW-1606D MW-1606S MW-1606S	0.08143 0.1276 0.1183 0.09185 0.1086 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005	0.05937 0.1108 0.1023 0.07175 0.09178 0.000003 0.000003 0.000002 0.000004 0.000002 0.000002	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002	Yes Yes Yes No No No No No No	 10 	0 0 0 0 0 80 90 90 90 90 90 80	No No No No No No No No	0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011 0.011	Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1607D MW-1607D MW-1604D MW-1604D MW-1605D MW-1605D MW-1606D MW-1606D MW-1606D MW-1607D	0.08143 0.1276 0.1183 0.09185 0.1086 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005	0.05937 0.1108 0.1023 0.07175 0.09178 0.000003 0.000003 0.000002 0.000004 0.000002 0.000002 0.000002	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	Yes Yes Yes No No No No No No No	 10 9 	0 0 0 0 0 80 90 90 90 90 90 80 77.78	No No No No No No No No	0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011	Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1607D MW-1607D MW-1604D MW-1604D MW-1605D MW-1605D MW-1606D MW-1607D MW-1607D MW-1607D	0.08143 0.1276 0.1183 0.09185 0.1086 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005	0.05937 0.1108 0.1023 0.07175 0.09178 0.00003 0.000003 0.000002 0.000003 0.000002 0.000002 0.000002 0.000003 0.000003 0.001465	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	Yes Yes Yes Yes No No No No No No No	 10 9 10 	0 0 0 0 0 80 90 90 90 90 90 90 80 77.78	No No No No No No No No Xo2	0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.002 0.01	Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1607D MW-1607D MW-1604D MW-1604D MW-1605D MW-1605D MW-1606D MW-1606D MW-1607D MW-1607D MW-1604D	0.08143 0.1276 0.1183 0.09185 0.1086 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.001989 0.0162	0.05937 0.1108 0.1023 0.07175 0.09178 0.00003 0.000003 0.000002 0.000003 0.000004 0.000002 0.000002 0.000003 0.01465 0.00241	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	Yes Yes Yes Yes No No No No No No No No	 10 1	0 0 0 0 8 0 90 90 90 90 90 90 90 90 90 90 90 90 9	No No No No No No No No No No	0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011 0.011 0.002	Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1607D MW-1607D MW-1604D MW-1604D MW-1605D MW-1605D MW-1606D MW-1606D MW-1607D MW-1604D MW-1604D MW-1604D	0.08143 0.1276 0.1183 0.09185 0.1086 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.01989 0.0162 0.05207	0.05937 0.1108 0.1023 0.07175 0.09178 0.00003 0.000003 0.000002 0.000002 0.000002 0.000002 0.000002 0.000003 0.01465 0.00241 0.004477	0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1	Yes Yes Yes Yes No No No No No No No No No	 10 9 10 10	0 0 0 0 8 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011 0.011 0.002 0.01 0.002 0.01	Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs) Param. NP (normality) Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L)	MW-1605D MW-1606D MW-1606S MW-1607D MW-1607D MW-1604D MW-1604S MW-1605D MW-1606D MW-1606D MW-1606D MW-1607D MW-1607D MW-1604D MW-1604S MW-1604D	0.08143 0.1276 0.1183 0.09185 0.1086 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005	0.05937 0.1108 0.1023 0.07175 0.09178 0.00003 0.000003 0.000002 0.000002 0.000002 0.000002 0.000002 0.000003 0.000002 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1	Yes Yes Yes No	 10 	0 0 0 0 8 3 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9	No	0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011 0.011 0.002 0.01 0.002 0.01 0.002	Param. Param. Param. Param. Param. Param. Param. Param. Param. P(NDs) NP (NDs) Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L)	MW-1605D MW-1606D MW-1606S MW-1607D MW-1607D MW-1604D MW-1604D MW-1604D MW-1605D MW-1606D MW-1606D MW-1607D MW-1604D MW-1604D MW-1605D MW-1605D MW-1605D MW-1605D	0.08143 0.1276 0.1183 0.09185 0.1086 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005	0.05937 0.1108 0.1023 0.07175 0.09178 0.000003 0.000002 0.000002 0.000002 0.000002 0.000002 0.000003 0.01465 0.00241 0.00241 0.04477 0.01593 0.07086	0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1	Yes Yes Yes Yes No	 10 	0 0 0 0 80 90 90 90 90 90 90 90 90 90 90 90 90 90	No	0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.002 0.01 0.01	Param. Param. Param. Param. Param. Param. Param. Param. Param. P(NDs) NP (NDs) Param. Param. Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1607D MW-1607D MW-1604D MW-1604D MW-1604D MW-1605D MW-1605D MW-1606D MW-1607D MW-1607D MW-1604D MW-1604D MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D	0.08143 0.1276 0.1183 0.09185 0.1086 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.001989 0.01989 0.0162 0.05207 0.02275 0.08108 0.1055	0.05937 0.1108 0.1023 0.07175 0.09178 0.00003 0.000003 0.000002 0.000003 0.000002 0.000002 0.000002 0.000003 0.01465 0.00241 0.00241 0.00241 0.01593 0.07086 0.08	0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes Yes No	 10 	0 0 0 0 0 80 90 90 90 90 90 90 90 90 90 90 90 90 90	No	0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.002 0.01 0.01	Param. Param. Param. Param. Param. Param. Param. Param. Param. P(NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param. NP (normality) Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1607D MW-1607D MW-1604D MW-1604D MW-1605D MW-1605D MW-1605D MW-1607D MW-1607D MW-1607D MW-1604D MW-1605S MW-1605D MW-1605D MW-1605D MW-1605D MW-1606D MW-1606D	0.08143 0.1276 0.1183 0.09185 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.01989 0.0162 0.05207 0.02275 0.08108 0.1055 0.09219	0.05937 0.1108 0.1023 0.07175 0.09178 0.00003 0.000003 0.000002 0.000003 0.000002 0.000002 0.000003 0.01465 0.00241 0.00241 0.00241 0.00241 0.00241 0.00241 0.01593 0.07086 0.08	0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes No	 10 	0 0 0 0 80 90 90 90 90 90 90 90 90 90 90 90 90 90	No	0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011 0.011 0.002 0.01 0.01	Param. Param. Param. Param. Param. Param. Param. Param. Param. P(NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param. NP (normality) Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1607D MW-1607D MW-1604D MW-1604D MW-1604D MW-1605D MW-1605D MW-1607D MW-1607D MW-1604D MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1606D MW-1607D	0.08143 0.1276 0.1183 0.09185 0.1086 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.01989 0.0162 0.05207 0.02275 0.08108 0.1055 0.09219 0.04809	0.05937 0.1108 0.1023 0.07175 0.09178 0.00003 0.000003 0.000002 0.000002 0.000002 0.000002 0.000002 0.000003 0.01465 0.00241 0.00241 0.00241 0.02417 0.01593 0.07086 0.08 0.08353 0.04171	0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes No	 10 	0 0 0 0 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	No	0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011 0.011 0.002 0.01 0.01	Param. Param. Param. Param. Param. Param. Param. Param. Param. P(NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param. NP (NDs) Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Selenium, total (mg/L)	MW-1605D MW-1605S MW-1606D MW-1607D MW-1607D MW-1604D MW-1604S MW-1605D MW-1605D MW-1605D MW-1607D MW-1604D MW-1604D MW-1605S MW-1605D MW-1605S MW-1607D MW-1607D MW-1607D MW-1607D	0.08143 0.1276 0.1183 0.09185 0.1086 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.01989 0.0162 0.05207 0.02275 0.08108 0.09219 0.09219 0.04809 0.0014	0.05937 0.1108 0.00175 0.09178 0.00003 0.00003 0.000002 0.000002 0.000002 0.000002 0.000002 0.000002 0.000003 0.01465 0.00241 0.04477 0.01593 0.07086 0.08 0.08 0.08353 0.04171 0.0005	0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes No	 10 	0 0 0 0 80 90 90 90 90 90 90 90 90 90 90 90 90 90	No No	0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011 0.012 0.01 0.01	Param. Param. Param. Param. Param. Param. Param. Param. Param. P(NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param. Param. <t< td=""></t<>
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L)	MW-1605D MW-1606S MW-1606D MW-1607D MW-1607D MW-1604D MW-1604S MW-1605D MW-1605D MW-1606D MW-1607D MW-1604D MW-1604D MW-1604D MW-1605S MW-1605D MW-1605D MW-1605D MW-1605D MW-1607D MW-1607D MW-1607S MW-1607S MW-1607D MW-1607S	0.08143 0.1276 0.1183 0.09185 0.1086 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.0162 0.0162 0.05207 0.02275 0.08108 0.1055 0.09219 0.04809 0.0014 0.002719	0.05937 0.1108 0.1023 0.07175 0.09178 0.00003 0.00002 0.00002 0.000002 0.000002 0.000002 0.000002 0.000003 0.01465 0.00241 0.00241 0.04477 0.01593 0.07086 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0	0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes No	 10 	0 0 0 0 80 90 90 90 90 90 90 90 90 90 90 90 90 90	No No	0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011 0.011 0.002 0.01 0.01	Param. P(NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param. Param. <t< td=""></t<>
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Selenium, total (mg/L)	MW-1605D MW-1606D MW-1606S MW-1607D MW-1607D MW-1607D MW-1604D MW-1605S MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1606D MW-1606D MW-1607D MW-1607D MW-1605D MW-1604D MW-1605D MW-1604D MW-1604D MW-1604D MW-1604D MW-1604D MW-1604D MW-1604D	0.08143 0.1276 0.1183 0.09185 0.1086 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.01989 0.0162 0.05207 0.02275 0.08108 0.1055 0.09219 0.04809 0.0014 0.002719 0.0003	0.05937 0.1108 0.00175 0.09178 0.00003 0.00003 0.000002 0.000002 0.000002 0.000002 0.000002 0.000002 0.000002 0.000002 0.000003 0.01465 0.00241 0.02417 0.01593 0.07086 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.001421 0.0001421 0.0002	0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes No	 10 	 b c d d e e<	No No	0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011 0.012 0.01 0.01	Param. Param. Param. Param. Param. Param. Param. Param. Param. P(NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param. Param. <t< td=""></t<>
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1607D MW-1607D MW-1604D MW-1604D MW-1604D MW-1604D MW-1604D MW-1605S MW-1606D MW-1605D MW-1606D MW-1606D MW-1607D MW-1606D MW-1605S MW-1605S MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1606D MW-1607D MW-1607D <t< td=""><td>0.08143 0.1276 0.1183 0.09185 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.01989 0.0162 0.05207 0.02275 0.08108 0.055 0.09219 0.04809 0.04809 0.0014 0.002719 0.0003</td><td>0.05937 0.1108 0.00175 0.09178 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.001455 0.0241 0.04477 0.01593 0.07086 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.001421 0.0002 0.0008007</td><td>0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1</td><td>Yes Yes Yes Yes No No</td><td> 10 </td><td> b c d d e e<</td><td>No No No</td><td>0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011 0.012 0.01 0.01</td><td>Param.Param.Param.Param.Param.Param.Param.Param.P(NDs)NP (NDs)NP (NDs)NP (NDs)NP (NDs)NP (NDs)NP (NDs)Param.Pa</td></t<>	0.08143 0.1276 0.1183 0.09185 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.01989 0.0162 0.05207 0.02275 0.08108 0.055 0.09219 0.04809 0.04809 0.0014 0.002719 0.0003	0.05937 0.1108 0.00175 0.09178 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.001455 0.0241 0.04477 0.01593 0.07086 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.001421 0.0002 0.0008007	0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes Yes No No	 10 	 b c d d e e<	No No	0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011 0.012 0.01 0.01	Param.Param.Param.Param.Param.Param.Param.Param.P(NDs)NP (NDs)NP (NDs)NP (NDs)NP (NDs)NP (NDs)NP (NDs)Param.Pa
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L)	MW-1605D MW-1606D MW-1606S MW-1607D MW-1607D MW-1607D MW-1604D MW-1605S MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1606D MW-1606D MW-1607D MW-1607D MW-1605D MW-1604D MW-1605D MW-1604D MW-1604D MW-1604D MW-1604D MW-1604D MW-1604D MW-1604D	0.08143 0.1276 0.1183 0.09185 0.1086 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.01989 0.0162 0.05207 0.02275 0.08108 0.1055 0.09219 0.04809 0.0014 0.002719 0.0003	0.05937 0.1108 0.00175 0.09178 0.00003 0.00003 0.000002 0.000002 0.000002 0.000002 0.000002 0.000002 0.000002 0.000002 0.000003 0.01465 0.00241 0.02417 0.01593 0.07086 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.001421 0.0001421 0.0002	0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes No	 10 	 b c d d e e<	No No	0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011 0.012 0.01 0.01	Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1607D MW-1607D MW-1604D MW-1604D MW-1604D MW-1604D MW-1604D MW-1605S MW-1606D MW-1605D MW-1606D MW-1606D MW-1607D MW-1606D MW-1605S MW-1605S MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1606D MW-1607D MW-1607D <t< td=""><td>0.08143 0.1276 0.1183 0.09185 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.01989 0.0162 0.05207 0.02275 0.08108 0.055 0.09219 0.04809 0.04809 0.0014 0.002719 0.0003</td><td>0.05937 0.1108 0.00175 0.09178 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.001455 0.0241 0.04477 0.01593 0.07086 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.001421 0.0002 0.0008007</td><td>0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1</td><td>Yes Yes Yes Yes No No</td><td> 10 </td><td> b c d d e e<</td><td>No No No</td><td>0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011 0.012 0.01 0.01</td><td>Param.Param.Param.Param.Param.Param.Param.Param.P(NDs)NP (NDs)NP (NDs)NP (NDs)NP (NDs)NP (NDs)NP (NDs)Param.Pa</td></t<>	0.08143 0.1276 0.1183 0.09185 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.01989 0.0162 0.05207 0.02275 0.08108 0.055 0.09219 0.04809 0.04809 0.0014 0.002719 0.0003	0.05937 0.1108 0.00175 0.09178 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.001455 0.0241 0.04477 0.01593 0.07086 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.001421 0.0002 0.0008007	0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes Yes No No	 10 	 b c d d e e<	No No	0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011 0.011 0.012 0.01 0.01	Param.Param.Param.Param.Param.Param.Param.Param.P(NDs)NP (NDs)NP (NDs)NP (NDs)NP (NDs)NP (NDs)NP (NDs)Param.Pa

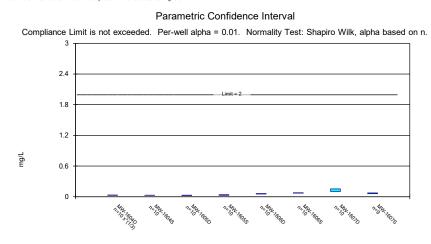

Confidence Intervals - All Results

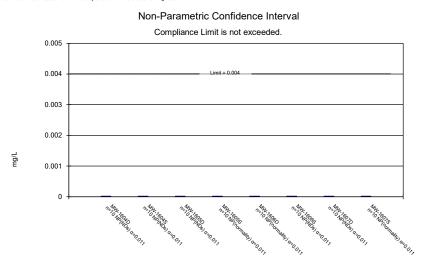
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Selenium, total (mg/L)	MW-1607D	0.0001	0.00003	0.05	No	10	20	No	0.011	NP (normality)
Selenium, total (mg/L)	MW-1607S	0.01003	0.007828	0.05	No	10	0	No	0.01	Param.
Thallium, total (mg/L)	MW-1604D	0.0002929	0.0001575	0.002	No	10	0	x^2	0.01	Param.
Thallium, total (mg/L)	MW-1604S	0.00022	0.00002	0.002	No	10	0	No	0.011	NP (normality)
Thallium, total (mg/L)	MW-1605D	0.00009	0.00004	0.002	No	10	0	No	0.011	NP (normality)
Thallium, total (mg/L)	MW-1605S	0.000102	0.00004	0.002	No	10	0	No	0.011	NP (normality)
Thallium, total (mg/L)	MW-1606D	0.0001133	0.00009009	0.002	No	10	0	No	0.01	Param.
Thallium, total (mg/L)	MW-1606S	0.00009256	0.00006184	0.002	No	10	0	No	0.01	Param.
Thallium, total (mg/L)	MW-1607D	0.00004948	0.00002492	0.002	No	10	0	No	0.01	Param.
Thallium, total (mg/L)	MW-1607S	0.000089	0.00005	0.002	No	9	0	No	0.002	NP (normality)

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

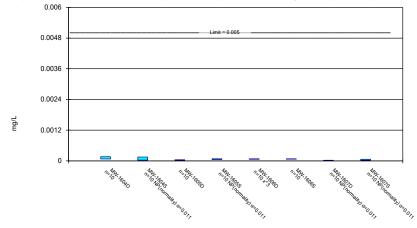
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Antimony, total Analysis Run 12/3/2018 6:55 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



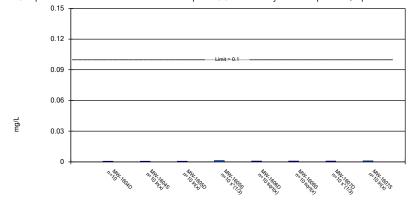
Constituent: Arsenic, total Analysis Run 12/3/2018 6:55 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

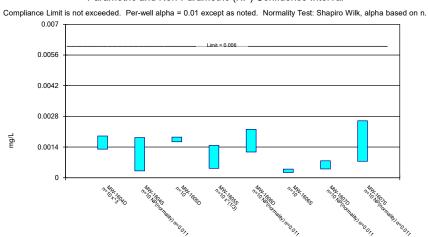


Constituent: Barium, total Analysis Run 12/3/2018 6:55 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Constituent: Beryllium, total Analysis Run 12/3/2018 6:56 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

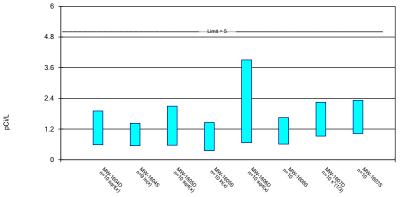
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Cadmium, total Analysis Run 12/3/2018 6:56 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Parametric Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Chromium, total Analysis Run 12/3/2018 6:56 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

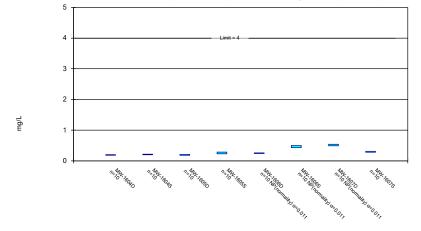


Parametric and Non-Parametric (NP) Confidence Interval

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

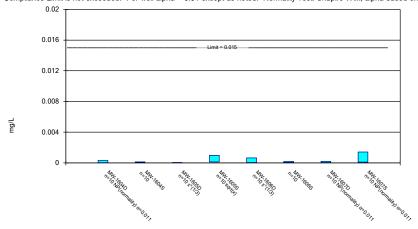
Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

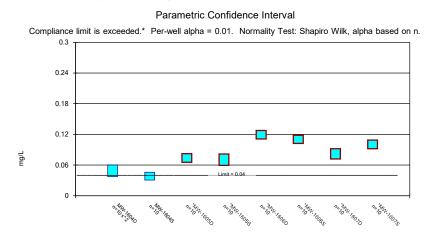

Constituent: Cobalt, total Analysis Run 12/3/2018 6:56 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Combined Radium 226 + 228 Analysis Run 12/3/2018 6:56 AM View: Confidence Intervals -Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

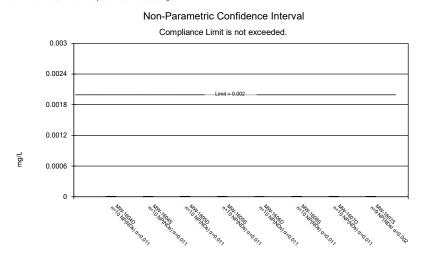
Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

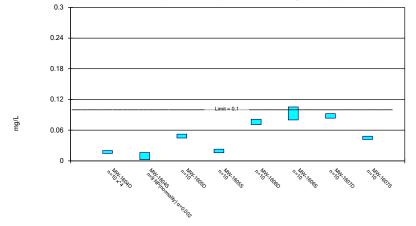

Constituent: Fluoride, total Analysis Run 12/3/2018 6:56 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Lead, total Analysis Run 12/3/2018 6:56 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

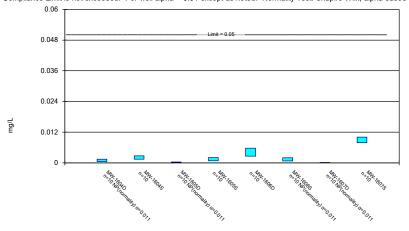
Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Lithium, total Analysis Run 12/3/2018 6:56 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Mercury, total Analysis Run 12/3/2018 6:56 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Molybdenum, total Analysis Run 12/3/2018 6:56 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Parametric and Non-Parametric (NP) Confidence Interval

Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Selenium, total Analysis Run 12/3/2018 6:56 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Thallium, total Analysis Run 12/3/2018 6:56 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

STATISTICAL ANALYSIS SUMMARY BOTTOM ASH POND Mountaineer Plant New Haven, West Virginia

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

Geosyntec Consultants

engineers | scientists | innovators

941 Chatham Lane Suite 103 Columbus, Ohio 43221

July 12, 2019

CHA8473

TABLE OF CONTENTS

SECTION 1	Executi	ive Summary	1
SECTION 2	Bottom	Ash Pond Evaluation	2-1
2.1	Data V	alidation & QA/QC	2-1
2.2	Statistic	cal Analysis	2-1
	2.2.1	Establishment of GWPSs	2-1
	2.2.2	Evaluation of Potential Appendix IV SSLs	2-2
	2.2.3	Evaluation of Potential Appendix III SSIs	2-2
2.3	Conclu	sions	2-3
SECTION 3	Referen	ices	3-1

LIST OF TABLES

Table 1	Groundwater Data Summary
Table 2	Groundwater Protection Standards
Table 3	Appendix III Data Summary

LIST OF ATTACHMENTS

Attachment A	Certification by Qualified Professional Engineer
Attachment B	Statistical Analysis Output

LIST OF ACRONYMS AND ABBREVIATIONS

- AEP American Electric Power
- ASD Alternative Source Demonstration
- BAP Bottom Ash Pond
- CCR Coal Combustion Residuals
- CCV Continuing Calibration Verification
- CFR Code of Federal Regulations
- GWPS Groundwater Protection Standard
- LCL Lower Confidence Limit
- LFB Laboratory Fortified Blanks
- LPL Lower Prediction Limit
- LRB Laboratory Reagent Blanks
- MCL Maximum Contaminant Level
- NELAP National Environmental Laboratory Accreditation Program
- QA Quality Assurance
- QC Quality Control
- RSL Regional Screening Level
- SSI Statistically Significant Increase
- SSL Statistically Significant Level
- TDS Total Dissolved Solids
- USEPA United States Environmental Protection Agency
- UPL Upper Prediction Limit
- UTL Upper Tolerance Limit

SECTION 1

EXECUTIVE SUMMARY

In accordance with the United States Environmental Protection Agency's (USEPA's) regulations regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (40 CFR 257.90-257.98, "CCR rule"), groundwater monitoring has been conducted at the Bottom Ash Pond (BAP), an existing CCR unit at the Mountaineer Power Plant located in New Haven, West Virginia.

Based on detection monitoring conducted in 2017 and 2018, statistically significant increases (SSIs) over background were concluded for boron, calcium, chloride, total dissolved solids (TDS), and sulfate at the BAP. An alternative source was not identified at the time, so two assessment monitoring events were conducted at the BAP in 2018, in accordance with 40 CFR 257.95. SSLs for lithium were identified at wells MW-1605D, MW-1605S, MW-1606D, MW-1606S, MW-1607D, and MW-1607S and so the unit is completing an assessment of corrective measures in accordance with 40 CFR 257.96. A semi-annual assessment monitoring event was also completed in April 2019, with the results of the April 2019 event documented in this report.

Groundwater data underwent several validation tests, including those for completeness, sample tracking accuracy, transcription errors, and consistent use of measurement units. No data quality issues were identified which would impact the usability of the data.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. Groundwater protection standards (GWPSs) were re-established for the Appendix IV parameters. Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether Appendix IV parameters were present at a statistically significant level (SSL) above the GWPS, with SSLs identified for lithium. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A.

SECTION 2

BOTTOM ASH POND EVALUATION

2.1 <u>Data Validation & QA/QC</u>

During the assessment monitoring program, one set of samples was collected for analysis from each upgradient and downgradient well to meet the requirements of 40 CFR 257.95(d)(1). Samples from the April 2019 semi-annual sampling event were analyzed for the Appendix III and Appendix IV parameters. A summary of data collected during this assessment monitoring event may be found in Table 1.

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program (NELAP). Quality assurance and quality control (QA/QC) samples completed by the analytical laboratory included the use of laboratory reagent blanks (LRBs), continuing calibration verification (CCV) samples, and laboratory fortified blanks (LFBs).

The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.6.14 statistics software. The export file was checked against the analytical data for transcription errors and completeness. No QA/QC issues were noted which would impact data usability.

2.2 <u>Statistical Analysis</u>

Statistical analyses for the BAP were conducted in accordance with the January 2017 *Statistical Analysis Plan* (AEP, 2017), except where noted below. Time series plots and results for all completed statistical tests are provided in Attachment B.

The data obtained to meet the requirements of 40 CFR 257.95(d)(1) were screened for potential outliers. No outliers were identified.

2.2.1 Establishment of GWPSs

A GWPS was established for each Appendix IV parameter in accordance with 40 CFR 257.95(h) and the *Statistical Analysis Plan* (AEP, 2017). The established GWPS was determined to be the greater value of the background concentration and the maximum contaminant level (MCL) or risk-based level specified in 40 CFR 257.95(h)(2) for each Appendix IV parameter. To determine background concentrations, an upper tolerance limit (UTL) was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events. Generally, tolerance limits were calculated parametrically with 95% coverage and 95% confidence. Non-parametric tolerance limits were calculated for antimony, cadmium, selenium,

and thallium due to apparent non-normal distributions and for beryllium and mercury due to a high non-detect frequency. Tolerance limits and the final GWPSs are summarized in Table 2.

2.2.2 Evaluation of Potential Appendix IV SSLs

A confidence interval was constructed for each Appendix IV parameter at each compliance well. Confidence limits were generally calculated parametrically ($\alpha = 0.01$); however, non-parametric confidence limits were calculated in some cases (e.g., when the data did not appear to be normally distributed or when the non-detect frequency was too high). An SSL was concluded if the lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). Calculated confidence limits are shown in Attachment B.

The following SSLs were identified at the Mountaineer BAP:

LCLs for lithium exceeded the GWPS of 0.04 mg/L at MW-1605D (0.0664 mg/L), MW-1605S (0.0612), MW-1606D (0.112 mg/L), MW-1606S (0.104 mg/L), MW-1607D (0.0715 mg/L), and 1607S (0.0912 mg/L).

2.2.3 Evaluation of Potential Appendix III SSIs

While SSLs were identified, a review of the Appendix III results were also completed to assess whether concentrations of Appendix III parameters at the compliance wells exceeded background concentrations. Prediction limits were calculated for the Appendix III parameters to represent background values. As described in the January 2018 *Statistical Analysis Summary* report (Geosyntec, 2018), intrawell tests were used to evaluate potential SSIs for pH, whereas interwell tests were used to evaluate potential SSIs for pH, whereas interwell tests were used to evaluate potential SSIs for pH.

Prediction limits for the interwell tests were recalculated using data collected during the April 2019 assessment monitoring event. Eight data points (i.e., one sample from eight background wells) were added to the background dataset for each interwell test. New data were tested for outliers prior to being added to the background dataset. The updated prediction limits were calculated for a one-of-two retesting procedure, as during detection monitoring. The values of the updated prediction limits were similar to the values of the prediction limits calculated during detection monitoring. The revised interwell prediction limits were used to evaluate potential SSIs for boron, calcium, chloride, fluoride, sulfate, and TDS.

For the intrawell tests, limited data made it possible to add only one data point (i.e., one sample from each compliance well) to each background dataset. Because one sample result is insufficient to compare against the existing background dataset, the prediction limits were not updated for the intrawell tests at this time. The intrawell prediction limits calculated during detection monitoring were used to evaluate potential SSIs for pH.

Data collected during April 2019 assessment monitoring event from each compliance well were compared to the prediction limits to evaluate results above background values. The results from

this event and the prediction limits are summarized in Table 3. The following exceedances of the upper prediction limits (UPLs) were noted:

- Boron concentrations exceeded the interwell value of 0.632 mg/L at MW-1604D (2.82 mg/L), MW-1604S (3.50 mg/L), MW-1605D (6.90 mg/L), MW-1605S (9.39 mg/L), MW-1606D (7.32 mg/L), MW-1606S (7.68 mg/L), MW-1607D (3.10 mg/L), and MW-1607S (2.35 mg/L).
- Calcium concentrations exceeded the interwell value of 193 mg/L at MW-1604D (236 mg/L), MW-1604S (301 mg/L), MW-1605D (247 mg/L), MW-1606D (265 mg/L), MW-1606S (229 mg/L), MW-1607D (232 mg/L), and MW-1607S (226 mg/L).
- Chloride concentrations exceeded the interwell value of 58.8 mg/L at MW-1604D (100 mg/L), MW-1604S (132 mg/L), MW-1605D (169 mg/L), MW-1605S (140 mg/L), MW-1606D (214 mg/L), MW-1606S (223 mg/L), MW-1607D (162 mg/L), and MW-1607S (153 mg/L).
- Fluoride concentrations exceeded the interwell value of 0.27 mg/L at MW-1605S (0.33 mg/L), MW-1606S (0.54 mg/L), and MW-1607D (0.52 mg/L).
- pH levels were below the intrawell lower prediction limit (LPL) of 7.3 SU at MW-1607S (7.2 SU).
- Sulfate concentrations exceeded the interwell value of 681 mg/L at MW-1604S (703 mg/L), MW-1605D (791 mg/L), and MW-1606D (682 mg/L).
- TDS concentrations exceeded the interwell value of 1054 mg/L at MW-1604D (1300 mg/L), MW-1604S (1650 mg/L), MW-1605D (1710 mg/L), MW-1605S (1450 mg/L), MW-1606D (1600 mg/L), MW-1606S (1480 mg/L), MW-1607D (1480 mg/L), and MW-1607S (1310 mg/L).

While the prediction limits were calculated assuming a one-of-two testing procedure, it was conservatively assumed that an SSI was identified if the initial sample exceeded either the UPL based on previous results. Based on these results, concentrations of Appendix III parameters exceeded background levels at compliance wells at the Mountaineer BAP during assessment monitoring.

2.3 <u>Conclusions</u>

A semi-annual assessment monitoring event was conducted in accordance with the CCR Rule. The laboratory and field data were reviewed prior to statistical analysis, with no QA/QC issues identified that impacted data usability. A review of outliers identified no potential outliers in the April 2019 data. GWPSs were re-established for the Appendix IV parameters. A confidence interval was constructed at each compliance well for each Appendix IV parameter; SSLs were concluded if the entire confidence interval exceeded the GWPS. SSLs were identified for lithium.

Appendix III parameters were also evaluated, with exceedances identified for boron, calcium, chloride, fluoride, pH, sulfate, and TDS. The unit is currently completing an assessment of corrective measures and will continue semi-annual assessment monitoring.

SECTION 3

REFERENCES

American Electric Power (AEP). 2017. Statistical Analysis Plan – Mountaineer Plant. January 2017.

Geosyntec Consultants (Geosyntec). 2018. Statistical Analysis Summary – Bottom Ash Pond, Mountaineer Plant, New Haven, West Virginia. January 15, 2018.

TABLES

Table 1 - Groundwater Data SummaryMountaineer - Bottom Ash Pond

Demonstern	T 1 * 4	MW-1601A	MW-1602	MW-1603	MW-1604D	MW-1604S	MW-1605D	MW-1605S	MW-1606D	MW-1606S	MW-1607D	MW-1607S	MW-1608
Parameter	Unit	4/9/2019	4/9/2019	4/9/2019	4/9/2019	4/9/2019	4/9/2019	4/9/2019	4/8/2019	4/8/2019	4/8/2019	4/8/2019	4/9/2019
Antimony	μg/L	0.500 U	0.500 U	0.500 U	0.500 U	0.200 J	0.0400 J	0.0500 J	0.150	0.150	0.0300 J	0.400	0.0400 J
Arsenic	μg/L	0.610	0.400 J	0.560	0.400 J	0.540	2.81	0.640	0.350	0.700	1.31	0.940	0.560
Barium	μg/L	52.0	29.0	32.4	42.5	29.1	26.4	25.2	47.3	63.1	75.7	72.7	41.2
Beryllium	μg/L	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U
Boron	mg/L	0.224	0.0900 J	0.408	2.82	3.50	6.90	9.39	7.32	7.68	3.10	2.35	0.156
Cadmium	μg/L	0.200 U	0.200 U	0.200 U	0.0500 J	0.270	0.0100 J	0.0500	0.0700	0.0700	0.0500 U	0.0400 J	0.0200 J
Calcium	mg/L	155	99.8	182	236	301	247	164	265	229	232	226	102
Chloride	mg/L	44.4	11.4	15.8	100	132	169	140	214	223	162	153	6.82
Chromium	μg/L	0.200 J	1.00 U	0.400 J	0.200 J	0.300 J	0.0600 J	0.293	0.100 J	0.0800 J	0.0700 J	0.376	0.372
Cobalt	μg/L	0.200 J	0.200 U	0.622	0.345	2.41	1.56	0.631	1.25	0.320	0.778	1.21	0.597
Combined Radium	pCi/L	1.17	1.05	2.39	0.957	1.47	0.543	0.369	0.940	0.595	1.33	0.723	0.244
Fluoride	mg/L	0.100 J	0.200	0.110	0.150	0.190	0.220	0.330	0.260	0.540	0.520	0.260	0.200
Lead	μg/L	0.500 U	0.500 U	0.500 J	0.500 U	0.500 U	0.0300 J	0.331	0.0300 J	0.107	0.0500 J	0.0900 J	0.454
Lithium	mg/L	0.0200 J	0.0200 J	0.0300	0.0380	0.0610	0.0750	0.0790	0.124	0.117	0.127	0.141	0.0100 J
Mercury	μg/L	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U
Molybdenum	μg/L	10.0 U	3.00 J	10.0 U	10.0 U	17.8	40.6	15.9	71.8	67.7	79.8	37.9	1.00 J
Selenium	μg/L	1.10	0.200 J	0.400 J	2.00	1.20	0.200	0.700	8.10	1.40	0.0500 J	7.00	1.20
Total Dissolved Solids	mg/L	692	595	918	1300	1650	1710	1450	1600	1480	1480	1310	451
Sulfate	mg/L	176	221	429	539	703	791	599	682	592	656	504	179
Thallium	μg/L	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U
pН	SU	7.14	6.62	6.80	6.92	7.14	7.31	7.19	7.19	6.81	7.39	7.23	6.86

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Non-detect value. For statistical analysis, parameters which were not detected were replaced with the reporting limit.

J: Estimated value. Parameter was detected in concentrations below the reporting limit.

Table 2: Groundwater Protection Standards Mountaineer Plant - Bottom Ash Pond

Constituent Name	MCL	CCR Rule-Specified	Background Limit
Antimony, Total (mg/L)	0.006		0.00025
Arsenic, Total (mg/L)	0.01		0.00075
Barium, Total (mg/L)	2		0.058
Beryllium, Total (mg/L)	0.004		0.00001
Cadmium, Total (mg/L)	0.005		0.00001
Chromium, Total (mg/L)	0.1		0.0018
Cobalt, Total (mg/L)	n/a	0.006	0.00076
Combined Radium, Total (pCi/L)	5		2.45
Fluoride, Total (mg/L)	4		0.28
Lead, Total (mg/L)	n/a	0.015	0.00055
Lithium, Total (mg/L)	n/a	0.04	0.027
Mercury, Total (mg/L)	0.002		0.000005
Molybdenum, Total (mg/L)	n/a	0.1	0.0042
Selenium, Total (mg/L)	0.05		0.0015
Thallium, Total (mg/L)	0.002		0.00025

Notes:

Grey cell indicates calculated UTL is higher than MCL.

MCL = Maximum Contaminant Level

Calculated UTL (Upper Tolerance Limit) represents site-specific background values.

The higher of the calculated UTL or MCL/Rule-Specified Level is used as the GWPS.

Table 3: Appendix III Data SummaryMountaineer Plant - Bottom Ash Pond

Parameter	Units	Description	MW-1604D	MW-1604S	MW-1605D	MW-1605S	MW-1606D	MW-1606S	MW-1607D	MW-1607S			
Falameter	Ullits	Description	4/9/2019	4/9/2019	4/9/2019	4/9/2019	4/8/2019	4/8/2019	4/8/2019	4/8/2019			
Boron	Boron mg/L Interwell Background Value (UPL)			0.632									
DOIOII	IIIg/L	Detection Monitoring Result	2.82	3.50	6.90	9.39	7.32	7.68	3.10	2.35			
Calcium	ma/I	Interwell Background Value (UPL)				19	93						
Calciulii	cium mg/L Detection Monitoring I		236	301	247	164	265	229	232	226			
Chloride	ma/I	Interwell Background Value (UPL)				58	3.8						
Chiloffue	Chloride mg/L Detection Monitorin	Detection Monitoring Result	100	132	169	140	214	223	162	153			
Fluoride	ma/I	Interwell Background Value (UPL)	0.27										
Fluoride	mg/L	Detection Monitoring Result	0.15	0.19	0.22	0.33	0.26	0.54	0.52	0.26			
		Intrawell Background Value (UPL)	8.1	8.0	8.3	8.2	8.2	8.7	7.8	7.8			
pH	SU	Intrawell Background Value (LPL)	6.7	6.4	6.7	6.7	6.7	5.6	6.9	7.3			
		Detection Monitoring Result	6.9	7.1	7.3	7.2	7.2	6.8	7.4	7.2			
Sulfate	ma/I	Interwell Background Value (UPL)				68	81						
Suilate	Sulfate mg/L Detection Monitoring Result		539	703	791	599	682	592	656	504			
Total Dissolved Solids	mg/L	Interwell Background Value (UPL)				10	54						
Total Dissolved Sollas	mg/L	Detection Monitoring Result	1300	1650	1710	1450	1600	1480	1480	1310			

Notes:

UPL: Upper prediction limit

LPL: Lower prediction limit

*: Designates results for a duplicate sample

-: Not Sampled

Bold values exceed the background value.

Background values are shaded gray.

ATTACHMENT A Certification by Qualified Professional Engineer

Certification by Qualified Professional Engineer

I certify that the selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Mountaineer Bottom Ash Pond CCR management area and that the requirements of 40 CFR 257.93(f) have been met.

DAVID ANTHONY MILLER

Printed Name of Licensed Professional Engineer

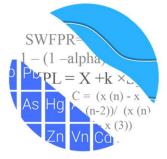
)avid Anthony Miller

Signature

22663

WEST VIRGINIA

THON


07.12.19 Date

License Number

Licensing State

ATTACHMENT B Statistical Analysis Output

GROUNDWATER STATS CONSULTING

July 10, 2019

Geosyntec Consultants Attn: Ms. Allison Kreinberg 941 Chatham Lane, #103 Columbus, OH 43221

Re: Mountaineer BAP Assessment Monitoring Event – April 2019

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the statistical analysis of the April 2019 groundwater data for American Electric Power Inc.'s Mountaineer Bottom Ash Pond. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the USEPA Unified Guidance (2009).

Sampling began at the site for the CCR program in 2016. The monitoring well network, as provided by Geosyntec Consultants, consists of the following:

- **Upgradient wells:** MW-1601A, MW-1602, MW-1603, MW-1608; and
- Downgradient wells: MW-1604D, MW-1604S, MW-1605D, MW-1605S, MW-1606D, MW-1606S, MW-1607D, MW-1607S.

Data were sent electronically, and the statistical analysis was conducted according to the Statistical Analysis Plan and screening evaluation prepared by GSC and approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC.

The CCR program consists of the following constituents:

• **Appendix III** (Detection Monitoring) - boron, calcium, chloride, fluoride, pH, sulfate, and TDS;

 Appendix IV (Assessment Monitoring) – antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium.

Time series plots for Appendix III and IV parameters are provided for all wells and constituents; and are used to evaluate concentrations over the entire record (Figure A). Values previously flagged during the screening as outliers may be seen in a lighter font and disconnected symbol on the time series graphs. A summary of outliers follows this letter (Figure B).

Evaluation of Appendix III Parameters

Interwell prediction limits combined with a 1-of-2 verification strategy were constructed for boron, calcium, chloride, fluoride, sulfate and TDS; and intrawell prediction limits combined with a 1-of-2 verification strategy were constructed for pH (Figures C and D, respectively). The statistical method selected for each parameter was determined based on the results of the evaluation performed in December 2017; and all proposed background data were screened for outliers and trends at that time. The findings of those reports were submitted with that analysis.

Interwell prediction limits utilize all upgradient well data for construction of statistical limits. During each sample event, upgradient well data are screened for any newly suspected outliers or obvious trending patterns using time series plots. All values flagged as outliers may be seen on the Outlier Summary report following this letter. No obvious trending patterns were observed in the upgradient wells.

Intrawell prediction limits utilize the background data set that was originally screened in 2017. As recommended in the EPA Unified Guidance (2009), the background data set will be tested for the purpose of updating statistical limits using the Mann-Whitney two-sample test when an additional four to eight measurements are available.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified and further research would be required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered a false positive result and, therefore, no further action is necessary. Prediction limit exceedances were noted for several of the downgradient wells for boron, calcium, chloride, fluoride, pH, sulfate and TDS. Prediction Limit Summary tables follow this letter.

When a statistically significant increase is identified, the data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing or stable (Figure E). Upgradient wells are included in the trend analyses to identify whether similar patterns exist upgradient of the site which is an indication of natural variability in groundwater unrelated to practices at the site.

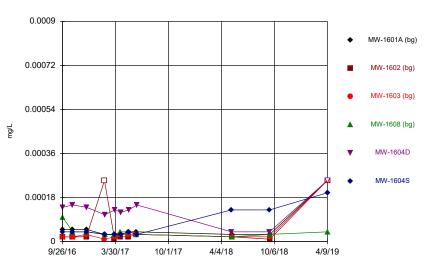
Statistically significant increasing trends were found for several constituents in both upgradient and downgradient wells. For the statistically significant increasing trend noted for calcium in well MW-1607S, with the exception of the most recent sample, historical concentrations are similar and, in some cases, lower than those reported in upgradient wells. Further research beyond the scope of this analysis would be required to identify the cause for any changing groundwater concentrations in downgradient wells (i.e. result of practices at the site, natural variation, or an off-site source). A Trend Test summary table follows this letter.

Evaluation of Appendix IV Parameters

Interwell Tolerance limits were used to calculate background limits from all available pooled upgradient well data for Appendix IV parameters to determine the Alternate Contaminant Level (ACL) for each constituent (Figure F). Background data are screened for outliers and extreme trending patterns that would lead to artificially elevated statistical limits. Any flagged values may be seen on the Outlier Summary following this letter.

Parametric limits use a target of 95% confidence and 95% coverage. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. These limits were compared to the Maximum Contaminant Levels (MCLs) and CCR-Rule specified levels in the Groundwater Protection Standard (GWPS) table following this letter to determine the highest limit for use as the GWPS in the Confidence Interval comparisons (Figure G).

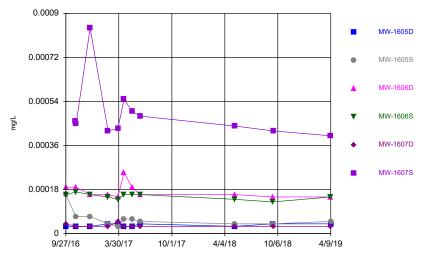
Confidence intervals were then constructed on downgradient wells for each of the Appendix IV parameters using the highest limit of either the MCL, CCR-rule specified, or ACL as discussed above (Figure H). Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard. No confidence interval exceedances were found except for lithium in wells MW-1605D,


MW1605S, MW-1606D, MW-1606S, MW-1607D and MW-1607S. A summary of the confidence interval results follows this letter.

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Mountaineer BAP. If you have any questions or comments, please feel free to contact me.

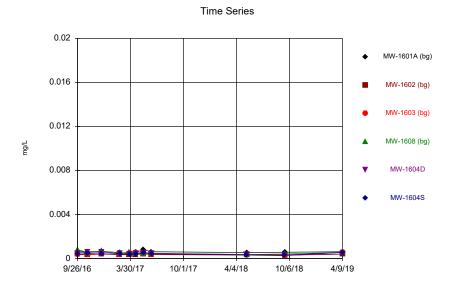
For Groundwater Stats Consulting,

xistina Rayner

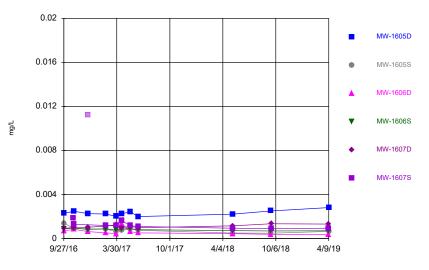

Kristina L. Rayner Groundwater Statistician

Time Series

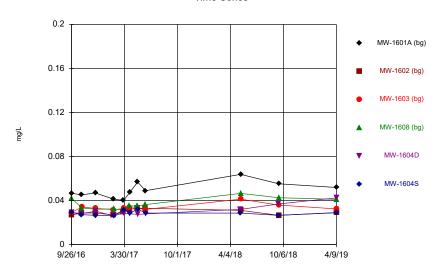
Constituent: Antimony, total Analysis Run 6/23/2019 12:51 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

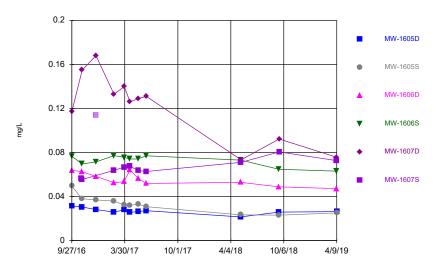
Time Series


Constituent: Antimony, total Analysis Run 6/23/2019 12:51 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

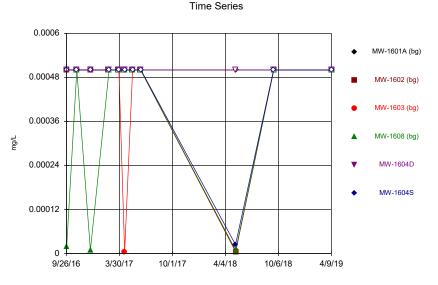

Constituent: Arsenic, total Analysis Run 6/23/2019 12:51 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series



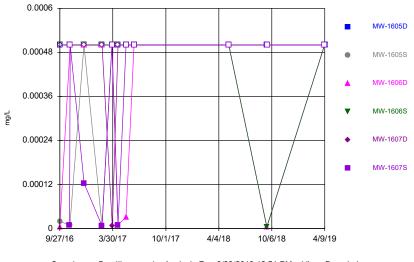
Constituent: Arsenic, total Analysis Run 6/23/2019 12:51 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Time Series



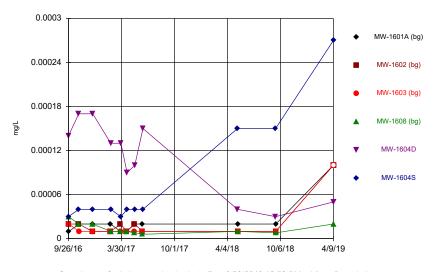
Constituent: Barium, total Analysis Run 6/23/2019 12:51 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Barium, total Analysis Run 6/23/2019 12:51 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas[™] v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

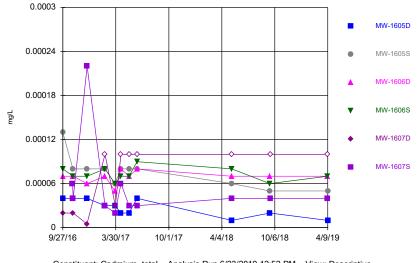
Constituent: Beryllium, total Analysis Run 6/23/2019 12:51 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

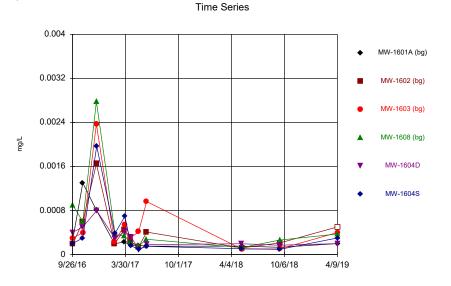

Time Series

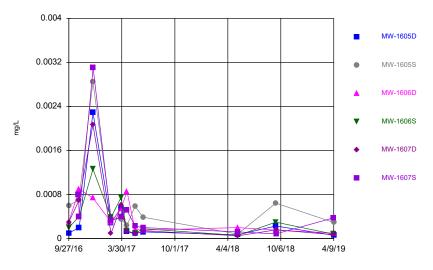
Constituent: Beryllium, total Analysis Run 6/23/2019 12:51 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Time Series

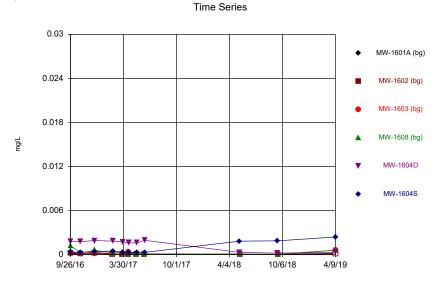

Time Series

Constituent: Cadmium, total Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas[™] v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

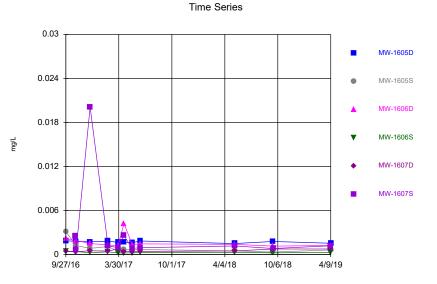

Constituent: Cadmium, total Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas¹¹ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

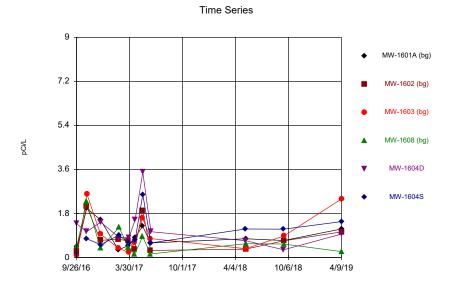


Constituent: Chromium, total Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

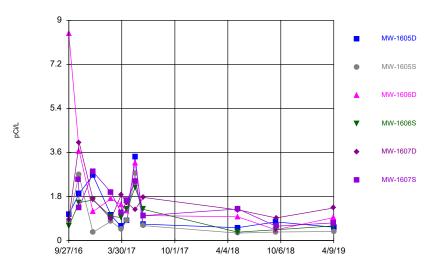
Time Series

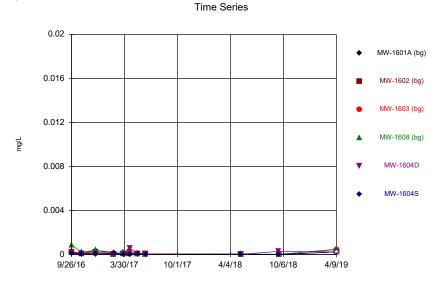


Constituent: Chromium, total Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Cobalt, total Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

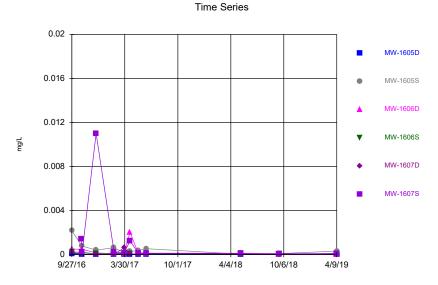
Constituent: Cobalt, total Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas[™] v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

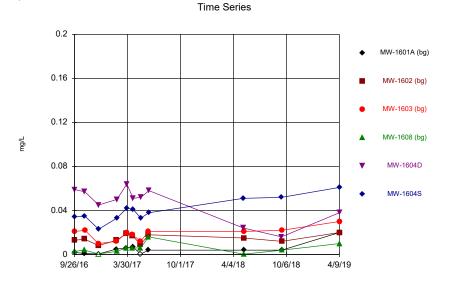

Constituent: Combined Radium 226 + 228 Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

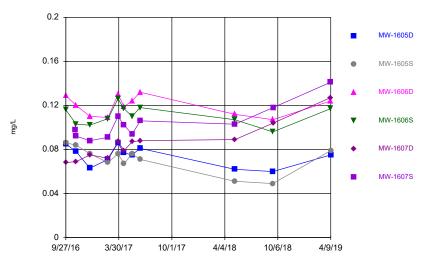
Time Series



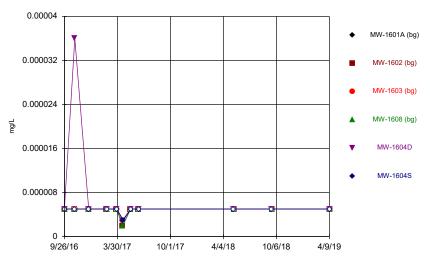
Constituent: Combined Radium 226 + 228 Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Lead, total Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

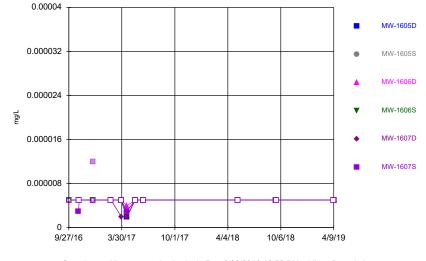

Constituent: Lead, total Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

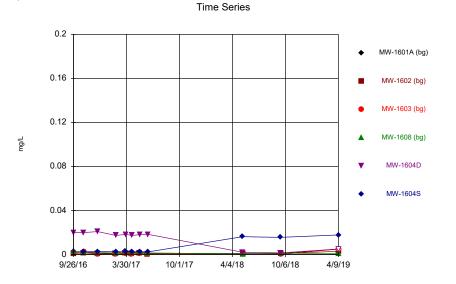

Constituent: Lithium, total Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series

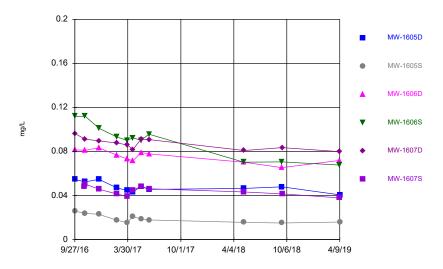
Constituent: Lithium, total Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Time Series

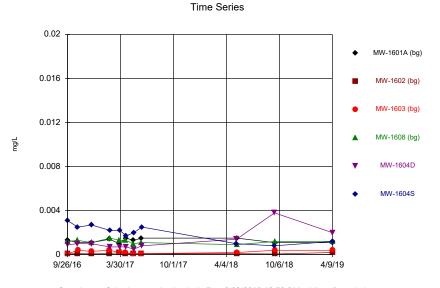
Constituent: Mercury, total Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas¹⁹ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

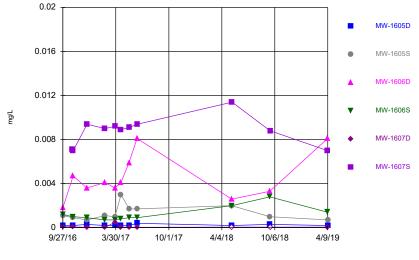
Time Series


Constituent: Mercury, total Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

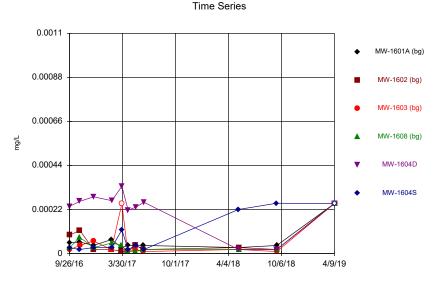
Sanitas¹¹ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

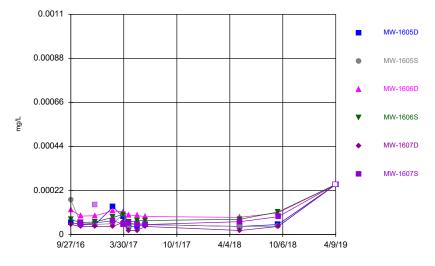

Constituent: Molybdenum, total Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas[™] v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series


Constituent: Molybdenum, total Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Selenium, total Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Selenium, total Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas¹¹ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Thallium, total Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas[™] v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

Constituent: Thallium, total Analysis Run 6/23/2019 12:52 PM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Outlier Summary Table											
				Mountaineer BAP			Mountaineer BAP				
	MW-1607S A	_{rsenic, total} (mg MW-1607S E	/L) _{Barium, total (m} MW-1604S	g/L) Combined Radium 2 MW-1607S Mei	226 + 228 (pCi/L rcury, total (mg/l MW-1604S Mo	-) L) blybdenum, tot: MW-1607D	al (mg/L) pH, field (SU) MW-1607S pH.	, field (SU) MW-1607S Th	hallium, total (mg/L) MW-1606S Total Dissolved Solids [TDS] (mg/L)		
9/26/2016			0.136 (o)		0.0032 (o)						
12/21/2016	0.0112 (o)	0.114 (o)		1.2E-05 (o)				0.00015 (o)			
5/16/2017						8.41 (o)	8.23 (o)		3230 (o)		

Interwell Prediction Limit Summary - Significant Results

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Printed 6/30/2019, 6:31 PM

		mounta								.01110				
Constituent	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	Bg N	<u>Bg Mean</u>	Std. Dev.	<u>%NDs</u>	ND Adj.	Transform	<u>Alpha</u>	Method
Boron, total (mg/L)	MW-1604D	0.6322	n/a	4/9/2019	2.82	Yes	40	0.6145	0.1211	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Boron, total (mg/L)	MW-1604S	0.6322	n/a	4/9/2019	3.5	Yes	40	0.6145	0.1211	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Boron, total (mg/L)	MW-1605D	0.6322	n/a	4/9/2019	6.9	Yes	40	0.6145	0.1211	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Boron, total (mg/L)	MW-1605S	0.6322	n/a	4/9/2019	9.39	Yes	40	0.6145	0.1211	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Boron, total (mg/L)	MW-1606D	0.6322	n/a	4/8/2019	7.32	Yes	40	0.6145	0.1211	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Boron, total (mg/L)	MW-1606S	0.6322	n/a	4/8/2019	7.68	Yes	40	0.6145	0.1211	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Boron, total (mg/L)	MW-1607D	0.6322	n/a	4/8/2019	3.1	Yes	40	0.6145	0.1211	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Boron, total (mg/L)	MW-1607S	0.6322	n/a	4/8/2019	2.35	Yes	40	0.6145	0.1211	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Calcium, total (mg/L)	MW-1604D	193.4	n/a	4/9/2019	236	Yes	40	121.1	35.96	0	None	No	0.0009403	Param Inter 1 of 2
Calcium, total (mg/L)	MW-1604S	193.4	n/a	4/9/2019	301	Yes	40	121.1	35.96	0	None	No	0.0009403	Param Inter 1 of 2
Calcium, total (mg/L)	MW-1605D	193.4	n/a	4/9/2019	247	Yes	40	121.1	35.96	0	None	No	0.0009403	Param Inter 1 of 2
Calcium, total (mg/L)	MW-1606D	193.4	n/a	4/8/2019	265	Yes	40	121.1	35.96	0	None	No	0.0009403	Param Inter 1 of 2
Calcium, total (mg/L)	MW-1606S	193.4	n/a	4/8/2019	229	Yes	40	121.1	35.96	0	None	No	0.0009403	Param Inter 1 of 2
Calcium, total (mg/L)	MW-1607D	193.4	n/a	4/8/2019	232	Yes	40	121.1	35.96	0	None	No	0.0009403	Param Inter 1 of 2
Calcium, total (mg/L)	MW-1607S	193.4	n/a	4/8/2019	226	Yes	40	121.1	35.96	0	None	No	0.0009403	Param Inter 1 of 2
Chloride, total (mg/L)	MW-1604D	58.8	n/a	4/9/2019	100	Yes	40	2.553	0.6638	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Chloride, total (mg/L)	MW-1604S	58.8	n/a	4/9/2019	132	Yes	40	2.553	0.6638	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Chloride, total (mg/L)	MW-1605D	58.8	n/a	4/9/2019	169	Yes	40	2.553	0.6638	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Chloride, total (mg/L)	MW-1605S	58.8	n/a	4/9/2019	140	Yes	40	2.553	0.6638	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Chloride, total (mg/L)	MW-1606D	58.8	n/a	4/8/2019	214	Yes	40	2.553	0.6638	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Chloride, total (mg/L)	MW-1606S	58.8	n/a	4/8/2019	223	Yes	40	2.553	0.6638	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Chloride, total (mg/L)	MW-1607D	58.8	n/a	4/8/2019	162	Yes	40	2.553	0.6638	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Chloride, total (mg/L)	MW-1607S	58.8	n/a	4/8/2019	153	Yes	40	2.553	0.6638	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Fluoride, total (mg/L)	MW-1605S	0.2718	n/a	4/9/2019	0.33	Yes	44	0.03409	0.01991	0	None	x^2	0.0009403	Param Inter 1 of 2
Fluoride, total (mg/L)	MW-1606S	0.2718	n/a	4/8/2019	0.54	Yes	44	0.03409	0.01991	0	None	x^2	0.0009403	Param Inter 1 of 2
Fluoride, total (mg/L)	MW-1607D	0.2718	n/a	4/8/2019	0.52	Yes	44	0.03409	0.01991	0	None	x^2	0.0009403	Param Inter 1 of 2
Sulfate, total (mg/L)	MW-1604S	680.5	n/a	4/9/2019	703	Yes	40	5.35	0.5827	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Sulfate, total (mg/L)	MW-1605D	680.5	n/a	4/9/2019	791	Yes	40	5.35	0.5827	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Sulfate, total (mg/L)	MW-1606D	680.5	n/a	4/8/2019	682	Yes	40	5.35	0.5827	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1604D	1054	n/a	4/9/2019	1300	Yes	40	6.35	0.3033	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1604S	1054	n/a	4/9/2019	1650	Yes	40	6.35	0.3033	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1605D	1054	n/a	4/9/2019	1710	Yes	40	6.35	0.3033	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1605S	1054	n/a	4/9/2019	1450	Yes	40	6.35	0.3033	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1606D	1054	n/a	4/8/2019	1600	Yes	40	6.35	0.3033	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1606S	1054	n/a	4/8/2019	1480	Yes	40	6.35	0.3033	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1607D	1054	n/a	4/8/2019	1480	Yes	40	6.35	0.3033	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1607S	1054	n/a	4/8/2019	1310	Yes	40	6.35	0.3033	0	None	ln(x)	0.0009403	Param Inter 1 of 2

Interwell Prediction Limit Summary - All Results

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Printed 6/30/2019, 6:31 PM

Mou		Mounta	Ineer BAP	Client: Geosyntec Data:		Ita: Mountaineer BAP		Printed 6/30/2019, 6:31 PM						
Constituent	Well	Upper Lim	. Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	Bg N	<u>N Bg Mean</u>	Std. Dev.	<u>%NDs</u>	<u>ND Adj.</u>	Transform	<u>Alpha</u>	Method
Boron, total (mg/L)	MW-1604D	0.6322	n/a	4/9/2019	2.82	Yes	40	0.6145	0.1211	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Boron, total (mg/L)	MW-1604S	0.6322	n/a	4/9/2019	3.5	Yes	40	0.6145	0.1211	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Boron, total (mg/L)	MW-1605D	0.6322	n/a	4/9/2019	6.9	Yes	40	0.6145	0.1211	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Boron, total (mg/L)	MW-1605S	0.6322	n/a	4/9/2019	9.39	Yes	40	0.6145	0.1211	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Boron, total (mg/L)	MW-1606D	0.6322	n/a	4/8/2019	7.32	Yes	40	0.6145	0.1211	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Boron, total (mg/L)	MW-1606S	0.6322	n/a	4/8/2019	7.68	Yes	40	0.6145	0.1211	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Boron, total (mg/L)	MW-1607D	0.6322	n/a	4/8/2019	3.1	Yes	40	0.6145	0.1211	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Boron, total (mg/L)	MW-1607S	0.6322	n/a	4/8/2019	2.35	Yes	40	0.6145	0.1211	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Calcium, total (mg/L)	MW-1604D	193.4	n/a	4/9/2019	236	Yes	40	121.1	35.96	0	None	No	0.0009403	Param Inter 1 of 2
Calcium, total (mg/L)	MW-1604S	193.4	n/a	4/9/2019	301	Yes	40	121.1	35.96	0	None	No	0.0009403	Param Inter 1 of 2
Calcium, total (mg/L)	MW-1605D	193.4	n/a	4/9/2019	247	Yes	40	121.1	35.96	0	None	No	0.0009403	Param Inter 1 of 2
Calcium, total (mg/L)	MW-1605S	193.4	n/a	4/9/2019	164	No	40	121.1	35.96	0	None	No	0.0009403	Param Inter 1 of 2
Calcium, total (mg/L)	MW-1606D	193.4	n/a	4/8/2019	265	Yes	40	121.1	35.96	0	None	No	0.0009403	Param Inter 1 of 2
Calcium, total (mg/L)	MW-1606S	193.4	n/a	4/8/2019	229	Yes	40	121.1	35.96	0	None	No	0.0009403	Param Inter 1 of 2
Calcium, total (mg/L)	MW-1607D	193.4	n/a	4/8/2019	232	Yes	40	121.1	35.96	0	None	No	0.0009403	Param Inter 1 of 2
Calcium, total (mg/L)	MW-1607S	193.4	n/a	4/8/2019	226	Yes	40	121.1	35.96	0	None	No	0.0009403	Param Inter 1 of 2
Chloride, total (mg/L)	MW-1604D	58.8	n/a	4/9/2019	100	Yes	40	2.553	0.6638	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Chloride, total (mg/L)	MW-1604S	58.8	n/a	4/9/2019	132	Yes	40	2.553	0.6638	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Chloride, total (mg/L)	MW-1605D	58.8	n/a	4/9/2019	169	Yes	40	2.553	0.6638	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Chloride, total (mg/L)	MW-1605S	58.8	n/a	4/9/2019	140	Yes	40	2.553	0.6638	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Chloride, total (mg/L)	MW-1606D	58.8	n/a	4/8/2019	214	Yes	40	2.553	0.6638	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Chloride, total (mg/L)	MW-1606S	58.8	n/a	4/8/2019	223	Yes	40	2.553	0.6638	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Chloride, total (mg/L)	MW-1607D	58.8	n/a	4/8/2019	162	Yes	40	2.553	0.6638	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Chloride, total (mg/L)	MW-1607S	58.8	n/a	4/8/2019	153	Yes	40	2.553	0.6638	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Fluoride, total (mg/L)	MW-1604D	0.2718	n/a	4/9/2019	0.15	No	44	0.03409	0.01991	0	None	x^2	0.0009403	Param Inter 1 of 2
Fluoride, total (mg/L)	MW-1604S	0.2718	n/a	4/9/2019	0.19	No	44	0.03409	0.01991	0	None	x^2	0.0009403	Param Inter 1 of 2
Fluoride, total (mg/L)	MW-1605D	0.2718	n/a	4/9/2019	0.22	No	44	0.03409	0.01991	0	None	x^2	0.0009403	Param Inter 1 of 2
Fluoride, total (mg/L)	MW-1605S	0.2718	n/a	4/9/2019	0.33	Yes	44	0.03409	0.01991	0	None	x^2	0.0009403	Param Inter 1 of 2
Fluoride, total (mg/L)	MW-1606D	0.2718	n/a	4/8/2019	0.26	No	44	0.03409	0.01991	0	None	x^2	0.0009403	Param Inter 1 of 2
Fluoride, total (mg/L)	MW-1606S	0.2718	n/a	4/8/2019	0.54	Yes	44	0.03409	0.01991	0	None	x^2	0.0009403	Param Inter 1 of 2
Fluoride, total (mg/L)	MW-1607D	0.2718	n/a	4/8/2019	0.52	Yes	44	0.03409	0.01991	0	None	x^2	0.0009403	Param Inter 1 of 2
Fluoride, total (mg/L)	MW-1607S	0.2718	n/a	4/8/2019	0.26	No	44	0.03409	0.01991	0	None	x^2	0.0009403	Param Inter 1 of 2
Sulfate, total (mg/L)	MW-1604D	680.5	n/a	4/9/2019	539	No	40	5.35	0.5827	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Sulfate, total (mg/L)	MW-1604S	680.5	n/a	4/9/2019	703	Yes	40	5.35	0.5827	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Sulfate, total (mg/L)	MW-1605D	680.5	n/a	4/9/2019	791	Yes	40	5.35	0.5827	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Sulfate, total (mg/L)	MW-1605S	680.5	n/a	4/9/2019	599	No	40	5.35	0.5827	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Sulfate, total (mg/L)	MW-1606D	680.5	n/a	4/8/2019	682	Yes	40	5.35	0.5827	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Sulfate, total (mg/L)	MW-1606S	680.5	n/a	4/8/2019	592	No	40	5.35	0.5827	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Sulfate, total (mg/L)	MW-1607D	680.5	n/a	4/8/2019	656	No	40	5.35	0.5827	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Sulfate, total (mg/L)	MW-1607S	680.5	n/a	4/8/2019	504	No	40	5.35	0.5827	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1604D	1054	n/a	4/9/2019	1300	Yes	40	6.35	0.3033	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1604S	1054	n/a	4/9/2019	1650	Yes	40	6.35	0.3033	0	None	ln(x)		Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1605D	1054	n/a	4/9/2019	1710	Yes	40	6.35	0.3033	0	None	ln(x)		Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1605S	1054	n/a	4/9/2019	1450	Yes	40	6.35	0.3033	0	None	ln(x)		Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1606D	1054	n/a	4/8/2019	1600	Yes	40	6.35	0.3033	0	None	ln(x)		Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1606S	1054	n/a	4/8/2019	1480	Yes	40	6.35	0.3033	0	None	ln(x)		Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1607D	1054	n/a	4/8/2019	1480	Yes	40	6.35	0.3033	0	None	ln(x)		Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW-1607S	1054	n/a	4/8/2019	1310	Yes	40	6.35	0.3033	0	None	ln(x)		Param Inter 1 of 2
. e Biosonica contra [1 Do] (mg/L)						100	40	5.00	5.0000			(x)	2.0000-00	

Exceeds Limit: MW-1604D, MW-1604S.

MW-1605D, MW-1605S, MW-1606D, MW-1

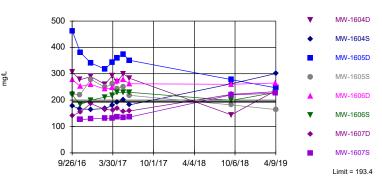
20

16

12

8

0


9/26/16 3/30/17 10/1/17

mg/L

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

Exceeds Limit: MW-1604D, MW-1604S, MW-1605D, MW-1606D, MW-1606S, MW-1

Prediction Limit

Background Data Summary: Mean=121.1, Std. Dev.=35.96, n=40. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9249, critical = 0.919. Kappa = 2.012 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.009403. Comparing 8 points to limit.

Constituent: Boron, total Analysis Run 6/30/2019 6:27 PM View: PL's - Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

10/6/18

4/9/19

Prediction Limit

Interwell Parametric

4/4/18

Background Data Summary (based on cube root transformation): Mean=0.6145, Std. Dev.=0.1211, n=40. Normality

test: Shapiro Wilk @alpha = 0.01, calculated = 0.9221, critical = 0.919. Kappa = 2.012 (c=7, w=8, 1 of 2, event alpha

= 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0009403. Comparing 8 points to limit.

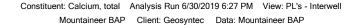
MW-1604D

MW-1604S

MW-1605D

MW-1605S

MW-1606D

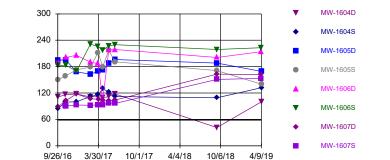

MW-1606S

MW-1607D

MW-1607S

Limit = 0.6322

Limit = 58.8

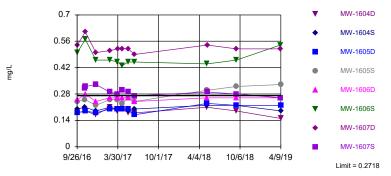


Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

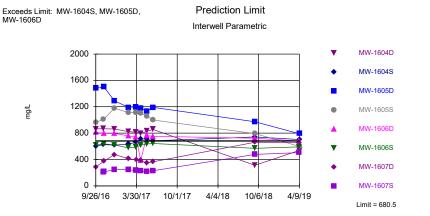
Exceeds Limit: MW-1604D, MW-1604S,

ng/L

MW-1605D. MW-1605S. MW-1606D. MW-1


Prediction Limit

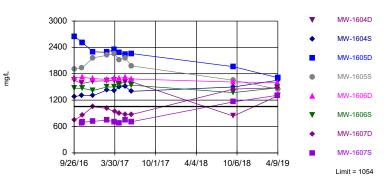
Background Data Summary (based on cube root transformation): Mean=2.553, Std. Dev.=0.6638, n=40. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9301, critical = 0.919. Kapada = 2.012 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0009403. Comparing 8 points to limit.


Sanitas[™] v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

Exceeds Limit: MW-1605S, MW-1606S, MW-1607D

Prediction Limit

Background Data Summary (based on square transformation): Mean=0.03409, Std. Dev.=0.01991, n=44. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9267, critical = 0.924. Kappa = 1.999 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0009403. Comparing 8 points to limit.



Background Data Summary (based on natural log transformation): Mean=5.35, Std. Dev.=0.5827, n=40. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9307, critical = 0.919. Kappa = 2.012 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.009403. Comparing 8 points to limit.

Constituent: Sulfate, total Analysis Run 6/30/2019 6:28 PM View: PL's - Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas[™] v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

Exceeds Limit: MW-1604D, MW-1604S, MW-1605D, MW-1605S, MW-1606D, MW-1

Prediction Limit

Background Data Summary (based on natural log transformation): Mean=6.35, Std. Dev.=0.3033, n=40. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.931, critical = 0.919. Kappa = 2.012 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.005488. Individual comparison alpha = 0.0009403. Comparing 8 points to limit.

Constituent: Total Dissolved Solids [TDS] Analysis Run 6/30/2019 6:28 PM View: PL's - Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

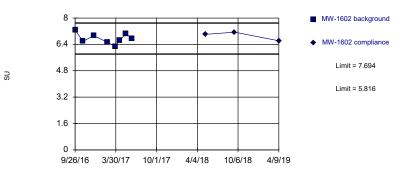

Intrawell Prediction Limit Summary - Significant Results

		Mounta	aineer BAP	Client: Geos	yntec Da	ata: Mou	Intain	eer BAP	Printed 6/30	/2019, 6	:34 PM			
Constituent	Well	Upper Lim	n. Lower Lim.	Date	Observ.	<u>Sig.</u>	Bg N	<u>N Bg Mean</u>	Std. Dev.	<u>%NDs</u>	ND Adj.	Transform	<u>Alpha</u>	Method
pH, field (SU)	MW-1607S	7.831	7.255	4/8/2019	7.23	Yes	7	7.543	0.08577	0	None	No	0.0004701	Param 1 of 2

Intrawell Prediction Limit Summary - All Results

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Printed 6/30/2019, 6:34 PM

Constituent	Well	Upper Lin	n. Lower Lim	Date	Observ.	<u>Sig.</u>	Bg	<u>N Bg Mean</u>	Std. Dev.	<u>%NDs</u>	ND Adj.	Transform	Alpha	Method
pH, field (SU)	MW-1601A	8.031	6.454	4/9/2019	7.14	No	8	7.243	0.2615	0	None	No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1602	7.694	5.816	4/9/2019	6.62	No	8	6.755	0.3115	0	None	No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1603	7.999	5.971	4/9/2019	6.8	No	8	6.985	0.3366	0	None	No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1608	8.216	6.092	4/9/2019	6.86	No	8	7.154	0.3523	0	None	No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1604D	8.08	6.653	4/9/2019	6.92	No	8	7.366	0.2368	0	None	No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1604S	7.991	6.389	4/9/2019	7.14	No	8	7.19	0.2657	0	None	No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1605D	8.258	6.653	4/9/2019	7.31	No	7	7.456	0.2388	0	None	No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1605S	8.152	6.66	4/9/2019	7.19	No	8	7.406	0.2476	0	None	No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1606D	8.222	6.671	4/8/2019	7.19	No	8	7.446	0.2573	0	None	No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1606S	8.662	5.6	4/8/2019	6.81	No	8	7.131	0.508	0	None	No	0.0004701	Param 1 of 2
pH, field (SU)	MW-1607D	7.77	6.9	4/8/2019	7.39	No	7	n/a	n/a	0	n/a	n/a	0.05531	NP (normality) 1 of 2
pH, field (SU)	MW-1607S	7.831	7.255	4/8/2019	7.23	Yes	7	7.543	0.08577	0	None	No	0.0004701	Param 1 of 2

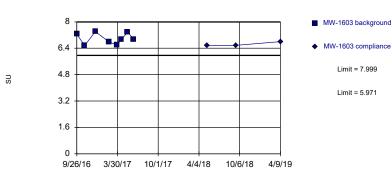


Background Data Summary: Mean=7.243, Std. Dev.=0.2615, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.902, critical = 0.749. Kappa = 3.014 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.

Constituent: pH, field Analysis Run 6/30/2019 6:31 PM View: PL's - Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

Within Limits

Prediction Limit

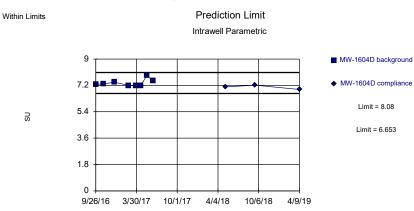

Background Data Summary: Mean=6.755, Std. Dev.=0.3115, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9867, critical = 0.749. Kappa = 3.014 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.

Constituent: pH, field Analysis Run 6/30/2019 6:31 PM View: PL's - Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

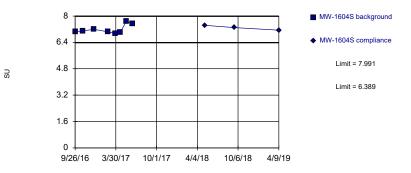
Within Limits

Prediction Limit Intrawell Parametric


Background Data Summary: Mean=6.985, Std. Dev.=0.3366, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9063, critical = 0.749. Kappa = 3.014 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403. Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit

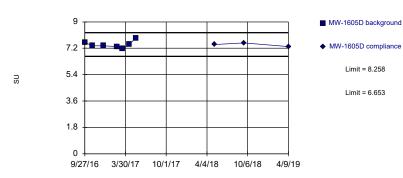
Background Data Summary: Mean=7.154, Std. Dev.=0.3523, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9751, critical = 0.749. Kappa = 3.014 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.


Background Data Summary: Mean=7.366, Std. Dev.=0.2368, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8333, critical = 0.749. Kappa = 3.014 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.

> Constituent: pH, field Analysis Run 6/30/2019 6:32 PM View: PL's - Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

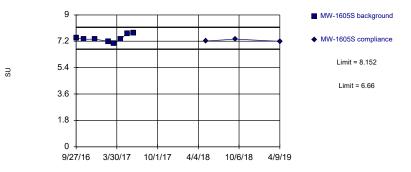
Prediction Limit

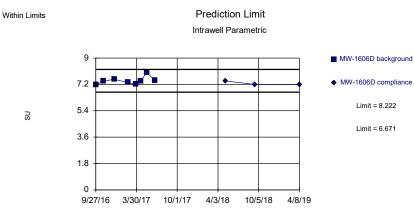

Background Data Summary: Mean=7.19, Std. Dev =0.2657, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8184, critical = 0.749. Kappa = 3.014 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.

Constituent: pH, field Analysis Run 6/30/2019 6:32 PM View: PL's - Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

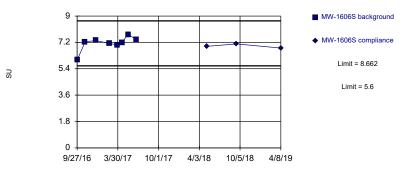
Within Limits


Prediction Limit


Background Data Summary: Mean=7.456, Std. Dev.=0.2388, n=7. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9315, critical = 0.73. Kappa = 3.361 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403. Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit

Background Data Summary: Mean=7.406, Std. Dev.=0.2476, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9237, critical = 0.749. Kappa = 3.014 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.

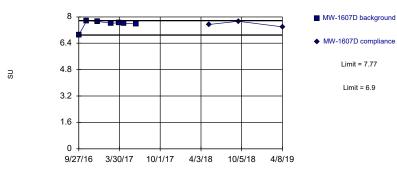

Background Data Summary: Mean=7.446, Std. Dev.=0.2573, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8686, critical = 0.749. Kappa = 3.014 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.

> Constituent: pH, field Analysis Run 6/30/2019 6:32 PM View: PL's - Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

Within Limits

Prediction Limit Intrawell Parametric

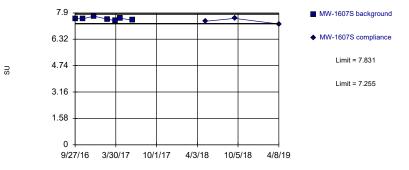

Background Data Summary: Mean=7.131, Std. Dev.=0.508, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8107, critical = 0.749. Kappa = 3.014 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.

> Constituent: pH, field Analysis Run 6/30/2019 6:32 PM View: PL's - Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

Within Limits

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 7 background values. Well-constituent pair annual alpha = 0.1091. Individual comparison alpha = 0.05531 (1 of 2).

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

Exceeds Limits

Prediction Limit Intrawell Parametric

Background Data Summary: Mean=7.543, Std. Dev.=0.08577, n=7. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9302, critical = 0.73. Kappa = 3.361 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403.

Constituent: pH, field Analysis Run 6/30/2019 6:32 PM View: PL's - Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: pH, field Analysis Run 6/30/2019 6:32 PM View: PL's - Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Trend Test Summary Table - Significant Results

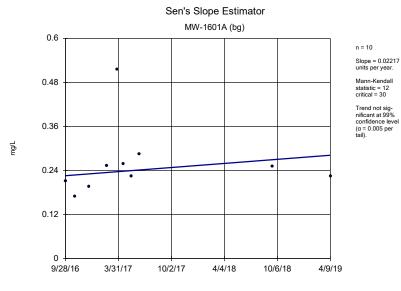
Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Printed 7/3/2019, 10:06 AM

Constituent	Well	Slope	<u>Calc.</u>	Critical	<u>Sig.</u>	N	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron, total (mg/L)	MW-1606D	1.379	31	30	Yes	10	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1604S	51.83	33	30	Yes	10	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1607S	19.67	41	30	Yes	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1607S	14.21	35	30	Yes	10	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1602 (bg)	0.03503	42	34	Yes	11	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1608 (bg)	-0.05568	-47	-34	Yes	11	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1601A (bg)	30	33	30	Yes	10	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1608 (bg)	102.6	31	30	Yes	10	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1604S	70.94	31	30	Yes	10	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1605D	-272.2	-36	-30	Yes	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1601A (bg)	64.87	31	30	Yes	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1602 (bg)	168.9	33	30	Yes	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1605D	-301.9	-39	-30	Yes	10	0	n/a	n/a	0.01	NP

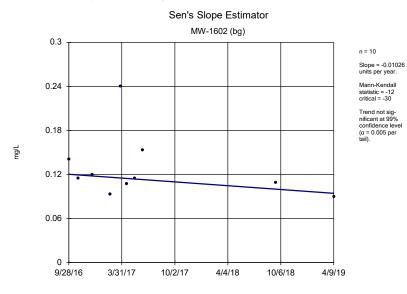
Trend Test Summary Table - All Results

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Printed 7/3/2019, 10:06 AM

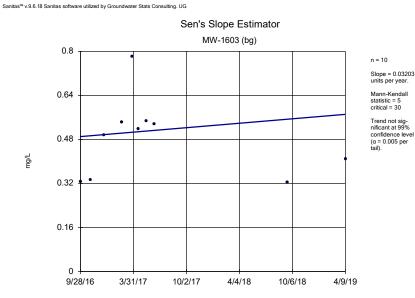
	Mountaineer BAF Ci	lent. Geosyntec D	ala. Mounta	IIIIeei DAF	FIIIlec	1775/201	9, 10.00	Alvi			
Constituent	Well	Slope	Calc.	<u>Critical</u>	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron, total (mg/L)	MW-1601A (bg)	0.02217	12	30	No	10	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1602 (bg)	-0.01026	-12	-30	No	10	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1603 (bg)	0.03203	5	30	No	10	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1608 (bg)	0.01649	11	30	No	10	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1604D	-0.2704	-26	-30	No	10	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1604S	0.6569	15	30	No	10	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1605D	-1.258	-29	-30	No	10	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1605S	0.6518	15	30	No	10	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1606D	1.379	31	30	Yes	10	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1606S	0.9889	27	30	No	10	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1607D	0.3718	18	30	No	10	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1607S	0.4115	27	30	No	10	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1601A (bg)	12.71	18	30	No	10	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1602 (bg)	18.9	23	30	No	10	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1603 (bg)	25.03	27	30	No	10	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1608 (bg)	14.13	22	30	No	10	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1604D	-25.93	-17	-30	No	10	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1604S	51.83	33	30	Yes	10	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1605D	-55.08	-21	-30	No	10	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1606D	2.175	5	30	No	10	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1606S	15.5	20	30	No	10	0	n/a	n/a	0.01	NP
					No		0				NP
Calcium, total (mg/L)	MW-1607D	31.51	21	30		10		n/a	n/a	0.01	
Calcium, total (mg/L)	MW-1607S	19.67	41	30	Yes	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1601A (bg)	23.57	25	30	No	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1602 (bg)	3.486	21	30	No	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1603 (bg)	-4.675	-15	-30	No	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1608 (bg)	0.9577	17	30	No	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1604D	-5.903	-12	-30	No	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1604S	20.53	26	30	No	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1605D	0.4345	3	30	No	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1605S	34.76	9	30	No	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1606D	9.463	11	30	No	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1606S	18.7	15	30	No	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1607D	22.04	14	30	No	10	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1607S	14.21	35	30	Yes	10	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1601A (bg)	-0.0144	-14	-34	No	11	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1602 (bg)	0.03503	42	34	Yes	11	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1603 (bg)	0	15	34	No	11	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1608 (bg)	-0.05568	-47	-34	Yes	11	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1605S	0.03758	31	34	No	11	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1606S	-0.01234	-13	-34	No	11	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1607D	0	-4	-34	No	11	0	n/a	n/a	0.01	NP
pH, field (SU)	MW-1601A (bg)	-0.1544	-16	-34	No	11	0	n/a	n/a	0.01	NP
pH, field (SU)	MW-1602 (bg)	0.05759	5	34	No	11	0	n/a	n/a	0.01	NP
pH, field (SU)	MW-1603 (bg)	-0.07449	-9	-34	No	11	0	n/a	n/a	0.01	NP
pH, field (SU)	MW-1608 (bg)	-0.2395	-19	-34	No	11	0	n/a	n/a	0.01	NP
pH, field (SU)	MW-1607S	-0.09887	-18	-30	No	10	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1601A (bg)	30	33	30	Yes	10	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1602 (bg)	93.48	27	30	No	10	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1603 (bg)	-9.777	-3	-30	No	10	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1608 (bg)	102.6	31	30	Yes	10	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1604S	70.94	31	30	Yes	10	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1605D	-272.2	-36	-30	Yes	10	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1606D	-51.8	-30	-30	No	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1601A (bg)	64.87	31	30	Yes	10	0	n/a	n/a	0.01	NP
			-			-		-	-		


Trend Test Summary Table - All Results

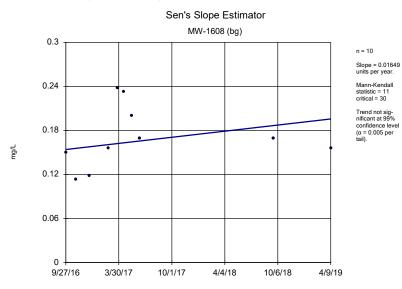
Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Printed 7/3/2019, 10:06 AM


Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	N	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Total Dissolved Solids [TDS] (mg/L)	MW-1602 (bg)	168.9	33	30	Yes	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1603 (bg)	7.006	17	30	No	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1608 (bg)	110.5	27	30	No	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1604D	-130.4	-19	-30	No	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1604S	146	30	30	No	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1605D	-301.9	-39	-30	Yes	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1605S	-197.1	-10	-30	No	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1606D	-45.63	-22	-30	No	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1606S	15.11	7	25	No	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1607D	208.6	15	30	No	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1607S	192.1	26	30	No	10	0	n/a	n/a	0.01	NP

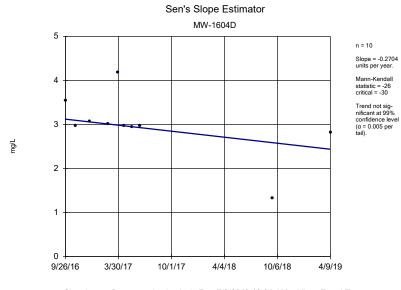
Sanitas[™] v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

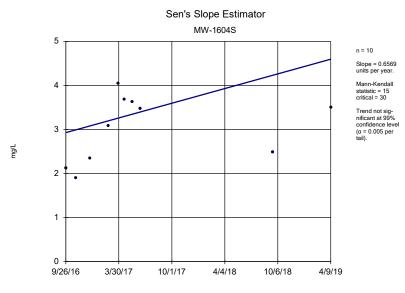

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Boron, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

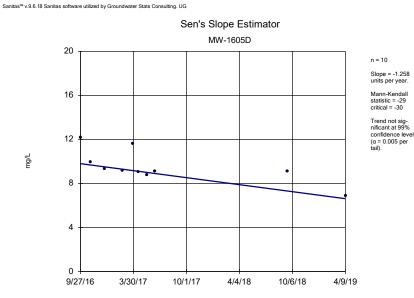


Constituent: Boron, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

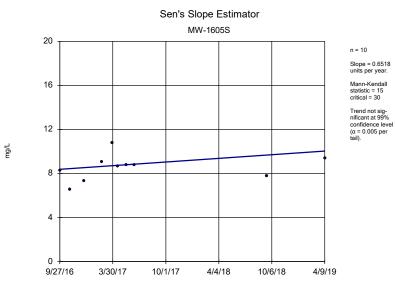

Constituent: Boron, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



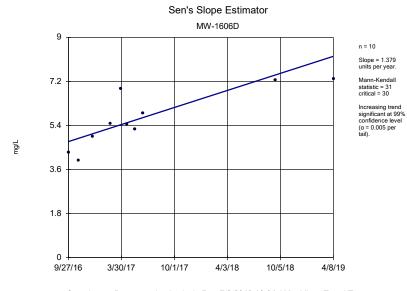
Constituent: Boron, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

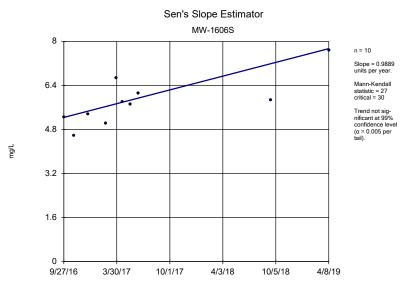


Constituent: Boron, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

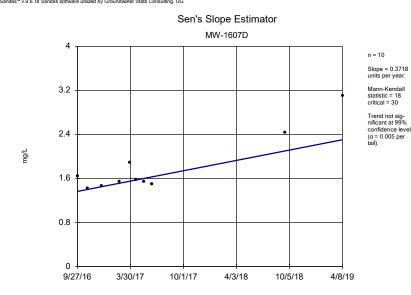


Constituent: Boron, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

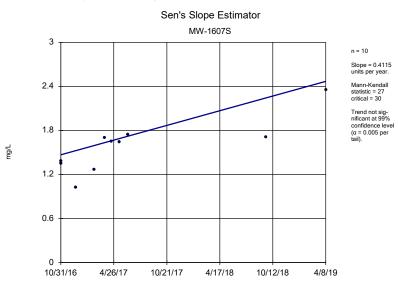

Constituent: Boron, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



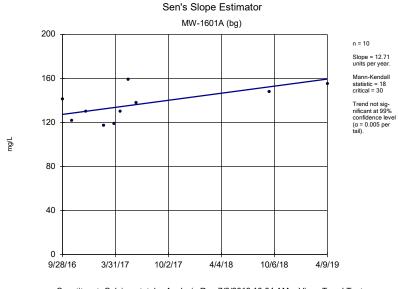
Constituent: Boron, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

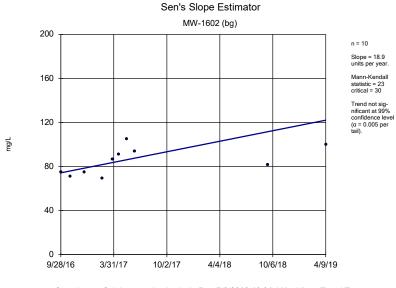


Constituent: Boron, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

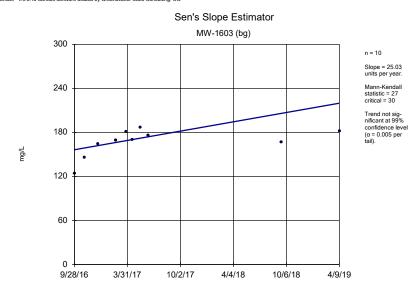


Constituent: Boron, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

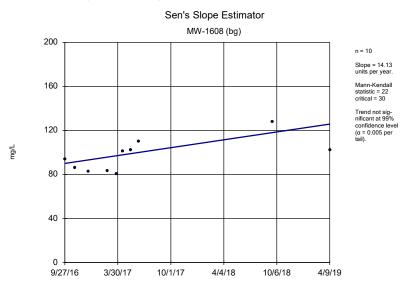

Constituent: Boron, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



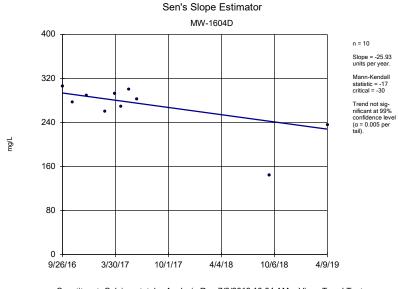
Constituent: Boron, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

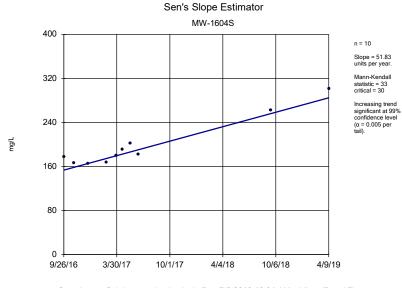
Constituent: Calcium, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



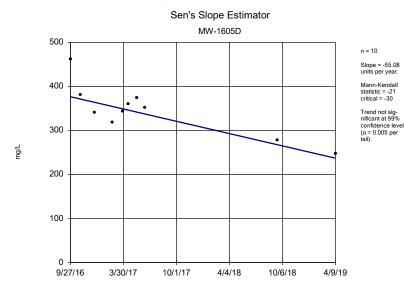
Constituent: Calcium, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Calcium, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

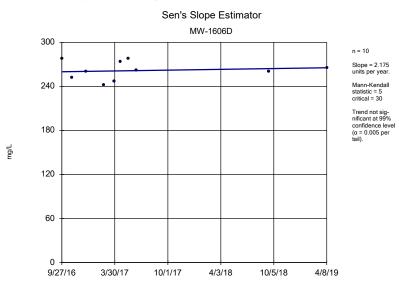
Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG



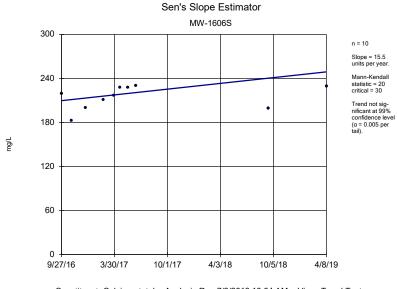
Constituent: Calcium, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

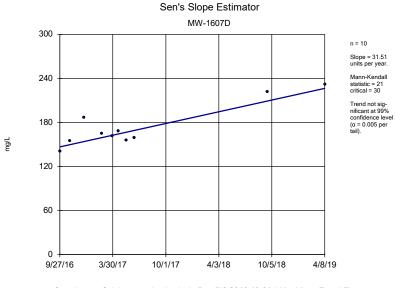
Constituent: Calcium, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



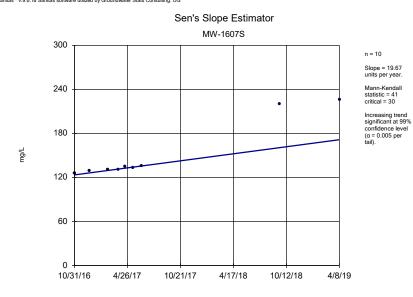
Constituent: Calcium, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Calcium, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

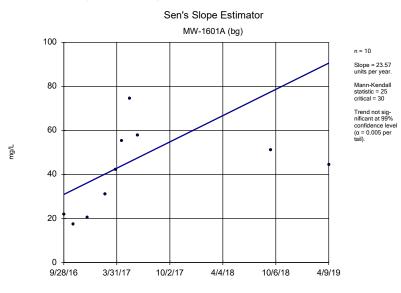
Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: Calcium, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

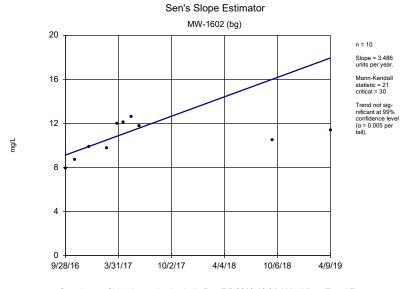


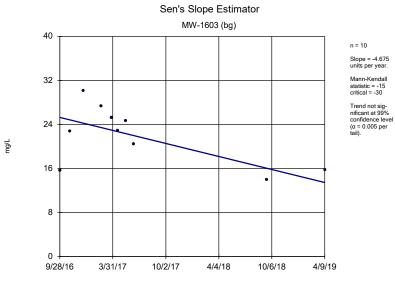
Constituent: Calcium, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



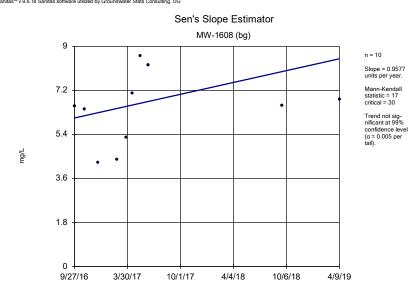
Constituent: Calcium, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Calcium, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

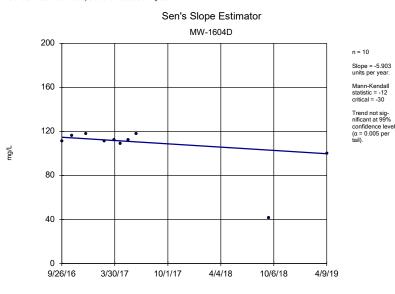



Constituent: Chloride, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

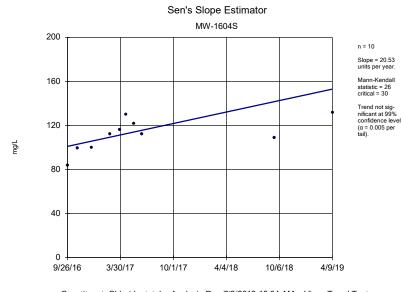
Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG


Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

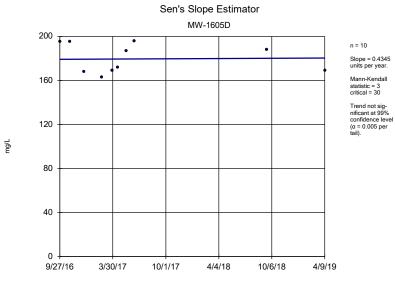
Constituent: Chloride, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



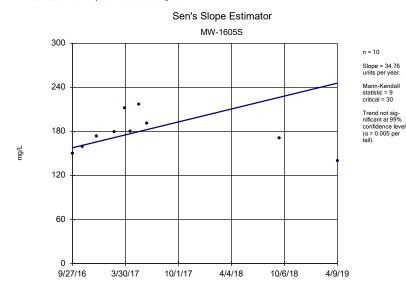
Constituent: Chloride, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Chloride, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

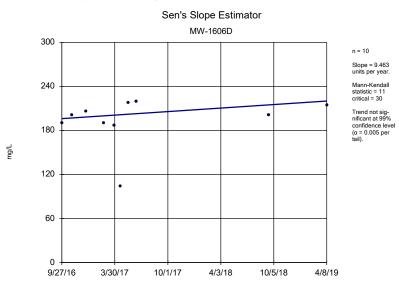
Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG



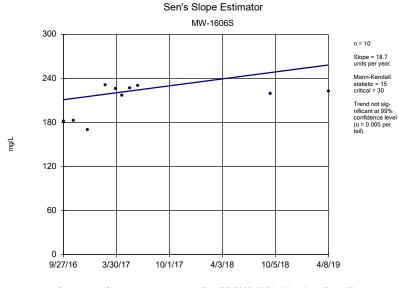
Constituent: Chloride, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



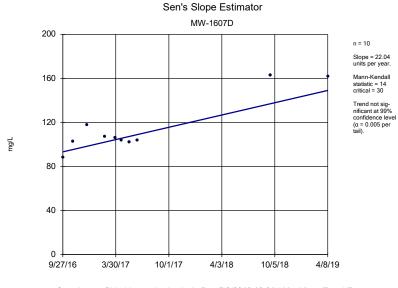
Constituent: Chloride, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



Constituent: Chloride, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Chloride, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

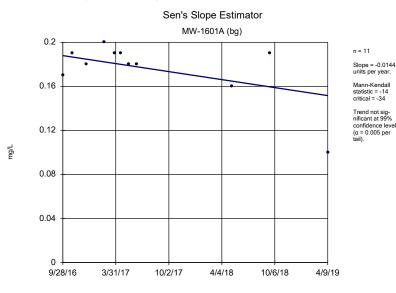
Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: Chloride, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

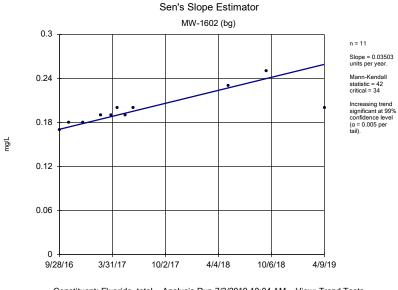


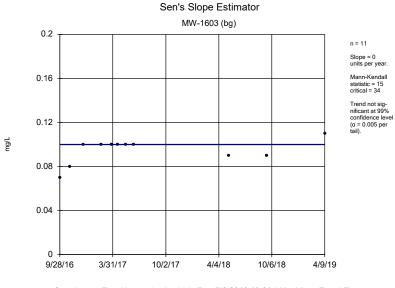
Constituent: Chloride, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



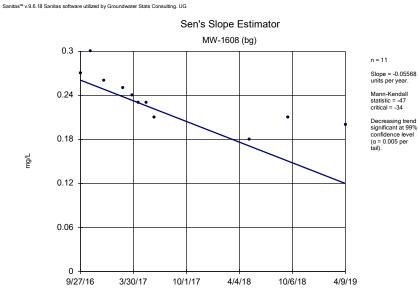
Constituent: Chloride, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

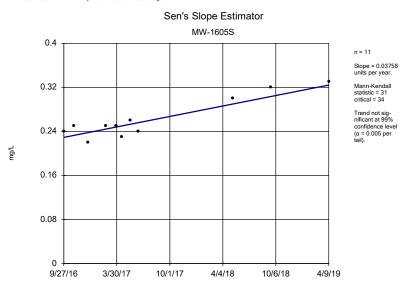
Constituent: Chloride, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



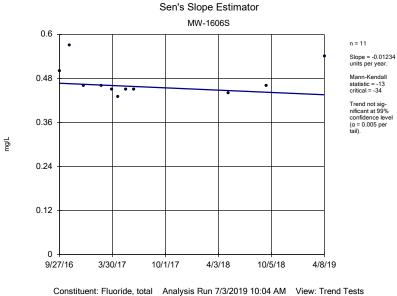

Constituent: Fluoride, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

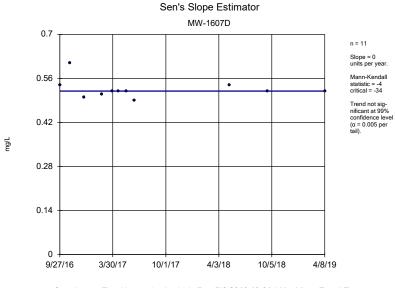

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Fluoride, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

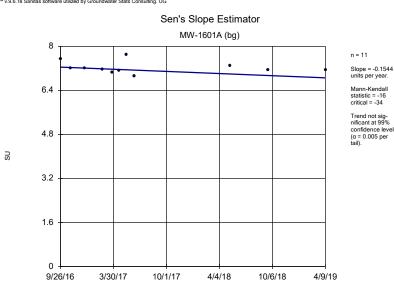
Constituent: Fluoride, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



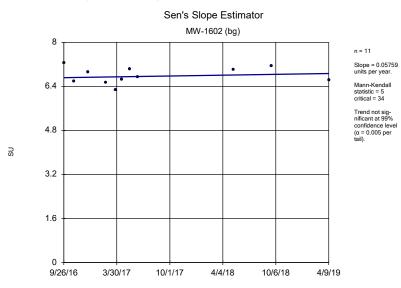
Constituent: Fluoride, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



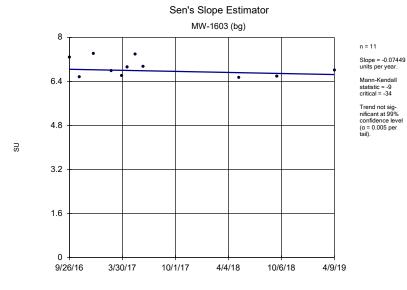
Constituent: Fluoride, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



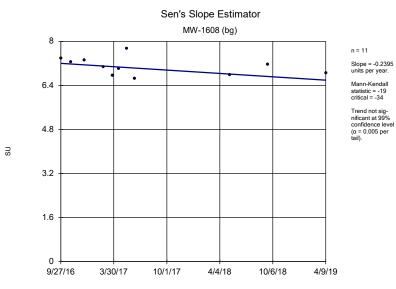
Constituent: Fluoride, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Fluoride, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: pH, field Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

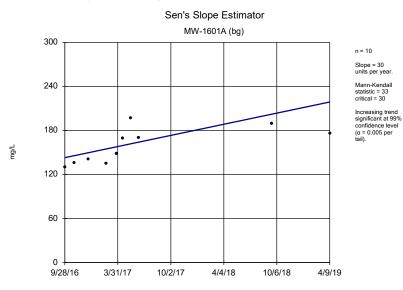
Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: pH, field Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

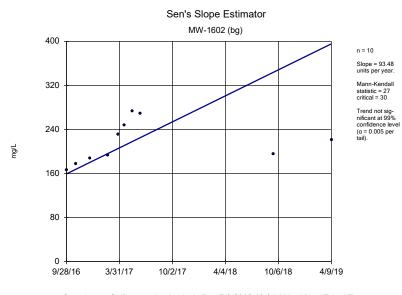


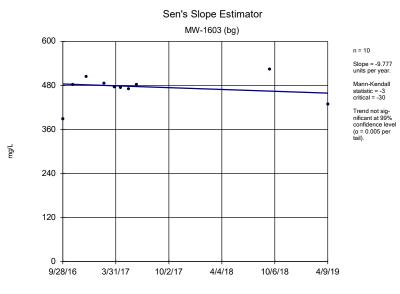
Constituent: pH, field Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: pH, field Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

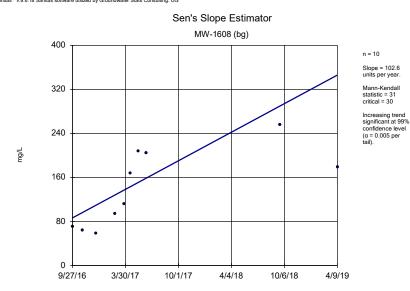
Constituent: pH, field Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

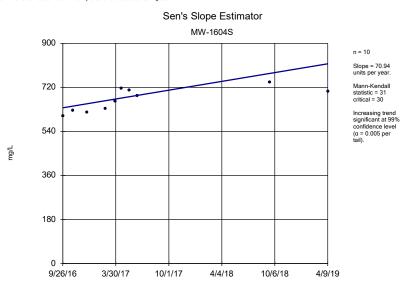

Constituent: Sulfate, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

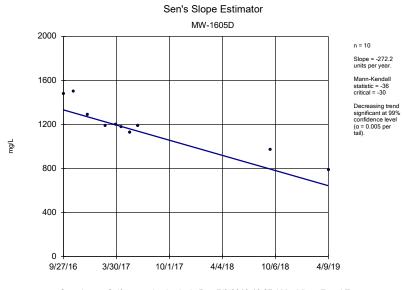
Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG



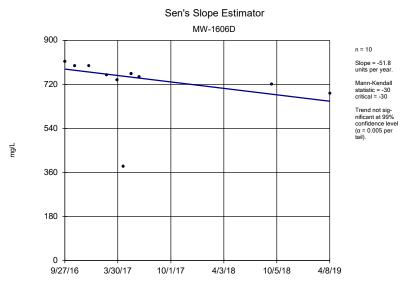
Constituent: Sulfate, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Sulfate, total Analysis Run 7/3/2019 10:04 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

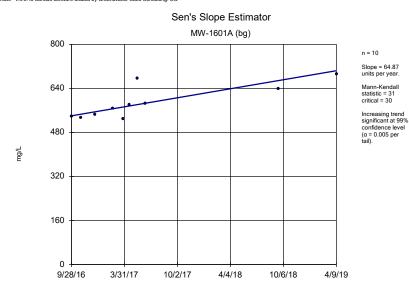

Constituent: Sulfate, total Analysis Run 7/3/2019 10:05 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

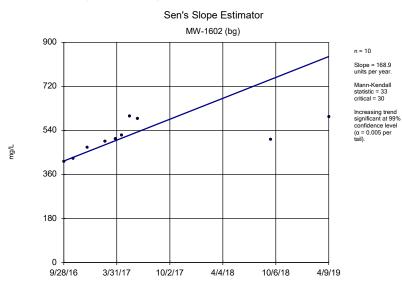


Constituent: Sulfate, total Analysis Run 7/3/2019 10:05 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

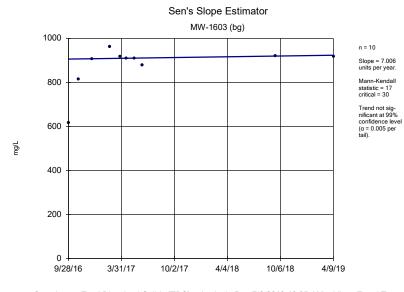


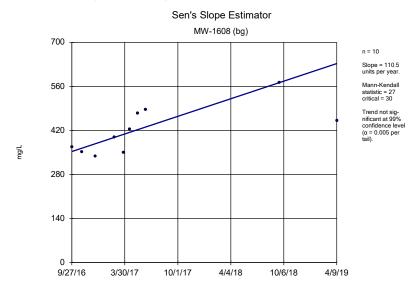
Constituent: Sulfate, total Analysis Run 7/3/2019 10:05 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Sulfate, total Analysis Run 7/3/2019 10:05 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

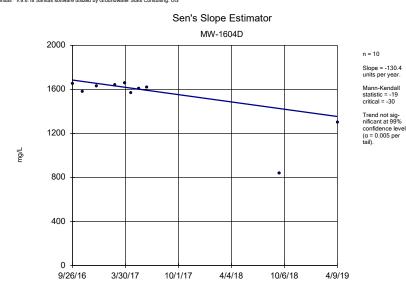
Constituent: Total Dissolved Solids [TDS] Analysis Run 7/3/2019 10:05 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



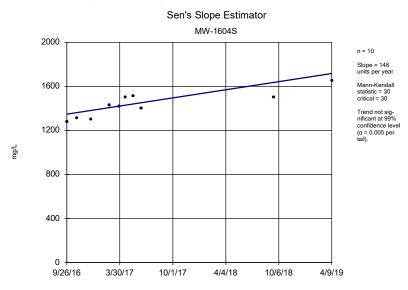

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/3/2019 10:05 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

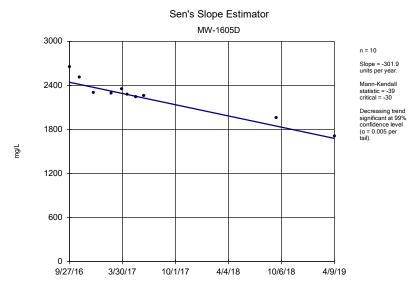
Sanitas[™] v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG



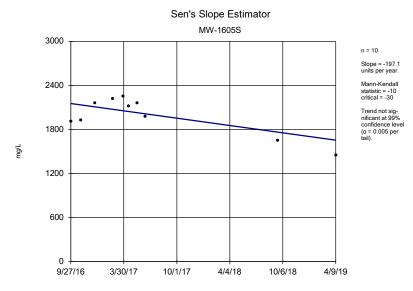
Constituent: Total Dissolved Solids [TDS] Analysis Run 7/3/2019 10:05 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Total Dissolved Solids [TDS] Analysis Run 7/3/2019 10:05 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

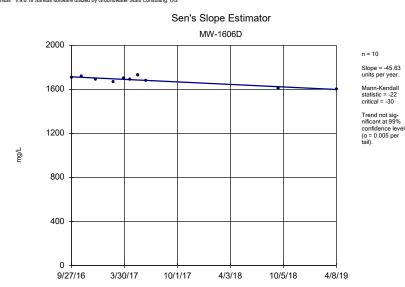
Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Total Dissolved Solids [TDS] Analysis Run 7/3/2019 10:05 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

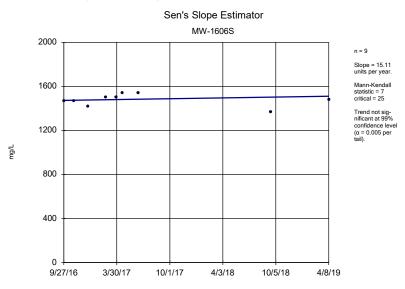
Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG



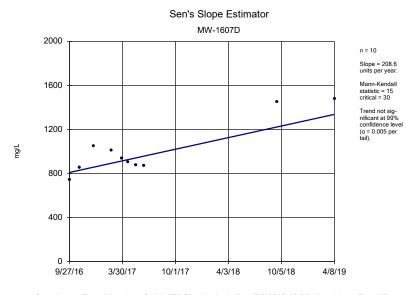
Constituent: Total Dissolved Solids [TDS] Analysis Run 7/3/2019 10:05 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



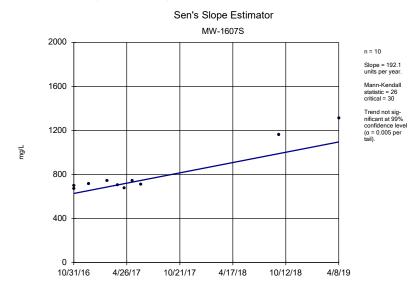
Constituent: Total Dissolved Solids [TDS] Analysis Run 7/3/2019 10:05 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Total Dissolved Solids [TDS] Analysis Run 7/3/2019 10:05 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Total Dissolved Solids [TDS] Analysis Run 7/3/2019 10:05 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: Total Dissolved Solids [TDS] Analysis Run 7/3/2019 10:05 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.18 Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/3/2019 10:05 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Total Dissolved Solids [TDS] Analysis Run 7/3/2019 10:05 AM View: Trend Tests Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Upper Tolerance Limits

Constituent	Upper Lim.	<u>Bg N</u>	Bg Mean	Std. Dev.	<u>%NDs</u>	ND Adj.	Transform	<u>Alpha</u>	Method
Antimony, total (mg/L)	0.00025	44	n/a	n/a	9.091	n/a	n/a	0.1047	NP Inter(normality)
Arsenic, total (mg/L)	0.000749	44	0.0004759	0.0001301	0	None	No	0.05	Inter
Barium, total (mg/L)	0.0578	44	-3.308	0.2177	0	None	ln(x)	0.05	Inter
Beryllium, total (mg/L)	0.0001	44	n/a	n/a	86.36	n/a	n/a	0.1047	NP Inter(NDs)
Cadmium, total (mg/L)	0.0001	44	n/a	n/a	6.818	n/a	n/a	0.1047	NP Inter(normality)
Chromium, total (mg/L)	0.001773	44	-8.037	0.8109	2.273	None	ln(x)	0.05	Inter
Cobalt, total (mg/L)	0.0007641	44	-9	0.8687	2.273	None	ln(x)	0.05	Inter
Combined Radium 226 + 228 (pCi/L)	2.448	44	0.8596	0.3359	0	None	sqrt(x)	0.05	Inter
Fluoride, total (mg/L)	0.2755	44	0.03409	0.01991	0	None	x^2	0.05	Inter
Lead, total (mg/L)	0.0005448	44	0.01136	0.005707	4.545	None	sqrt(x)	0.05	Inter
Lithium, total (mg/L)	0.02713	44	0.0109	0.007732	6.818	None	No	0.05	Inter
Mercury, total (mg/L)	0.000005	44	n/a	n/a	90.91	n/a	n/a	0.1047	NP Inter(NDs)
Molybdenum, total (mg/L)	0.004186	44	0.03555	0.01389	4.545	None	sqrt(x)	0.05	Inter
Selenium, total (mg/L)	0.0015	44	n/a	n/a	0	n/a	n/a	0.1047	NP Inter(normality)
Thallium, total (mg/L)	0.00025	44	n/a	n/a	11.36	n/a	n/a	0.1047	NP Inter(normality)

Confidence Intervals - Significant Results

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	<u>Sig.</u>	N	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Lithium, total (mg/L)	MW-1605D	0.08141	0.06641	0.04	Yes	11	0	No	0.01	Param.
Lithium, total (mg/L)	MW-1605S	0.08119	0.06118	0.04	Yes	11	0	No	0.01	Param.
Lithium, total (mg/L)	MW-1606D	0.1271	0.1121	0.04	Yes	11	0	No	0.01	Param.
Lithium, total (mg/L)	MW-1606S	0.1182	0.1036	0.04	Yes	11	0	No	0.01	Param.
Lithium, total (mg/L)	MW-1607D	0.1003	0.07148	0.04	Yes	11	0	No	0.01	Param.
Lithium, total (mg/L)	MW-1607S	0.1166	0.09123	0.04	Yes	11	0	No	0.01	Param.

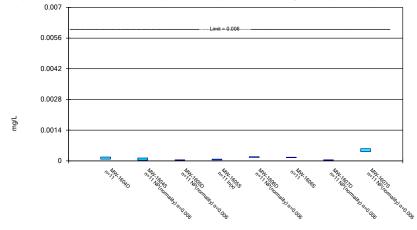
Confidence Intervals - All Results

	Μοι	ntaineer BAP	Client: Geosynteo	c Data: Mou	ntainee	r BAP	Printed 6/	17/2019, 1:47 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	<u>Sig.</u>	N	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Antimony, total (mg/L)	MW-1604D	0.0001744	0.00008012	0.006	No	11	9.091	No	0.01	Param.
Antimony, total (mg/L)	MW-1604S	0.00013	0.00003	0.006	No	11	0	No	0.006	NP (normality)
Antimony, total (mg/L)	MW-1605D	0.00004	0.00003	0.006	No	11	0	No	0.006	NP (normality)
Antimony, total (mg/L)	MW-1605S	0.00007935	0.00003793	0.006	No	11	0	ln(x)	0.01	Param.
Antimony, total (mg/L)	MW-1606D	0.00019	0.00015	0.006	No	11	0	No	0.006	NP (normality)
Antimony, total (mg/L)	MW-1606S	0.0001627	0.0001428	0.006	No	11	0	No	0.01	Param.
Antimony, total (mg/L)	MW-1607D	0.00004	0.00003	0.006	No	11	0	No	0.006	NP (normality)
Antimony, total (mg/L)	MW-1607S	0.00055	0.00042	0.006	No	11	0	No	0.006	NP (normality)
Arsenic, total (mg/L)	MW-1604D	0.0005337	0.0003791	0.01	No	11	0	No	0.01	Param.
Arsenic, total (mg/L)	MW-1604S	0.0004757	0.0003625	0.01	No	11	0	No	0.01	Param.
Arsenic, total (mg/L)	MW-1605D	0.002514	0.002123	0.01	No	11	0	No	0.01	Param.
Arsenic, total (mg/L)	MW-1605S	0.0009958	0.0005824	0.01	No	11	0	No	0.01	Param.
Arsenic, total (mg/L)	MW-1606D	0.0008285	0.0004015	0.01	No	11	0	sqrt(x)	0.01	Param.
Arsenic, total (mg/L)	MW-1606S	0.0008883	0.0007463	0.01	No	11	0	No	0.01	Param.
Arsenic, total (mg/L)	MW-1607D	0.001228	0.0009938	0.01	No	11	0	No	0.01	Param.
Arsenic, total (mg/L)	MW-1607S	0.001494	0.000942	0.01	No	10	0	No	0.01	Param.
Barium, total (mg/L)	MW-1604D	0.037	0.0275	2	No	11	0	No	0.006	NP (normality)
Barium, total (mg/L)	MW-1604S	0.03029	0.02711	2	No	11	0	No	0.01	Param.
Barium, total (mg/L)	MW-1605D	0.02922	0.02483	2	No	11	0	No	0.01	Param.
Barium, total (mg/L)	MW-1605S	0.03919	0.02647	2	No	11	0	No	0.01	Param.
Barium, total (mg/L)	MW-1606D	0.06068	0.05083	2	No	11	0	No	0.01	Param.
Barium, total (mg/L)	MW-1606S	0.07652	0.06847	2	No	11	0	No	0.01	Param.
Barium, total (mg/L)	MW-1607D	0.1471	0.09659	2	No	11	0	No	0.01	Param.
Barium, total (mg/L)	MW-1607S	0.07282	0.05948	2	No	10	0	No	0.01	Param.
Beryllium, total (mg/L)	MW-1604D	0.0001	0.0001	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium, total (mg/L)	MW-1604S	0.0001	0.0001	0.004	No	11	90.91	No	0.006	NP (NDs)
Beryllium, total (mg/L)	MW-1605D	0.0001	0.0001	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium, total (mg/L)	MW-1605S	0.0001	0.000009	0.004	No	11	72.73	No	0.006	NP (normality)
Beryllium, total (mg/L)	MW-1606D	0.0001	0.000005	0.004	No	11	63.64	No	0.006	NP (normality)
Beryllium, total (mg/L)	MW-1606S	0.0001	0.0001	0.004	No	11	90.91	No	0.006	NP (NDs)
Beryllium, total (mg/L)	MW-1607D	0.0001	0.0001	0.004	No	11	90.91	No	0.006	NP (NDs)
Beryllium, total (mg/L)	MW-1607S	0.0001	0.00001	0.004	No	11	63.64	No	0.006	NP (normality)
Cadmium, total (mg/L)	MW-1604D	0.0001515	0.00006669	0.005	No	11	0	No	0.01	Param.
Cadmium, total (mg/L)	MW-1604S	0.00015	0.00003	0.005	No	11	0	No	0.006	NP (normality)
Cadmium, total (mg/L)	MW-1605D	0.0000372	0.00001735	0.005	No	11	0	No	0.01	Param.
Cadmium, total (mg/L)	MW-1605S	0.00009148	0.00005802	0.005	No	11	0	ln(x)	0.01	Param.
Cadmium, total (mg/L)	MW-1606D	0.00008	0.00006	0.005	No	11	0	No	0.006	NP (normality)
Cadmium, total (mg/L)	MW-1606S	0.00008026	0.00006519	0.005	No	11	0	No	0.01	Param.
Cadmium, total (mg/L)	MW-1607D	0.000025	0.00002	0.005	No	11	63.64	No	0.006	NP (normality)
Cadmium, total (mg/L)	MW-1607S	0.00006	0.00003	0.005	No	11	0	No	0.006	NP (normality)
Chromium, total (mg/L)	MW-1604D	0.0004916	0.0001552	0.1	No	11	0	No	0.01	Param.
Chromium, total (mg/L)	MW-1604S	0.000537	0.0001141	0.1	No	11	0	ln(x)	0.01	Param.
Chromium, total (mg/L)	MW-1605D	0.0004519	0.00007766	0.1	No	11	0	ln(x)	0.01	Param.
Chromium, total (mg/L)	MW-1605S	0.000915	0.0002181	0.1	No	11	0	ln(x)	0.01	Param.
Chromium, total (mg/L)	MW-1606D	0.0006184	0.0001572	0.1	No	11	0	sqrt(x)	0.01	Param.
Chromium, total (mg/L)	MW-1606S	0.00057	0.0000942	0.1	No	11	0	sqrt(x)	0.01	Param.
Chromium, total (mg/L)	MW-1607D	0.0005194	0.00007628	0.1	No	11	0	ln(x)	0.01	Param.
Chromium, total (mg/L)	MW-1607S	0.0007914	0.0001596	0.1	No	11	0	ln(x)	0.01	Param.
Cobalt, total (mg/L)	MW-1604D	0.001857	0.001312	0.006	No	11	0	x^4	0.01	Param.
Cobalt, total (mg/L)	MW-1604S	0.00188	0.000308	0.006	No	11	0	No	0.006	NP (normality)
Cobalt, total (mg/L)	MW-1605D	0.001836	0.001624	0.006	No	11	0	No	0.01	Param.
Cobalt, total (mg/L)	MW-1605S	0.001276	0.000477	0.006	No	11	0	ln(x)	0.01	Param.
Cobalt, total (mg/L)	MW-1606D	0.0022	0.00117	0.006	No	11	0	No	0.006	NP (normality)
Cobalt, total (mg/L)	MW-1606S	0.0003795	0.0002499	0.006	No	11	0	No	0.01	Param.
Cobalt, total (mg/L)	MW-1607D	0.000778	0.000399	0.006	No	11	0	No	0.006	NP (normality)

Confidence Intervals - All Results

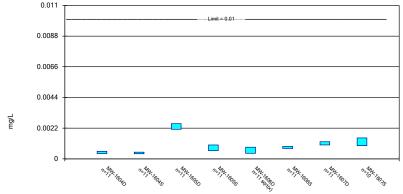
	IVI	ountaineer BAP	Client: Geosynt	ec Data: Mol	untaine	ei dap	Printed 6	/17/2019, 1:47 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Cobalt, total (mg/L)	MW-1607S	0.0026	0.00084	0.006	No	11	0	No	0.006	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-1604D	1.793	0.6266	5	No	11	0	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1604S	1.516	0.568	5	No	10	0	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1605D	1.768	0.5945	5	No	11	0	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1605S	2.692	0.337	5	No	11	0	No	0.006	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-1606D	3.369	0.7491	5	No	11	0	x^(1/3)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1606S	1.555	0.6016	5	No	11	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1607D	2.059	0.9912	5	No	11	0	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1607S	2.207	0.9624	5	No	11	0	No	0.01	Param.
Fluoride, total (mg/L)	MW-1604D	0.2009	0.1718	4	No	11	0	No	0.01	Param.
Fluoride, total (mg/L)	MW-1604S	0.213	0.1943	4	No	11	0	No	0.01	Param.
Fluoride, total (mg/L)	MW-1605D	0.2147	0.1835	4	No	11	0	No	0.01	Param.
Fluoride, total (mg/L)	MW-1605S	0.2935	0.232	4	No	11	0	No	0.01	Param.
Fluoride, total (mg/L)	MW-1606D	0.26	0.24	4	No	11	0	No	0.006	NP (normality)
Fluoride, total (mg/L)	MW-1606S	0.54	0.44	4	No	11	0	No	0.006	NP (normality)
Fluoride, total (mg/L)	MW-1607D	0.54	0.5	4	No	11	0	No	0.006	NP (normality)
Fluoride, total (mg/L)	MW-1607S	0.3102	0.2752	4	No	11	0	No	0.01	Param.
Lead, total (mg/L)	MW-1604D	0.000303	0.00002	0.015	No	11	9.091	No	0.006	NP (normality)
Lead, total (mg/L)	MW-1604S	0.0001417	0.00003197	0.015	No	11	9.091	No	0.01	Param.
Lead, total (mg/L)	MW-1605D	0.00004085	0.00001345	0.015	No	11	0	sqrt(x)	0.01	Param.
Lead, total (mg/L)	MW-1605S	0.0008795	0.0001426	0.015	No	11	0	sqrt(x)	0.01	Param.
Lead, total (mg/L)	MW-1606D	0.0005378	0.00003565	0.015	No	11	0	x^(1/3)	0.01	Param.
Lead, total (mg/L)	MW-1606S	0.0001622	0.00005021	0.015	No	11	0	No	0.01	Param.
Lead, total (mg/L)	MW-1607D	0.000179	0.000041	0.015	No	11	0	No	0.006	NP (normality)
Lead, total (mg/L)	MW-1607S	0.0014	0.000094	0.015	No	11	0	No	0.006	NP (normality)
Lithium, total (mg/L)	MW-1604D	0.0593	0.03415	0.04	No	11	0	No	0.01	Param.
Lithium, total (mg/L)	MW-1604B	0.04926	0.03129	0.04	No	11	0	No	0.01	Param.
Entriant, total (mg/2)	10010	0.01020	0.00120	0.01			•		0.01	i arann
Lithium_total (mg/L)	MW-1605D	0.081/1	0.06641	0.04	Vac	11	0	No	0.01	Param
Lithium, total (mg/L)	MW-1605D	0.08141	0.06641	0.04	Yes	11	0	No	0.01	Param.
Lithium, total (mg/L)	MW-1605S	0.08119	0.06118	0.04	Yes	11	0	No	0.01	Param.
Lithium, total (mg/L) Lithium, total (mg/L)	MW-1605S MW-1606D	0.08119 0.1271	0.06118 0.1121	0.04 0.04	Yes Yes	11 11	0 0	No No	0.01 0.01	Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L)	MW-1605S MW-1606D MW-1606S	0.08119 0.1271 0.1182	0.06118 0.1121 0.1036	0.04 0.04 0.04	Yes Yes Yes	11 11 11	0 0 0	No No No	0.01 0.01 0.01	Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L)	MW-1605S MW-1606D MW-1606S MW-1607D	0.08119 0.1271 0.1182 0.1003	0.06118 0.1121 0.1036 0.07148	0.04 0.04 0.04 0.04	Yes Yes Yes Yes	11 11 11 11	0 0 0 0	No No No	0.01 0.01 0.01 0.01	Param. Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L)	MW-1605S MW-1606D MW-1606S MW-1607D MW-1607S	0.08119 0.1271 0.1182 0.1003 0.1166	0.06118 0.1121 0.1036 0.07148 0.09123	0.04 0.04 0.04 0.04 0.04	Yes Yes Yes Yes Yes	11 11 11 11 11	0 0 0 0	No No No No	0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L)	MW-1605S MW-1606D MW-1606S MW-1607D MW-1607S MW-1604D	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005	0.06118 0.1121 0.1036 0.07148 0.09123 0.000005	0.04 0.04 0.04 0.04 0.04 0.04	Yes Yes Yes Yes Yes No	11 11 11 11 11 11	0 0 0 0 81.82	No No No No No	0.01 0.01 0.01 0.01 0.01 0.006	Param. Param. Param. Param. NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L)	MW-1605S MW-1606D MW-1606S MW-1607D MW-1607S MW-1604D MW-1604S	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005	0.06118 0.1121 0.1036 0.07148 0.09123 0.000005 0.000005	0.04 0.04 0.04 0.04 0.04 0.002 0.002	Yes Yes Yes Yes No No	11 11 11 11 11 11	0 0 0 0 81.82 90.91	No No No No No	0.01 0.01 0.01 0.01 0.01 0.006 0.006	Param. Param. Param. Param. NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L)	MW-1605S MW-1606D MW-1606S MW-1607D MW-1607S MW-1604D MW-1604S MW-1605D	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005	0.06118 0.1121 0.1036 0.07148 0.09123 0.000005 0.000005 0.000005	0.04 0.04 0.04 0.04 0.04 0.002 0.002 0.002	Yes Yes Yes Yes No No No	 11 11 11 11 11 11 11 11 11 	0 0 0 0 81.82 90.91	No No No No No	0.01 0.01 0.01 0.01 0.001 0.006 0.006	Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L)	MW-1605S MW-1606D MW-1606S MW-1607D MW-1607S MW-1604D MW-1604S MW-1605D MW-1605S	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005 0.000005	0.06118 0.1121 0.1036 0.07148 0.09123 0.000005 0.000005 0.000005 0.000005	0.04 0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002	Yes Yes Yes Yes No No No	 11 	0 0 0 81.82 90.91 90.91	No No No No No No	0.01 0.01 0.01 0.01 0.00 0.006 0.006 0.006	Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L)	MW-1605S MW-1606D MW-1606S MW-1607D MW-1604D MW-1604S MW-1605D MW-1605S MW-1606D	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005 0.000005 0.000005	0.06118 0.1121 0.1036 0.07148 0.09123 0.000005 0.000005 0.000005 0.000005 0.000005	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002	Yes Yes Yes No No No No No	 11 	0 0 0 81.82 90.91 90.91 90.91	No No No No No No No	0.01 0.01 0.01 0.01 0.01 0.006 0.006 0.006 0.006	Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L)	MW-1605S MW-1606D MW-1607D MW-1607D MW-1607S MW-1604D MW-1604S MW-1605D MW-1605D MW-1606D	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005 0.000005 0.000005 0.000005	0.06118 0.1121 0.1036 0.07148 0.09123 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002	Yes Yes Yes No No No No No	 11 	0 0 0 81.82 90.91 90.91 90.91 90.91	No No No No No No No	0.01 0.01 0.01 0.01 0.006 0.006 0.006 0.006 0.006 0.006	Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L)	MW-1605S MW-1606D MW-1607D MW-1607D MW-1604D MW-1604S MW-1605D MW-1605S MW-1606D MW-1606S MW-1606S	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005	0.06118 0.1121 0.1036 0.07148 0.09123 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	Yes Yes Yes No No No No No No	 11 	0 0 0 81.82 90.91 90.91 90.91 90.91 81.82	No No No No No No No No	0.01 0.01 0.01 0.01 0.006 0.006 0.006 0.006 0.006 0.006 0.006	Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L)	MW-1605S MW-1606D MW-1606S MW-1607D MW-1604S MW-1604S MW-1605D MW-1606D MW-1606S MW-1606S MW-1607D MW-1607D	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005	0.06118 0.1121 0.1036 0.07148 0.09123 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000002 0.000002	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	Yes Yes Yes No No No No No No No	 11 	0 0 0 81.82 90.91 90.91 90.91 90.91 81.82 80	No No No No No No No No	0.01 0.01 0.01 0.001 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006	Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L)	MW-1605S MW-1606D MW-1606S MW-1607D MW-1604D MW-1604S MW-1605D MW-1605D MW-1606S MW-1606S MW-1607D MW-1607S	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005	0.06118 0.1121 0.1036 0.07148 0.09123 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000002 0.000003 0.000003 0.000003	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	Yes Yes Yes Yes No No No No No No No	 11 	0 0 0 0 81.82 90.91 90.91 90.91 90.91 81.82 80 90.91	No No No No No No No No No No	0.01 0.01 0.01 0.00 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006	Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L)	MW-1605S MW-1606D MW-1607D MW-1607D MW-1604D MW-1604S MW-1605D MW-1605S MW-1606D MW-1606S MW-1607D MW-1607D MW-1607S MW-1604D	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005	0.06118 0.1121 0.1036 0.07148 0.09123 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000002 0.000002 0.000003 0.01388 0.00247	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	Yes Yes Yes Yes No No No No No No No No	 11 1	0 0 0 0 81.82 90.91 90.91 90.91 90.91 81.82 80 9.091 0	No No No No No No No No No No	0.01 0.01 0.01 0.00 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.011 0.01	Param. Param. Param. Param. Param. NP (NDs) Param. NP (normality)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L)	MW-1605S MW-1606D MW-1607D MW-1607D MW-1604D MW-1604S MW-1605D MW-1605D MW-1606D MW-1606D MW-1607D MW-1607D MW-1604D MW-1604S MW-1604S	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.01959 0.0162 0.0515	0.06118 0.1121 0.1036 0.07148 0.09123 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000002 0.000003 0.000003 0.01388 0.00247 0.04392	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1	Yes Yes Yes Yes No No No No No No No No	 11 11 11 11 11 11 11 11 10 11 10 11 1	0 0 0 81.82 90.91 90.91 90.91 90.91 81.82 80 9.091 0	No No No No No No No No X ^A 4 No No	0.01 0.01 0.01 0.00 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.011 0.011 0.011	Param. Param. Param. Param. Param. NP (NDs) Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L)	MW-1605S MW-1606D MW-1606D MW-1607D MW-1604D MW-1604S MW-1605D MW-1605D MW-1606D MW-1606S MW-1607D MW-1607S MW-1604D MW-1604S MW-1604D MW-1605D	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.005 00	0.06118 0.1121 0.1036 0.07148 0.09123 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000002 0.000002 0.000003 0.000003 0.000002 0.000003 0.000002 0.000002 0.000002 0.000003 0.000002 0.000002 0.000002 0.000002 0.000002 0.000002 0.000002 0.000005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.0005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0	0.04 0.04 0.04 0.02 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1	Yes Yes Yes No No No No No No No No No No	 11 11 11 11 11 11 11 11 10 11 10 11 	0 0 0 81.82 90.91 90.91 90.91 90.91 81.82 80 9.091 0 0	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.001 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.001 0.011 0.011 0.01	Param. Param. Param. Param. Param. NP (NDs) Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L)	MW-1605S MW-1606D MW-1607D MW-1607D MW-1604S MW-1604S MW-1605S MW-1606D MW-1606S MW-1607D MW-1607D MW-1604D MW-1604D MW-1605S MW-1605S MW-1605S	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.01959 0.0162 0.0515 0.02217 0.08024	0.06118 0.1121 0.1036 0.07148 0.009123 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.001388 0.00247 0.04392 0.01589 0.07094	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1	Yes Yes Yes Yes No	 11 11 11 11 11 11 11 11 10 11 10 11 	0 0 0 81.82 90.91 90.91 90.91 80.91 80.91 80 9.091 0 0	No No No No No No No No X ^A 4 No No No	0.01 0.01 0.01 0.001 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.001 0.011 0.01 0.0	Param. Param. Param. Param. Param. NP (NDs) Param. Param. Param. Param. Param. Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L)	MW-1605S MW-1606D MW-1607D MW-1607D MW-1604D MW-1604S MW-1605D MW-1605D MW-1605S MW-1607D MW-1607S MW-1607S MW-1604D MW-1604D MW-1605D MW-1605D MW-1605D MW-1605D	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.01959 0.0162 0.0115 0.02217 0.08024 0.1034	0.06118 0.1121 0.1036 0.07148 0.09123 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000002 0.000003 0.000003 0.000003 0.000003 0.001388 0.00247 0.01589 0.07794	0.04 0.04 0.04 0.02 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.11 0.1 0.1 0.1 0.1	Yes Yes Yes Yes No	11 11	0 0 0 81.82 90.91 90.91 90.91 90.91 81.82 80 9.091 0 0	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.001 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.001 0.011 0.01 0.0	Param. Param. Param. Param. Param. NP (NDs) Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L)	MW-1605S MW-1606D MW-1607D MW-1607D MW-1604D MW-1604S MW-1605D MW-1605D MW-1606D MW-1607D MW-1607D MW-1604D MW-1604D MW-1605S MW-1605D MW-1605S MW-1606D MW-1606S MW-1606S	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.01959 0.0162 0.0515 0.02217 0.08024 0.1034 0.09146	0.06118 0.1121 0.1036 0.07148 0.09123 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.001388 0.00247 0.04392 0.07094 0.07754 0.07754	0.04 0.04 0.04 0.02 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes Yes No	11 11	0 0 0 81.82 90.91 90.91 90.91 90.91 81.82 80 9.091 0 0 0	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.011 0.011 0.01 0.0	Param. Param. Param. Param. Param. NP (NDs) Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L)	MW-1605S MW-1606D MW-1607D MW-1607D MW-1604D MW-1604S MW-1605D MW-1605D MW-1605S MW-1607D MW-1607D MW-1607S MW-1604D MW-1605S MW-1605D MW-1605S MW-1606D MW-1606D MW-1606D	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.01959 0.0162 0.0515 0.02217 0.08024 0.1034 0.09146 0.04759	0.06118 0.1121 0.1036 0.07148 0.09123 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000002 0.000002 0.000003 0.000003 0.000003 0.000003 0.01388 0.00247 0.04392 0.01589 0.07094 0.07754 0.08279 0.04094	0.04 0.04 0.04 0.02 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes Yes No	11 11	0 0 0 0 81.82 90.91 90.91 90.91 90.91 81.82 80 9.091 0 0 0 0	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.011 0.011 0.011 0.01 0.0	Param. Param. Param. Param. Param. Param. NP (NDs) Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L)	MW-1605S MW-1606D MW-1607D MW-1607D MW-1604D MW-1604S MW-1605D MW-1605D MW-1606D MW-1607D MW-1607D MW-1604D MW-1604S MW-1605D MW-1605D MW-1606S MW-1607D MW-1607S MW-1607D	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.01959 0.0162 0.0515 0.02217 0.08024 0.1034 0.09146 0.04759 0.001654	0.06118 0.1121 0.1036 0.07148 0.09123 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00002 0.00002 0.00003 0.01388 0.00247 0.04392 0.01589 0.07094 0.0754 0.08279 0.04094 0.04094	0.04 0.04 0.04 0.02 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes Yes No	11 11	0 0 0 81.82 90.91 90.91 90.91 90.91 81.82 80 9.091 0 0 0 0 0 0 0 0 0	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.011 0.01 0.0	Param. Param. Param. Param. Param. NP (NDs) Param. NP (NDs) Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L)	MW-1605S MW-1606D MW-1607D MW-1607D MW-1604D MW-1604S MW-1605D MW-1605D MW-1605D MW-1606D MW-1607D MW-1607S MW-1604S MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1607D MW-1607S MW-1607D MW-1607S	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.01959 0.0162 0.02217 0.08024 0.02217 0.08024 0.1034 0.09146 0.04759 0.001654 0.002606	0.06118 0.1121 0.1036 0.07148 0.09123 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00002 0.00002 0.00003 0.01388 0.07094 0.0754 0.08279 0.04094 0.04094 0.0006355 0.001376	0.04 0.04 0.04 0.02 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes Yes No	11 11	0 0 0 81.82 90.91 90.91 90.91 90.91 81.82 80 9.091 0 0 0 0 0 0 0 0 0 0 0	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.011 0.011 0.01 0.0	Param. Param. Param. Param. Param. Param. NP (NDs) Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L)	MW-1605S MW-1606D MW-1607D MW-1607D MW-1604D MW-1604S MW-1605D MW-1605D MW-1606D MW-1607D MW-1607D MW-1604D MW-1604S MW-1605D MW-1605D MW-1606S MW-1607D MW-1607S MW-1607D	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.01959 0.0162 0.0515 0.02217 0.08024 0.1034 0.09146 0.04759 0.001654	0.06118 0.1121 0.1036 0.07148 0.09123 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00002 0.00003 0.01388 0.00247 0.04392 0.01589 0.07094 0.0754 0.08279 0.04094 0.04094	0.04 0.04 0.04 0.02 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes Yes No	11 11	0 0 0 81.82 90.91 90.91 90.91 90.91 81.82 80 9.091 0 0 0 0 0 0 0 0 0	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.011 0.01 0.0	Param. Param. Param. Param. Param. NP (NDs) Param. NP (NDs) Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L)	MW-1605S MW-1606D MW-16067 MW-16047 MW-16047 MW-16048 MW-16050 MW-16050 MW-16050 MW-16060 MW-16070 MW-16043 MW-16045 MW-16050 MW-16050 MW-16050 MW-16050 MW-16050 MW-16070 MW-16075 MW-16070 MW-16075	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.01959 0.0162 0.02217 0.08024 0.02217 0.08024 0.1034 0.09146 0.04759 0.001654 0.002606	0.06118 0.1121 0.1036 0.07148 0.09123 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00002 0.00002 0.00003 0.01388 0.07094 0.0754 0.08279 0.04094 0.04094 0.0006355 0.001376	0.04 0.04 0.04 0.02 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes Yes No	11 11	0 0 0 81.82 90.91 90.91 90.91 90.91 81.82 80 9.091 0 0 0 0 0 0 0 0 0 0 0	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.011 0.011 0.01 0.0	Param. Param. Param. Param. Param. NP (NDs) Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L)	MW-1605S MW-1606D MW-1606D MW-1607D MW-1604D MW-1604D MW-1605D MW-1605D MW-1605D MW-1606D MW-1604S MW-1604S MW-1605D MW-1605D MW-1605D MW-1606D MW-1606D MW-1607D MW-1607S MW-1607D MW-1607S MW-1604D	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.01959 0.0162 0.02217 0.08024 0.0215 0.02217 0.08024 0.09146 0.09146 0.091654 0.002606 0.0003	0.06118 0.1121 0.1036 0.07148 0.09123 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00002 0.00003 0.00003 0.01388 0.0247 0.04392 0.01389 0.0754 0.0754 0.08279 0.04094 0.0006355 0.001376 0.0002	0.04 0.04 0.04 0.02 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Yes Yes Yes Yes No	11 11	0 0 0 81.82 90.91 90.91 90.91 90.91 81.82 80 9.091 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.001 0.011 0.011 0.01 0.0	Param. Param. Param. Param. Param. Param. NP (NDs) Param. Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L)	MW-1605S MW-1606D MW-1607D MW-1607S MW-1604D MW-1605S MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1606D MW-1607D MW-1607D MW-1604D MW-1605D MW-1604D MW-1604D MW-1605D MW-1605D MW-1605D MW-1605D MW-1606D MW-1606D MW-1606D MW-1607D MW-1606D MW-1607D MW-1607D MW-1607D MW-1606D MW-1607D MW-1607D <t< td=""><td>0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.01959 0.0162 0.02217 0.08024 0.0217 0.08024 0.09146 0.09146 0.04759 0.001654 0.002606 0.0003 0.001858</td><td>0.06118 0.1121 0.1036 0.07148 0.09123 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00002 0.00003 0.01388 0.0247 0.04392 0.01589 0.0754 0.02754 0.08279 0.04094 0.000355 0.001376 0.0002 0.0008189</td><td>0.04 0.04 0.04 0.02 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.</td><td>Yes Yes Yes Yes No No</td><td>11 11</td><td>0 0 0 81.82 90.91 90.91 90.91 90.91 81.82 80 9.091 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>No No No No No No No No No No No No No N</td><td>0.01 0.01 0.01 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.001 0.011 0.011 0.01 0.0</td><td>Param. Param. Param. Param. Param. Param. NP (NDs) Param. Param. Param. Param.</td></t<>	0.08119 0.1271 0.1182 0.1003 0.1166 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.01959 0.0162 0.02217 0.08024 0.0217 0.08024 0.09146 0.09146 0.04759 0.001654 0.002606 0.0003 0.001858	0.06118 0.1121 0.1036 0.07148 0.09123 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00002 0.00003 0.01388 0.0247 0.04392 0.01589 0.0754 0.02754 0.08279 0.04094 0.000355 0.001376 0.0002 0.0008189	0.04 0.04 0.04 0.02 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Yes Yes Yes Yes No No	11 11	0 0 0 81.82 90.91 90.91 90.91 90.91 81.82 80 9.091 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	No No No No No No No No No No No No No N	0.01 0.01 0.01 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.001 0.011 0.011 0.01 0.0	Param. Param. Param. Param. Param. Param. NP (NDs) Param. Param. Param. Param.

Confidence Intervals - All Results

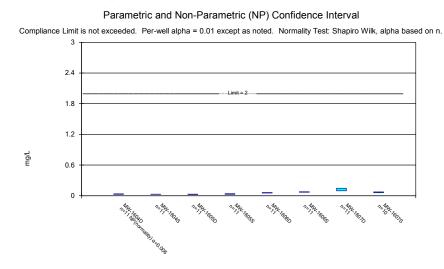

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	<u>Sig.</u>	N	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Selenium, total (mg/L)	MW-1607D	0.0001	0.00003	0.05	No	11	18.18	No	0.006	NP (normality)
Selenium, total (mg/L)	MW-1607S	0.009845	0.007664	0.05	No	11	0	No	0.01	Param.
Thallium, total (mg/L)	MW-1604D	0.0002881	0.0001699	0.002	No	11	9.091	x^2	0.01	Param.
Thallium, total (mg/L)	MW-1604S	0.00025	0.00002	0.002	No	11	9.091	No	0.006	NP (normality)
Thallium, total (mg/L)	MW-1605D	0.000138	0.00004	0.002	No	11	9.091	No	0.006	NP (normality)
Thallium, total (mg/L)	MW-1605S	0.000174	0.00004	0.002	No	11	9.091	No	0.006	NP (normality)
Thallium, total (mg/L)	MW-1606D	0.000123	0.00009	0.002	No	11	9.091	No	0.006	NP (normality)
Thallium, total (mg/L)	MW-1606S	0.000112	0.000062	0.002	No	11	9.091	No	0.006	NP (normality)
Thallium, total (mg/L)	MW-1607D	0.000062	0.00002	0.002	No	11	9.091	No	0.006	NP (normality)
Thallium, total (mg/L)	MW-1607S	0.000089	0.00005	0.002	No	10	10	No	0.011	NP (normality)

Sanitas[™] v.9.6.15 Groundwater Stats Consulting. UG

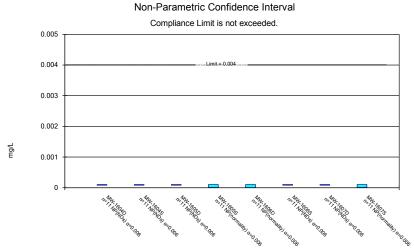
Sanitas[™] v.9.6.15 Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Antimony, total Analysis Run 6/17/2019 1:44 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Parametric Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

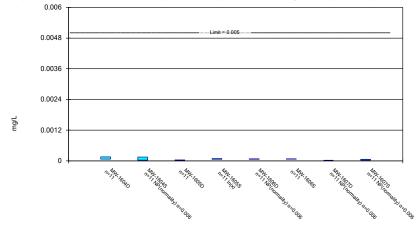


Constituent: Arsenic, total Analysis Run 6/17/2019 1:44 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.15 Groundwater Stats Consulting. UG

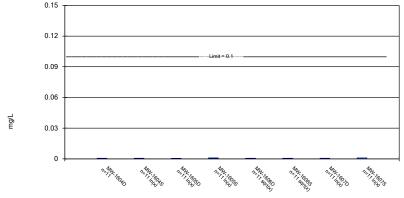
Sanitas[™] v.9.6.15 Groundwater Stats Consulting. UG

Constituent: Barium, total Analysis Run 6/17/2019 1:44 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

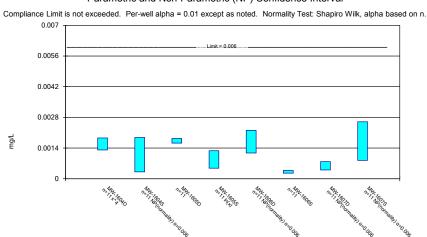

Constituent: Beryllium, total Analysis Run 6/17/2019 1:44 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.15 Groundwater Stats Consulting. UG

Sanitas[™] v.9.6.15 Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

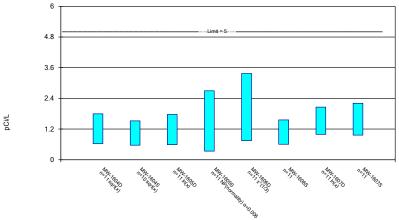
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Cadmium, total Analysis Run 6/17/2019 1:44 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Parametric Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Chromium, total Analysis Run 6/17/2019 1:44 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.15 Groundwater Stats Consulting. UG



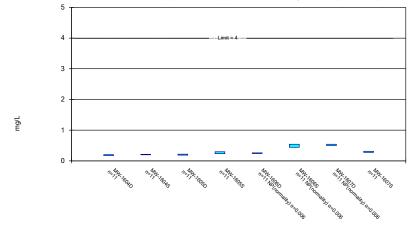
Parametric and Non-Parametric (NP) Confidence Interval

Sanitas[™] v.9.6.15 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

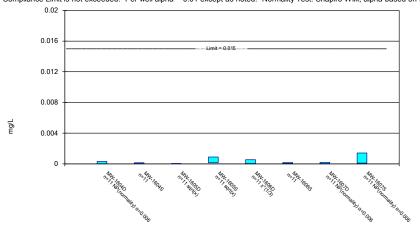
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Combined Radium 226 + 228 Analysis Run 6/17/2019 1:44 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

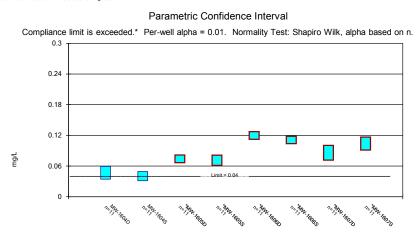

Constituent: Cobalt, total Analysis Run 6/17/2019 1:44 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

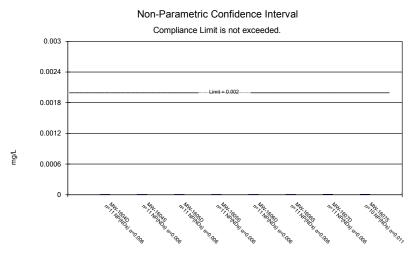
Sanitas™ v.9.6.15 Groundwater Stats Consulting. UG

Sanitas[™] v.9.6.15 Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

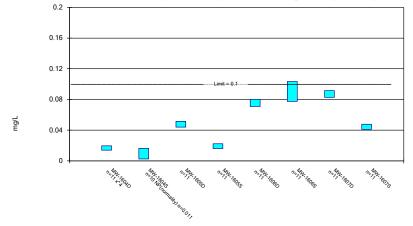

Constituent: Fluoride, total Analysis Run 6/17/2019 1:44 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

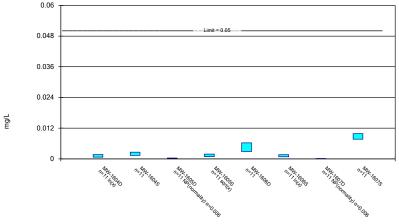
Constituent: Lead, total Analysis Run 6/17/2019 1:44 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.15 Groundwater Stats Consulting. UG

Constituent: Lithium, total Analysis Run 6/17/2019 1:44 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Constituent: Mercury, total Analysis Run 6/17/2019 1:44 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

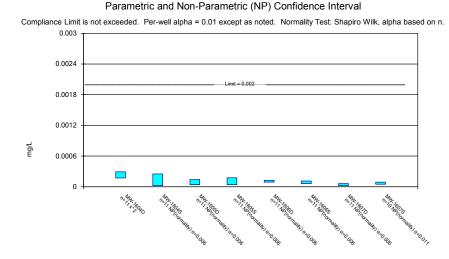

Sanitas[™] v.9.6.15 Groundwater Stats Consulting. UG

Sanitas™ v.9.6.15 Groundwater Stats Consulting. UG


Sanitas[™] v.9.6.15 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Molybdenum, total Analysis Run 6/17/2019 1:44 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Constituent: Selenium, total Analysis Run 6/17/2019 1:44 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.15 Groundwater Stats Consulting. UG

Constituent: Thallium, total Analysis Run 6/17/2019 1:44 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

STATISTICAL ANALYSIS SUMMARY BOTTOM ASH POND Mountaineer Plant New Haven, West Virginia

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

Geosyntec Consultants

engineers | scientists | innovators

941 Chatham Lane Suite 103 Columbus, Ohio 43221

December 23, 2019

CHA8473

TABLE OF CONTENTS

SECTION 1	Execut	ive Summary	1
SECTION 2	Bottom	n Ash Pond Evaluation	2-1
2.1	Data V	alidation & QA/QC	2-1
2.2	Statisti	cal Analysis	2-1
	2.2.1	Establishment of GWPSs	2-2
	2.2.2	Evaluation of Potential Appendix IV SSLs	2-2
	2.2.3	Establishment of Appendix III Prediction Limits	2-2
	2.2.4	Evaluation of Potential Appendix III SSIs	2-3
2.3	Conclu	isions	2-4
SECTION 3	Referen	nces	3-1

LIST OF TABLES

Table 1	Groundwater Data Summary
Table 2	Groundwater Protection Standards
Table 3	Revised Prediction Limits
Table 4	Appendix III Data Summary

LIST OF ATTACHMENTS

Attachment A	Certification by Qualified Professional Engineer
Attachment B	Statistical Analysis Output

LIST OF ACRONYMS AND ABBREVIATIONS

- AEP American Electric Power
- ASD Alternative Source Demonstration
- BAP Bottom Ash Pond
- CCR Coal Combustion Residuals
- CCV Continuing Calibration Verification
- CFR Code of Federal Regulations
- GWPS Groundwater Protection Standard
- LCL Lower Confidence Limit
- LFB Laboratory Fortified Blanks
- LRB Laboratory Reagent Blanks
- MCL Maximum Contaminant Level
- NELAP National Environmental Laboratory Accreditation Program
- QA Quality Assurance
- QC Quality Control
- SSI Statistically Significant Increase
- SSL Statistically Significant Level
- SU Standard Units
- TDS Total Dissolved Solids
- UPL Upper Prediction Limit
- USEPA United States Environmental Protection Agency
- UTL Upper Tolerance Limit

SECTION 1

EXECUTIVE SUMMARY

In accordance with the United States Environmental Protection Agency's (USEPA's) regulations regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (40 CFR 257.90-257.98, "CCR rule"), groundwater monitoring has been conducted at the Bottom Ash Pond (BAP), an existing CCR unit at the Mountaineer Power Plant located in New Haven, West Virginia.

Based on detection monitoring conducted in 2017 and 2018, statistically significant increases (SSIs) over background were concluded for boron, calcium, chloride, total dissolved solids (TDS), and sulfate at the BAP. An alternative source was not identified at the time, so the BAP initiated assessment monitoring in April 2018. Upon receipt of assessment monitoring data from September 2018, statistical analysis was performed within 90 days. The statistical analysis of this assessment monitoring event determined SSLs for lithium at wells MW-1605D, MW-1605S, MW-1606D, MW-1606S, MW-1607D, and MW-1607S (Geosyntec, 2019a). An ASD was not successful and within 90 days of exceeding the GWPS for lithium, the BAP initiated assessment of corrective measures.

During the first assessment monitoring event of 2019, completed in April 2019, SSLs were identified for lithium at wells MW-1605D, MW-1605S, MW-1606D, MW-1606S, MW-1607D, and MW-1607S, and the unit continued to work on the assessment of corrective measures in accordance with 40 CFR 257.96. Following the April 2019 event, two assessment monitoring events were conducted at the BAP in June and September 2019, in accordance with 40 CFR 257.95. The statistical summary report for the April 2019 assessment monitoring event was completed within 90 days of receiving the laboratory results and is documented under a separate cover (Geosyntec, 2019b). Only the results of the June and September 2019 events are documented in this report.

Groundwater data underwent several validation tests, including those for completeness, sample tracking accuracy, transcription errors, and consistent use of measurement units. No data quality issues were identified which would impact the usability of the data.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. Groundwater protection standards (GWPSs) were re-established for the Appendix IV parameters. Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether Appendix IV parameters were present at a statistically significant level (SSL) above the GWPS. SSLs were identified for lithium. Thus, the unit will continue to complete an assessment of corrective measures and continue to monitor the groundwater monitoring network in accordance with the assessment monitoring program per 40 CFR 257.95. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A.

SECTION 2

BOTTOM ASH POND EVALUATION

2.1 <u>Data Validation & QA/QC</u>

During the assessment monitoring program, two sets of samples were collected for analysis from each upgradient and downgradient well to meet the requirements of 40 CFR 257.95(b) (June 2019) and 257.95(d)(1) (September 2019). Samples from both sampling events were analyzed for the Appendix III and Appendix IV parameters. A summary of data collected during these assessment monitoring events may be found in Table 1.

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program (NELAP). Quality assurance and quality control (QA/QC) samples completed by the analytical laboratory included the use of laboratory reagent blanks (LRBs), continuing calibration verification (CCV) samples, and laboratory fortified blanks (LFBs).

The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.6.23 statistics software. The export file was checked against the analytical data for transcription errors and completeness. No QA/QC issues were noted which would impact data usability.

2.2 <u>Statistical Analysis</u>

Statistical analyses for the BAP were conducted in accordance with the January 2017 *Statistical Analysis Plan* (AEP, 2017), except where noted below. Time series plots and results for all completed statistical tests are provided in Attachment B.

The data obtained in June and September 2019 were screened for potential outliers. Outliers were identified for antimony at MW-1605D in the June 2019 data; fluoride at MW-1606D and MW-1606S in the June and September 2019 data; and thallium at MW-1606D and MW-1606S in the September 2019 data. However, these values were not removed from the dataset as they either were non-detects or were similar to values reported in neighboring wells. Several chromium values from the December 2016 background monitoring event were removed from the dataset even though they were not identified as outliers by Tukey's Test, as they were not representative of chromium results during later events. Additional information regarding outliers is provided in Attachment B.

2.2.1 Establishment of GWPSs

A GWPS was established for each Appendix IV parameter in accordance with 40 CFR 257.95(h) and the *Statistical Analysis Plan* (AEP, 2017). The established GWPS was determined to be the greater value of the background concentration and the maximum contaminant level (MCL) or the CCR Rule level specified in 40 CFR 257.95(h)(2) for each Appendix IV parameter. To determine background concentrations, an upper tolerance limit (UTL) was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events. Generally, tolerance limits were calculated parametrically with 95% coverage and 95% confidence. Non-parametric tolerance limits were calculated for antimony, barium, cadmium, selenium, and thallium due to apparent non-normal distributions and for beryllium and mercury due to a high non-detect frequency. Tolerance limits and the final GWPSs are summarized in Table 2.

2.2.2 Evaluation of Potential Appendix IV SSLs

A confidence interval was constructed for each Appendix IV parameter at each compliance well. Confidence limits were generally calculated parametrically ($\alpha = 0.01$); however, non-parametric confidence limits were calculated in some cases (e.g., when the data did not appear to be normally distributed or when the non-detect frequency was too high). An SSL was concluded if the lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). Calculated confidence limits are shown in Attachment B.

The following SSLs were identified at the Mountaineer BAP:

LCLs for lithium exceeded the GWPS of 0.0400 mg/L at MW-1605D (0.0593 mg/L), MW-1605S (0.0565 mg/L), MW-1606D (0.0998 mg/L), MW-1606S (0.0941 mg/L), MW-1607D (0.0735 mg/L), MW-1607S (0.0894 mg/L).

As a result, the Mountaineer BAP will continue the assessment of corrective measures and continue to monitor the groundwater monitoring network in accordance with the assessment monitoring program per 40 CFR 257.95.

2.2.3 Establishment of Appendix III Prediction Limits

Upper prediction limits (UPL) were previously established for all Appendix III parameters following the background monitoring period (Geosyntec, 2018). Intrawell tests were used to evaluate potential SSIs for pH, whereas interwell tests were used to evaluate potential SSIs for boron, calcium, chloride, fluoride, sulfate, and TDS. While interwell prediction limits have been updated periodically during the assessment monitoring period as sufficient data became available, this represents the first update to the background dataset for parameters evaluated using intrawell tests.

Mann-Whitney (Wilcoxon rank-sum) tests were performed to determine whether the newer data are affected by a release from the BAP. Because the interwell Appendix III limits and the

Appendix IV GWPSs are based on data from upgradient wells which we would not expect to have been impacted by a release, these tests were used for intrawell Appendix III tests only. Mann-Whitney tests were used to compare the medians of historical data (September 2016 - June 2017) to the new compliance samples (October 2017 – April 2019) for pH. Results were evaluated to determine if the medians of the two groups were similar at the 99% confidence level. Where no significant difference was found, the new compliance data were added to the background dataset. Where a statistically significant difference was found between the medians of the two groups, the data were reviewed to evaluate the cause of the difference and to determine if adding newer data to the background dataset, replacing the background dataset with the newer data, or continuing to use the existing background dataset was most appropriate. If the differences appeared to have been caused by a release, then the previous background dataset would have continued to be used. However, no significant differences were found between the two groups. The complete Mann-Whitney test results and a summary of the significant findings can be found in Attachment B.

After the revised background set was established, a parametric or non-parametric analysis was selected based on the distribution of the data and the frequency of non-detect data. Estimated results less than the practical quantitation limit (PQL) – i.e., "J-flagged" data – were considered detections and the estimated results were used in the statistical analyses. Non-parametric analyses were selected for datasets with at least 50% non-detect data or datasets that could not be normalized. Parametric analyses were selected for datasets (either transformed or untransformed) that passed the Shapiro-Wilk / Shapiro-Francía test for normality. The Kaplan-Meier non-detect adjustment was applied to datasets with between 15% and 50% non-detect data. For datasets with fewer than 15% non-detect data, non-detect data were replaced with one half of the PQL. The selected analysis (i.e., parametric or non-parametric) and transformation (where applicable) for each background dataset are shown in Attachment B.

UPLs were updated using all the historical data through April 2019 to represent background values. LPLs were also updated for pH. The updated prediction limits are summarized in Table 3. Intrawell tests continued to be used to evaluate potential SSIs for pH, whereas interwell tests continued to be used to evaluate potential SSIs for boron, calcium, chloride, fluoride, sulfate, and TDS. The intrawell UPLs were calculated for a one-of-two retesting procedure; i.e., if at least one sample in a series of two does not exceed the UPL, then it can be concluded that an SSI has not occurred. In practice, where the initial result did not exceed the UPL, a second sample was not collected. The retesting procedures allowed achieving an acceptably high statistical power to detect changes at downgradient wells for constituents evaluated using intrawell prediction limits.

2.2.4 Evaluation of Potential Appendix III SSIs

While SSLs were identified, a review of the Appendix III results were also completed to assess whether concentrations of Appendix III parameters at the compliance wells exceeded background concentrations.

Data collected during the June and September 2019 assessment monitoring events from each compliance well were compared to the prediction limits to evaluate results above background

values. The results from this event and the prediction limits are summarized in Table 4. The following exceedances of the upper prediction limits (UPLs) were noted:

- Boron concentrations exceeded the interwell UPL of 0.614 mg/L at MW-1604D (1.66 mg/L and 2.18 mg/L), MW-1604S (3.15 mg/L and 3.23 mg/L), MW-1605D (6.57 mg/L and 8.57 mg/L), MW-1605S (7.02 mg/L and 8.05 mg/L), MW-1606D (7.79 mg/L and 6.38 mg/L), MW-1606S (6.08 mg/L and 6.19 mg/L), MW-1607D (3.14 mg/L and 3.65 mg/L), and MW-1607S (2.46 mg/L and 3.21 mg/L).
- Calcium concentrations exceeded the interwell UPL of 200 mg/L at MW-1604D (217 mg/L), MW-1604S (278 mg/L and 267 mg/L), MW-1605D (265 mg/L and 283 mg/L), MW-1606D (281 mg/L for both events), MW-1606S (223 mg/L and 229 mg/L), MW-1607D (234 mg/L and 233 mg/L), and MW-1607S (233 mg/L and 198 mg/L).
- Chloride concentrations exceeded the interwell UPL of 68.5 mg/L at MW-1604D (93.0 mg/L and 82.2 mg/L), MW-1604S (127 mg/L and 128 mg/L), MW-1605D (165 mg/L and 168 mg/L), MW-1605S (140 mg/L and 149 mg/L), MW-1606D (231 mg/L and 244 mg/L), MW-1606S (232 mg/L and 221 mg/L), MW-1607D (167 mg/L and 174 mg/L), and MW-1607S (154 mg/L and 167 mg/L).
- Fluoride concentrations exceeded the interwell UPL of 0.271 mg/L at MW-1606D (0.490 mg/L), MW-1606S (0.280 mg/L), and MW-1607D (0.400 mg/L and 0.560 mg/L).
- Sulfate concentrations exceeded the interwell UPL of 674 mg/L at MW-1604S (741 mg/L and 770 mg/L), MW-1605D (877 mg/L and 974 mg/L), MW-1605S (694 mg/L), MW-1606D (693 mg/L), MW-1606S (705 mg/L), MW-1607D (710 mg/L and 699 mg/L).
- TDS concentrations exceeded the interwell UPL of 1040 mg/L at MW-1604D (1110 mg/L and 1210 mg/L), MW-1604S (1580 mg/L and 1520 mg/L), MW-1605D (1890 mg/L and 2050 mg/L), MW-1605S (1510 mg/L and 1470 mg/L), MW-1606D (1690 mg/L and 1700 mg/L), MW-1606S (1490 mg/L and 1460 mg/L), MW-1607D (1600 mg/L and 1610 mg/L),

Based on these results, concentrations of Appendix III parameters exceeded background levels at compliance wells at the Mountaineer BAP during assessment monitoring.

2.3 <u>Conclusions</u>

A semi-annual assessment monitoring event was conducted in accordance with the CCR Rule. The laboratory and field data were reviewed prior to statistical analysis, with no QA/QC issues identified that impacted data usability. A review of outliers resulted in the removal of several chromium values from the December 2016 background monitoring event, as the reported results were not representative of later sampling events. GWPSs were re-established for the Appendix IV parameters. A confidence interval was constructed at each compliance well for each Appendix IV parameter; SSLs were concluded if the entire confidence interval exceeded the GWPS. SSLs were identified for lithium. Appendix III parameters were compared to recalculated prediction limits, with exceedances identified for boron, calcium, chloride, fluoride, sulfate, and TDS.

Based on this evaluation, the Mountaineer BAP CCR unit will continue with the assessment of corrective measures and continue to monitor the groundwater monitoring network in accordance with the assessment monitoring program per 40 CFR 257.95

SECTION 3

REFERENCES

American Electric Power (AEP). 2017. Statistical Analysis Plan – Mountaineer Plant. January 2017.

Geosyntec Consultants (Geosyntec). 2018. Statistical Analysis Summary – Bottom Ash Pond, Mountaineer Plant, New Haven, West Virginia. January 15, 2018.

Geosyntec. 2019a. Statistical Analysis Summary – Bottom Ash Pond. Mountaineer Plant, New Haven, West Virginia. January 8, 2019.

Geosyntec. 2019b. Statistical Analysis Summary – Bottom Ash Pond. Mountaineer Plant, New Haven, West Virginia. July 12, 2019.

TABLES

Table 1 - Groundwater Data SummaryMountaineer - Bottom Ash Pond

Component	Unit	MW-	1601A	MW-	-1602	MW	-1603	MW-	1604D	MW-1604S		MW-	1605D
component	ome	6/20/2019	9/11/2019	6/20/2019	9/11/2019	6/20/2019	9/11/2019	6/19/2019	9/9/2019	6/19/2019	9/9/2019	6/19/2019	9/10/2019
Antimony	μg/L	0.0300 J	0.0300 J	0.0200 J	0.100 U	0.0300 J	0.0300 J	0.0400 J	0.0300 J	0.150	0.140	0.200 U	0.0300 J
Arsenic	μg/L	0.630	0.620	0.330	0.310	0.410	0.350	0.280	0.300	0.330	0.340	2.67	2.78
Barium	μg/L	63.1	65.3	29.5	27.3	30.7	30.9	52.9	55.6	29.0	29.0	28.6	33.1
Beryllium	μg/L	0.100 U	0.200 U	0.100 U									
Boron	mg/L	0.160	0.153	0.100 J	0.111	0.299	0.308	1.66	2.18	3.15	3.23	6.57	8.57
Cadmium	μg/L	0.0200 J	0.0200 J	0.0100 J	0.0100 J	0.0100 J	0.0100 J	0.0400 J	0.0300 J	0.210	0.210	0.0200 J	0.0300 J
Calcium	mg/L	165	164	91.2	95.1	162	156	196	217	278	267	265	283
Chloride	mg/L	48.6	45.8	10.7	10.4	10.9	10.0	93.0	82.2	127	128	165	168
Chromium	μg/L	0.314	0.370	0.200 J	0.200 J	0.249	0.205	0.212	0.345	0.0900 J	0.100 J	0.200 J	0.0400 J
Cobalt	μg/L	0.0300 J	0.0300 J	0.0300 J	0.0500 U	0.204	0.112	0.242	0.181	2.16	2.14	1.65	1.69
Combined Radium	pCi/L	0.450	1.17	0.153	0.451	0.297	1.07	0.192	0.464	1.26	1.15	0.831	1.64
Fluoride	mg/L	0.160	0.140	0.230	0.210	0.0900	0.0900	0.140	0.170	0.160	0.200	0.190	0.170
Lead	μg/L	0.0700 J	0.200 U	0.0700 J	0.200 U	0.176	0.100 J	0.0700 J	0.200 U	0.100 U	0.200 U	0.200 U	0.200 U
Lithium	mg/L	0.0300 U	0.00184	0.0100 J	0.00979	0.0300 U	0.0150	0.0300 U	0.0188	0.0320	0.0476	0.0200 J	0.0561
Mercury	μg/L	0.00500 U											
Molybdenum	μg/L	0.900 J	0.900 J	0.900 J	1.00 J	0.900 J	0.500 J	1.00 J	2.00 J	16.6	16.3	40.0	39.7
Selenium	μg/L	1.30	1.10	0.100 J	0.100 J	0.300	0.200	3.10	3.40	1.00	1.00	0.200 J	0.300
Total Dissolved Solids	mg/L	730	749	606	603	878	853	1110	1210	1580	1520	1890	2050
Sulfate	mg/L	207	221	267	259	434	421	461	551	741	770	877	974
Thallium	μg/L	0.500 U	0.300 J	0.300 J	1.00 U	0.500 U							
pН	SU	7.26	6.96	6.98	6.71	6.97	6.65	7.18	7.04	7.27	7.33	7.48	7.23

Notes:

 μ g/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Parameter was not present in concentrations above the method detection limit and is reported as the reporting limit

J: Estimated value. Parameter was detected in concentrations below the reporting limit

-: Not analyzed

Table 1 - Groundwater Data SummaryMountaineer - Bottom Ash Pond

Component	Unit	MW-	16058	MW- 1	1606D	MW-1606S MW-1607D		1607D	MW-	16078	MW	-1608	
component	ome	6/19/2019	9/10/2019	6/19/2019	9/10/2019	6/19/2019	9/10/2019	6/19/2019	9/10/2019	6/19/2019	9/10/2019	6/18/2019	9/10/2019
Antimony	μg/L	0.0400 J	0.0400 J	0.140	0.150	0.150	0.130	0.0300 J	0.0300 J	0.440	0.410	0.0300 J	0.0300 J
Arsenic	μg/L	0.470	0.590	0.370	0.400	0.630	0.670	1.61	1.53	0.960	0.870	0.400	0.520
Barium	μg/L	23.6	29.6	49.4	51.4	67.2	70.4	82.3	79.3	81.0	67.7	32.0	26.8
Beryllium	μg/L	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.0500 J
Boron	mg/L	7.02	8.05	7.79	6.38	6.08	6.19	3.14	3.65	2.46	3.21	0.116	0.124
Cadmium	μg/L	0.0500 J	0.0500 J	0.0900	0.0800	0.0800	0.0700	0.0500 U	0.0100 J	0.0400 J	0.0500 J	0.0100 J	0.0500 U
Calcium	mg/L	156	174	281	281	223	229	234	233	233	198	86.5	92.0
Chloride	mg/L	140	149	231	244	232	221	167	174	154	167	5.06	4.01
Chromium	μg/L	0.100 J	0.237	0.0700 J	0.100 J	0.0800 J	0.0800 J	0.100 J	0.0500 J	0.428	0.357	0.306	0.327
Cobalt	μg/L	0.279	0.379	1.36	1.09	0.171	0.312	0.799	0.848	0.990	0.971	0.0500 J	0.0560
Combined Radium	pCi/L	0.424	0.542	0.933	2.27	1.01	2.68	1.31	1.86	1.12	2.77	0.104	1.35
Fluoride	mg/L	0.230	0.260	0.100 J	0.490	0.250	0.280	0.400	0.560	0.190	0.270	0.160	0.200
Lead	μg/L	0.0800 J	0.202	0.100 U	0.200 U	0.111	0.200 U	0.0700 J	0.200 U	0.108	0.0900 J	0.0600 J	0.0600 J
Lithium	mg/L	0.0400	0.0524	0.0580	0.0835	0.0560	0.0877	0.0720	0.110	0.0750	0.0990	0.0300 U	0.00286
Mercury	μg/L	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U
Molybdenum	μg/L	13.6	14.2	68.3	68.5	58.9	54.9	81.8	82.1	34.6	35.0	0.800 J	1.00 J
Selenium	μg/L	0.600	0.400	9.60	1.00	1.30	2.70	0.0600 J	0.0900 J	5.60	4.30	0.800	1.00
Total Dissolved Solids	mg/L	1510	1470	1690	1700	1490	1460	1600	1610	1370	1350	416	369
Sulfate	mg/L	649	694	693	588	581	705	710	699	524	465	144	109
Thallium	μg/L	0.500 U	0.500 U	0.100 J	0.500 U	0.100 J	0.500 U						
pН	SU	7.35	7.16	7.40	7.40	7.19	7.32	7.79	7.71	7.49	7.66	6.24	7.13

Notes:

 μ g/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Parameter was not present in concentrations above the method detection limit and is reported as the reporting limit

J: Estimated value. Parameter was detected in concentrations below the reporting limit

-: Not analyzed

Table 2: Groundwater Protection Standards Mountaineer Plant - Bottom Ash Pond

Constituent Name	MCL	CCR Rule-Specified	Background Limit
Antimony, Total (mg/L)	0.006		0.0001
Arsenic, Total (mg/L)	0.01		0.00074
Barium, Total (mg/L)	2		0.065
Beryllium, Total (mg/L)	0.004		0.0001
Cadmium, Total (mg/L)	0.005		0.00003
Chromium, Total (mg/L)	0.1		0.0009
Cobalt, Total (mg/L)	n/a	0.006	0.0007
Combined Radium, Total (pCi/L)	5		2.33
Fluoride, Total (mg/L)	4		0.27
Lead, Total (mg/L)	n/a	0.015	0.00067
Lithium, Total (mg/L)	n/a	0.04	0.026
Mercury, Total (mg/L)	0.002		0.000005
Molybdenum, Total (mg/L)	n/a	0.1	0.0038
Selenium, Total (mg/L)	0.05		0.0015
Thallium, Total (mg/L)	0.002		0.0005

Notes:

Grey cell indicates calculated UTL is higher than MCL.

MCL = Maximum Contaminant Level

Calculated UTL (Upper Tolerance Limit) represents site-specific background values.

The higher of the calculated UTL or MCL/Rule-Specified Level is used as the GWPS.

Table 3: Revised Prediction Limits Mountaineer Plant - Bottom Ash Pond

Parameter	Unit	Description	MW-1604D	MW-1604S	MW-1605D	MW-1605S	MW-1606D	MW-1606S	MW-1607D	MW-1607S
Boron	mg/L	Interwell Background Value (UPL)				0.6	514			
Calcium	mg/L	Interwell Background Value (UPL)				20	00			
Chloride	mg/L	Interwell Background Value (UPL)				68	3.5			
Fluoride	mg/L	Interwell Background Value (UPL)				0.2	271			
pН	SU	Intrawell Background Value (UPL)	7.8	7.8	7.9	7.9	7.9	8.1	8.0	7.8
рн	30	Intrawell Background Value (LPL)	6.7	6.6	6.9	6.8	6.9	6.1	7.0	7.2
Sulfate	mg/L	Interwell Background Value (UPL)				67	74			
Total Dissolved Solids	mg/L	Interwell Background Value (UPL)				10	40			

Notes:

UPL: Upper prediction limit LPL: Lower prediction limit

Table 4: Appendix III Data Summary **Mountaineer Plant - Bottom Ash Pond**

Parameter	Unit	Description	MW-1604D		MW-1604S		MW-1605D		MW-1605S		MW-1606D		MW-1606S		MW-1607D		MW-1607S	
			6/19/2019	9/9/2019	6/19/2019	9/9/2019	6/19/2019	9/10/2019	6/19/2019	9/10/2019	6/19/2019	9/10/2019	6/19/2019	9/10/2019	6/19/2019	9/10/2019	6/19/2019	9/10/2019
Boron	mg/L	Interwell Background Value (UPL)	0.614															
		Detection Monitoring Result	1.66	2.18	3.15	3.23	6.57	8.57	7.02	8.05	7.79	6.38	6.08	6.19	3.14	3.65	2.46	3.21
Calcium	mg/L	Interwell Background Value (UPL)	200															
		Detection Monitoring Result	196	217	278	267	265	283	156	174	281	281	223	229	234	233	233	198
Chloride	mg/L	Interwell Background Value (UPL)	well Background Value (UPL) 68.5															
		Detection Monitoring Result	93.0	82.2	127	128	165	168	140	149	231	244	232	221	167	174	154	167
Fluoride	mg/L	Interwell Background Value (UPL)	nterwell Background Value (UPL) 0.271															
		Detection Monitoring Result	0.140	0.170	0.160	0.200	0.190	0.170	0.230	0.260	0.100	0.490	0.250	0.280	0.400	0.560	0.190	0.270
рН	SU	Intrawell Background Value (UPL)	7.8		7.8		7.9		7.9		7.9		8.1		8.0		7.8	
		Intrawell Background Value (LPL)	6.7		6.6		6.9		6.8		6.9		6.1		7.0		7.2	
		Detection Monitoring Result	7.2	7.0	7.3	7.3	7.5	7.2	7.4	7.2	7.4	7.4	7.2	7.3	7.8	7.7	7.5	7.7
Sulfate	mg/L	Interwell Background Value (UPL)								6	74							
		Detection Monitoring Result	461	551	741	770	877	974	649	694	693	588	581	705	710	699	524	465
Total Dissolved	mg/L	Interwell Background Value (UPL)								10	940							
Solids		Detection Monitoring Result	1110	1210	1580	1520	1890	2050	1510	1470	1690	1700	1490	1460	1600	1610	1370	1350

Notes:

UPL: Upper prediction limit LPL: Lower prediction limit

Bold values exceed the background value.

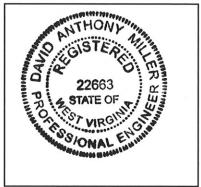
Background values are shaded gray.

ATTACHMENT A Certification by Qualified Professional Engineer

Certification by Qualified Professional Engineer

I certify that the selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Mountaineer Bottom Ash Pond CCR management area and that the requirements of 40 CFR 257.93(f) have been met.

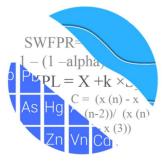
DAVID ANTHONY MILLER


Printed Name of Licensed Professional Engineer

saird Anthony Miller Signature

22663 License Number

WEST VIRGINIA


Licensing State

12.23.19 Date

ATTACHMENT B Statistical Analysis Output

GROUNDWATER STATS CONSULTING

December 9, 2019

Geosyntec Consultants Attn: Ms. Allison Kreinberg 941 Chatham Lane, #103 Columbus, OH 43221

Re: Mountaineer BAP – Assessment Monitoring Report & Background Update - 2019

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the statistical analysis and background update of 2019 groundwater data for American Electric Power Inc.'s Mountaineer Bottom Ash Pond. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the USEPA Unified Guidance (2009).

Sampling began at the site for the CCR program in 2016. The monitoring well network, as provided by Geosyntec Consultants, consists of the following:

- **Upgradient wells:** MW-1601A, MW-1602, MW-1603, MW-1608; and
- Downgradient wells: MW-1604D, MW-1604S, MW-1605D, MW-1605S, MW-1606D, MW-1606S, MW-1607D, MW-1607S.

Data were sent electronically, and the statistical analysis was conducted according to the Statistical Analysis Plan and screening evaluation prepared by GSC and approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC.

The CCR program consists of the following constituents:

• **Appendix III** (Detection Monitoring) - boron, calcium, chloride, fluoride, pH, sulfate, and TDS;

 Appendix IV (Assessment Monitoring) – antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium.

Time series plots for Appendix III and IV parameters are provided for all wells and are used to evaluate concentrations over time as well as for the purpose of updating statistical limits (Figure A). Additionally, box plots are included for all constituents at upgradient and downgradient wells (Figure B). Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graph. A summary of these values follows this letter (Figure C). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells.

During the background screening conducted in December 2017 data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves were provided to demonstrate that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance recommendations as discussed below.

Summary of Statistical Method:

- 1) Intrawell prediction limits, combined with a 1-of-2 resample plan for pH;
- 2) Interwell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, fluoride, sulfate, and TDS.

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are nondetects, a nonparametric test is utilized. While the false positive rate associated with the parametric limits is based on an annual 10% as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits.

• No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).

- When data contain <15% nondetects in background, simple substitution of onehalf the reporting limit is utilized in the statistical analysis. The reporting limit utilized for nondetects is the practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% nondetects, the Kaplan-Meier nondetect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% nondetects.

Historical Summary December 2017 - Evaluation of Appendix III Parameters

Outlier Evaluation

During the previous background screening, visual screening was used to detect potential outliers in all wells for all parameters, while Tukey's outlier test was used for all wells to formally test data in wells for intrawell parameters and for combined upgradient wells for interwell parameters. High values were noted in downgradient wells for pH in wells MW-1607D and MW-1607S; and TDS in MW-1606S. No outliers were noted for upgradient wells. The current assumption is that changes in concentrations are reflective of natural variation upgradient of the facility; however, a separate study and hydrogeological investigation would be required to fully understand the geochemical conditions and expected groundwater quality for the region. That study and assessment is beyond the scope of services provided by Groundwater Stats Consulting.

Statistical Limits

Interwell prediction limits combined with a 1-of-2 verification strategy were constructed for boron, calcium, chloride, fluoride, sulfate and TDS; and intrawell prediction limits combined with a 1-of-2 verification strategy were constructed for pH. The statistical method selected for each parameter was determined based on the results of the evaluation performed in December 2017; and all proposed background data were screened for outliers and trends at that time. The findings of those reports were submitted with that analysis.

Interwell prediction limits utilize all upgradient well data for construction of statistical limits. During each sample event, upgradient well data were screened for any newly suspected outliers or obvious trending patterns using time series plots. Intrawell

prediction limits utilized the background data set that was originally screened in 2017. As recommended in the EPA Unified Guidance (2009), the set background data will be tested for the purpose of updating statistical limits using the Mann-Whitney two-sample test when an additional four to eight measurements are available.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified and further research would be required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered a false positive result and, therefore, no further action is necessary. Prediction limit exceedances were noted for several of the downgradient wells for boron, calcium, chloride, fluoride, pH, sulfate and TDS. These results can be found in the previous screening in the Prediction Limit Summary tables.

When a statistically significant increase is identified, the data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing or stable. Upgradient wells are included in the trend analyses to identify whether similar patterns exist upgradient of the site which is an indication of natural variability in groundwater unrelated to practices at the site.

Statistically significant increasing trends were found for several constituents in both upgradient and downgradient wells. For the statistically significant increasing trend noted for calcium in well MW-1607S, with the exception of the most recent sample, historical concentrations are similar and, in some cases, lower than those reported in upgradient wells. Further research beyond the scope of this analysis would be required to identify the cause for any changing groundwater concentrations in downgradient wells (i.e. result of practices at the site, natural variation, or an off-site source). The Trend Test summary table was included in the previous screening.

Appendix III Background Update – November 2019

Prior to updating background data, samples are re-evaluated for all wells for parameters tested with intrawell analyses (pH), and for combined upgradient well data for parameters tested with interwell analyses (boron, calcium, chloride, fluoride, sulfate and TDS) using Tukey's outlier test and visual screening for all historical data through April 2019 samples. When Tukey's outlier test detects an outlier for the most recent sample, it will not be flagged in the event that the data precede a trend that is more

representative of current concentrations. In some cases, Tukey's noted outliers in a given well that were similar to those reported in neighboring wells for the same event and, therefore, those values were not flagged. The fluoride values identified by Tukey's at well MW-1606D was the most recent sample and was not flagged in the database. If future values are significantly lower than the reported value, this will be flagged in the database in the future. None of the fluoride values were flagged as outliers in well MW-1606S since all values were similar to remaining measurements within this well, with the most recent measurements lower than historical measurements. If this decrease in concentrations continues, earlier higher measurements may be deselected in the future.

Tukey's identified outliers for thallium at wells MW-1606D and MW-1606S; however, these were nondetect values and were not flagged in the database. In other cases, Tukey's test did not identify outliers and those values were flagged because they were not representative of the population at that well. For instance, several high values were noted several parameters for the same event early in the record for well MW-1607S. These values were flagged as outliers in the database. As mentioned above, flagged data are displayed in a lighter font and as a disconnected symbol on the time series reports, as well as in a lighter font on the accompanying data pages. An updated summary of Tukey's test results and flagged outliers follows this letter.

For constituents requiring intrawell prediction limits, the Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through June 2017 to the new compliance samples at each well through April 2019 to evaluate whether the groups are statistically different at the 99% confidence level, in which case background data may be updated with compliance data (Figure D). No statistically significant differences were found between the two groups for any of the well/constituent pairs. Typically, when the test concludes that the medians of the two groups are significantly different, particularly in the downgradient wells, the background are not updated to include the newer data but will be reconsidered in the future. A summary of these results follows this letter and the test results are included with the Mann Whitney test section at the end of this report.

Intrawell prediction limits using all historical data through April 2019, combined with a 1-of-2 resample plan, were constructed for pH (Figure E).

For parameters tested using interwell analyses, the Sen's Slope/Mann-Kendall trend test was used on upgradient wells to determine whether concentrations are statistically increasing, decreasing or stable (Figure F). A few statistically significant increasing and decreasing trends were noted; however, the magnitudes of the trends are low relative to average concentrations within each well. With limited background samples collected to date, all data from upgradient wells were used to construct interwell prediction limits for all Appendix III parameters except pH which is tested using intrawell prediction limits. As more data are collected, all upgradient well data will be re-evaluated for possible deselection of earlier measurements if they no longer represent present-day groundwater quality conditions. A summary of those results is included with the trend tests.

Interwell prediction limits, combined with a 1-of-2 resample plan, were updated using all available data from upgradient wells through April 2019 for boron, calcium, chloride, fluoride, sulfate, and TDS (Figure G). Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. A summary table of the updated limits may be found following this letter in the Prediction Limit Summary Tables.

Evaluation of Appendix IV Parameters – November 2019

Interwell Tolerance limits were used to calculate background limits from all available pooled upgradient well data for Appendix IV parameters to determine the Alternate Contaminant Level (ACL) for each constituent (Figure H). Background data are screened for outliers and extreme trending patterns that would lead to artificially elevated statistical limits. In some cases, due to the natural log transformation, Tukey's test did not identify outliers for values which were significantly higher than remaining observations in a given well. For instance, during the December 2016 sample event, high values were reported for chromium in several wells (both upgradient and downgradient). These values were flagged in the database as outliers as they did not appear to represent the population at these wells. Any flagged values may be seen on the Outlier Summary following this letter.

Parametric limits use a target of 95% confidence and 95% coverage. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. These limits were compared to the Maximum Contaminant Levels (MCLs) and CCR-Rule specified levels in the Groundwater Protection Standard (GWPS) table following this letter to determine the highest limit for use as the GWPS in the Confidence Interval comparisons (Figure I).

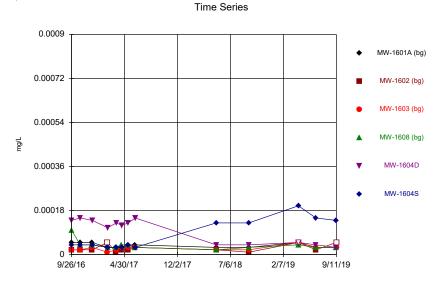
Confidence intervals were then constructed on downgradient wells for each of the Appendix IV parameters using the highest limit of the MCL, CCR-rule specified, or ACL as discussed above (Figure J). Only when the entire confidence interval is above a GWPS

is the well/constituent pair considered to exceed its respective standard. No confidence interval exceedances were found except for lithium in wells MW-1605D, MW1605S, MW-1606D, MW-1606S, MW-1607D and MW-1607S. A summary of the confidence interval results follows this letter.

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Mountaineer BAP. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

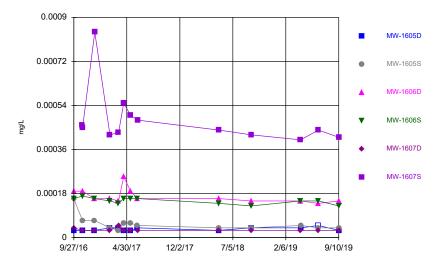
llina


Andrew T. Collins Groundwater Analyst

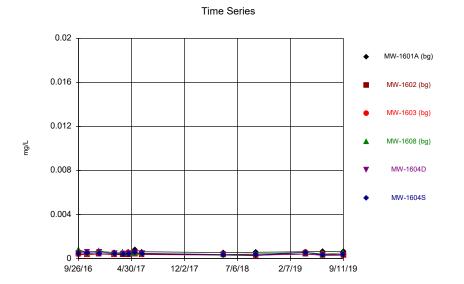
sistina Rayner

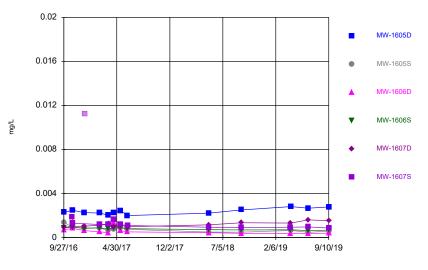
Kristina L. Rayner Groundwater Statistician

FIGURE A: TIME SERIES


Sanitas¹¹ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

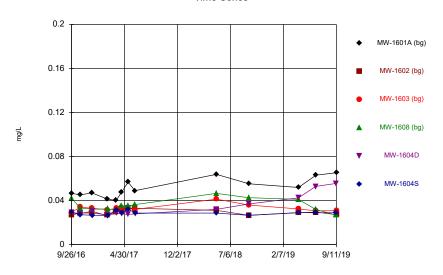
Constituent: Antimony, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

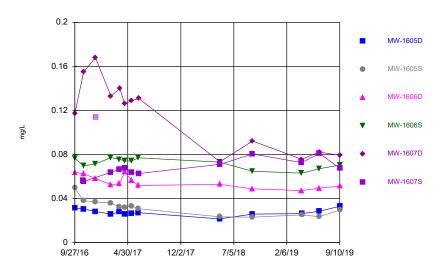

Sanitas¹⁰ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Antimony, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

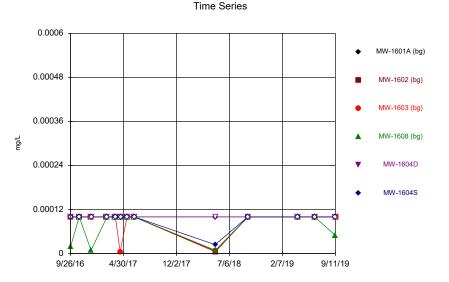
Constituent: Arsenic, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas[™] v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG


Time Series

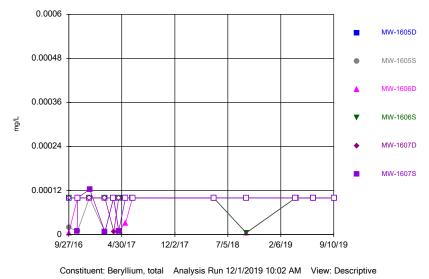

Constituent: Arsenic, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series



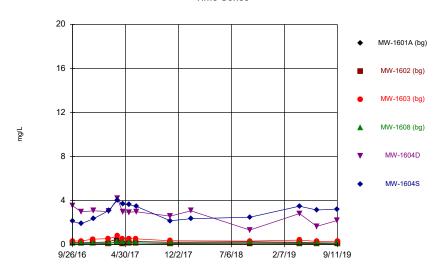
Constituent: Barium, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Barium, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

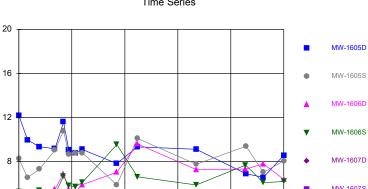
Sanitas¹⁴ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

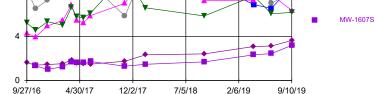
Constituent: Beryllium, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas[™] v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

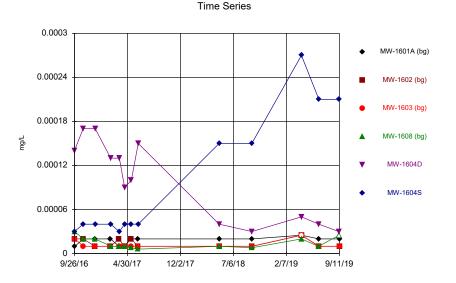

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Time Series

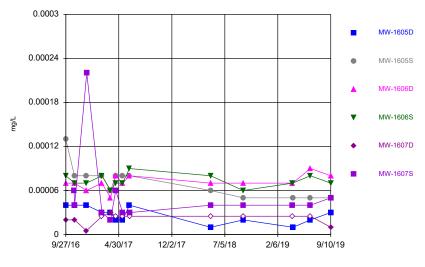



mg/L

Time Series


Constituent: Boron, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

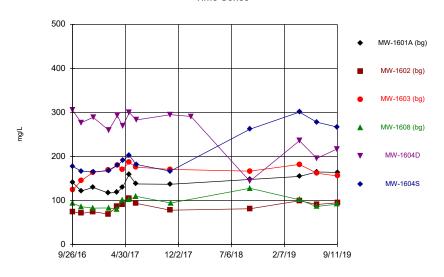
Constituent: Boron, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

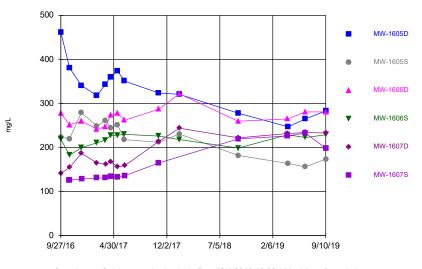
Constituent: Cadmium, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

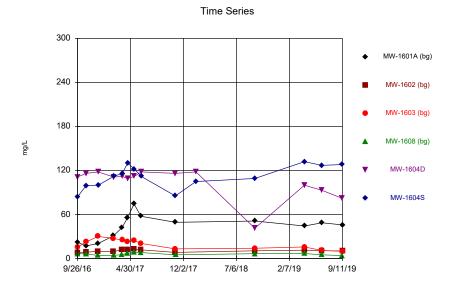


Constituent: Cadmium, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Time Series

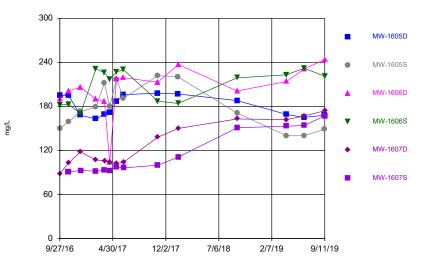
Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

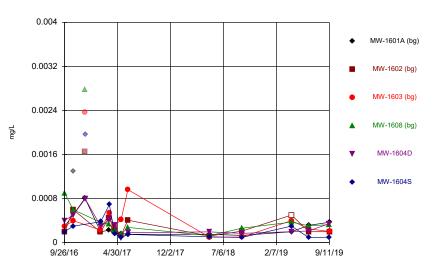
Time Series


Constituent: Calcium, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Time Series

Constituent: Calcium, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

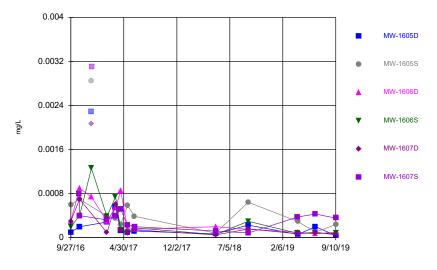

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG


Constituent: Chloride, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

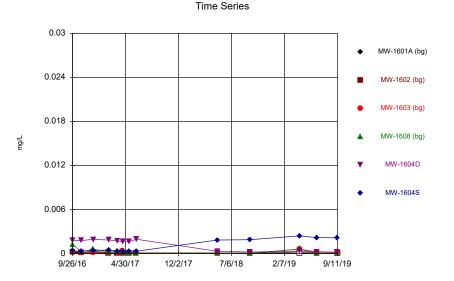
Time Series

Constituent: Chloride, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas[™] v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

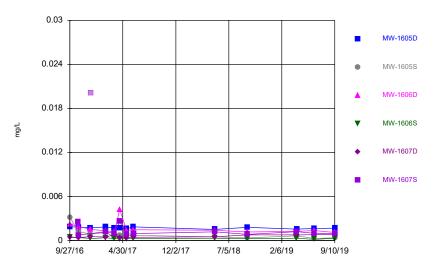


Time Series

Constituent: Chromium, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



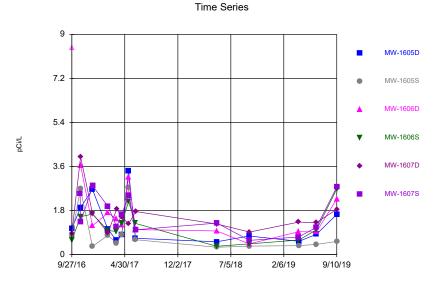
Time Series


Constituent: Chromium, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

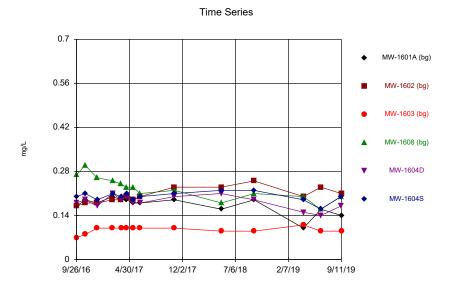
Constituent: Cobalt, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series



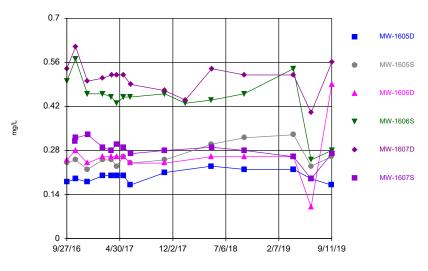
Constituent: Cobalt, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

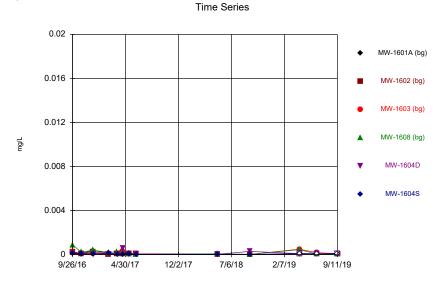
Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: Combined Radium 226 + 228 Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

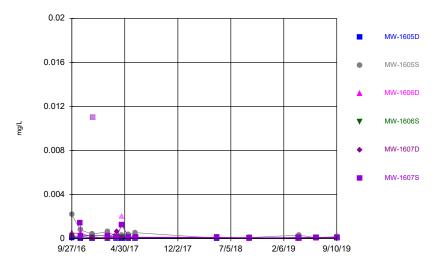
Constituent: Combined Radium 226 + 228 Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

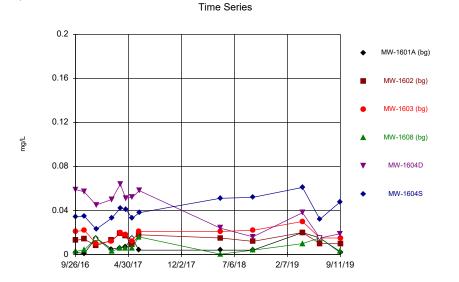

Constituent: Fluoride, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

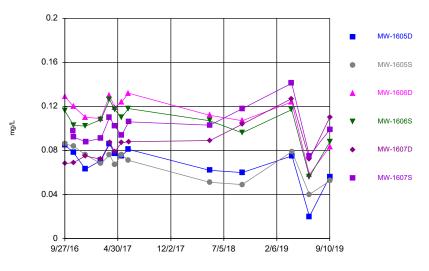
Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series


Constituent: Fluoride, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas[™] v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Lead, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas $^{\rm vs}$ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

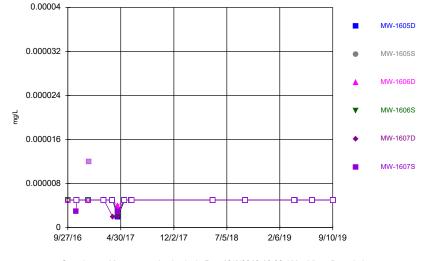

Constituent: Lead, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

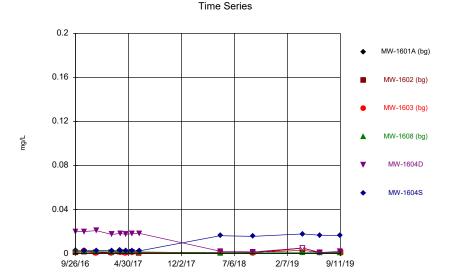
Constituent: Lithium, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series

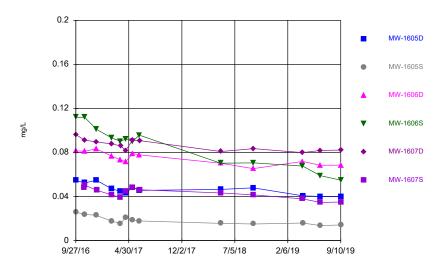
Constituent: Lithium, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas¹⁸ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Time Series

Constituent: Mercury, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

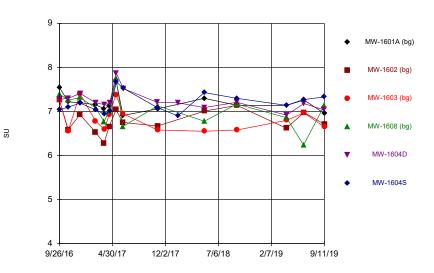

Sanitas $^{\rm \tiny N}$ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

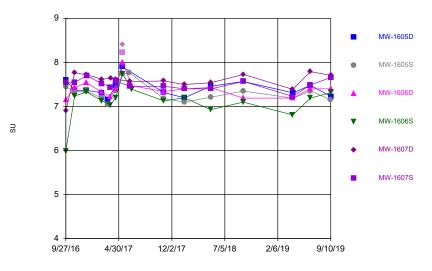

Constituent: Mercury, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

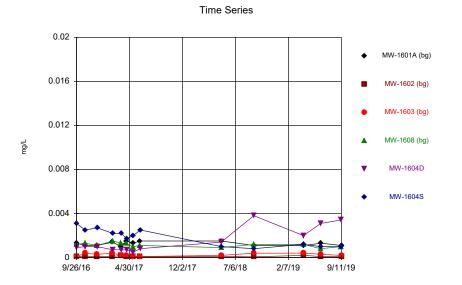
Constituent: Molybdenum, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG


Time Series

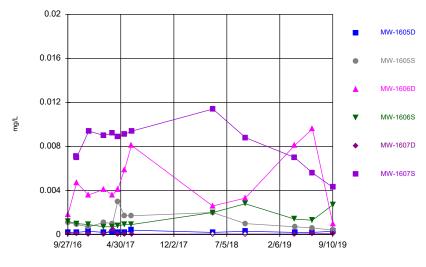
Constituent: Molybdenum, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



Time Series

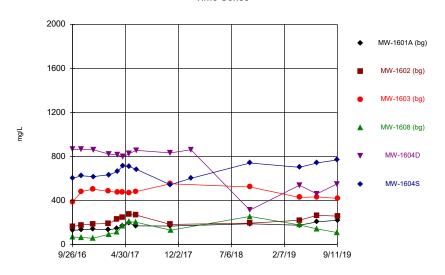

Constituent: pH, field Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

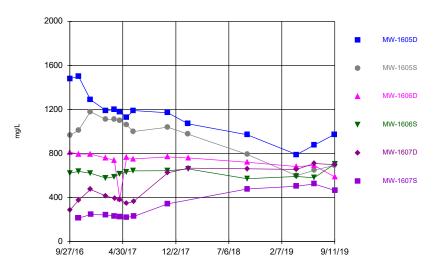
Time Series


Constituent: pH, field Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

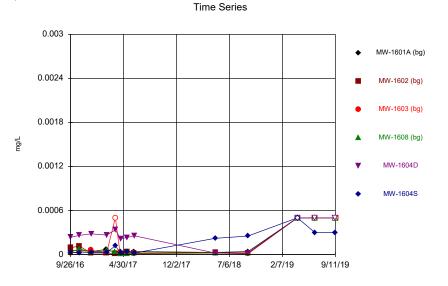
Constituent: Selenium, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas[™] v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Time Series

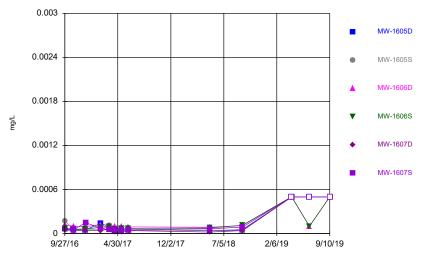

Constituent: Selenium, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series



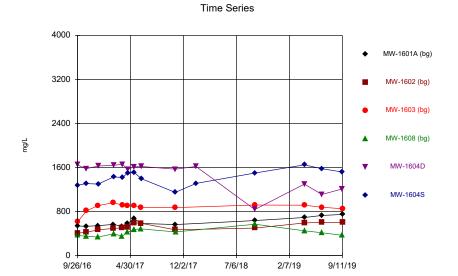
Constituent: Sulfate, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Time Series

Sanitas[™] v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

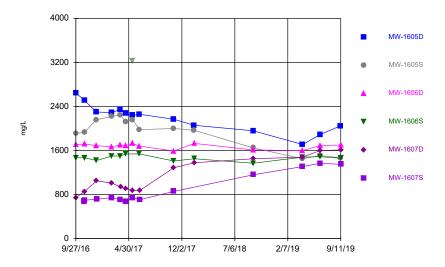
Constituent: Thallium, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas[™] v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series



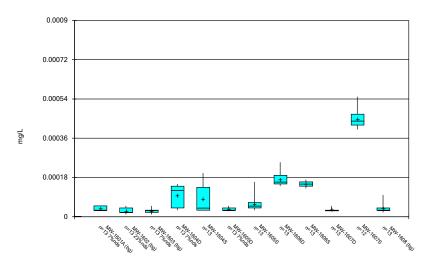
Constituent: Thallium, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Sulfate, total Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas[™] v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Time Series

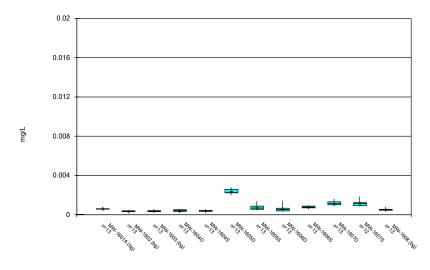
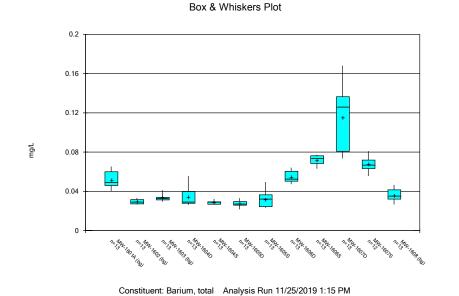

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/1/2019 10:02 AM View: Descriptive Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

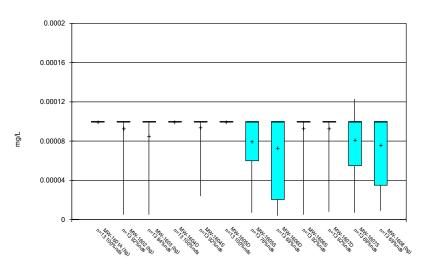
FIGURE B: BOX PLOTS

Box & Whiskers Plot

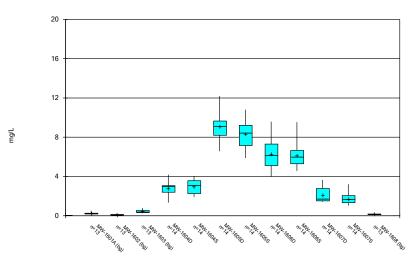


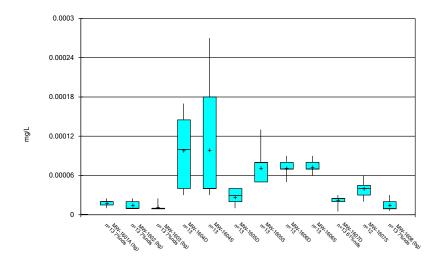
Constituent: Antimony, total Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Arsenic, total Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

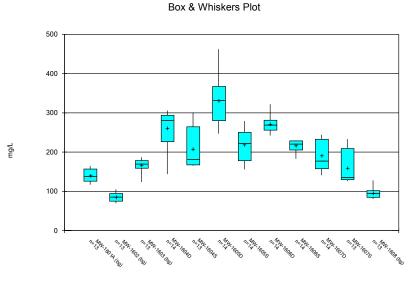
Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP




Constituent: Beryllium, total Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

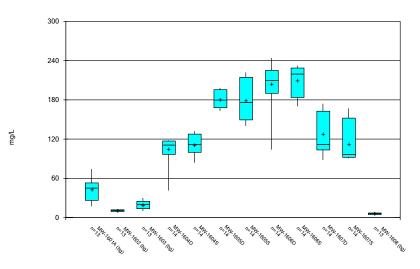
Box & Whiskers Plot

Box & Whiskers Plot

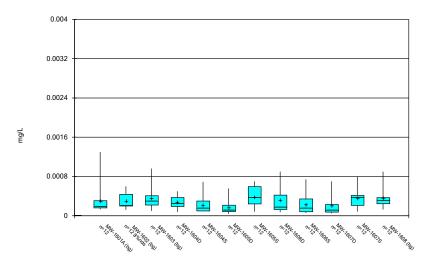


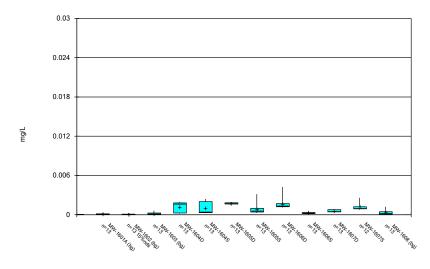
Constituent: Boron, total Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Cadmium, total Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

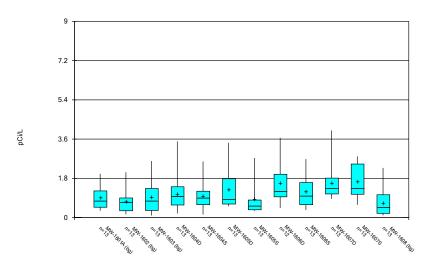

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Calcium, total Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

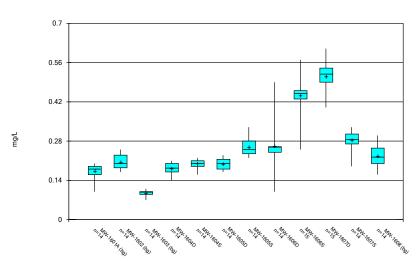

Box & Whiskers Plot


Constituent: Chloride, total Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Box & Whiskers Plot

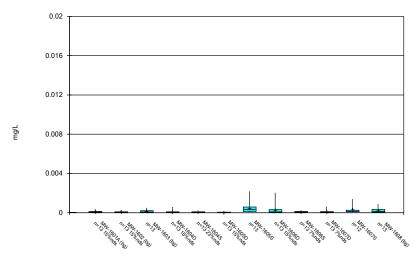

Constituent: Chromium, total Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

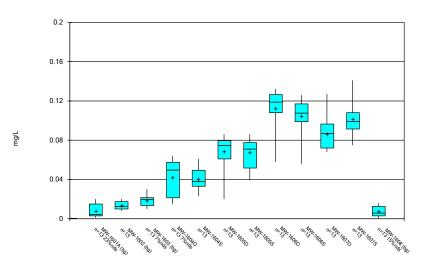
Constituent: Cobalt, total Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

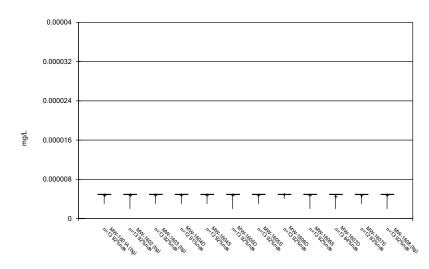
Box & Whiskers Plot

Constituent: Combined Radium 226 + 228 Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas[™] v.9.6.23 Groundwater Stats Consulting. UG



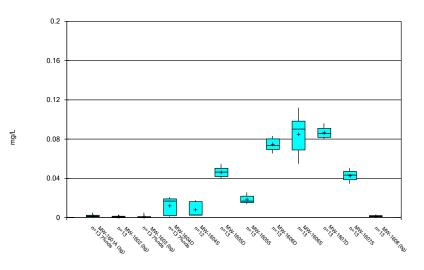

Constituent: Fluoride, total Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Box & Whiskers Plot

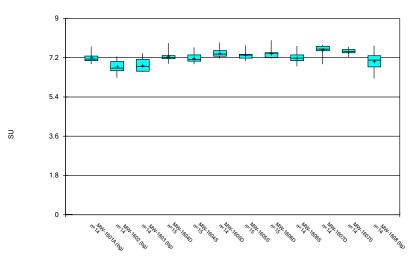

Constituent: Lead, total Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

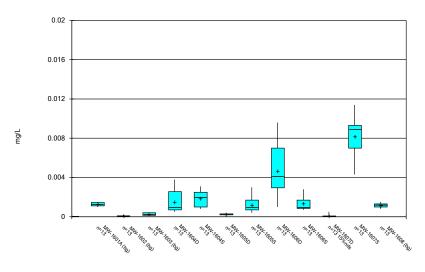
Constituent: Lithium, total Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

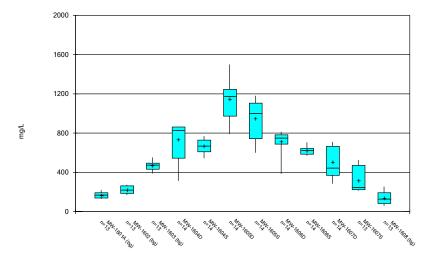

Box & Whiskers Plot

Constituent: Mercury, total Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Box & Whiskers Plot

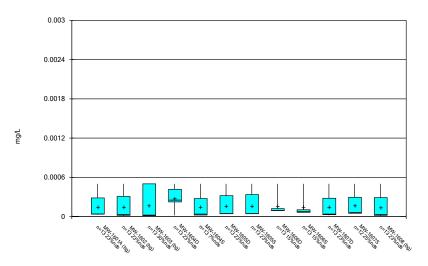

Constituent: Molybdenum, total Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Box & Whiskers Plot


Box & Whiskers Plot

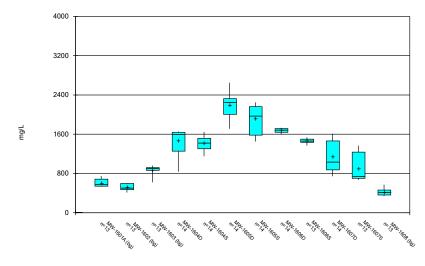
Constituent: Selenium, total Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Sulfate, total Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Box & Whiskers Plot



Constituent: Thallium, total Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Box & Whiskers Plot

Constituent: pH, field Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Box & Whiskers Plot

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/25/2019 1:15 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

FIGURE C: OUTLIER SUMMARY

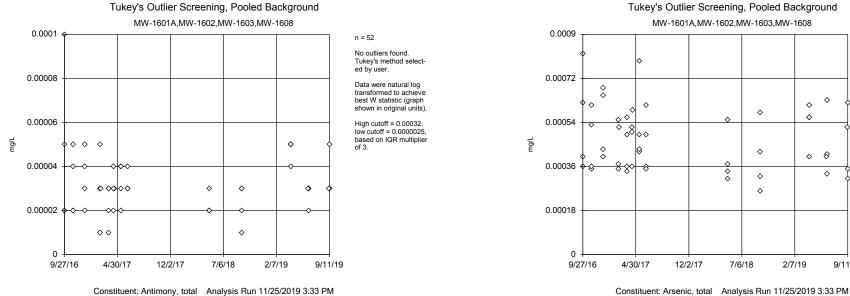
MW-1607S Arsenic, total (mg/L) anic, total (mg/L) MW-1607S Barium, total (mg/L) MW-1607S MW-1601A Chromium, total (mg/L) MW-1602 Chromium, total (mg/L) MW-1603S Chromium, total (mg/L) MW-1605D Chromium, total (mg/L) MW-1605D Chromium, total (mg/L) MW-1605D Chromium, total (mg/L) MW-1605D Chromium, total (mg/L) 9/26/2016 9/27/2016 11/1/2016 0.0013 (o) 12/19/2016 0.00165 (o) 0.00237 (o) 0.00278 (o) 0.00229 (o) 12/20/2016 0.00197 (o) 0.00285 (o) 0.00207 (o) 12/21/2016 0.0112 (o) 0.114 (o) 4/18/2017 5/16/2017 MW-1607S Chromium, total (mg/L) MW-1607S Cobalt, total (mg/L) MW-1604S Combined Radium 226 + 228 (pCi/L) MW-1607S Lead, total (mg/L) MW-1607S Mercury, total (mg/L) MW-1604S Molybdenum, total (mg/L) MW-1607S Mercury, total (mg/L) MW-1604S Molybdenum, total (mg/L) MW-1607S Mercury, total (mg/L) MW-1604S Molybdenum, total (mg/L) MW-1607S PH, field (SU) 0.0032 (o) 0.136 (o) 9/26/2016 8.459 (o) 9/27/2016 11/1/2016 12/19/2016 12/20/2016 12/21/2016 0.0031 (o) 0.0201 (o) 0.011 (o) 1.2E-05 (o) 4/18/2017 0.00204 (o) 5/16/2017 8.41 (o) 8.23 (o)

MW-1606S Total Dissolved Solids [TDS] (mg/L)

 9/26/2016
 9/27/2016

 11/1/2016
 12/19/2016

 12/20/2016
 12/20/2016


 12/21/2016
 12/20/2016

 5/16/2017
 3230 (o)

Upgradient Outlier Analysis - All Results (No Significant Results)

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Printed 11/25/2019, 3:35 PM

Constituent	Well	<u>Outlier</u>	Value(s)	Method	<u>Alpha</u>	<u>N</u>	Mean	Std. Dev.	Distribution	Normality Test
Antimony, total (mg/L)	MW-1601A,MW-1602,	No	n/a	NP	NaN	52	0.00003212	0.00001473	ln(x)	ShapiroFrancia
Arsenic, total (mg/L)	MW-1601A,MW-1602,	No	n/a	NP	NaN	52	0.0004713	0.000129	ln(x)	ShapiroFrancia
Barium, total (mg/L)	MW-1601A,MW-1602,	No	n/a	NP	NaN	52	0.03761	0.01006	ln(x)	ShapiroFrancia
Beryllium, total (mg/L)	MW-1601A,MW-1602,	n/a	n/a	NP	NaN	52	0.00008856	0.00002982	unknown	ShapiroFrancia
Boron, total (mg/L)	MW-1601A,MW-1602,	No	n/a	NP	NaN	52	0.2418	0.1525	ln(x)	ShapiroFrancia
Cadmium, total (mg/L)	MW-1601A,MW-1602,	No	n/a	NP	NaN	52	0.00001465	0.0000061	ln(x)	ShapiroFrancia
Calcium, total (mg/L)	MW-1601A,MW-1602,	No	n/a	NP	NaN	52	121.8	35.97	ln(x)	ShapiroFrancia
Chloride, total (mg/L)	MW-1601A,MW-1602,	No	n/a	NP	NaN	52	19.75	16.83	ln(x)	ShapiroFrancia
Chromium, total (mg/L)	MW-1601A,MW-1602,	No	n/a	NP	NaN	52	0.0004463	0.0005233	ln(x)	ShapiroFrancia
Cobalt, total (mg/L)	MW-1601A,MW-1602,	No	n/a	NP	NaN	52	0.0001664	0.0002052	ln(x)	ShapiroFrancia
Combined Radium 226 + 228 (pCi/L)	MW-1601A,MW-1602,	No	n/a	NP	NaN	52	0.8155	0.6349	ln(x)	ShapiroFrancia
Fluoride, total (mg/L)	MW-1601A,MW-1602,	No	n/a	NP	NaN	56	0.1741	0.05624	x^2	ShapiroFrancia
Lead, total (mg/L)	MW-1601A,MW-1602,	No	n/a	NP	NaN	52	0.0001446	0.0001551	ln(x)	ShapiroFrancia
Lithium, total (mg/L)	MW-1601A,MW-1602,	No	n/a	NP	NaN	52	0.01169	0.006974	sqrt(x)	ShapiroFrancia
Mercury, total (mg/L)	MW-1601A,MW-1602,	n/a	n/a	NP	NaN	52	0.000004808	6.9e-7	unknown	ShapiroFrancia
Molybdenum, total (mg/L)	MW-1601A,MW-1602,	No	n/a	NP	NaN	52	0.001362	0.00104	x^(1/3)	ShapiroFrancia
Selenium, total (mg/L)	MW-1601A,MW-1602,	No	n/a	NP	NaN	52	0.000691	0.0005369	sqrt(x)	ShapiroFrancia
Sulfate, total (mg/L)	MW-1601A,MW-1602,	No	n/a	NP	NaN	52	249.7	139.5	ln(x)	ShapiroFrancia
Thallium, total (mg/L)	MW-1601A,MW-1602,	No	n/a	NP	NaN	52	0.0001509	0.0002046	ln(x)	ShapiroFrancia
Total Dissolved Solids [TDS] (mg/L)	MW-1601A,MW-1602,	No	n/a	NP	NaN	52	605.8	185.6	ln(x)	ShapiroFrancia

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

n = 52

 \diamond

 \diamond

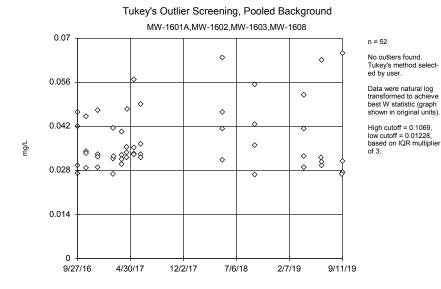
٥

2/7/19

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

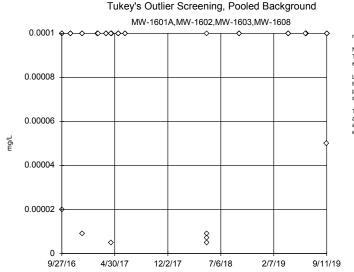
◊ ◊

 \diamond


9/11/19

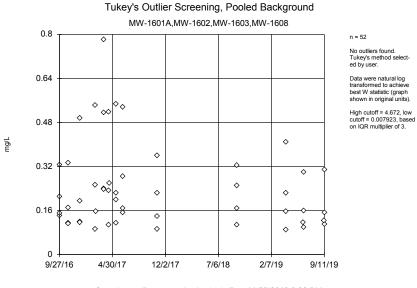
No outliers found. Tukey's method select ed by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units)

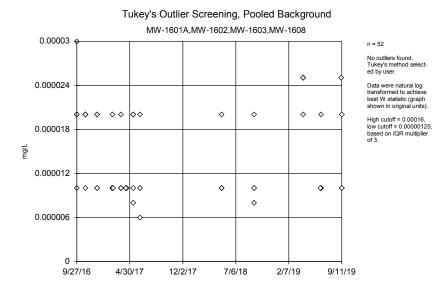

High cutoff = 0.002108, low cutoff = 0.00009564, based on IQR multiplier of 3.

Sanitas[™] v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Barium, total Analysis Run 11/25/2019 3:33 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

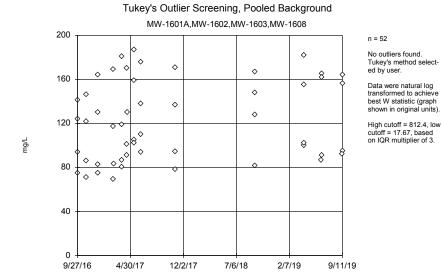


n = 52 No outliers found. Tukey's method selected by user.


Ladder of Powers transformations did not improve normality; analysis run on raw data.

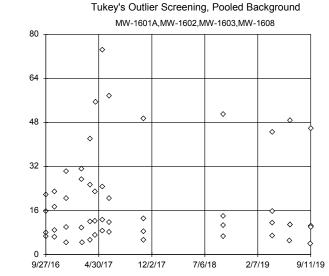
The results were invalidated, because the lower and upper quartiles are equal.

Constituent: Beryllium, total Analysis Run 11/25/2019 3:33 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



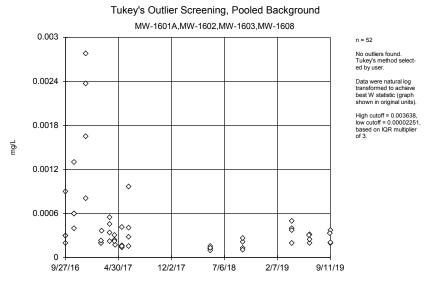
Constituent: Boron, total Analysis Run 11/25/2019 3:33 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Cadmium, total Analysis Run 11/25/2019 3:33 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

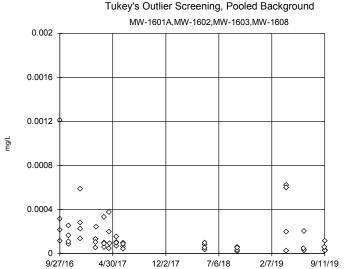

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Calcium, total Analysis Run 11/25/2019 3:33 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

mg/L

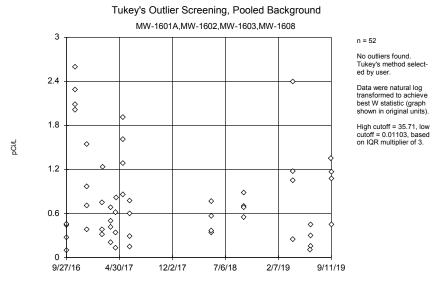

n = 52

No outliers found. Tukey's method selected by user.

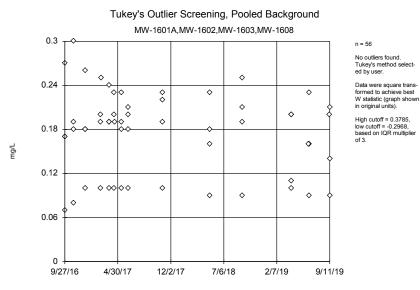

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 672.8, low cutoff = 0.3085, based on IQR multiplier of 3.

Constituent: Chloride, total Analysis Run 11/25/2019 3:33 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



Constituent: Chromium, total Analysis Run 11/25/2019 3:33 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Cobalt, total Analysis Run 11/25/2019 3:33 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

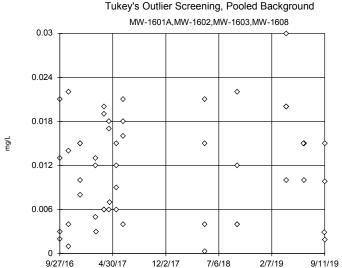
Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Combined Radium 226 + 228 Analysis Run 11/25/2019 3:33 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Fluoride, total Analysis Run 11/25/2019 3:33 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

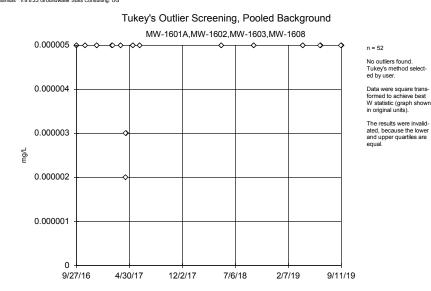
Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.01119

No outliers found. Tukey's method select-

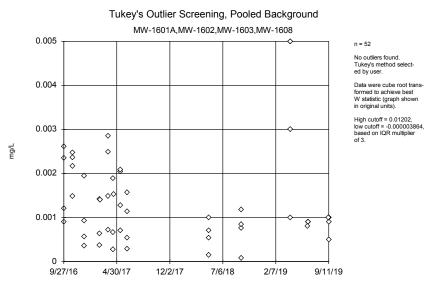

n = 52

ed by user.

low cutoff = 9.6e-7, based on IQR multiplier of 3.


Tukey's Outlier Screening, Pooled Background MW-1601A, MW-1602, MW-1603, MW-1608 0.0009 n = 52 No outliers found. Tukey's method selected by user. 0.00072 Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.004187, low cutoff = 0.000002521, 0.00054 based on IQR multiplier of 3. \diamond mg/L \diamond 8 0.00036 \diamond \diamond \diamond 0 0.00018 \diamond 8 \diamond \$ 8°00 \diamond ٥ \diamond 8 ۵ \diamond Ω 2/7/19 9/27/16 4/30/17 12/2/17 7/6/18 9/11/19

Constituent: Lead, total Analysis Run 11/25/2019 3:33 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Lithium, total Analysis Run 11/25/2019 3:33 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Mercury, total Analysis Run 11/25/2019 3:33 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

n = 52

No outliers found. Tukey's method selected by user.

Data were square root transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.08497, low cutoff = -0.007916, based on IQR multiplier of 3.

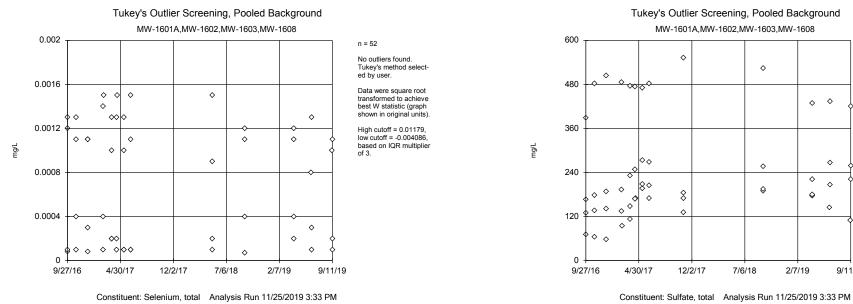
Constituent: Molybdenum, total Analysis Run 11/25/2019 3:33 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

 \diamond

8

 \diamond

12/2/17


 \diamond

 \diamond

۵

7/6/18

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

n = 52

 \diamond \diamond

 \diamond

 \diamond

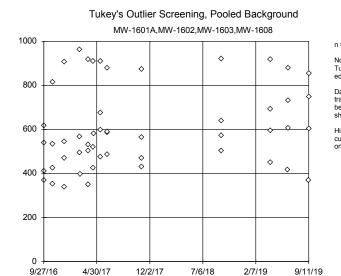
 \diamond

9/11/19

 \diamond

۵

2/7/19

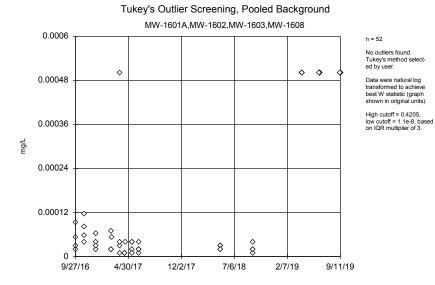

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 2887, low cutoff = 17.72, based on IQR multiplier of 3.

Sanitas[™] v.9.6.23 Groundwater Stats Consulting. UG

mg/L


n = 52

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 2898, low cutoff = 119.7, based on IQR multiplier of 3.

Constituent: Thallium, total Analysis Run 11/25/2019 3:33 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/25/2019 3:33 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Outlier Analysis - Significant Results

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Printed 11/25/2019, 3:32 PM

Constituent	Well	Outlier	Value(s)	Method	<u>Alpha</u> <u>N</u>	Mean	Std. Dev.	Distribution	Normality Test
Antimony, total (mg/L)	MW-1605D	Yes	0.0001	NP	NaN 13	0.00003923	0.00001891	ln(x)	ShapiroWilk
Antimony, total (mg/L)	MW-1607S	Yes	0.00084	NP	NaN 13	0.00048	0.0001156	ln(x)	ShapiroWilk
Arsenic, total (mg/L)	MW-1607S	Yes	0.0112	NP	NaN 13	0.001939	0.002798	ln(x)	ShapiroWilk
Cobalt, total (mg/L)	MW-1607S	Yes	0.0201	NP	NaN 13	0.002706	0.005262	ln(x)	ShapiroWilk
Fluoride, total (mg/L)	MW-1606D	Yes	0.1,0.49	NP	NaN 14	0.2614	0.07853	sqrt(x)	ShapiroWilk
Fluoride, total (mg/L)	MW-1606S	Yes	0.57,0.54,0.25,0.28	NP	NaN 15	0.442	0.08205	x^3	ShapiroWilk
pH, field (SU)	MW-1604D	Yes	7.87	NP	NaN 15	7.252	0.2219	ln(x)	ShapiroWilk
pH, field (SU)	MW-1607D	Yes	6.9,8.41	NP	NaN 15	7.633	0.3047	x^(1/3)	ShapiroWilk
pH, field (SU)	MW-1607S	Yes	8.23	NP	NaN 15	7.549	0.2201	ln(x)	ShapiroWilk
Thallium, total (mg/L)	MW-1606D	Yes	0.0005,0.0005	NP	NaN 13	0.0001628	0.0001501	ln(x)	ShapiroWilk
Thallium, total (mg/L)	MW-1606S	Yes	0.0005,0.0005	NP	NaN 13	0.000144	0.0001588	ln(x)	ShapiroWilk

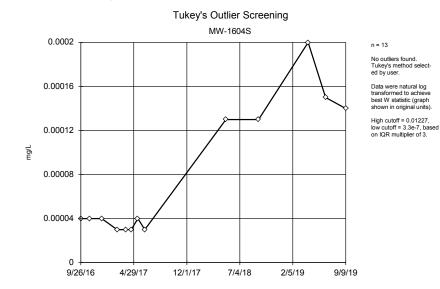
Outlier Analysis - All Results

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Printed 11/25/2019, 3:32 PM

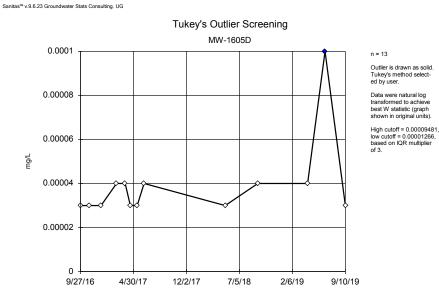
	Mountaineer	BAP (Dient: Geosyntec Data: Mountaineer	BAP Printe	20 11/2:	5/201	9, 3:32 PIVI			
Constituent	Well	<u>Outlier</u>	Value(s)	Method	<u>Alpha</u>	N	Mean	Std. Dev.	Distribution	Normality Test
Antimony, total (mg/L)	MW-1604D	No	n/a	NP	NaN	13	0.0001131	0.00006223	normal	ShapiroWilk
Antimony, total (mg/L)	MW-1604S	No	n/a	NP	NaN	13	0.00007923	0.00006075	ln(x)	ShapiroWilk
Antimony, total (mg/L)	MW-1605D	Yes	0.0001	NP	NaN	13	0.00003923	0.00001891	ln(x)	ShapiroWilk
Antimony, total (mg/L)	MW-1605S	No	n/a	NP	NaN	13	0.00005769	0.0000332	ln(x)	ShapiroWilk
Antimony, total (mg/L)	MW-1606D	No	n/a	NP	NaN	13	0.0001692	0.00002957	ln(x)	ShapiroWilk
Antimony, total (mg/L)	MW-1606S	No	n/a	NP	NaN	13	0.0001508	0.00001256	x^4	ShapiroWilk
Antimony, total (mg/L)	MW-1607D	n/a	n/a	NP	NaN	13	0.00003231	0.000005991	unknown	ShapiroWilk
Antimony, total (mg/L)	MW-1607S	Yes	0.00084	NP	NaN	13	0.00048	0.0001156	ln(x)	ShapiroWilk
Arsenic, total (mg/L)	MW-1604D	No	n/a	NP	NaN	13	0.0004308	0.0001053	normal	ShapiroWilk
Arsenic, total (mg/L)	MW-1604S	No	n/a	NP	NaN	13	0.0004062	0.00006959	ln(x)	ShapiroWilk
Arsenic, total (mg/L)	MW-1605D	No	n/a	NP	NaN	13	0.002381	0.0002641	ln(x)	ShapiroWilk
Arsenic, total (mg/L)	MW-1605S	No	n/a	NP		13	0.0007492	0.0002476	ln(x)	ShapiroWilk
Arsenic, total (mg/L)	MW-1606D	No	n/a	NP		13	0.0005846	0.0002808	ln(x)	ShapiroWilk
Arsenic, total (mg/L)	MW-1606S	No	n/a	NP		13	0.0007915	0.0001003	x^2	ShapiroWilk
Arsenic, total (mg/L)	MW-1607D	No	n/a	NP		13	0.001182	0.0002155		ShapiroWilk
									ln(x)	
Arsenic, total (mg/L)	MW-1607S	Yes	0.0112	NP		13	0.001939	0.002798	ln(x)	ShapiroWilk
Barium, total (mg/L)	MW-1604D	No	n/a	NP		13	0.03432	0.009917	ln(x)	ShapiroWilk
Barium, total (mg/L)	MW-1604S	No	n/a	NP		13	0.02875	0.001746	ln(x)	ShapiroWilk
Barium, total (mg/L)	MW-1605D	No	n/a	NP		13	0.02762	0.002947	normal	ShapiroWilk
Barium, total (mg/L)	MW-1605S	No	n/a	NP		13	0.03187	0.007452	ln(x)	ShapiroWilk
Barium, total (mg/L)	MW-1606D	No	n/a	NP	NaN	13	0.05493	0.005769	ln(x)	ShapiroWilk
Barium, total (mg/L)	MW-1606S	No	n/a	NP	NaN	13	0.07192	0.004669	x^6	ShapiroWilk
Barium, total (mg/L)	MW-1607D	No	n/a	NP	NaN	13	0.1155	0.0317	x^2	ShapiroWilk
Barium, total (mg/L)	MW-1607S	No	n/a	NP	NaN	13	0.07109	0.01499	ln(x)	ShapiroWilk
Beryllium, total (mg/L)	MW-1604D	n/a	n/a	NP	NaN	13	0.0001	0	unknown	ShapiroWilk
Beryllium, total (mg/L)	MW-1604S	n/a	n/a	NP	NaN	13	0.00009415	0.00002108	unknown	ShapiroWilk
Beryllium, total (mg/L)	MW-1605D	n/a	n/a	NP	NaN	13	0.0001	0	unknown	ShapiroWilk
Beryllium, total (mg/L)	MW-1605S	No	n/a	NP	NaN	13	0.00007969	0.0000387	ln(x)	ShapiroWilk
Beryllium, total (mg/L)	MW-1606D	No	n/a	NP	NaN	13	0.00007308	0.0000425	ln(x)	ShapiroWilk
Beryllium, total (mg/L)	MW-1606S	n/a	n/a	NP	NaN	13	0.00009269	0.00002635	unknown	ShapiroWilk
Beryllium, total (mg/L)	MW-1607D	n/a	n/a	NP	NaN	13	0.00009292	0.00002552	unknown	ShapiroWilk
Beryllium, total (mg/L)	MW-1607S	n/a	n/a	NP	NaN	13	0.00008077	0.0000414	unknown	ShapiroWilk
Cadmium, total (mg/L)	MW-1604D	No	n/a	NP	NaN	13	0.00009769	0.00005418	normal	ShapiroWilk
Cadmium, total (mg/L)	MW-1604S	No	n/a	NP	NaN	13	0.00009923	0.00008636	ln(x)	ShapiroWilk
Cadmium, total (mg/L)	MW-1605D	No	n/a	NP	NaN	13	0.00002692	0.00001109	normal	ShapiroWilk
Cadmium, total (mg/L)	MW-1605S	No	n/a	NP	NaN	13	0.00007154	0.0000223	ln(x)	ShapiroWilk
Cadmium, total (mg/L)	MW-1606D	No	n/a	NP	NaN	13	0.00007154	0.000009871	x^2	ShapiroWilk
Cadmium, total (mg/L)	MW-1606S	No	n/a	NP	NaN	13	0.00007308	0.000008549	sqrt(x)	ShapiroWilk
Cadmium, total (mg/L)	MW-1607D	n/a	n/a	NP	NaN	13	0.00002192	0.000006934	unknown	ShapiroWilk
Cadmium, total (mg/L)	MW-1607S	No	n/a	NP	NaN	13	0.00005385	0.00005124	ln(x)	ShapiroWilk
Chromium, total (mg/L)	MW-1604D	No	n/a	NP		13	0.0003165	0.000187	ln(x)	ShapiroWilk
Chromium, total (mg/L)	MW-1604S	No	n/a	NP		13	0.0003566	0.0005136	ln(x)	ShapiroWilk
Chromium, total (mg/L)	MW-1605D	No	n/a	NP		13	0.0003362	0.0006025	ln(x)	ShapiroWilk
Chromium, total (mg/L)	MW-1605S	No	n/a	NP		13	0.0005741	0.0007123	ln(x)	ShapiroWilk
Chromium, total (mg/L)	MW-1606D	No	n/a	NP		13	0.0003512	0.0003008		ShapiroWilk
Chromium, total (mg/L)	MW-1606S			NP			0.0003065		ln(x)	
		No	n/a			13		0.0003456	ln(x)	ShapiroWilk
Chromium, total (mg/L)	MW-1607D	No	n/a	NP		13	0.0003495	0.000558	In(x)	ShapiroWilk
Chromium, total (mg/L)	MW-1607S	No	n/a	NP		13	0.0005633	0.0007838	In(x)	ShapiroWilk
Cobalt, total (mg/L)	MW-1604D	No	n/a	NP		13	0.001191	0.0007762	x^6	ShapiroWilk
Cobalt, total (mg/L)	MW-1604S	No	n/a	NP		13	0.001017	0.0008896	ln(x)	ShapiroWilk
Cobalt, total (mg/L)	MW-1605D	No	n/a	NP		13	0.001721	0.0001182	x^2	ShapiroWilk
Cobalt, total (mg/L)	MW-1605S	No	n/a	NP			0.0008512	0.0007502	ln(x)	ShapiroWilk
Cobalt, total (mg/L)	MW-1606D	No	n/a	NP	NaN	13	0.001655	0.0008412	ln(x)	ShapiroWilk
Cobalt, total (mg/L)	MW-1606S	No	n/a	NP	NaN	13	0.0003035	0.00008138	ln(x)	ShapiroWilk
Cobalt, total (mg/L)	MW-1607D	No	n/a	NP	NaN	13	0.0005857	0.0001814	ln(x)	ShapiroWilk

Outlier Analysis - All Results

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Printed 11/25/2019, 3:32 PM

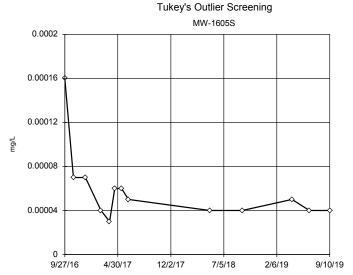

	Wountaineer		bient. Geosyntee Data. Mountaineer	DAI TIIII	u 11/20	// 201	3, 3.32 T W			
Constituent	Well	Outlier	Value(s)	Method	<u>Alpha</u>	N	Mean	Std. Dev.	Distribution	Normality Test
Cobalt, total (mg/L)	MW-1607S	Yes	0.0201	NP	NaN	13	0.002706	0.005262	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-1604D	No	n/a	NP	NaN	13	1.094	0.8316	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-1604S	No	n/a	NP	NaN	13	1.003	0.5981	sqrt(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-1605D	No	n/a	NP	NaN	13	1.267	0.9067	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-1605S	No	n/a	NP	NaN	13	0.8627	0.8402	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-1606D	No	n/a	NP	NaN	13	2.111	2.124	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-1606S	No	n/a	NP	NaN	13	1.197	0.6873	x^(1/3)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-1607D	No	n/a	NP	NaN	13	1.58	0.8076	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW-1607S	No	n/a	NP	NaN	13	1.64	0.7717	ln(x)	ShapiroWilk
Fluoride, total (mg/L)	MW-1604D	No	n/a	NP	NaN	14	0.1829	0.02054	x^4	ShapiroWilk
Fluoride, total (mg/L)	MW-1604S	No	n/a	NP	NaN	14	0.2007	0.01542	x^6	ShapiroWilk
Fluoride, total (mg/L)	MW-1605D	No	n/a	NP	NaN	14	0.1971	0.01858	sqrt(x)	ShapiroWilk
Fluoride, total (mg/L)	MW-1605S	No	n/a	NP	NaN	14	0.2593	0.03362	ln(x)	ShapiroWilk
Fluoride, total (mg/L)	MW-1606D	Yes	0.1,0.49	NP	NaN	14	0.2614	0.07853	sqrt(x)	ShapiroWilk
Fluoride, total (mg/L)	MW-1606S	Yes	0.57,0.54,0.25,0.28	NP	NaN	15	0.442	0.08205	x^3	ShapiroWilk
Fluoride, total (mg/L)	MW-1607D	No	n/a	NP	NaN	15	0.5107	0.0492	x^2	ShapiroWilk
Fluoride, total (mg/L)	MW-1607S	No	n/a	NP	NaN	14	0.2829	0.03315	x^4	ShapiroWilk
Lead, total (mg/L)	MW-1604D	No	n/a	NP	NaN	13	0.000112	0.0001611	ln(x)	ShapiroWilk
Lead, total (mg/L)		No	n/a	NP			0.00007731	0.00003657		ShapiroWilk
Lead, total (mg/L)		No	n/a	NP			0.00003885	0.00003261	ln(x)	ShapiroWilk
Lead, total (mg/L)	MW-1605S	No	n/a	NP			0.0004746	0.0005588	ln(x)	ShapiroWilk
Lead, total (mg/L)	MW-1606D	No	n/a	NP			0.0003067	0.0005448	ln(x)	ShapiroWilk
Lead, total (mg/L)	MW-1606S	No	n/a	NP			0.0001061	0.00006136	x^(1/3)	ShapiroWilk
Lead, total (mg/L)	MW-1607D	No	n/a	NP			0.0001143	0.0001597	In(x)	ShapiroWilk
Lead, total (mg/L)	MW-1607S	No	n/a	NP			0.001163	0.002989		ShapiroWilk
Lithium, total (mg/L)	MW-1604D	No	n/a	NP			0.04214	0.01777	x^3	ShapiroWilk
Lithium, total (mg/L)	MW-1604D	No	n/a	NP			0.04214	0.01035	x^(1/3)	ShapiroWilk
Lithium, total (mg/L)	MW-1605D	No	n/a	NP			0.06839	0.01741		ShapiroWilk
	MW-1605D			NP					x^4 x^3	
Lithium, total (mg/L)		No	n/a				0.06734	0.01465		ShapiroWilk
Lithium, total (mg/L)	MW-1606D	No	n/a	NP			0.1121	0.02078	x^6	ShapiroWilk
Lithium, total (mg/L)	MW-1606S	No	n/a	NP			0.1049	0.01791	x^5	ShapiroWilk
Lithium, total (mg/L)	MW-1607D	No	n/a	NP			0.08669	0.01771	ln(x)	ShapiroWilk
Lithium, total (mg/L)	MW-1607S	No	n/a	NP			0.1013	0.01604	ln(x)	ShapiroWilk
Mercury, total (mg/L)		n/a	n/a	NP			0.000007231	0.000008662	unknown	ShapiroWilk
Mercury, total (mg/L)		n/a	n/a	NP		13	0.000004846	5.5e-7		ShapiroWilk
Mercury, total (mg/L)		n/a	n/a	NP			0.000004769	8.3e-7	unknown	ShapiroWilk
Mercury, total (mg/L)	MW-1605S	n/a	n/a	NP			0.000004846	5.5e-7	unknown	ShapiroWilk
Mercury, total (mg/L)		n/a	n/a	NP			0.000004923	2.8e-7	unknown	ShapiroWilk
Mercury, total (mg/L)		n/a	n/a	NP				8.3e-7		ShapiroWilk
Mercury, total (mg/L)		n/a	n/a	NP			0.000004538	0.000001127		ShapiroWilk
Mercury, total (mg/L)		n/a	n/a	NP			0.000005231	0.000002166		ShapiroWilk
Molybdenum, total (mg/L)	MW-1604D	No	n/a	NP	NaN	13	0.01243	0.008423	x^6	ShapiroWilk
Molybdenum, total (mg/L)	MW-1604S	No	n/a	NP	NaN	13	0.007955	0.00705	x^6	ShapiroWilk
Molybdenum, total (mg/L)	MW-1605D	No	n/a	NP	NaN	13	0.0465	0.005091	ln(x)	ShapiroWilk
Molybdenum, total (mg/L)	MW-1605S	No	n/a	NP	NaN	13	0.01824	0.003943	ln(x)	ShapiroWilk
Molybdenum, total (mg/L)	MW-1606D	No	n/a	NP	NaN	13	0.07448	0.005767	ln(x)	ShapiroWilk
Molybdenum, total (mg/L)	MW-1606S	No	n/a	NP	NaN	13	0.08529	0.01896	x^2	ShapiroWilk
Molybdenum, total (mg/L)	MW-1607D	No	n/a	NP	NaN	13	0.08633	0.005134	ln(x)	ShapiroWilk
Molybdenum, total (mg/L)	MW-1607S	No	n/a	NP	NaN	13	0.04281	0.00509	x^3	ShapiroWilk
pH, field (SU)	MW-1601A (bg)	No	n/a	NP	NaN	14	7.2	0.2133	ln(x)	ShapiroWilk
pH, field (SU)	MW-1602 (bg)	No	n/a	NP	NaN	14	6.798	0.2696	normal	ShapiroWilk
pH, field (SU)	MW-1603 (bg)	No	n/a	NP	NaN	14	6.858	0.3077	ln(x)	ShapiroWilk
pH, field (SU)	MW-1604D	Yes	7.87	NP	NaN	15	7.252	0.2219	ln(x)	ShapiroWilk
pH, field (SU)	MW-1604S	No	n/a	NP	NaN	15	7.199	0.2212	ln(x)	ShapiroWilk
pH, field (SU)	MW-1605D	No	n/a	NP	NaN	14	7.411	0.193	ln(x)	ShapiroWilk

Outlier Analysis - All Results


Constituent	Well	<u>Outlier</u>	Value(s)	Method	<u>Alpha</u>	N	Mean	Std. Dev.	Distribution	Normality Test
pH, field (SU)	MW-1605S	No	n/a	NP	NaN	15	7.319	0.2092	ln(x)	ShapiroWilk
pH, field (SU)	MW-1606D	No	n/a	NP	NaN	15	7.395	0.2023	ln(x)	ShapiroWilk
pH, field (SU)	MW-1606S	No	n/a	NP	NaN	15	7.115	0.3771	x^6	ShapiroWilk
pH, field (SU)	MW-1607D	Yes	6.9,8.41	NP	NaN	15	7.633	0.3047	x^(1/3)	ShapiroWilk
pH, field (SU)	MW-1607S	Yes	8.23	NP	NaN	15	7.549	0.2201	ln(x)	ShapiroWilk
pH, field (SU)	MW-1608 (bg)	No	n/a	NP	NaN	14	7.039	0.3664	x^3	ShapiroWilk
Selenium, total (mg/L)	MW-1604D	No	n/a	NP	NaN	13	0.001538	0.001154	ln(x)	ShapiroWilk
Selenium, total (mg/L)	MW-1604S	No	n/a	NP	NaN	13	0.001838	0.0007698	normal	ShapiroWilk
Selenium, total (mg/L)	MW-1605D	No	n/a	NP	NaN	13	0.0002385	0.00006504	ln(x)	ShapiroWilk
Selenium, total (mg/L)	MW-1605S	No	n/a	NP	NaN	13	0.001223	0.0007108	ln(x)	ShapiroWilk
Selenium, total (mg/L)	MW-1606D	No	n/a	NP	NaN	13	0.004654	0.002584	x^(1/3)	ShapiroWilk
Selenium, total (mg/L)	MW-1606S	No	n/a	NP	NaN	13	0.001331	0.0007216	ln(x)	ShapiroWilk
Selenium, total (mg/L)	MW-1607D	No	n/a	NP	NaN	13	0.00008846	0.0001256	ln(x)	ShapiroWilk
Selenium, total (mg/L)	MW-1607S	No	n/a	NP	NaN	13	0.008169	0.001881	x^2	ShapiroWilk
Thallium, total (mg/L)	MW-1604D	No	n/a	NP	NaN	13	0.0002787	0.0001563	normal	ShapiroWilk
Thallium, total (mg/L)	MW-1604S	No	n/a	NP	NaN	13	0.00026	0.0005348	ln(x)	ShapiroWilk
Thallium, total (mg/L)	MW-1605D	No	n/a	NP	NaN	13	0.0001622	0.0001944	ln(x)	ShapiroWilk
Thallium, total (mg/L)	MW-1605S	No	n/a	NP	NaN	13	0.0001666	0.0001935	ln(x)	ShapiroWilk
Thallium, total (mg/L)	MW-1606D	Yes	0.0005,0.0005	NP	NaN	13	0.0001628	0.0001501	ln(x)	ShapiroWilk
Thallium, total (mg/L)	MW-1606S	Yes	0.0005,0.0005	NP	NaN	13	0.000144	0.0001588	ln(x)	ShapiroWilk
Thallium, total (mg/L)	MW-1607D	No	n/a	NP	NaN	13	0.000144	0.0002033	ln(x)	ShapiroWilk
Thallium, total (mg/L)	MW-1607S	No	n/a	NP	NaN	13	0.0001686	0.0001908	ln(x)	ShapiroWilk

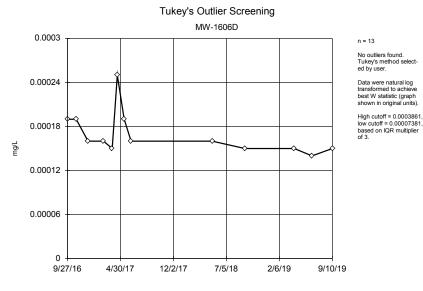
Tukey's Outlier Screening MW-1604D 0.0003 n = 13 No outliers found. Tukey's method selected by user. 0.00024 Ladder of Powers trans-formations did not improve normality; analysis run on raw data. High cutoff = 0.00046low cutoff = -0.000275, 0.00018 based on IQR multiplier of 3. mg/L 0.00012 0.00006 Ω 9/26/16 4/29/17 12/1/17 7/4/18 2/5/19 9/9/19

Constituent: Antimony, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

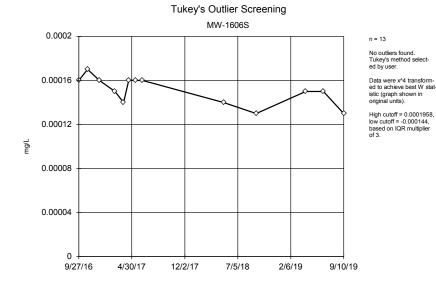


Constituent: Antimony, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

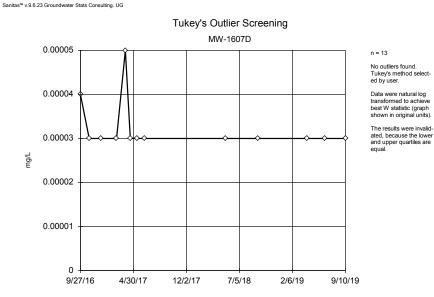
Constituent: Antimony, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


n = 13 No outliers found.

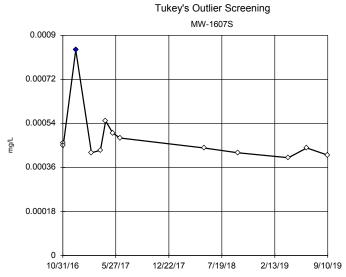
Tukey's method selected by user. Data were natural log


transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.0002756, low cutoff = 0.00009405, based on IQR multiplier of 3.

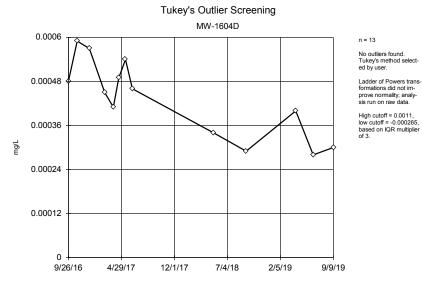

Constituent: Antimony, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Antimony, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

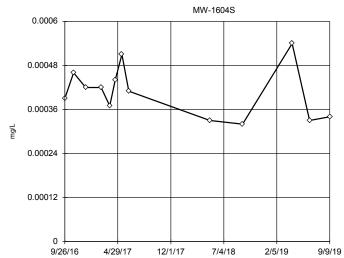


Constituent: Antimony, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Antimony, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

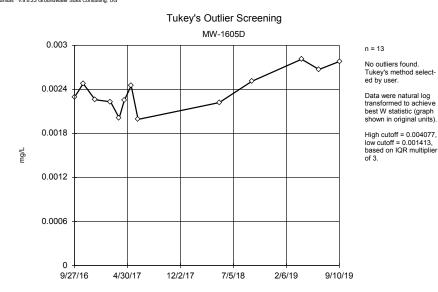

n = 13 Outlier is drawn as solid. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

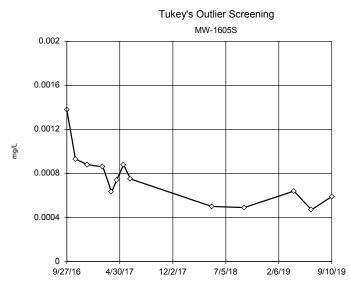

High cutoff = 0.0007775, low cutoff = 0.0002647, based on IQR multiplier of 3.

Constituent: Antimony, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Tukey's Outlier Screening



Constituent: Arsenic, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Arsenic, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Arsenic, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

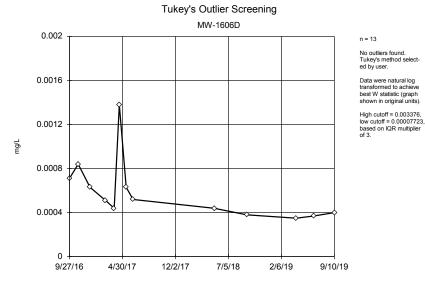
n = 13 No outliers found.

Tukey's method selected by user.

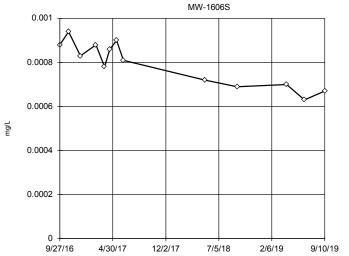
Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.00109, low cutoff = 0.0001383, based on IQR multiplier of 3.

n = 13

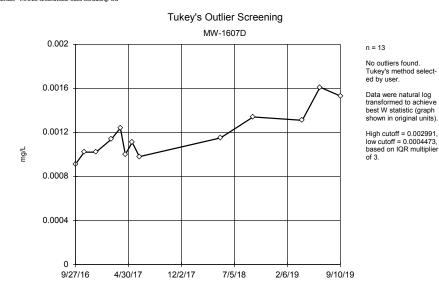

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

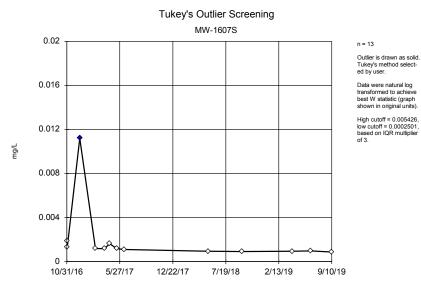

High cutoff = 0.003743, low cutoff = 0.0001277, based on IQR multiplier of 3.

Constituent: Arsenic, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Tukey's Outlier Screening



Constituent: Arsenic, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Arsenic, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.23 Groundwater Stats Consulting. UG

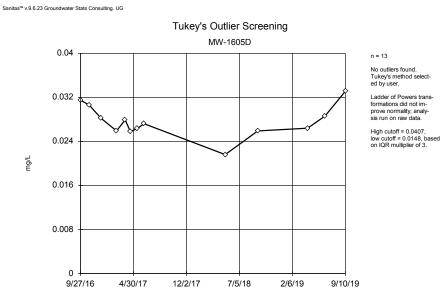
Constituent: Arsenic, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Arsenic, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP n = 13

No outliers found. Tukey's method selected by user. Data were square trans-

formed to achieve best W statistic (graph shown in original units).

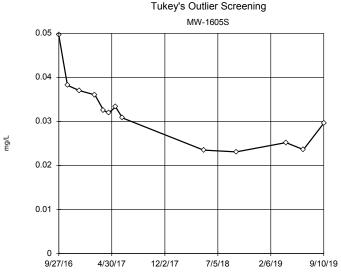
High cutoff = 0.001284, low cutoff = -0.0006253, based on IQR multiplier of 3.


Tukey's Outlier Screening Tukey's Outlier Screening MW-1604D MW-1604S 0.06 0.04 n = 13 No outliers found. Tukey's method selected by user. 0.032 0.048 Data were natural log transformed to achieve best W statistic (graph shown in original units). 0.036 0.024 High cutoff = 0.1139, low cutoff = 0.009717. based on IQR multiplier mg/L mg/L of 3. 0.024 0.016 0.008 0.012 Ω 0 9/26/16 4/29/17 12/1/17 7/4/18 2/5/19 9/9/19 9/26/16 4/29/17 12/1/17 7/4/18 2/5/19 Constituent: Barium, total Analysis Run 11/25/2019 3:29 PM Constituent: Barium, total Analysis Run 11/25/2019 3:29 PM

n = 13

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

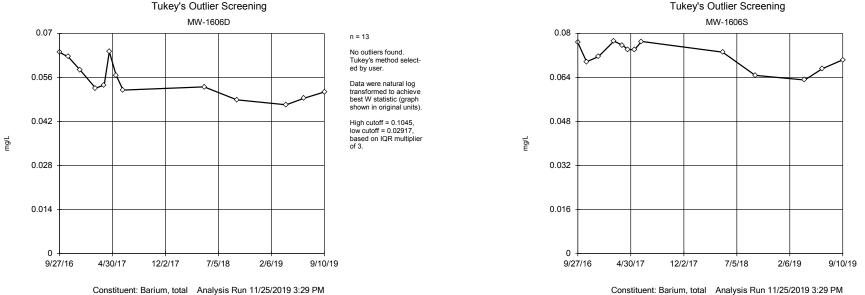

High cutoff = 0.0374. low cutoff = 0.02108. based on IQR multiplier of 3.

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Barium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

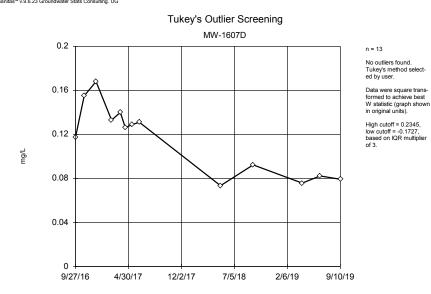
n = 13


9/9/19

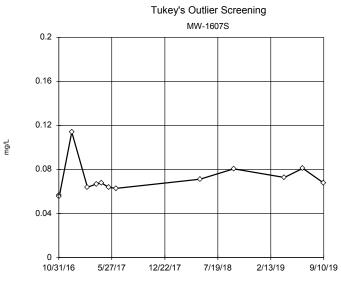
No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.1223, low cutoff = 0.007276, based on IQR multiplier of 3.


Constituent: Barium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Barium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Barium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

n = 13

n = 13

ed by user.

No outliers found. Tukey's method select-

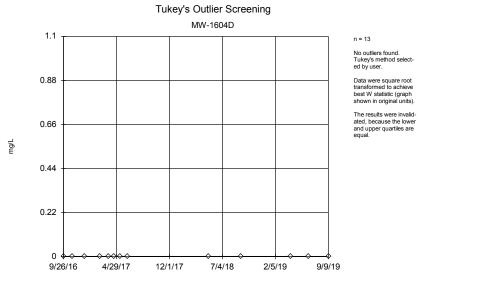
Data were x^6 transform-

ed to achieve best W stat-

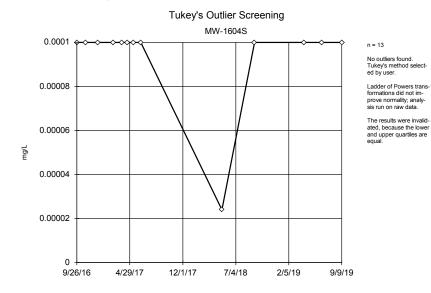
istic (graph shown in

High cutoff = 0.08828, low cutoff = -0.07473,

based on IQR multiplier of 3.

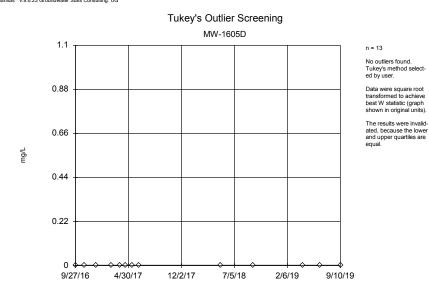

original units).

No outliers found. Tukey's method selected by user.

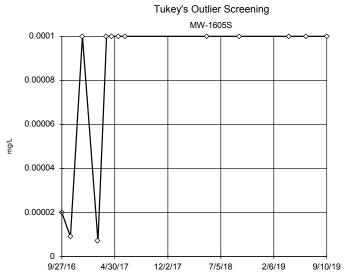

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.1354, low cutoff = 0.03579, based on IQR multiplier of 3.

Constituent: Barium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

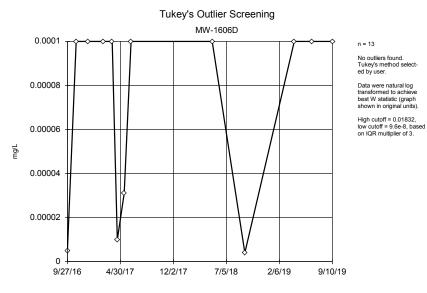


Constituent: Beryllium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

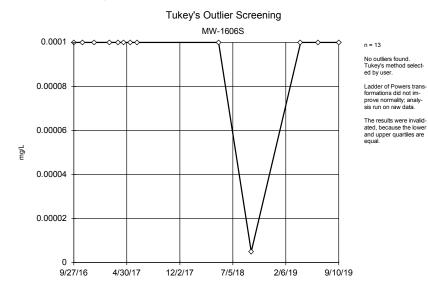

Constituent: Beryllium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

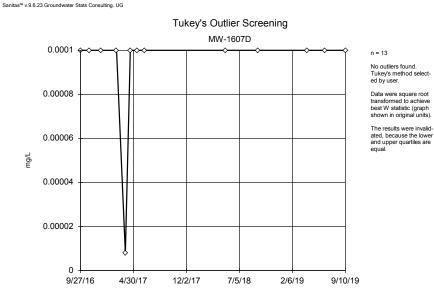
Constituent: Beryllium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


n = 13

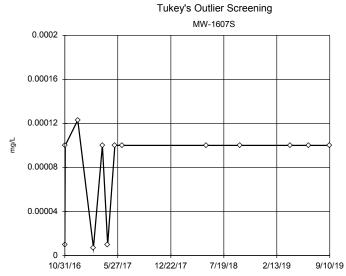
No outliers found. Tukey's method selected by user.


Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.001118, low cutoff = 0.000004, based on IQR multiplier of 3.

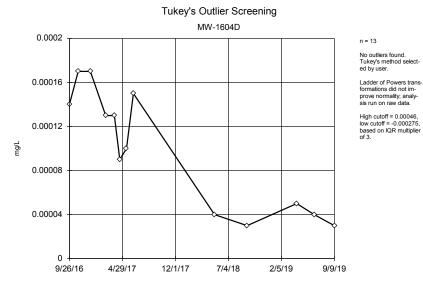

Constituent: Beryllium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Beryllium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

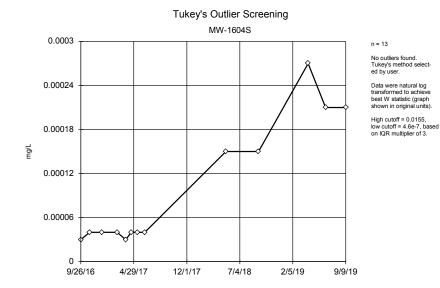


Constituent: Beryllium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

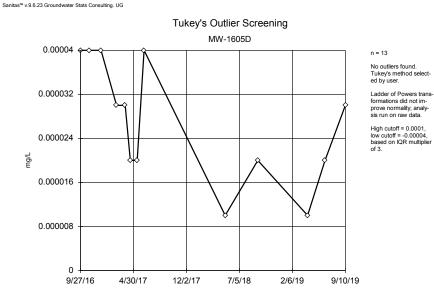
Constituent: Beryllium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


n = 13 No outliers found. Tukey's method select-

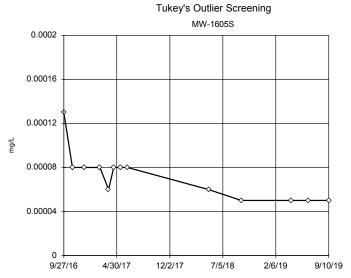
ed by user. Data were x^4 transform-


ed to achieve best W statistic (graph shown in original units).

The results were invalidated, because both the lower and upper quartiles represent reporting limits.

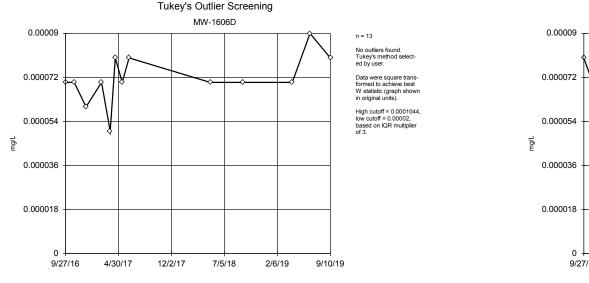

Constituent: Beryllium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Cadmium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

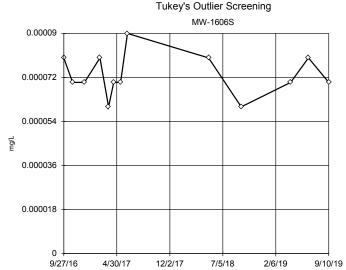


Constituent: Cadmium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Cadmium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

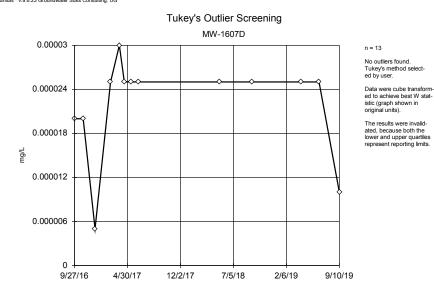

n = 13

No outliers found. Tukey's method selected by user.

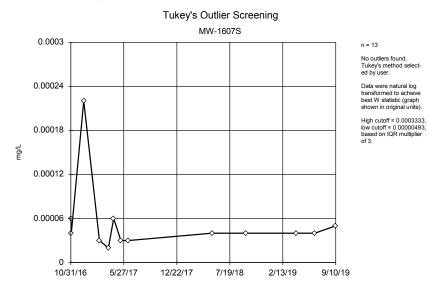

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.0003277, low cutoff = 0.00001221, based on IQR multiplier of 3.

Constituent: Cadmium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



Constituent: Cadmium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

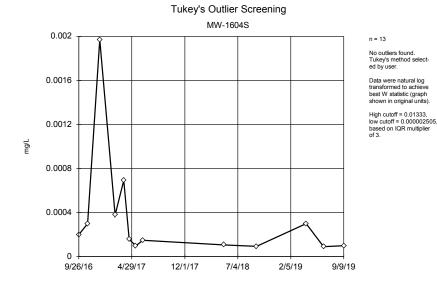

Constituent: Cadmium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Cadmium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

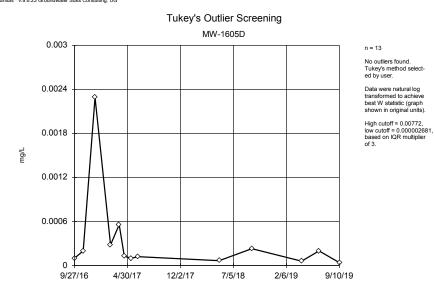
Constituent: Cadmium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Tukey's method selected by user.

n = 13

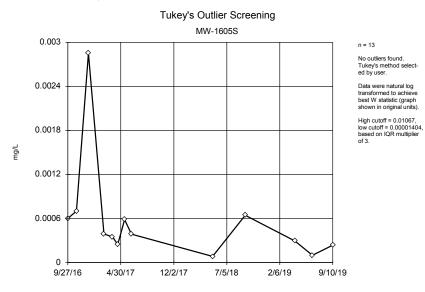

Data were square root transformed to achieve best W statistic (graph shown in original units).

No outliers found.

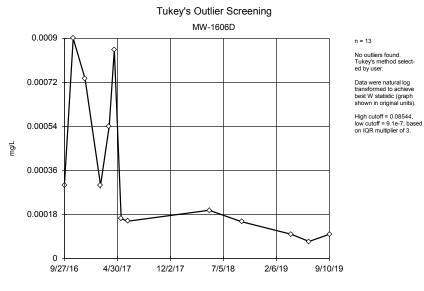
High cutoff = 0.000114, low cutoff = 0.000044, based on IQR multiplier of 3.


Tukey's Outlier Screening MW-1604D 0.0008 n = 13 No outliers found. Tukey's method selected by user. 0.00064 Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.004211, low cutoff = 0.00001815, 0.00048 based on IQR multiplier of 3. mg/L 0.00032 0.00016 Ω 9/26/16 4/29/17 12/1/17 7/4/18 2/5/19 9/9/19

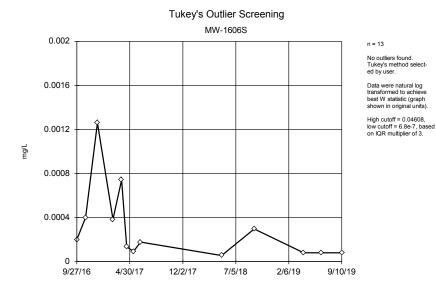
Constituent: Chromium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Chromium, total Analysis Run 11/25/2019 3:29 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

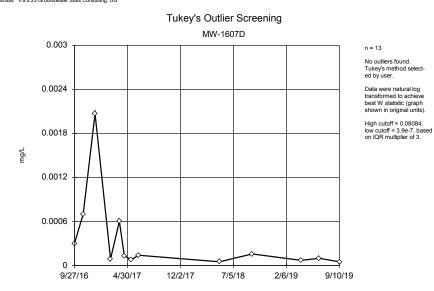
Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG



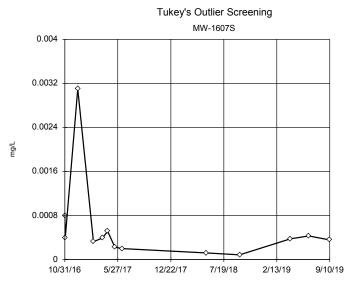
Constituent: Chromium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



Constituent: Chromium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

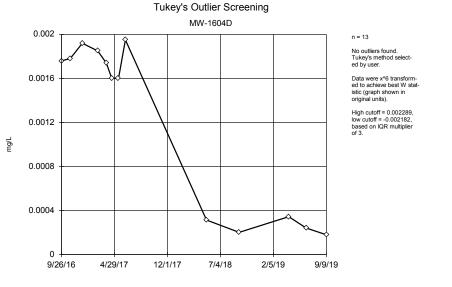


Constituent: Chromium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

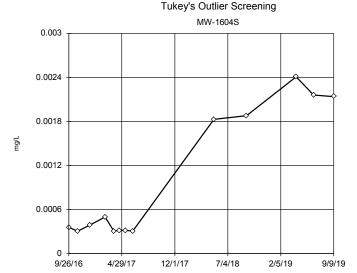

Constituent: Chromium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Chromium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


n = 13

No outliers found. Tukey's method selected by user.

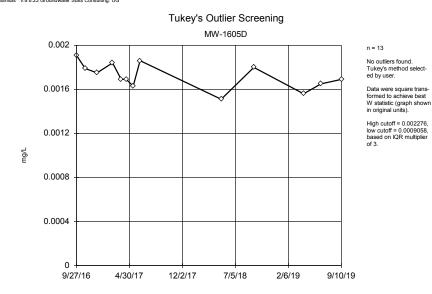

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.005036, low cutoff = 0.0000198, based on IQR multiplier of 3.

Constituent: Chromium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

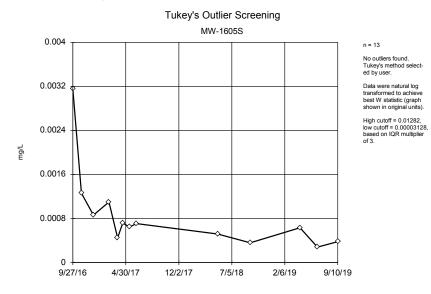
Constituent: Cobalt, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

No outliers found. Tukey's method selected by user.


n = 13

Data were natural log transformed to achieve best W statistic (graph shown in original units).

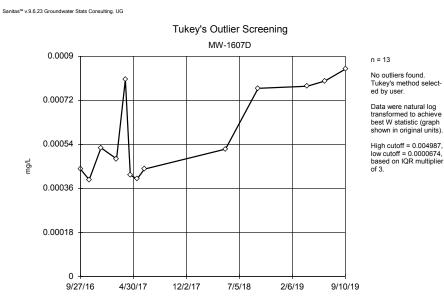
High cutoff = 0.5306, low cutoff = 0.000001181, based on IQR multiplier of 3.


Constituent: Cobalt, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

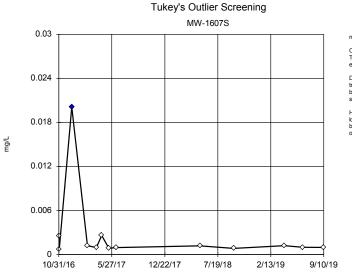
Constituent: Cobalt, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Cobalt, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Tukey's Outlier Screening Tukey's Outlier Screening MW-1606D MW-1606S 0.005 0.0005 n = 13 No outliers found. Tukey's method selected by user. 0.004 0.0004 Data were natural log transformed to achieve best W statistic (graph shown in original units). 0.003 0.0003 High cutoff = 0.004816, low cutoff = 0.000429, based on IQR multiplier mg/L mg/L of 3. 0.002 0.0002 0.0001 0.001 Ω 0 9/10/19 9/27/16 4/30/17 12/2/17 7/5/18 2/6/19 9/10/19 9/27/16 4/30/17 12/2/17 7/5/18 2/6/19 Constituent: Cobalt, total Analysis Run 11/25/2019 3:30 PM Constituent: Cobalt, total Analysis Run 11/25/2019 3:30 PM

n = 13

No outliers found. Tukey's method selected by user.


Data were natural log transformed to achieve best W statistic (graph shown in original units).

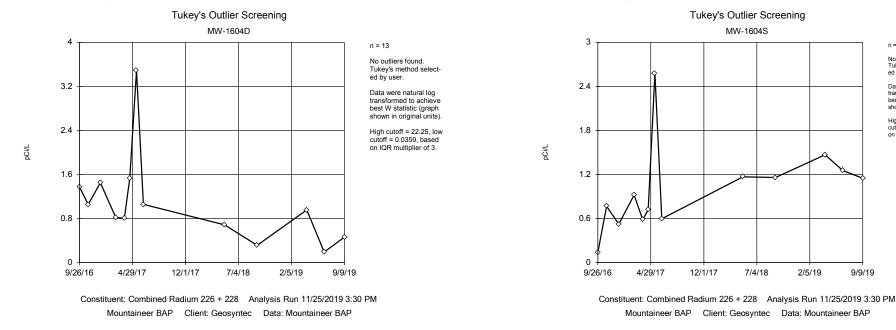
High cutoff = 0.000914, low cutoff = 0.00009413, based on IQR multiplier of 3.

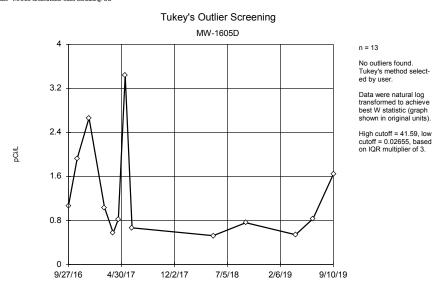
Constituent: Cobalt, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

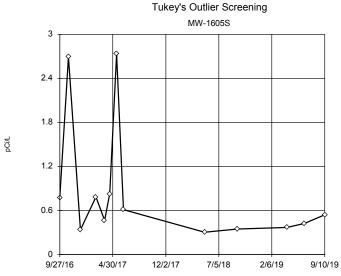
Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Cobalt, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas[™] v.9.6.23 Groundwater Stats Consulting. UG


n = 13

Outlier is drawn as solid. Tukey's method selected by user


Data were natural log transformed to achieve best W statistic (graph shown in original units)

High cutoff = 0.01382, low cutoff = 0.0001144, based on IQR multiplier of 3.

Constituent: Combined Radium 226 + 228 Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas[™] v.9.6.23 Groundwater Stats Consulting. UG

n = 13

n = 13 No outliers found. Tukey's method select-

ed by user.

Data were square root transformed to achieve

best W statistic (graph

shown in original units)

High cutoff = 4.4, low cutoff = -0.05164, based

on IQR multiplier of 3.

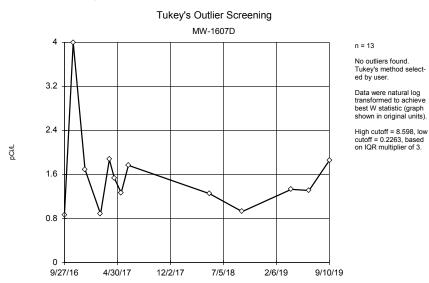
No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

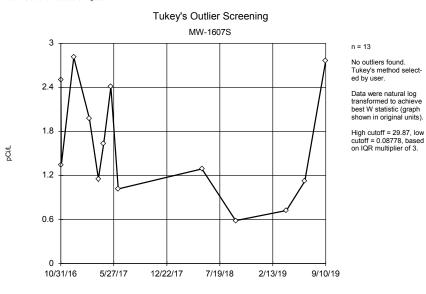
High cutoff = 9.198, low cutoff = 0.03134, based on IQR multiplier of 3.

Constituent: Combined Radium 226 + 228 Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Tukey's Outlier Screening Tukey's Outlier Screening MW-1606D MW-1606S 9 3 n = 13 No outliers found. Tukey's method selected by user. 7.2 2.4 Data were natural log transformed to achieve best W statistic (graph shown in original units). 5.4 1.8 High cutoff = 59.74. low cutoff = 0.043, based on IQR multiplier of 3. pCi/L pCi/L 3.6 1.2 1.8 0.6 Ω 0 9/10/19 9/27/16 4/30/17 12/2/17 7/5/18 2/6/19 9/10/19 9/27/16 4/30/17 12/2/17 7/5/18 2/6/19 Constituent: Combined Radium 226 + 228 Analysis Run 11/25/2019 3:30 PM Constituent: Combined Radium 226 + 228 Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

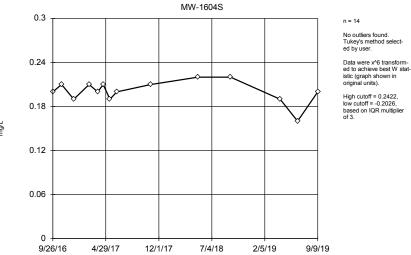

n = 13 No outliers found. Tukey's method select-

ed by user. Data were cube root transformed to achieve best


W statistic (graph shown in original units).

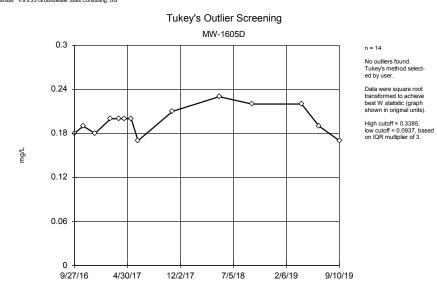
High cutoff = 10.07, low cutoff = -0.003314, based on IQR multiplier of 3.

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

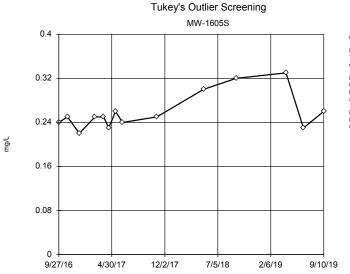

Constituent: Combined Radium 226 + 228 Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Sanitas[™] v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Combined Radium 226 + 228 Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Tukey's Outlier Screening MW-1604D 0.3 n = 14 No outliers found. Tukey's method selected by user. 0.24 Data were x^4 transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.2498, low cutoff = -0.1954, 0.18 based on IQR multiplier of 3. mg/L mg/L 0.12 0.06 Ω 9/26/16 9/9/19 4/29/17 12/1/17 7/4/18 2/5/19


Constituent: Fluoride, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

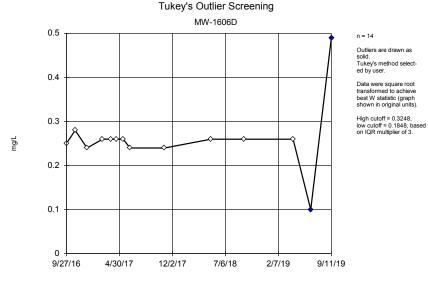
Tukey's Outlier Screening


Constituent: Fluoride, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

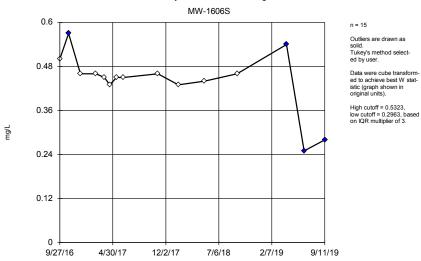
Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Fluoride, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

n = 14 No outliers found. Tukey's method select-

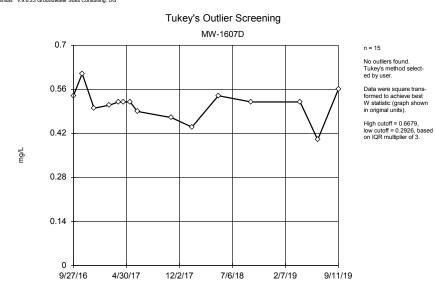

ed by user. Data were natural log

transformed to achieve best W statistic (graph shown in original units).

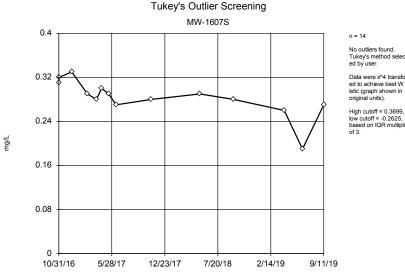

High cutoff = 0.4691, low cutoff = 0.1399, based on IQR multiplier of 3.

Constituent: Fluoride, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Tukey's Outlier Screening



Constituent: Fluoride, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

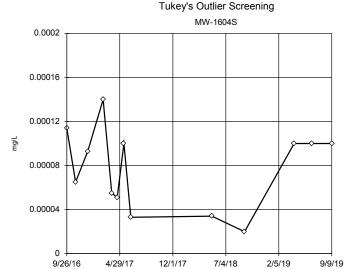

Constituent: Fluoride, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.23 Groundwater Stats Consulting. UG

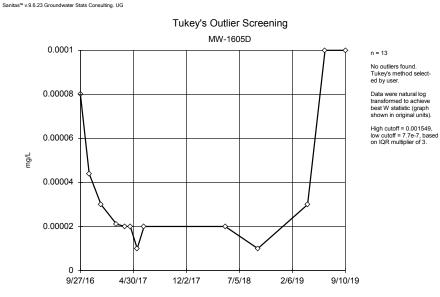
Constituent: Fluoride, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

n = 14 No outliers found. Tukey's method select-

original units).

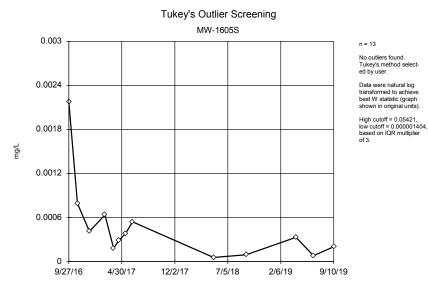

ed by user. Data were x^4 transformed to achieve best W stat-

original units). High cutoff = 0.3699, low cutoff = -0.2625, based on IQR multiplier


Constituent: Fluoride, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

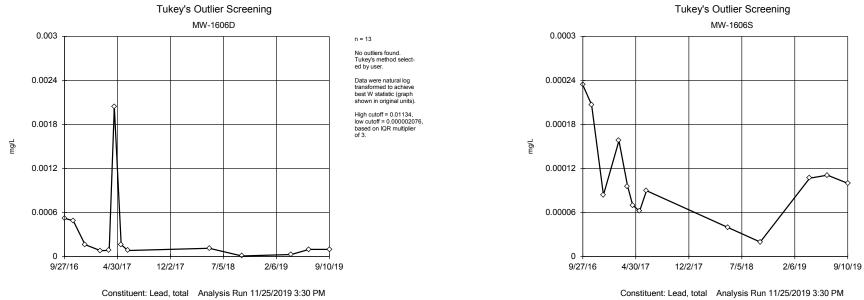
Tukey's Outlier Screening MW-1604D 0.0006 n = 13 No outliers found. Tukey's method selected by user. 0.00048 Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.007761, low cutoff = 3.2e-7, based 0.00036 on IQR multiplier of 3. mg/L 0.00024 0.00012 Ω 9/26/16 4/29/17 12/1/17 7/4/18 2/5/19 9/9/19

Constituent: Lead, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

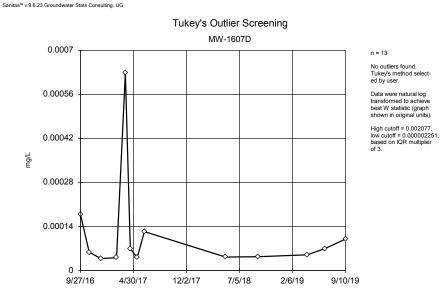


Constituent: Lead, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Lead, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

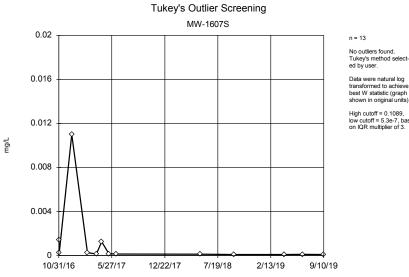


Constituent: Lead, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP n = 13


No outliers found. Tukey's method selected by user.

Ladder of Powers transformations did not improve normality; analysis run on raw data.

High cutoff = 0.0002725, low cutoff = -0.00013, based on IQR multiplier of 3.


Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Lead, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

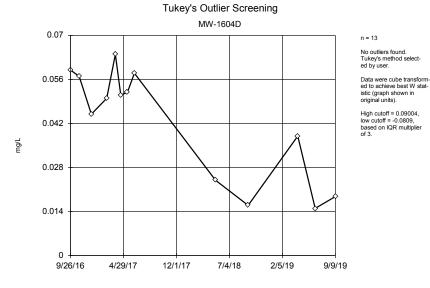
Data were cube root transformed to achieve best W statistic (graph shown in original units).

No outliers found. Tukey's method select-

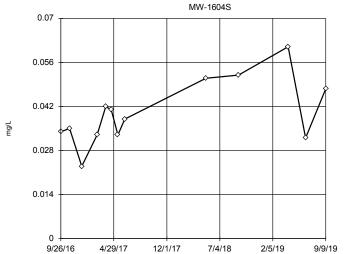
n = 13

ed by user.

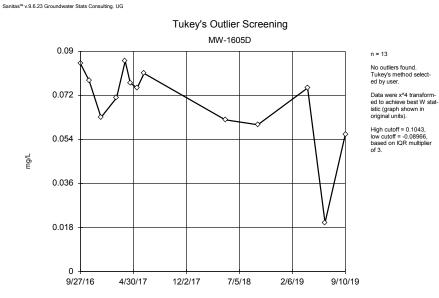
High cutoff = 0.0005729, low cutoff = 5.9e-7, based on IQR multiplier of 3.


No outliers found. Tukey's method selected by user.

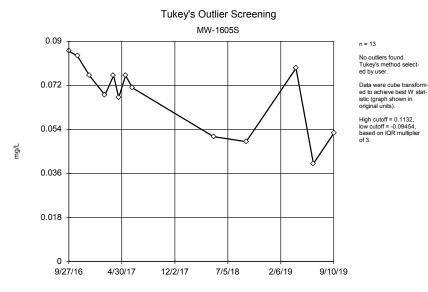
Data were natural log transformed to achieve best W statistic (graph


High cutoff = 0.1089, low cutoff = 5.3e-7, based on IQR multiplier of 3.

Constituent: Lead, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Tukey's Outlier Screening MW-1604S

Constituent: Lithium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

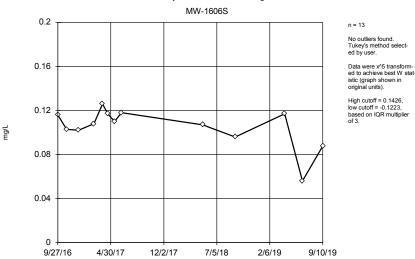


Constituent: Lithium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Lithium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

n = 13

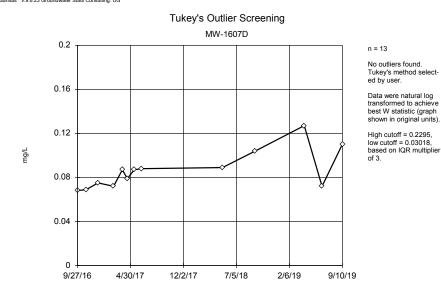
No outliers found. Tukey's method selected by user.


Data were cube root transformed to achieve best W statistic (graph shown in original units).

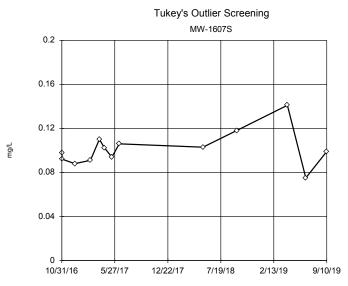
High cutoff = 0.1282, low cutoff = 0.006142, based on IQR multiplier of 3.

Constituent: Lithium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Tukey's Outlier Screening MW-1606D 0.2 n = 13 No outliers found. Tukey's method selected by user. 0.16 Data were x^6 transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.1507, low cutoff = -0.1348, 0.12 based on IQR multiplier of 3. mg/L mg/L 0.08 0.04 Ω 9/27/16 4/30/17 12/2/17 7/5/18 2/6/19 9/10/19

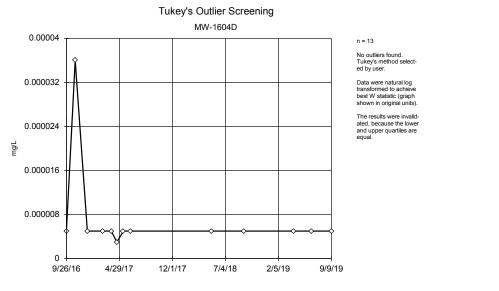

Constituent: Lithium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Lithium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

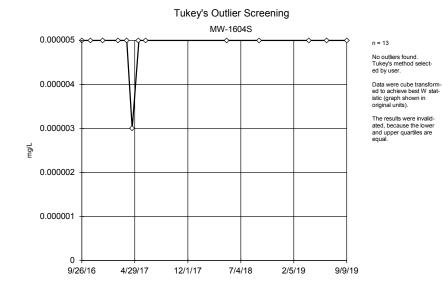

Tukey's Outlier Screening

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

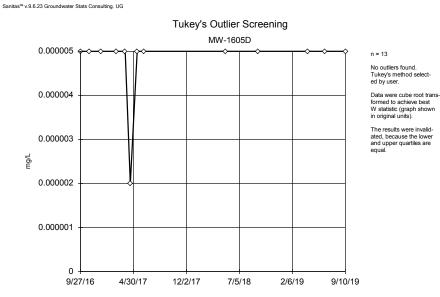
Constituent: Lithium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


n = 13

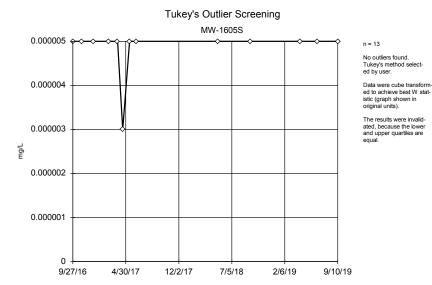
No outliers found. Tukey's method selected by user.


Data were natural log transformed to achieve best W statistic (graph shown in original units).

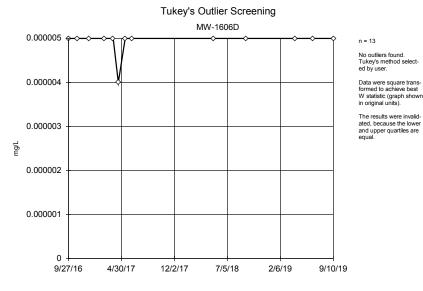
High cutoff = 0.1775, low cutoff = 0.05567, based on IQR multiplier of 3.


Constituent: Lithium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

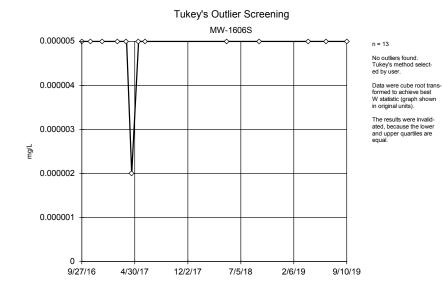
Constituent: Mercury, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

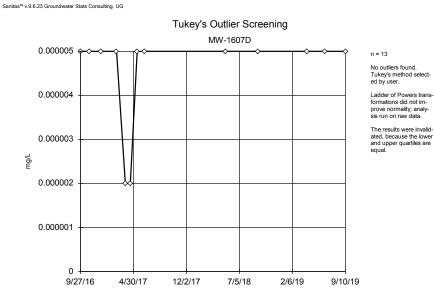


Constituent: Mercury, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

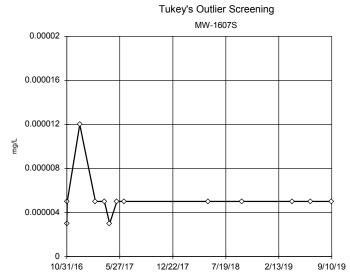


Constituent: Mercury, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



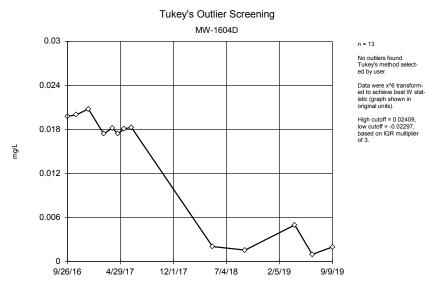

Constituent: Mercury, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Mercury, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

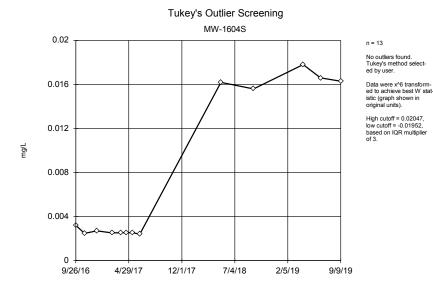


Constituent: Mercury, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Mercury, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

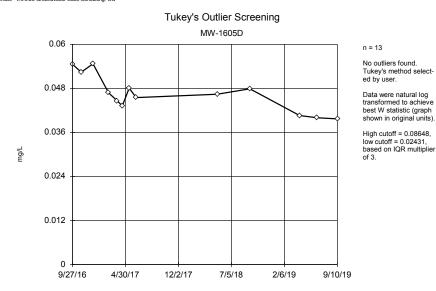


n = 13 No outliers found. Tukey's method selected by user.

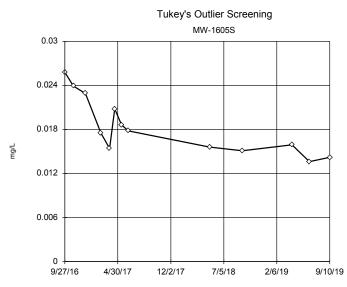

Data were natural log transformed to achieve best W statistic (graph shown in original units).

The results were invalidated, because the lower and upper quartiles are equal.

Constituent: Mercury, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



Constituent: Molybdenum, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

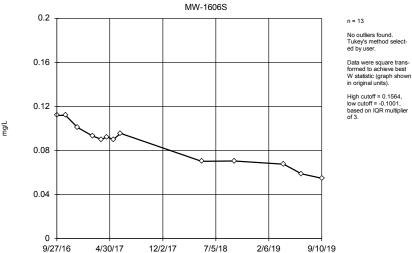

Constituent: Molybdenum, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Molybdenum, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

n = 13

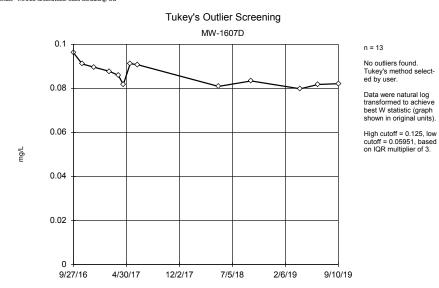
No outliers found. Tukey's method selected by user.


Data were natural log transformed to achieve best W statistic (graph shown in original units).

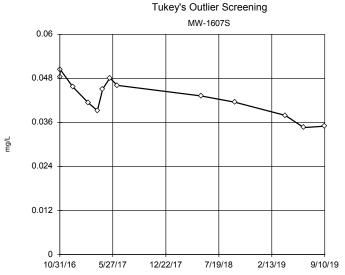
High cutoff = 0.06398, low cutoff = 0.005202, based on IQR multiplier of 3.

Constituent: Molybdenum, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Tukey's Outlier Screening MW-1606D 0.09 0.2 n = 13 No outliers found. Tukey's method selected by user. 0.072 0.16 Data were natural log transformed to achieve best W statistic (graph shown in original units). 0.054 0.12 High cutoff = 0.1235, low cutoff = 0.04505. based on IQR multiplier mg/L mg/L of 3. 0.036 0.08 0.018 0.04 Ω 0 9/10/19 9/27/16 4/30/17 12/2/17 7/5/18 2/6/19 9/27/16


Constituent: Molybdenum, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Molybdenum, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Tukey's Outlier Screening

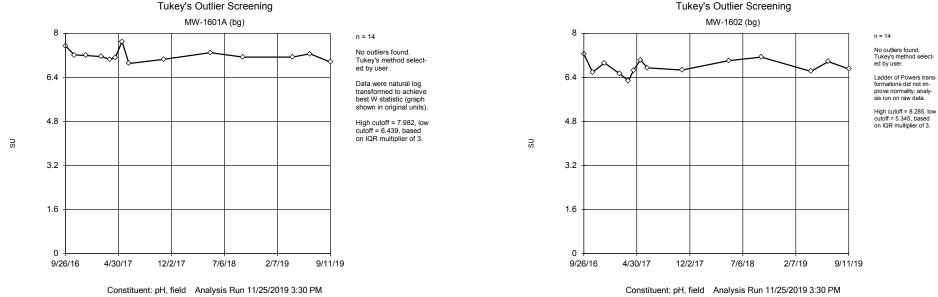
Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Molybdenum, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

n = 13 No outliers found. Tukey's method select-

ed by user

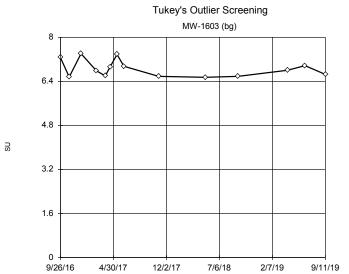
original units).


of 3.

Data were cube transform-

ed to achieve best W statistic (graph shown in

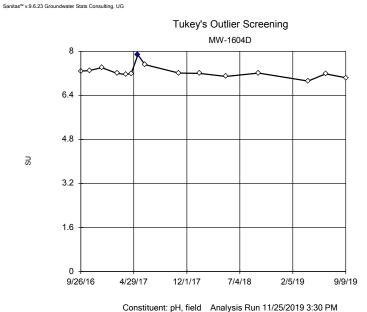
High cutoff = 0.0627, low cutoff = -0.04389, based on IQR multiplier


Constituent: Molybdenum, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

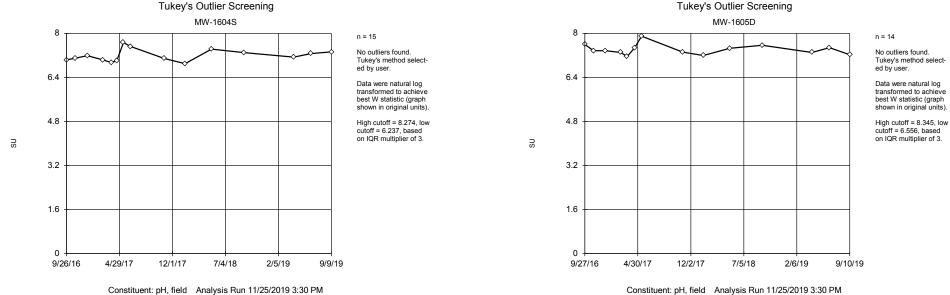


n = 14

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

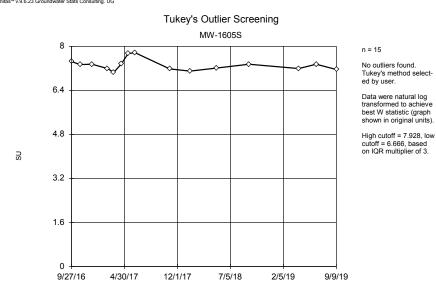
High cutoff = 9.013, low cutoff = 5.197, based on IQR multiplier of 3.


Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

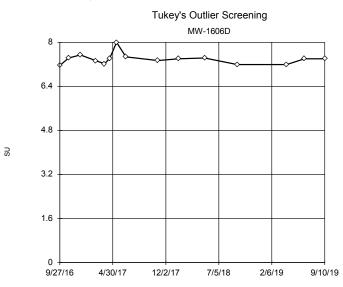
n = 15 Outlier is drawn as solid. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 7.737, low cutoff = 6.756, based on IQR multiplier of 3.

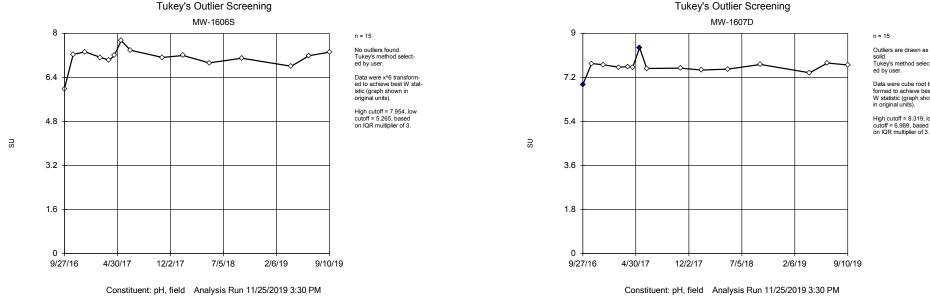

Constituent: pH, field Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

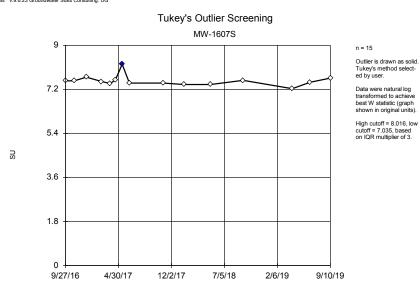
Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: pH, field Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


n = 15

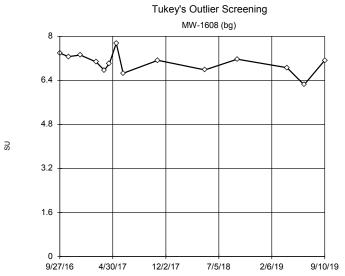
No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).


High cutoff = 8.097, low cutoff = 6.625, based on IQR multiplier of 3.

Constituent: pH, field Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas[™] v.9.6.23 Groundwater Stats Consulting. UG

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: pH, field Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

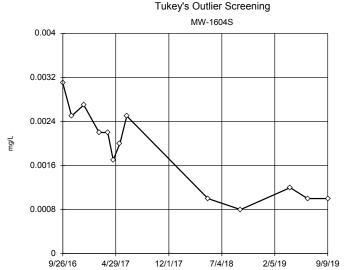
Tukey's method selected by user.

Data were cube root transformed to achieve best W statistic (graph shown in original units).

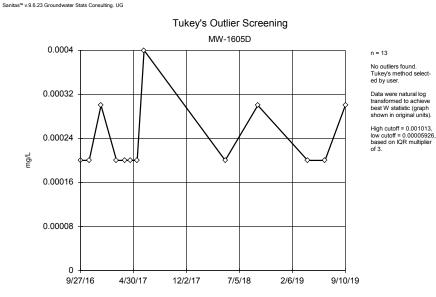
High cutoff = 8.319, low cutoff = 6.989, based on IQR multiplier of 3.

n = 14

No outliers found. Tukey's method selected by user Data were cube transform-

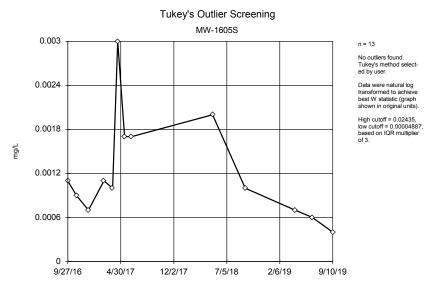

ed to achieve best W statistic (graph shown in original units).

High cutoff = 8.512, low cutoff = 4.337, based on IQR multiplier of 3.


Constituent: pH, field Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Tukey's Outlier Screening MW-1604D 0.004 n = 13 No outliers found. Tukey's method selected by user. 0.0032 Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.1121, low cutoff = 0.00001555, 0.0024 based on IQR multiplier of 3. mg/L 0.0016 0.0008 Ω 9/26/16 4/29/17 12/1/17 7/4/18 2/5/19 9/9/19

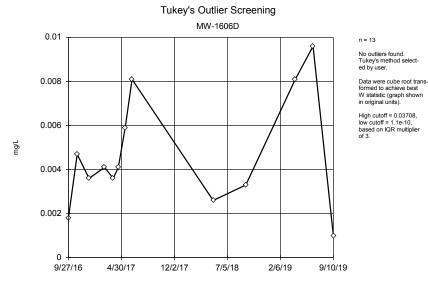
Constituent: Selenium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



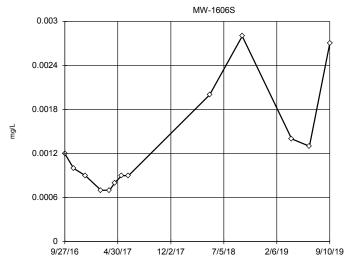
Constituent: Selenium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Selenium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

n = 13

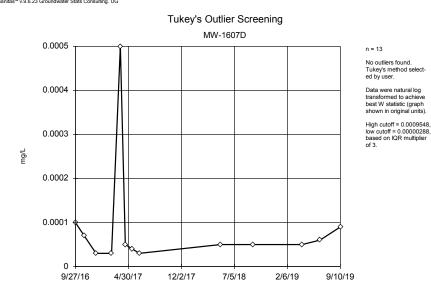

No outliers found. Tukey's method selected by user. Ladder of Powers transformations did not im-

formations did not improve normality; analysis run on raw data.

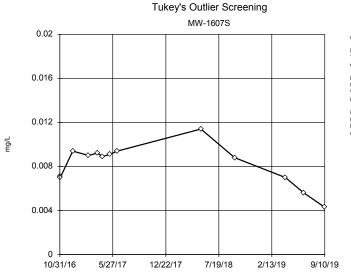

High cutoff = 0.007, low cutoff = -0.0035, based on IQR multiplier of 3.

Constituent: Selenium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Tukey's Outlier Screening



Constituent: Selenium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Selenium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Selenium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

n = 13

n = 13

of 3.

ed by user.

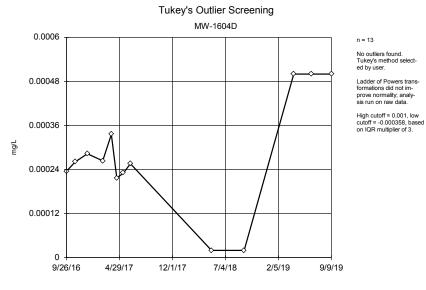
No outliers found. Tukey's method select-

Data were natural log

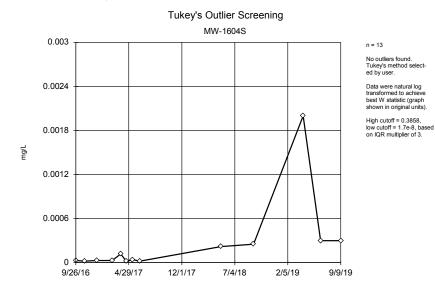
transformed to achieve

best W statistic (graph shown in original units).

High cutoff = 0.01283.

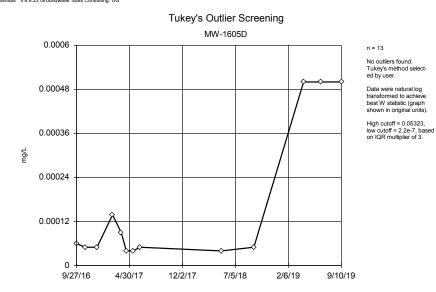

low cutoff = 0.0001106, based on IQR multiplier

No outliers found. Tukey's method selected by user.

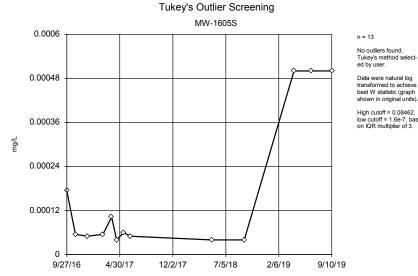

Data were square transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.01411, low cutoff = -0.007969, based on IQR multiplier of 3.

Constituent: Selenium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

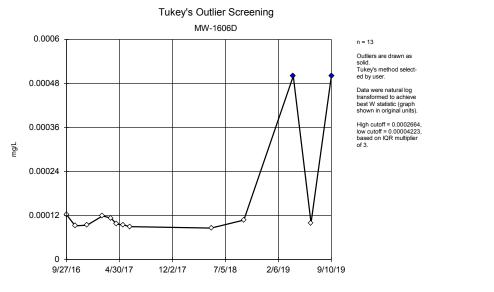


Constituent: Thallium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

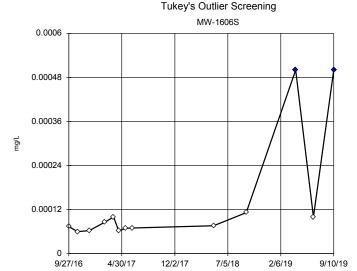

Constituent: Thallium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Thallium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



No outliers found. Tukey's method selected by user.


Data were natural log transformed to achieve best W statistic (graph

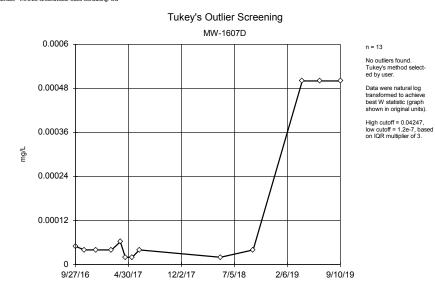
High cutoff = 0.08462, low cutoff = 1.6e-7, based on IQR multiplier of 3.

Constituent: Thallium, total Analysis Run 11/25/2019 3:30 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Thallium, total Analysis Run 11/25/2019 3:31 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

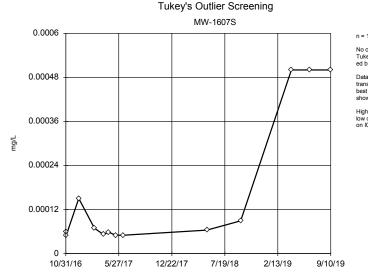
Outliers are drawn as solid. Tukey's method select-

n = 13


ed by user. Data were natural log

transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.0004377, low cutoff = 0.00001594, based on IQR multiplier of 3.


Constituent: Thallium, total Analysis Run 11/25/2019 3:31 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Thallium, total Analysis Run 11/25/2019 3:31 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

n = 13 No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.04243, low cutoff = 3.3e-7, based on IQR multiplier of 3.

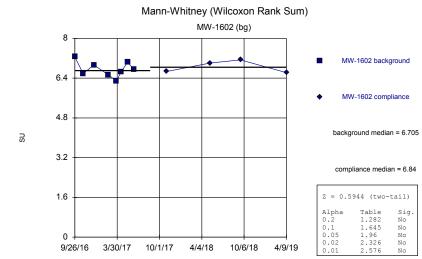
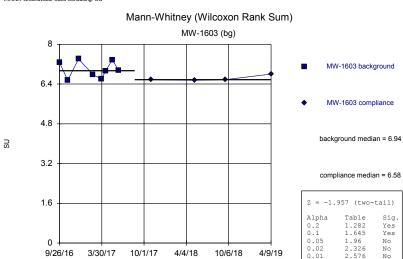

Constituent: Thallium, total Analysis Run 11/25/2019 3:31 PM Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

FIGURE D: MANN-WHITNEY ANALYSIS

Welch's t-test/Mann-Whitney - All Results (No Significant Results)

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Printed 12/9/2019, 8:34 AM


Constituent	Well	Calc.	<u>0.01</u>	Method
pH, field (SU)	MW-1601A (bg)	-0.5113	No	Mann-W
pH, field (SU)	MW-1602 (bg)	0.5944	No	Mann-W
pH, field (SU)	MW-1603 (bg)	-1.957	No	Mann-W
pH, field (SU)	MW-1604D	-1.761	No	Mann-W
pH, field (SU)	MW-1604S	0.07329	No	Mann-W
pH, field (SU)	MW-1605D	-0.7334	No	Mann-W
pH, field (SU)	MW-1605S	-1.688	No	Mann-W
pH, field (SU)	MW-1606D	-1.174	No	Mann-W
pH, field (SU)	MW-1606S	-1.541	No	Mann-W
pH, field (SU)	MW-1607D	-1.139	No	Mann-W
pH, field (SU)	MW-1607S	-1.877	No	Mann-W
pH, field (SU)	MW-1608 (bg)	-0.7643	No	Mann-W

Constituent: pH, field Analysis Run 12/9/2019 8:33 AM View: Intrawell

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.24 Groundwater Stats Consulting. UG

Mann-Whitney (Wilcoxon Rank Sum)

MW-1601A (bg)

10/6/18

4/9/19

MW-1601A background

MW-1601A compliance

background median = 7.18

compliance median = 7.14

Z = -0.5113 (two-tail)

Table 1.282

1.645

2.326

2.576

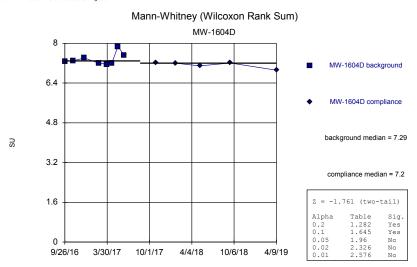
1.96

Sig. No

No

No

No


No

Alpha

0.2 0.1 0.05

0.02

Sanitas[™] v.9.6.24 Groundwater Stats Consulting. UG

Sanitas[™] v.9.6.24 Groundwater Stats Consulting. UG

Sanitas[™] v.9.6.24 Groundwater Stats Consulting. UG

8

6.4

4.8

3.2

1.6

0

9/26/16

3/30/17

10/1/17

4/4/18

Constituent: pH, field Analysis Run 12/9/2019 8:33 AM View: Intrawell

Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

SU

Sanitas™ v.9.6.24 Groundwater Stats Consulting. UG

8

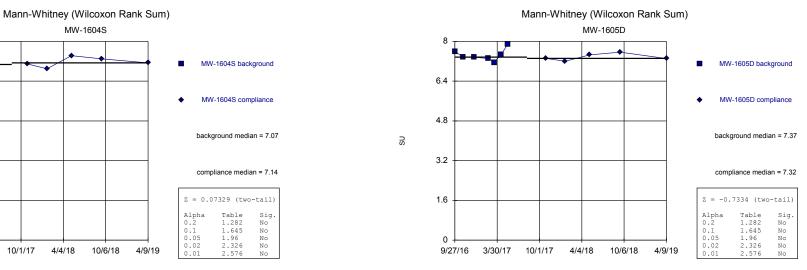
6.4

4.8

3.2

1.6

0

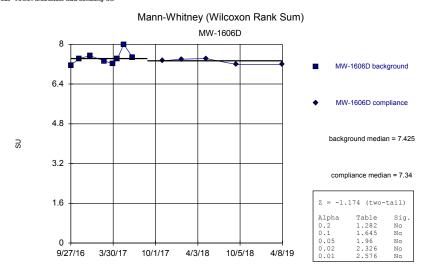

9/26/16

3/30/17

SU

-

Sanitas[™] v.9.6.24 Groundwater Stats Consulting. UG



Constituent: pH, field Analysis Run 12/9/2019 8:33 AM View: Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Constituent: pH, field Analysis Run 12/9/2019 8:33 AM View: Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.24 Groundwater Stats Consulting. UG

Sanitas™ v.9.6.24 Groundwater Stats Consulting. UG

Constituent: pH, field Analysis Run 12/9/2019 8:33 AM View: Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Constituent: pH, field Analysis Run 12/9/2019 8:33 AM View: Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP 8

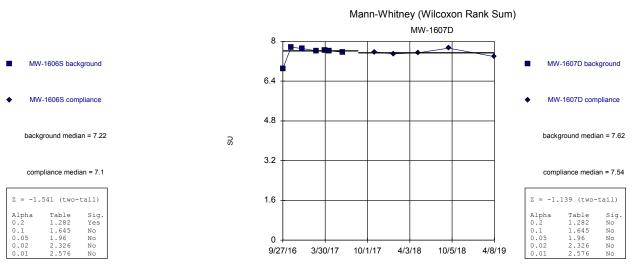
6.4

4.8

3.2

1.6

0


9/27/16

3/30/17

10/1/17

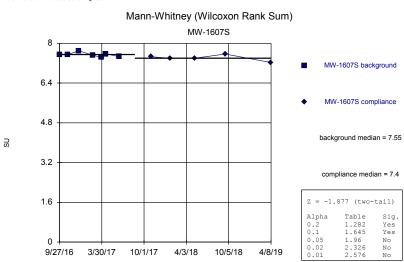
SU

Sanitas[™] v.9.6.24 Groundwater Stats Consulting. UG

Constituent: pH, field Analysis Run 12/9/2019 8:33 AM View: Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

4/3/18

10/5/18


4/8/19

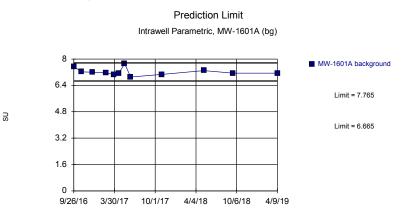
Mann-Whitney (Wilcoxon Rank Sum)

MW-1606S

Constituent: pH, field Analysis Run 12/9/2019 8:33 AM View: Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

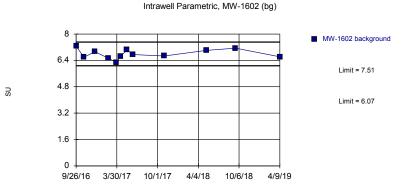
Sanitas[™] v.9.6.24 Groundwater Stats Consulting. UG

Sanitas[™] v.9.6.24 Groundwater Stats Consulting. UG



Constituent: pH, field Analysis Run 12/9/2019 8:33 AM View: Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Constituent: pH, field Analysis Run 12/9/2019 8:33 AM View: Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

FIGURE E: INTRAWELL PREDICTION LIMITS


Intrawell Prediction Limit Summary Table - All Results

Constituent	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	Bg N	Bg Mean	Std. Dev.	<u>%NDs</u>	ND Adj.	Transform	Alpha	Method
pH, field (SU)	MW-1601A	7.765	6.665	n/a	1 future	n/a	12	7.215	0.2189	0	None	No	0.0004701	Param Intra 1 of 2
pH, field (SU)	MW-1602	7.51	6.07	n/a	1 future	n/a	12	6.79	0.2866	0	None	No	0.0004701	Param Intra 1 of 2
pH, field (SU)	MW-1603	7.687	6.045	n/a	1 future	n/a	12	6.866	0.3267	0	None	No	0.0004701	Param Intra 1 of 2
pH, field (SU)	MW-1604D	7.84	6.708	n/a	1 future	n/a	13	7.274	0.2297	0	None	No	0.0004701	Param Intra 1 of 2
pH, field (SU)	MW-1604S	7.761	6.606	n/a	1 future	n/a	13	7.183	0.2345	0	None	No	0.0004701	Param Intra 1 of 2
pH, field (SU)	MW-1605D	7.926	6.915	n/a	1 future	n/a	12	7.421	0.2013	0	None	No	0.0004701	Param Intra 1 of 2
pH, field (SU)	MW-1605S	7.873	6.785	n/a	1 future	n/a	13	7.329	0.2208	0	None	No	0.0004701	Param Intra 1 of 2
pH, field (SU)	MW-1606D	7.932	6.856	n/a	1 future	n/a	13	7.394	0.2185	0	None	No	0.0004701	Param Intra 1 of 2
pH, field (SU)	MW-1606S	8.084	6.104	n/a	1 future	n/a	13	7.094	0.4018	0	None	No	0.0004701	Param Intra 1 of 2
pH, field (SU)	MW-1607D	8.016	6.957	n/a	1 future	n/a	12	24701	3344	0	None	x^5	0.0004701	Param Intra 1 of 2
pH, field (SU)	MW-1607S	7.786	7.19	n/a	1 future	n/a	12	7.488	0.1186	0	None	No	0.0004701	Param Intra 1 of 2
pH, field (SU)	MW-1608	7.876	6.319	n/a	1 future	n/a	12	7.098	0.3101	0	None	No	0.0004701	Param Intra 1 of 2

Background Data Summary: Mean=7.215, Std. Dev.=0.2189, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8709, critical = 0.805. Kappa = 2.512 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403. Assumes 1 future value.

Prediction Limit

Background Data Summary: Mean=6.79, Std. Dev.=0.2866, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.966, critical = 0.805. Kappa = 2.512 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403. Assumes 1 future value.

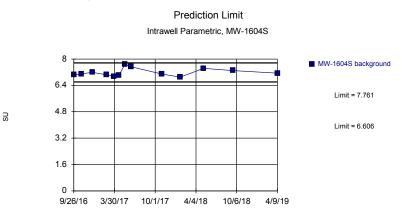
> Constituent: pH, field Analysis Run 12/9/2019 8:34 AM View: Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.24 Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW-1603 (bg)

Limit = 6.045

Sanitas[™] v.9.6.24 Groundwater Stats Consulting. UG


Background Data Summary: Mean=7.274, Std. Dev.=0.2297, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8658, critical = 0.814. Kappa = 2.463 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403. Assumes 1 future value.

Background Data Summary: Mean=6.866, Std. Dev.=0.3267, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8435, critical = 0.805. Kappa = 2.512 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403. Assumes 1 future value


Constituent: pH, field Analysis Run 12/9/2019 8:34 AM View: Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

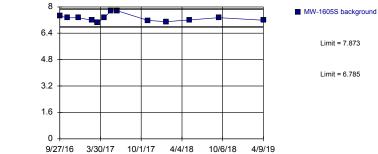
SU

Prediction Limit Intrawell Parametric, MW-1604D

Background Data Summary: Mean=7.183, Std. Dev.=0.2345, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9074, critical = 0.814. Kappa = 2.463 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403. Assumes 1 future value.

Background Data Summary: Mean=7.421, Std. Dev.=0.2013, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9163, critical = 0.805. Kappa = 2.512 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403. Assumes 1 future value.

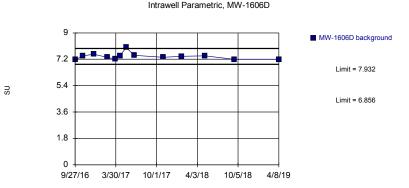
Constituent: pH, field Analysis Run 12/9/2019 8:34 AM View: Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: pH, field Analysis Run 12/9/2019 8:34 AM View: Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Prediction Limit

Sanitas[™] v.9.6.24 Groundwater Stats Consulting. UG

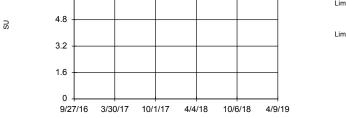
SU


Prediction Limit Intrawell Parametric, MW-1605S

Limit = 7.873

Limit = 6.785

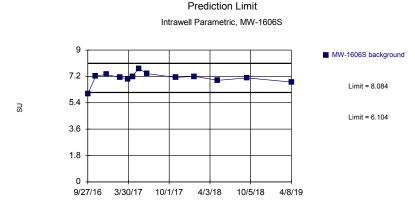
Sanitas[™] v.9.6.24 Groundwater Stats Consulting. UG

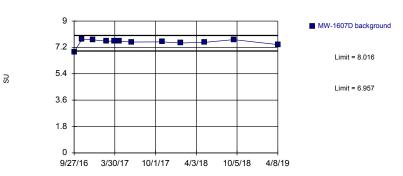


Background Data Summary: Mean=7.394, Std. Dev.=0.2185, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8195, critical = 0.814. Kappa = 2.463 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403. Assumes 1 future value.

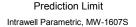
Background Data Summary: Mean=7.329, Std. Dev.=0.2208, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8806, critical = 0.814. Kappa = 2.463 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403. Assumes 1 future value

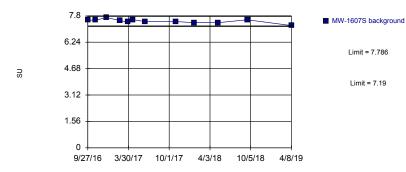
Constituent: pH, field Analysis Run 12/9/2019 8:34 AM View: Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP




Prediction Limit Intrawell Parametric, MW-1605D

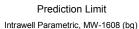
Prediction Limit

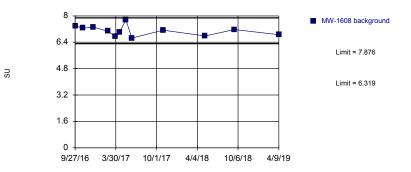

Background Data Summary: Mean=7.094, Std. Dev.=0.4018, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8427, critical = 0.814. Kappa = 2.463 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403. Assumes 1 future value.



Background Data Summary (based on x⁵ transformation): Mean=24701, Std. Dev.=3344, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8159, critical = 0.805. Kappa = 2.512 (c=7, w=8, 1 of 2, event alpha = 0.005132). Report alpha = 0.009403. Assumes 1 future value.

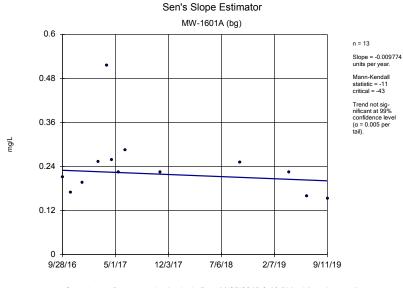
Constituent: pH, field Analysis Run 12/9/2019 8:34 AM View: Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Constituent: pH, field Analysis Run 12/9/2019 8:34 AM View: Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Sanitas™ v.9.6.24 Groundwater Stats Consulting. UG

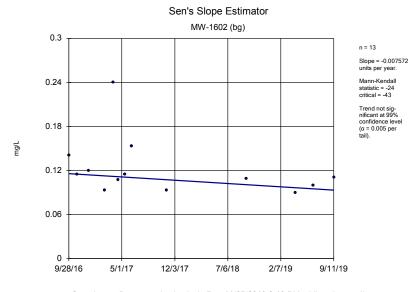


Background Data Summary: Mean=7.488, Std. Dev=0.1186, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9559, critical = 0.805. Kappa = 2.512 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403. Assumes 1 future value.

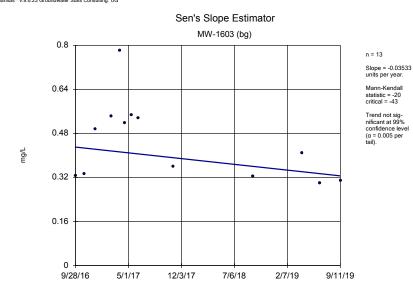
Sanitas[™] v.9.6.24 Groundwater Stats Consulting. UG


Background Data Summary: Mean=7.098, Std. Dev.=0.3101, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9637, critical = 0.805. Kappa = 2.512 (c=7, w=8, 1 of 2, event alpha = 0.05132). Report alpha = 0.0009403. Assumes 1 future value.

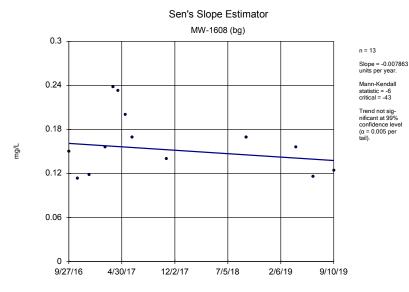
Constituent: pH, field Analysis Run 12/9/2019 8:34 AM View: Intrawell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


FIGURE F: TREND TESTS

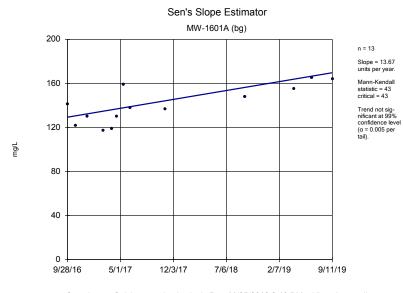
Trend Tests Summary Table - Upgradient Wells


	Wountaineer DAF	Client. Geosyntec	Data. Wountaineer DAF		Finited 11/25/2019, 5.20 Fini						
Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron, total (mg/L)	MW-1601A (bg)	-0.009774	-11	-43	No	13	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1602 (bg)	-0.007572	-24	-43	No	13	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1603 (bg)	-0.03533	-20	-43	No	13	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW-1608 (bg)	-0.007863	-6	-43	No	13	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1601A (bg)	13.67	43	43	No	13	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1602 (bg)	7.533	38	43	No	13	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1603 (bg)	6.075	14	43	No	13	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW-1608 (bg)	3.358	21	43	No	13	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1601A (bg)	10.19	28	43	No	13	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1602 (bg)	0.5312	16	43	No	13	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1603 (bg)	-5.236	-44	-43	Yes	13	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW-1608 (bg)	-0.09116	-4	-43	No	13	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1601A (bg)	-0.01381	-33	-48	No	14	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1602 (bg)	0.025	63	48	Yes	14	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1603 (bg)	0	4	48	No	14	0	n/a	n/a	0.01	NP
Fluoride, total (mg/L)	MW-1608 (bg)	-0.03883	-76	-48	Yes	14	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1601A (bg)	28.78	61	43	Yes	13	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1602 (bg)	28.64	38	43	No	13	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1603 (bg)	-18.84	-14	-43	No	13	0	n/a	n/a	0.01	NP
Sulfate, total (mg/L)	MW-1608 (bg)	40.3	32	43	No	13	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1601A (bg)	71.01	56	43	Yes	13	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1602 (bg)	59.17	52	43	Yes	13	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1603 (bg)	0.6747	3	43	No	13	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	MW-1608 (bg)	36.72	28	43	No	13	0	n/a	n/a	0.01	NP

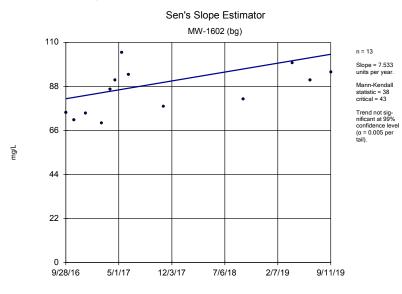
Constituent: Boron, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



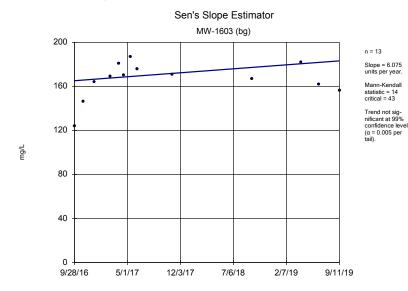
Constituent: Boron, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



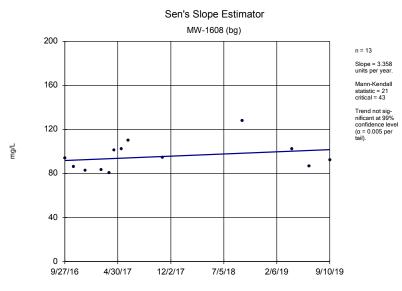
Constituent: Boron, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



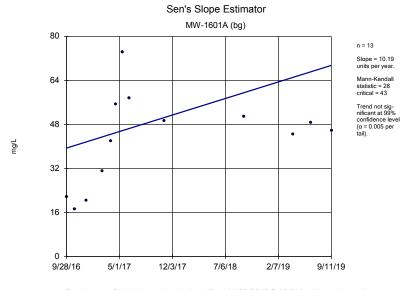
Constituent: Boron, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



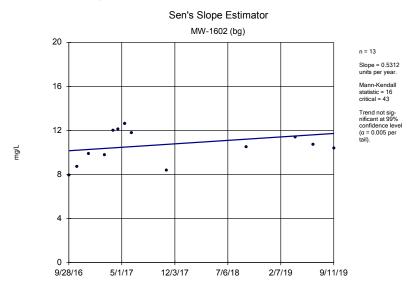
Constituent: Calcium, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

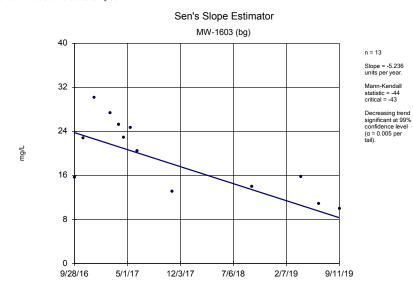

Constituent: Calcium, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.23 Groundwater Stats Consulting. UG

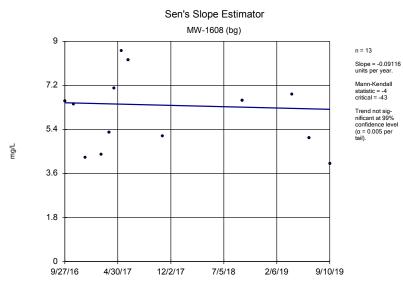


Constituent: Calcium, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



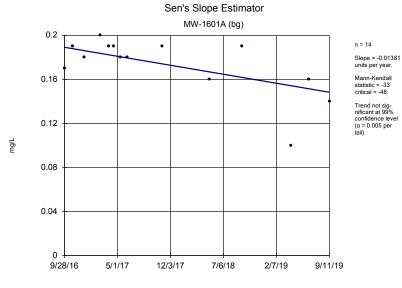

Constituent: Calcium, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

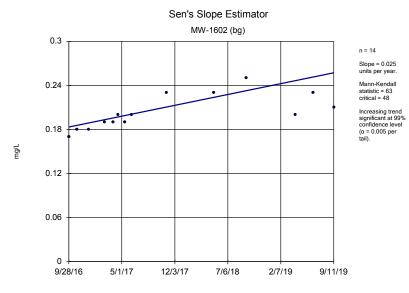
Constituent: Chloride, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



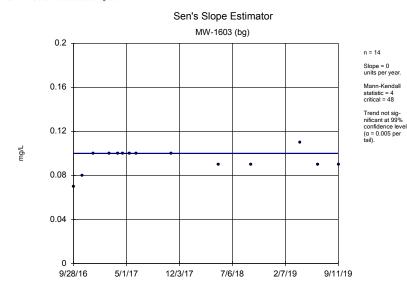
Constituent: Chloride, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Chloride, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

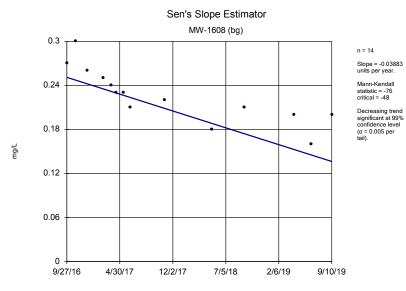



Constituent: Chloride, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

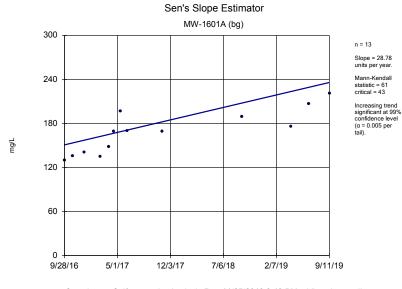
Sanitas[™] v.9.6.23 Groundwater Stats Consulting. UG


Sanitas[™] v.9.6.23 Groundwater Stats Consulting. UG

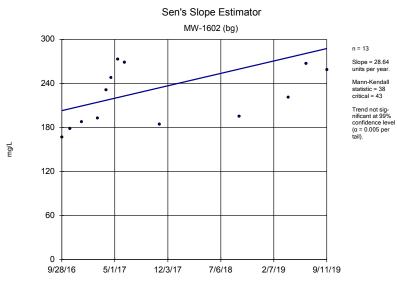
Constituent: Fluoride, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



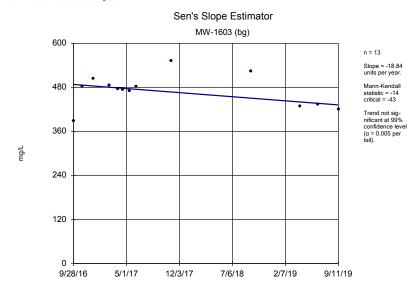
Constituent: Fluoride, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



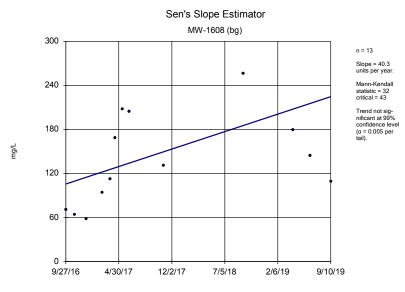
Constituent: Fluoride, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



Constituent: Fluoride, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

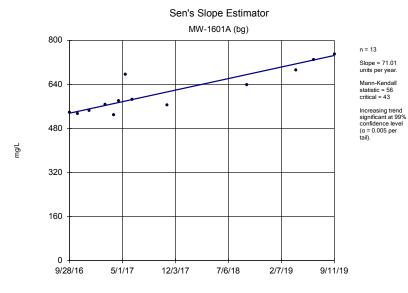


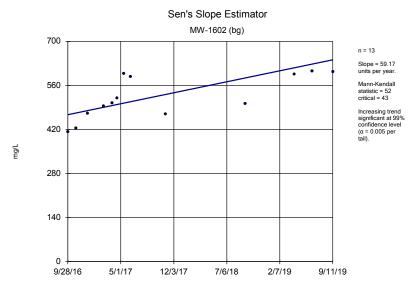
Constituent: Sulfate, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Constituent: Sulfate, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

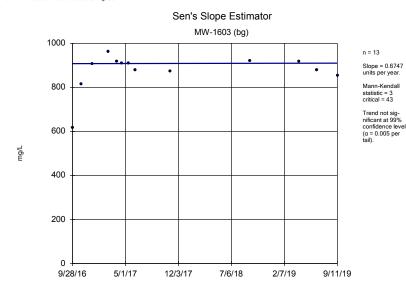
Sanitas[™] v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Sulfate, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

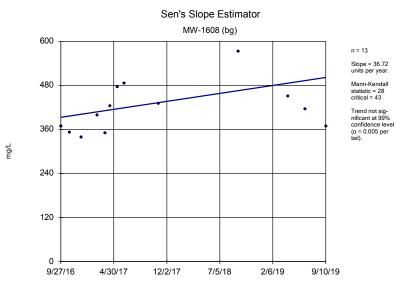



Constituent: Sulfate, total Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas[™] v.9.6.23 Groundwater Stats Consulting. UG


Sanitas[™] v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP



Constituent: Total Dissolved Solids [TDS] Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/25/2019 3:19 PM View: Interwell Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

FIGURE G: INTERWELL PREDICTION LIMITS

Interwell Prediction Limit Summary Table - All Results

Constituent	Well	Upper Lim.	Lower Lim.	Date	Observ.	Sig. Bg	N Bg Mean	Std. Dev.	<u>%NE</u>	<u>Ds ND Adj.</u>	Transform	Alpha	Method
Boron, total (mg/L)	n/a	0.6142	n/a	n/a	8 future	n/a 44	0.6107	0.1197	0	None	x^(1/3)	0.0009403	Param Inter 1 of 2
Calcium, total (mg/L)	n/a	200.1	n/a	n/a	8 future	n/a 44	10.88	1.633	0	None	sqrt(x)	0.0009403	Param Inter 1 of 2
Chloride, total (mg/L)	n/a	68.45	n/a	n/a	8 future	n/a 44	2.704	0.7615	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Fluoride, total (mg/L)	n/a	0.271	n/a	n/a	8 future	n/a 48	0.03432	0.01967	0	None	x^2	0.0009403	Param Inter 1 of 2
Sulfate, total (mg/L)	n/a	673.9	n/a	n/a	8 future	n/a 44	5.353	0.58	0	None	ln(x)	0.0009403	Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	n/a	1042	n/a	n/a	8 future	n/a 44	6.348	0.3006	0	None	ln(x)	0.0009403	Param Inter 1 of 2

FIGURE H: TOLERANCE LIMITS

Upper Tolerance Limits - App IV

Constituent	Upper Lim.	<u>Bg N</u>	Bg Mean	Std. Dev.	<u>%NDs</u>	<u>ND Adj.</u>	Transform	<u>Alpha</u>	Method
Antimony, total (mg/L)	0.0001	52	n/a	n/a	9.615	n/a	n/a	0.06944	NP Inter(normality)
Arsenic, total (mg/L)	0.0007362	52	0.0004713	0.000129	0	None	No	0.05	Inter
Barium, total (mg/L)	0.0653	52	n/a	n/a	0	n/a	n/a	0.06944	NP Inter(normality)
Beryllium, total (mg/L)	0.0001	52	n/a	n/a	86.54	n/a	n/a	0.06944	NP Inter(NDs)
Cadmium, total (mg/L)	0.00003	52	n/a	n/a	7.692	n/a	n/a	0.06944	NP Inter(normality)
Chromium, total (mg/L)	0.0008959	48	-8.21	0.5744	2.083	None	ln(x)	0.05	Inter
Cobalt, total (mg/L)	0.0007027	52	-9.164	0.9269	3.846	None	ln(x)	0.05	Inter
Combined Radium 226 + 228 (pCi/L)	2.328	52	0.8404	0.3337	0	None	sqrt(x)	0.05	Inter
Fluoride, total (mg/L)	0.2693	56	0.03342	0.01924	0	None	x^2	0.05	Inter
Lead, total (mg/L)	0.0006734	52	-9.264	0.9549	7.692	None	ln(x)	0.05	Inter
Lithium, total (mg/L)	0.02601	52	0.01169	0.006974	11.54	None	No	0.05	Inter
Mercury, total (mg/L)	0.000005	52	n/a	n/a	92.31	n/a	n/a	0.06944	NP Inter(NDs)
Molybdenum, total (mg/L)	0.003756	52	0.03458	0.01301	3.846	None	sqrt(x)	0.05	Inter
Selenium, total (mg/L)	0.0015	52	n/a	n/a	0	n/a	n/a	0.06944	NP Inter(normality)
Thallium, total (mg/L)	0.0005	52	n/a	n/a	25	n/a	n/a	0.06944	NP Inter(normality)

FIGURE I: GROUNDWATER PROTECTION STANDARDS

MOUNTAINEER BAP GWPS													
		CCR	Background										
Constituent Name	MCL	Rule-Specified	Limit	GWPS									
Antimony, Total (mg/L)	0.006		0.0001	0.006									
Arsenic, Total (mg/L)	0.01		0.00074	0.01									
Barium, Total (mg/L)	2		0.065	2									
Beryllium, Total (mg/L)	0.004		0.0001	0.004									
Cadmium, Total (mg/L)	0.005		0.00003	0.005									
Chromium, Total (mg/L)	0.1		0.0009	0.1									
Cobalt, Total (mg/L)	n/a	0.006	0.0007	0.006									
Combined Radium, Total (pCi/L)	5		2.33	5									
Fluoride, Total (mg/L)	4		0.27	4									
Lead, Total (mg/L)	0.015		0.00067	0.015									
Lithium, Total (mg/L)	n/a	0.04	0.026	0.04									
Mercury, Total (mg/L)	0.002		0.000005	0.002									
Molybdenum, Total (mg/L)	n/a	0.1	0.0038	0.1									
Selenium, Total (mg/L)	0.05		0.0015	0.05									
Thallium, Total (mg/L)	0.002		0.0005	0.002									

*Grey cell indicates ACL is higher than MCL.

*MCL = Maximum Contaminant Level

*RSL = Regional Screening Level

FIGURE J: CONFIDENCE INTERVALS

Confidence Interval Summary Table - Significant Results

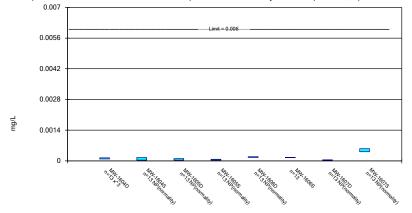
Constituent	Well	Upper Lim. Lov	wer Lim. Compliance	<u>Sig.</u> <u>N</u>	Mean	Std. Dev.	<u>%NDs</u>	ND Adj.	Transform	<u>Alpha</u>	Method
Lithium, total (mg/L)	MW-1605D	0.07997 0.0	05932 0.04	Yes 13	0.06839	0.01741	0	None	x^2	0.01	Param.
Lithium, total (mg/L)	MW-1605S	0.07823 0.0	05645 0.04	Yes 13	0.06734	0.01465	0	None	No	0.01	Param.
Lithium, total (mg/L)	MW-1606D	0.1264 0.09	0998 0.04	Yes 13	0.1121	0.02078	0	None	x^2	0.01	Param.
Lithium, total (mg/L)	MW-1606S	0.1172 0.09	09409 0.04	Yes 13	0.1049	0.01791	0	None	x^2	0.01	Param.
Lithium, total (mg/L)	MW-1607D	0.09986 0.0	07352 0.04	Yes 13	0.08669	0.01771	0	None	No	0.01	Param.
Lithium, total (mg/L)	MW-1607S	0.1132 0.08	08938 0.04	Yes 13	0.1013	0.01604	0	None	No	0.01	Param.

Confidence Interval Summary Table - All Results

	Mounta	ineer BAP	Client: Ge	osyntec Dat	a: Mo	ountai	neer BAP	Printed 12/1/20	19, 11:0	08 AM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	<u>Sig.</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>%NDs</u>	<u>ND Adj</u>	Transform	<u>Alpha</u>	Method
Antimony, total (mg/L)	MW-1604D	0.0001368	0.00008695	50.006	No	13	0.0001015	0.0000467	7.692	None	x^3	0.01	Param.
Antimony, total (mg/L)	MW-1604S	0.00015	0.00003	0.006	No	13	0.00007923	0.00006075	0	None	No	0.01	NP (normality)
Antimony, total (mg/L)	MW-1605D	0.0001	0.00003	0.006	No	13	0.00003923	0.00001891	7.692	None	No	0.01	NP (normality)
Antimony, total (mg/L)	MW-1605S	0.00007	0.00003	0.006	No	13	0.00005769	0.0000332	0	None	No	0.01	NP (normality)
Antimony, total (mg/L)	MW-1606D	0.00019	0.00015	0.006	No	13	0.0001692	0.00002957	0	None	No	0.01	NP (normality)
Antimony, total (mg/L)	MW-1606S	0.0001601	0.0001414	0.006	No	13	0.0001508	0.00001256	0	None	No	0.01	Param.
Antimony, total (mg/L)	MW-1607D	0.00004	0.00003	0.006	No	13	0.00003231	0.000005991	0	None	No	0.01	NP (normality)
Antimony, total (mg/L)	MW-1607S	0.00055	0.00041	0.006	No	13	0.00048	0.0001156	0	None	No	0.01	NP (normality)
Arsenic, total (mg/L)	MW-1604D	0.0005091	0.0003525	0.01	No	13	0.0004308	0.0001053	0	None	No	0.01	Param.
Arsenic, total (mg/L)	MW-1604S	0.0004579	0.0003544	0.01	No	13	0.0004062	0.00006959	0	None	No	0.01	Param.
Arsenic, total (mg/L)	MW-1605D	0.002577	0.002184	0.01	No	13	0.002381	0.0002641	0	None	No	0.01	Param.
Arsenic, total (mg/L)	MW-1605S	0.0009334	0.0005651	0.01	No	13	0.0007492	0.0002476	0	None	No	0.01	Param.
Arsenic, total (mg/L)	MW-1606D	0.0007217	0.0004037	0.01	No	13	0.0005846	0.0002808	0	None	ln(x)	0.01	Param.
Arsenic, total (mg/L)	MW-1606S		0.0007169			13	0.0007915		0		No	0.01	Param.
Arsenic, total (mg/L)	MW-1607D	0.001342	0.001021	0.01		13	0.001182		0	None	No	0.01	Param.
Arsenic, total (mg/L)	MW-1607S	0.001387	0.0009372			12	0.001168		0		sqrt(x)	0.01	Param.
Barium, total (mg/L)	MW-1604D	0.0529		2		13	0.03432	0.009917	0		No	0.01	NP (normality)
Barium, total (mg/L)	MW-1604S	0.03004		2		13	0.02875	0.001746	0		No	0.01	Param.
Barium, total (mg/L)	MW-1605D	0.02981		2		13	0.02762	0.002947	0		No	0.01	Param.
Barium, total (mg/L)	MW-1605S	0.02301		2		13	0.03187	0.007452	0		No	0.01	Param.
Barium, total (mg/L)	MW-1606D	0.05922		2		13	0.05493		0		No	0.01	Param.
Barium, total (mg/L)	MW-1606S	0.07539		2		13	0.07192		0		No	0.01	Param.
		0.1391		2		13	0.1155	0.0317	0		No	0.01	
Barium, total (mg/L)	MW-1607D			2				0.007998				0.01	Param.
Barium, total (mg/L)	MW-1607S	0.07379				12	0.06752		0		No		Param.
Beryllium, total (mg/L)	MW-1604D	0.0001		0.004		13	0.0001	0	100		No	0.01	NP (NDs)
Beryllium, total (mg/L)	MW-1604S	0.0001		0.004		13			92.31		No	0.01	NP (NDs)
Beryllium, total (mg/L)	MW-1605D	0.0001		0.004	No		0.0001	0	100		No	0.01	NP (NDs)
Beryllium, total (mg/L)	MW-1605S	0.0001		0.004	No		0.00007969				No	0.01	NP (NDs)
Beryllium, total (mg/L)	MW-1606D	0.0001		0.004	No		0.00007308				No	0.01	NP (normality)
Beryllium, total (mg/L)	MW-1606S	0.0001		0.004	No			0.00002635			No	0.01	NP (NDs)
Beryllium, total (mg/L)	MW-1607D	0.0001		0.004	No			0.00002552			No	0.01	NP (NDs)
Beryllium, total (mg/L)	MW-1607S	0.000123		0.004	No		0.00008077				No	0.01	NP (normality)
Cadmium, total (mg/L)	MW-1604D	0.000138	0.0000574		No			0.00005418			No	0.01	Param.
Cadmium, total (mg/L)	MW-1604S	0.00021		0.005		13		0.00008636			No	0.01	NP (normality)
Cadmium, total (mg/L)	MW-1605D		70.00001867			13		0.00001109			No	0.01	Param.
Cadmium, total (mg/L)	MW-1605S	0.00013	0.00005	0.005	No	13	0.00007154		0		No	0.01	NP (normality)
Cadmium, total (mg/L)	MW-1606D	0.0000788	30.0000642	0.005	No	13	0.00007154	0.000009871	0	None	No	0.01	Param.
Cadmium, total (mg/L)	MW-1606S	0.0000794	30.00006672	20.005	No	13		0.000008549			No	0.01	Param.
Cadmium, total (mg/L)	MW-1607D	0.00003	0.00001	0.005	No	13	0.00002192	0.000006934	61.54	None	No	0.01	NP (normality)
Cadmium, total (mg/L)	MW-1607S	0.00006		0.005	No	13		0.00005124	0	None	No	0.01	NP (normality)
Chromium, total (mg/L)	MW-1604D		0.0001774		No	13	0.0003165		0		No	0.01	Param.
Chromium, total (mg/L)	MW-1604S	0.0003179	0.0001026	0.1	No	12	0.0002222		0	None	x^(1/3)	0.01	Param.
Chromium, total (mg/L)	MW-1605D	0.0002588	0.00007424	10.1	No	12	0.0001733	0.0001416	0	None	sqrt(x)	0.01	Param.
Chromium, total (mg/L)	MW-1605S	0.0005477	0.0002212	0.1	No	12	0.0003844	0.0002081	0	None	No	0.01	Param.
Chromium, total (mg/L)	MW-1606D	0.0005256	0.0001334	0.1	No	13	0.0003512	0.0003008	0	None	sqrt(x)	0.01	Param.
Chromium, total (mg/L)	MW-1606S	0.0004454	0.0000925	0.1	No	13	0.0003065	0.0003456	0	None	x^(1/3)	0.01	Param.
Chromium, total (mg/L)	MW-1607D	0.000275	0.00006908	30.1	No	12	0.0002061	0.0002194	0	None	ln(x)	0.01	Param.
Chromium, total (mg/L)	MW-1607S	0.0005017	0.0002021	0.1	No	12	0.0003519	0.0001909	0	None	No	0.01	Param.
Cobalt, total (mg/L)	MW-1604D	0.001806	0.001283	0.006	No	13	0.001191	0.0007762	0	None	x^5	0.01	Param.
Cobalt, total (mg/L)	MW-1604S	0.00216	0.000308	0.006	No	13	0.001017	0.0008896	0	None	No	0.01	NP (normality)
Cobalt, total (mg/L)	MW-1605D	0.001809	0.001633	0.006	No	13	0.001721	0.0001182	0	None	No	0.01	Param.
Cobalt, total (mg/L)	MW-1605S	0.001093	0.0004255	0.006	No	13	0.0008512	0.0007502	0	None	ln(x)	0.01	Param.
Cobalt, total (mg/L)	MW-1606D	0.0022	0.00117	0.006	No	13	0.001655	0.0008412	0	None	No	0.01	NP (normality)
Cobalt, total (mg/L)	MW-1606S	0.000364	0.0002429	0.006	No	13	0.0003035	0.00008138	0	None	No	0.01	Param.
Cobalt, total (mg/L)	MW-1607D	0.000805	0.000399	0.006	No	13	0.0005857	0.0001814	0	None	No	0.01	NP (normality)

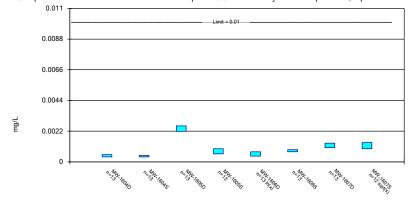
Confidence Interval Summary Table - All Results

	Mount	aineer BAP	Client: Ge	osyntec Dat	a: Mo	ountaii	neer BAP P	Printed 12/1/20	19, 11:0	08 AM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	<u>Sig.</u>	N	Mean	Std. Dev.	<u>%NDs</u>	<u>ND Adj</u>	.Transform	<u>Alpha</u>	Method
Cobalt, total (mg/L)	MW-1607S	0.00259	0.00084	0.006	No	12	0.001256	0.0006424	0	None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-1604D	1.572	0.52	5	No	13	1.094	0.8316	0	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1604S	1.447	0.6675	5	No	12	1.075	0.5623	0	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1605D	1.745	0.6532	5	No	13	1.267	0.9067	0	None	x^(1/3)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1605S	2.692	0.337	5	No	13	0.8627	0.8402	0	None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	MW-1606D	2.231	0.8522	5	No	12	1.582	0.9769	0	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1606S	1.708	0.6857	5	No	13	1.197	0.6873	0	None	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1607D	1.961	1.069	5	No	13	1.58	0.8076	0	None	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW-1607S	2.214	1.066	5	No	13	1.64	0.7717	0	None	No	0.01	Param.
Fluoride, total (mg/L)	MW-1604D	0.1974	0.1683	4	No	14	0.1829	0.02054	0	None	No	0.01	Param.
Fluoride, total (mg/L)	MW-1604S	0.2114	0.1905	4	No	14	0.2007	0.01542	0	None	x^2	0.01	Param.
Fluoride, total (mg/L)	MW-1605D	0.2103	0.184	4	No	14	0.1971	0.01858	0	None	No	0.01	Param.
Fluoride, total (mg/L)	MW-1605S	0.3	0.23	4	No	14	0.2593	0.03362	0	None	No	0.01	NP (normality)
Fluoride, total (mg/L)	MW-1606D	0.28	0.24	4	No	14	0.2614	0.07853	0	None	No	0.01	NP (normality)
Fluoride, total (mg/L)	MW-1606S	0.4972	0.4029	4	No	15	0.442	0.08205	0	None	x^3	0.01	Param.
Fluoride, total (mg/L)	MW-1607D	0.544	0.4773	4	No	15	0.5107	0.0492	0	None	No	0.01	Param.
Fluoride, total (mg/L)	MW-1607S	0.3055	0.2622	4	No	14	0.2829	0.03315	0	None	x^2	0.01	Param.
Lead, total (mg/L)	MW-1604D	0.000303	0.000022	0.015	No	13	0.000112	0.0001611	15.38	None	No	0.01	NP (Cohens/xfrm)
Lead, total (mg/L)	MW-1604S	0.0001707	0.0000492	50.015	No	13	0.00007731	0.00003657	23.08	Cohen`	\$No	0.01	Param.
Lead, total (mg/L)	MW-1605D	0.00008	0.00001	0.015	No	13	0.00003885	0.00003261	15.38	None	No	0.01	NP (Cohens/xfrm)
Lead, total (mg/L)	MW-1605S	0.0007334	0.0001364	0.015	No	13	0.0004746	0.0005588	0	None	sqrt(x)	0.01	Param.
Lead, total (mg/L)	MW-1606D	0.000491	0.00003	0.015	No	12	0.0001622	0.0001669	16.67	None	No	0.01	NP (Cohens/xfrm)
Lead, total (mg/L)	MW-1606S	0.0001517	0.0000604	50.015	No	13	0.0001061	0.00006136	7.692	None	No	0.01	Param.
Lead, total (mg/L)	MW-1607D	0.000179	0.000041	0.015	No	13	0.0001143	0.0001597	7.692	None	No	0.01	NP (normality)
Lead, total (mg/L)	MW-1607S	0.00125	0.00009	0.015	No	12	0.0003435	0.0004635	0	None	No	0.01	NP (normality)
Lithium, total (mg/L)	MW-1604D	0.05535	0.02892	0.04	No	13	0.04214	0.01777	7.692	None	No	0.01	Param.
	MW 16046	0.04790	0.02251	0.04		40	0.0402	0.01035	0	None	No	0.01	Param.
Lithium, total (mg/L)	MW-1604S	0.04789	0.03251	0.04	No	13	0.0402	0.01000	0			0.01	i alam.
Lithium, total (mg/L)	MW-16045	0.04789 0.07997	0.03231	0.04 0.04	NO Yes		0.0402	0.01741	0	None		0.01	Param.
						13					x^2		
Lithium, total (mg/L)	MW-1605D	0.07997	0.05932	0.04	Yes	13 13	0.06839	0.01741	0	None	x^2 No	0.01	Param.
Lithium, total (mg/L) Lithium, total (mg/L)	MW-1605D MW-1605S	0.07997 0.07823	0.05932 0.05645	0.04 0.04	Yes Yes	13 13 13	0.06839 0.06734	0.01741 0.01465	0 0	None None	x^2 No x^2	0.01 0.01	Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L)	MW-1605D MW-1605S MW-1606D	0.07997 0.07823 0.1264	0.05932 0.05645 0.0998	0.04 0.04 0.04	Yes Yes Yes	13 13 13 13	0.06839 0.06734 0.1121	0.01741 0.01465 0.02078	0 0 0	None None None	x^2 No x^2 x^2	0.01 0.01 0.01	Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L)	MW-1605D MW-1605S MW-1606D MW-1606S	0.07997 0.07823 0.1264 0.1172	0.05932 0.05645 0.0998 0.09409	0.04 0.04 0.04 0.04	Yes Yes Yes Yes	13 13 13 13 13 13	0.06839 0.06734 0.1121 0.1049	0.01741 0.01465 0.02078 0.01791	0 0 0 0	None None None None	x^2 No x^2 x^2 No	0.01 0.01 0.01 0.01	Param. Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L)	MW-1605D MW-1605S MW-1606D MW-1606S MW-1607D	0.07997 0.07823 0.1264 0.1172 0.09986	0.05932 0.05645 0.0998 0.09409 0.07352	0.04 0.04 0.04 0.04 0.04	Yes Yes Yes Yes Yes Yes	13 13 13 13 13 13	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013	0.01741 0.01465 0.02078 0.01791 0.01771	0 0 0 0 0	None None None None None	x^2 No x^2 x^2 No	0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L)	MW-1605D MW-1605S MW-1606D MW-1606S MW-1607D MW-1607S	0.07997 0.07823 0.1264 0.1172 0.09986 0.1132	0.05932 0.05645 0.0998 0.09409 0.07352 0.08938	0.04 0.04 0.04 0.04 0.04 0.04	Yes Yes Yes Yes Yes No	13 13 13 13 13 13	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.000008662	0 0 0 0 0 0 84.62	None None None None None None	x*2 No x*2 x*2 No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L)	MW-1605D MW-1605S MW-1606D MW-1606S MW-1607D MW-1607S MW-1604D	0.07997 0.07823 0.1264 0.1172 0.09986 0.1132 0.000036	0.05932 0.05645 0.0998 0.09409 0.07352 0.08938 0.000003	0.04 0.04 0.04 0.04 0.04 0.04 0.04	Yes Yes Yes Yes Yes No No	13 13 13 13 13 13 13	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000007231	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.000008662 5.5e-7	0 0 0 0 0 84.62 92.31	None None None None None None	x^2 No x^2 x^2 No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L)	MW-1605D MW-1605S MW-1606D MW-1606S MW-1607D MW-1607S MW-1604D MW-1604S	0.07997 0.07823 0.1264 0.1172 0.09986 0.1132 0.000036 0.000005	0.05932 0.05645 0.0998 0.09409 0.07352 0.08938 0.000003 0.000003 0.000003	0.04 0.04 0.04 0.04 0.04 0.04 0.002 0.002	Yes Yes Yes Yes Yes No No	 13 13 13 13 13 13 13 13 13 	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000007231 0.000004846	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.000008662 5.5e-7 8.3e-7	0 0 0 0 0 84.62 92.31	None None None None None None	x^2 No x^2 x^2 No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L)	MW-1605D MW-1605S MW-1606D MW-1606S MW-1607D MW-1604D MW-1604D MW-1604S	0.07997 0.07823 0.1264 0.1172 0.09986 0.1132 0.000036 0.000005 0.000005	0.05932 0.05645 0.0998 0.09409 0.07352 0.08938 0.000003 0.000003 0.000003	0.04 0.04 0.04 0.04 0.04 0.04 0.002 0.002 0.002	Yes Yes Yes Yes Yes No No No	 13 13 13 13 13 13 13 13 13 	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000007231 0.000004846 0.000004769	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.000008662 5.5e-7 8.3e-7 5.5e-7	0 0 0 0 84.62 92.31 92.31	None None None None None None None	x^2 No x^2 x^2 No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L)	MW-1605D MW-1605S MW-1606D MW-1606S MW-1607D MW-1607S MW-1604D MW-1605D MW-1605D	0.07997 0.07823 0.1264 0.1172 0.09986 0.1132 0.000036 0.000005 0.000005	0.05932 0.05645 0.0998 0.09409 0.07352 0.08938 0.00003 0.000003 0.000002 0.000003	0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.002 0.002 0.002	Yes Yes Yes Yes Yes No No No	 13 	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000007231 0.000004846 0.000004769 0.000004846	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.000008662 5.5e-7 8.3e-7 5.5e-7 2.8e-7	0 0 0 0 84.62 92.31 92.31 92.31	None None None None None None None None	x^2 No x^2 No No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L)	MW-1605D MW-1605S MW-1606D MW-1607D MW-1607D MW-1607S MW-1604D MW-1605D MW-1605S MW-1605D	0.07997 0.07823 0.1264 0.1172 0.09986 0.1132 0.00003 0.00005 0.00005 0.00005	0.05932 0.05645 0.0998 0.09409 0.07352 0.08938 0.00003 0.000003 0.000002 0.000003	0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002	Yes Yes Yes Yes No No No No No	 13 	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000007231 0.000004846 0.000004769 0.000004923 0.000004769	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.000008662 5.5e-7 8.3e-7 5.5e-7 2.8e-7	0 0 0 0 84.62 92.31 92.31 92.31 92.31	None None None None None None None None	x^2 No x^2 No No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1606S MW-1607D MW-1607D MW-1604D MW-1604S MW-1605D MW-1605D MW-1606D MW-1606D	0.07997 0.07823 0.1264 0.1172 0.09986 0.1132 0.000036 0.000035 0.000005 0.000005	0.05932 0.05645 0.0998 0.09409 0.07352 0.08938 0.00003 0.000003 0.000002 0.000004 0.000004	0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002	Yes Yes Yes Yes Yes No No No No No	 13 	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000007231 0.000004846 0.000004769 0.000004923 0.000004769	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.00008662 5.5e-7 8.3e-7 2.8e-7 8.3e-7 8.3e-7 0.00001127	0 0 0 0 84.62 92.31 92.31 92.31 92.31 84.62	None None None None None None None None	x^2 No x^2 No No No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1606S MW-1607D MW-1607D MW-1604D MW-1604D MW-1605D MW-1605D MW-1606D MW-1606S MW-1606S	0.07997 0.7823 0.1264 0.1172 0.09986 0.1132 0.00003 0.00003 0.00005 0.00005 0.00005	0.05932 0.05645 0.0998 0.09409 0.07352 0.08938 0.00003 0.000003 0.000002 0.000004 0.000002 0.000002	0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002	Yes Yes Yes Yes Yes No No No No No	 13 12 	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000007231 0.000004846 0.000004769 0.000004923 0.000004769 0.000004538	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.000008662 5.5e-7 8.3e-7 5.5e-7 2.8e-7 8.3e-7 0.000001127 7.8e-7	0 0 0 0 84.62 92.31 92.31 92.31 92.31 92.31 84.62 83.33	None None None None None None None None	x^2 No x^2 Xo No No No No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1606S MW-1607D MW-1607D MW-1604D MW-1604D MW-1605D MW-1605D MW-1606D MW-1606S MW-1607D MW-1607D	0.07997 0.7823 0.1264 0.1172 0.09986 0.1132 0.000036 0.00005 0.00005 0.00005 0.00005 0.00005	0.05932 0.05645 0.0998 0.09409 0.07352 0.08938 0.000003 0.000003 0.000002 0.000002 0.000002 0.000002	0.04 0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	Yes Yes Yes Yes Yes No No No No No No No	 13 12 	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000007231 0.000004846 0.000004769 0.000004923 0.000004769 0.000004538 0.000004538	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.000008662 5.5e-7 8.3e-7 5.5e-7 2.8e-7 8.3e-7 0.000001127 7.8e-7	0 0 0 0 84.62 92.31 92.31 92.31 92.31 92.31 84.62 83.33	None None None None None None None None	x^2 No x^2 Xo No No No No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1606S MW-1607D MW-1607D MW-1604D MW-1604D MW-1605D MW-1605D MW-1606D MW-1607D MW-1607S MW-1607S MW-1604D	0.07997 0.7823 0.1264 0.1172 0.09986 0.1132 0.000036 0.00005 0.00005 0.00005 0.00005 0.00005	0.05932 0.05645 0.0998 0.09409 0.07352 0.08938 0.00003 0.000003 0.000002 0.000004 0.000002 0.000002 0.000003 0.000003	0.04 0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	Yes Yes Yes Yes No No No No No No No No	 13 12 12 12 	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000007231 0.000004846 0.000004769 0.000004923 0.000004538 0.000004538 0.000004667 0.01243	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.000008662 5.5e-7 8.3e-7 2.8e-7 8.3e-7 0.000001127 7.8e-7 0.008423	0 0 0 0 844.62 92.31 92.31 92.31 92.31 92.31 84.62 83.33 7.692	None None None None None None None None	x*2 No x*2 x*2 No No No No No No No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1606S MW-1607D MW-1607D MW-1604D MW-1604S MW-1605D MW-1605D MW-1606D MW-1607D MW-1607S MW-1607S MW-1604D MW-1604D	0.07997 0.7823 0.1264 0.1172 0.09986 0.1132 0.000036 0.000035 0.00005 0.00005 0.00005 0.00005 0.00005 0.01906	0.05932 0.05645 0.0998 0.09409 0.07352 0.08938 0.00003 0.000003 0.000002 0.000002 0.000002 0.000003 0.01355 0.00247	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	Yes Yes Yes Yes No No No No No No No No No	 13 12 13 12 13 12 13 	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000007231 0.000004846 0.000004769 0.000004923 0.000004769 0.000004538 0.000004667 0.01243 0.008351	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.000008662 5.5e-7 8.3e-7 2.8e-7 8.3e-7 0.000001127 7.8e-7 0.008423 0.007211	0 0 0 0 84.62 92.31 92.31 92.31 92.31 92.31 84.62 83.33 7.692 0	None None None None None None None None	x*2 No x*2 x*2 No No No No No No No No No No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. NP (NDs) NP (NDs)
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1606D MW-1607D MW-1604D MW-1604S MW-1605D MW-1605D MW-1606D MW-1606D MW-1607D MW-1604D MW-1604D MW-1604D	0.07997 0.7823 0.1264 0.1172 0.09986 0.1032 0.00005 0.00005 0.00005 0.00005 0.00005 0.01906 0.01906 0.01906	0.05932 0.05645 0.0998 0.07352 0.08938 0.00003 0.000003 0.000003 0.000004 0.000002 0.000002 0.000003 0.01355 0.00247	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	Yes Yes Yes Yes No No No No No No No No No	 13 12 13 12 13 12 13 13 13 14 15 16 17 18 19 19 10 <	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000007231 0.000004846 0.000004923 0.000004923 0.000004769 0.00004538 0.000004667 0.01243 0.008351 0.008351	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.000008662 5.5e-7 8.3e-7 2.8e-7 8.3e-7 0.00001127 7.8e-7 0.00001127 7.8e-7 0.008423 0.007211 0.005091	0 0 0 0 84.62 92.31 92.31 92.31 92.31 92.31 92.31 84.62 83.33 7.692 0 0	None None None None None None None None	x^2 No x^2 No No No No No No No No No No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. Param. NP (NDs) Param. NP (normality) Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1607D MW-1607D MW-1607D MW-1604D MW-1605D MW-1606D MW-1606D MW-1606D MW-1607D MW-1607D MW-1607S MW-1604S MW-1604S	0.07997 0.7823 0.1264 0.1172 0.09986 0.1132 0.000036 0.00003 0.00005 0.0005 0.0005 0.0005 0.00005 0.00005 0.0005 0.0005 0.0000	0.05932 0.05645 0.0998 0.09409 0.07352 0.08938 0.00003 0.00003 0.00004 0.000002 0.000002 0.000003 0.000003 0.01355 0.00247 0.04271 0.01531	0.04 0.04 0.04 0.04 0.04 0.02 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1	Yes Yes Yes Yes No No No No No No No No No No	 13 12 13 12 13 14 15 16 17 18 19 19 19 10 <	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000007231 0.000004846 0.000004923 0.000004923 0.000004538 0.000004538 0.000004667 0.01243 0.008351 0.008351 0.0465 0.01824	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.00008662 5.5e-7 8.3e-7 8.3e-7 2.8e-7 8.3e-7 0.00001127 7.8e-7 0.008423 0.007211 0.005091 0.003943	0 0 0 0 84.62 92.31 92.31 92.31 92.31 92.31 92.31 84.62 83.33 7.692 0 0	None None None None None None None None	x^2 No x^2 No No No No No No No X^5 No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. Param. Param. Param. P(NDs) NP (NDs) Param. Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Morcury, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L) Molybdenum, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1606S MW-1607D MW-1607D MW-1604D MW-1605D MW-1605D MW-1606D MW-1606S MW-1607D MW-1607S MW-1607D MW-1607S MW-1605D MW-1605D MW-1605D	0.07997 0.7823 0.1264 0.1172 0.09986 0.1132 0.000036 0.00005 0.0005 0.000	0.05932 0.05645 0.0998 0.09409 0.07352 0.08938 0.00003 0.000003 0.000002 0.000002 0.000002 0.000002 0.000002 0.000003 0.01355 0.00247 0.04271 0.04271	0.04 0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1	Yes Yes Yes Yes Yes No No No No No No No No No No No No	 13 12 13 12 13 14 15 16 17 18 19 19 19 10 <	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000007231 0.00004846 0.000004769 0.000004769 0.000004538 0.000004538 0.00004538 0.00004531 0.01243 0.008351 0.0465 0.01824 0.01824	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.00008662 5.5e-7 8.3e-7 2.8e-7 8.3e-7 0.00001127 7.8e-7 0.008423 0.007211 0.005091 0.003943 0.003767	0 0 0 0 0 84.62 92.31 92.31 92.31 92.31 92.31 92.31 84.62 83.33 7.692 0 0	None None None None None None None None	x^2 No x^2 Xo No No No No No No Xo No No No No No No No No No No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. Param. Param. Param. P(NDs) NP (NDs) Param. NP (normality) Param. Param. Param. Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1606D MW-1607D MW-1607D MW-1604D MW-1604D MW-1605D MW-1605D MW-1606D MW-1607D MW-1607D MW-1607D MW-1607D MW-1604D MW-1605D MW-1605S MW-1605S	0.07997 0.7823 0.1264 0.1172 0.09986 0.000036 0.000036 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.0005	0.05932 0.05645 0.0998 0.09409 0.07352 0.08938 0.00003 0.00002 0.000000	0.04 0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes Yes Yes No	 13 12 13 12 13 14 	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000007231 0.000004769 0.000004769 0.000004769 0.000004538 0.000004538 0.000004538 0.00004538 0.0000453 0.001243 0.008351 0.0465 0.01824 0.07448 0.08529	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.00008662 5.5e-7 8.3e-7 2.8e-7 8.3e-7 0.00001127 7.8e-7 0.00001127 7.8e-7 0.0008423 0.007211 0.003943 0.005961 0.01896	0 0 0 0 0 84.62 92.31 92.31 92.31 92.31 92.31 92.31 92.31 92.31 92.31 0 0.0 0 0 0 0 0 0	None None None None None None None None	x*2 No x*2 x*2 No No No No No No No No No No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. Param. Param. Param. Param. P(NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param. NP (normality) Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1606D MW-1607D MW-1607D MW-1604D MW-1604D MW-1605D MW-1605D MW-1607D MW-1607D MW-1607D MW-1607D MW-1607D MW-1604S MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1606D MW-1606D	0.07997 0.7823 0.1264 0.1172 0.09986 0.132 0.000036 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.01906 0.01906 0.0197 0.02117 0.07877 0.09939	0.05932 0.05645 0.0998 0.07352 0.08938 0.00003 0.00003 0.00002 0.000003 0.000002 0.000002 0.000003 0.01355 0.0247 0.0247 0.01531 0.0702 0.07119 0.07119	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes Yes Yes No	 13 12 13 14 15 16 17 18 19 19 10 <	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000007231 0.000004769 0.000004769 0.000004769 0.000004538 0.000004538 0.000004538 0.00004531 0.001243 0.008351 0.01824 0.01824 0.07448 0.08529 0.08633	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.00008662 5.5e-7 2.8e-7 2.8e-7 2.8e-7 0.00001127 7.8e-7 0.008423 0.007211 0.00591 0.003943 0.005767 0.01896 0.005134 0.00509	0 0 0 0 84.62 92.31 92.31 92.31 92.31 92.31 92.31 92.31 92.31 92.31 0 0.0 0 0 0 0 0 0 0 0 0 0	None None None None None None None None	x*2 No x*2 x*2 No No No No No No No No No No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. Param. Param. Param. Param. P(NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param. P(normality) Param. Param. <tr< td=""></tr<>
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L)	 MW-1605D MW-1606D MW-1606D MW-1606D MW-1607D MW-1604D MW-1604D MW-1605D MW-1605D MW-1606D MW-1607D MW-1607D MW-1607D MW-1607D MW-1605D MW-1604D MW-1605D MW-1607D MW-1607D MW-1607D MW-1607D 	0.07997 0.7823 0.1264 0.1172 0.09986 0.1032 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.01906 0.0160 0.05029 0.02117 0.07877 0.09939 0.09015	0.05932 0.05645 0.0998 0.09409 0.07352 0.08938 0.00003 0.00003 0.00002 0.00003 0.00002 0.00003 0.01355 0.00247 0.04271 0.04271 0.01531 0.07159 0.08251 0.03902 0.03902	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes No No No No No No No No No No No No No	 13 12 13 14 15 16 17 18 19 19 10 <	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000007231 0.000004846 0.000004769 0.000004538 0.000004538 0.000004538 0.000004538 0.000004538 0.00004538 0.0000453 0.0000453 0.0000453 0.0000453 0.0000453 0.0000453 0.0000453 0.0000453 0.0000453 0.0000453 0.01824 0.08529 0.08633 0.04281	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.00008662 5.5e-7 8.3e-7 2.8e-7 2.8e-7 0.00001127 7.8e-7 0.008423 0.007211 0.00591 0.005943 0.005767 0.01896 0.005134 0.005134	0 0 0 0 84.62 92.31 92.31 92.31 92.31 92.31 84.62 83.33 7.692 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	None None None None None None None None	x*2 No x*2 x*2 No No No No No No No No No No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. Param. Param. Param. Parom. NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param. NP (normality) Param. Param. <
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Selenium, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1606D MW-1607D MW-1607D MW-1604D MW-1604D MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1607D MW-1607D MW-1607D MW-1607D MW-1607D MW-1607D MW-1607D MW-1604D MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1607D	0.07997 0.7823 0.1264 0.1172 0.09986 0.132 0.00005 0.00005 0.00005 0.00005 0.01906 0.01906 0.0160 0.0160 0.05029 0.02117 0.07877 0.09939 0.09915 0.04659 0.00025	0.05932 0.05645 0.0998 0.09409 0.07352 0.08938 0.00003 0.00003 0.00002 0.00003 0.00002 0.00003 0.01355 0.00247 0.04271 0.04271 0.01531 0.07159 0.08251 0.03902 0.03902	0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes Yes No No No No No No No No No No No No No	 13 12 13 14 15 16 16 17 18 19 19 10 <	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000007231 0.000004846 0.000004769 0.00004923 0.000004769 0.00004538 0.000004667 0.01243 0.008351 0.0465 0.01824 0.01824 0.08529 0.08633 0.04281 0.041538	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.00008662 5.5e-7 8.3e-7 2.8e-7 2.8e-7 0.00001127 7.8e-7 0.008423 0.007211 0.00591 0.00591 0.005134 0.005134 0.005134	0 0 0 0 84.62 92.31 92.31 92.31 92.31 92.31 84.62 83.33 7.692 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	None	x*2 No x*2 x*2 No No No No No No No No No No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. Param. Param. Param. Param. P(NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param. NP (NDs) Param. Param. Param. Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1607D MW-1607D MW-1607D MW-1607D MW-1607D MW-1604D MW-1604D MW-1605D MW-1605D MW-1606D MW-1607D MW-1607D MW-1607D MW-1607D MW-1607D MW-1604D MW-1604D MW-1605S MW-1604D MW-1605D MW-1605D MW-1605D MW-1607D MW-1607D MW-1607D MW-1607S MW-1607S MW-1607D MW-1607D MW-1607S MW-1607S MW-1604D MW-1604D MW-1604D MW-1604D MW-1604D	0.07997 0.7823 0.1264 0.1172 0.09986 0.1032 0.00005 0.00005 0.00005 0.00005 0.00005 0.01906 0.01906 0.01907 0.02117 0.07877 0.07877 0.09939 0.0215 0.04659 0.002029 0.002011	0.05932 0.05645 0.0998 0.07352 0.08938 0.00003 0.00003 0.00002 0.00003 0.00004 0.00002 0.00003 0.01355 0.00247 0.04271 0.01531 0.0702 0.07119 0.03902 0.03902 0.0007384 0.001266	0.04 0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.102 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes Yes No No No No No No No No No No No No No	13 13	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000007231 0.000004846 0.000004846 0.00004923 0.00004769 0.00004769 0.00004538 0.00004667 0.01243 0.008351 0.0465 0.01824 0.08529 0.08633 0.04281 0.001538 0.001838	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.00008662 5.5e-7 8.3e-7 2.8e-7 8.3e-7 0.00001127 7.8e-7 0.008423 0.007211 0.005091 0.003943 0.005767 0.01896 0.005134 0.005134 0.00509 0.001154 0.0007698 0.0007698	0 0 0 0 84.62 92.31 92.31 92.31 92.31 92.31 84.62 83.33 7.692 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	None	x*2 No x*2 x*2 No No No No No No No No No No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. Param. Param. Param. NP (NDs) Param. NP (normality) Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L)	 MW-1605D MW-1606D MW-1606D MW-1607D MW-1607D MW-1604D MW-1605D MW-1605D MW-1606D MW-1606S MW-1607D MW-1605D MW-1604D MW-1604D MW-1605D MW-1605D MW-1605D MW-1604D MW-1605D MW-1605D MW-1605D MW-1604D MW-1605D MW-1605D MW-1605D MW-1604D MW-1605D 	0.07997 0.7823 0.1264 0.1172 0.09986 0.1132 0.000036 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00166 0.002117 0.09393 0.002141 0.002241 0.002411 0.002411	0.05932 0.05645 0.0998 0.09409 0.07352 0.08938 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00023 0.01355 0.02471 0.04271 0.04271 0.04271 0.01531 0.0712 0.0712 0.071384 0.0007384 0.0007384	0.04 0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes Yes Yes No No	13 13	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000047231 0.00004769 0.00004769 0.00004769 0.00004769 0.00004538 0.00004538 0.0002453 0.01243 0.01243 0.01824 0.07448 0.08529 0.08633 0.04281 0.001538 0.001538 0.001838 0.001838	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.00008662 5.5e-7 8.3e-7 2.8e-7 8.3e-7 0.00001127 7.8e-7 0.003423 0.007211 0.005091 0.005767 0.01896 0.005134 0.00509 0.001154 0.0007698 0.0006504	0 0 0 0 0 84.62 92.31 92.31 92.31 92.31 92.31 92.31 92.31 92.31 92.31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	None None	x*2 No x*2 x*2 No No No No No No No No No No No No No	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. Param. Param. Param. Param. P(NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param. NP (NDs) Param.
Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Lithium, total (mg/L) Mercury, total (mg/L) Molybdenum, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L) Selenium, total (mg/L)	MW-1605D MW-1606D MW-1606D MW-1607D MW-1607D MW-1604D MW-1605S MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1605D MW-1606D MW-1607D MW-1607D MW-1607D MW-1605D MW-1606D MW-1605D MW-1605D MW-1605D MW-1605D MW-1604S MW-1604S MW-1605D MW-1605D	0.07997 0.7823 0.1264 0.1172 0.09986 0.1132 0.000036 0.00005 0.00006 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00015 0.002411 0.002411 0.0003 0.0003	0.05932 0.05645 0.0998 0.09409 0.07352 0.08938 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.01355 0.00247 0.01351 0.01531 0.01531 0.07119 0.08251 0.03902 0.0007384 0.001266 0.0002	0.04 0.04 0.04 0.04 0.04 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.102 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Yes Yes Yes Yes Yes No No	13 13	0.06839 0.06734 0.1121 0.1049 0.08669 0.1013 0.000007231 0.00004769 0.00004769 0.00004769 0.00004769 0.00004538 0.00004538 0.00004538 0.001243 0.01243 0.01824 0.01824 0.07448 0.08529 0.08633 0.04281 0.001538 0.001538 0.001838 0.001838 0.001835	0.01741 0.01465 0.02078 0.01791 0.01771 0.01604 0.00008662 5.5e-7 8.3e-7 2.8e-7 8.3e-7 0.00001127 7.8e-7 0.003423 0.007211 0.003943 0.005767 0.01896 0.005134 0.0059 0.001154 0.0007698 0.0007108 0.0007504	0 0 0 0 0 84.62 92.31 92.31 92.31 92.31 92.31 92.31 92.31 92.31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	None None	x^2 No x^2 No N	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Param. Param. Param. Param. Param. Param. Param. Param. Param. P(NDs) NP (NDs) NP (NDs) NP (NDs) NP (NDs) Param. Param. <t< td=""></t<>

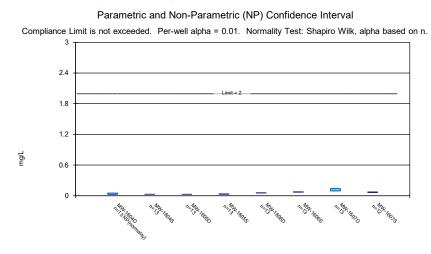

Confidence Interval Summary Table - All Results

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	<u>Sig.</u>	<u>N</u>	Mean	Std. Dev.	<u>%NDs</u>	ND Adj	.Transform	<u>Alpha</u>	Method
Selenium, total (mg/L)	MW-1607D	0.0001	0.00003	0.05	No	13	0.00008846	0.0001256	15.38	None	No	0.01	NP (normality)
Selenium, total (mg/L)	MW-1607S	0.009568	0.00677	0.05	No	13	0.008169	0.001881	0	None	No	0.01	Param.
Thallium, total (mg/L)	MW-1604D	0.0004453	0.0001587	0.002	No	13	0.0002787	0.0001563	23.08	Cohen	\$No	0.01	Param.
Thallium, total (mg/L)	MW-1604S	0.0003	0.00002	0.002	No	13	0.0001446	0.0001552	7.692	None	No	0.01	NP (normality)
Thallium, total (mg/L)	MW-1605D	0.0005	0.00004	0.002	No	13	0.0001622	0.0001944	23.08	None	No	0.01	NP (normality)
Thallium, total (mg/L)	MW-1605S	0.0005	0.00004	0.002	No	13	0.0001666	0.0001935	23.08	None	No	0.01	NP (normality)
Thallium, total (mg/L)	MW-1606D	0.000123	0.00009	0.002	No	13	0.0001628	0.0001501	15.38	None	No	0.01	NP (normality)
Thallium, total (mg/L)	MW-1606S	0.000112	0.000062	0.002	No	13	0.000144	0.0001588	15.38	None	No	0.01	NP (normality)
Thallium, total (mg/L)	MW-1607D	0.0005	0.00002	0.002	No	13	0.000144	0.0002033	23.08	None	No	0.01	NP (normality)
Thallium, total (mg/L)	MW-1607S	0.0005	0.00005	0.002	No	13	0.0001686	0.0001908	23.08	None	No	0.01	NP (normality)

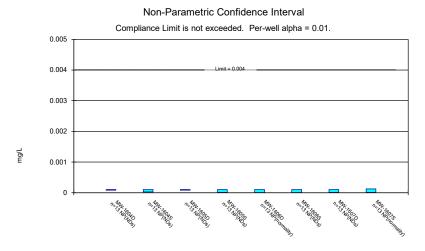
Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Antimony, total Analysis Run 12/1/2019 11:05 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

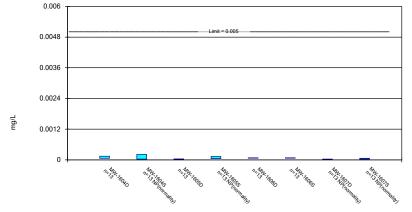
Parametric Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

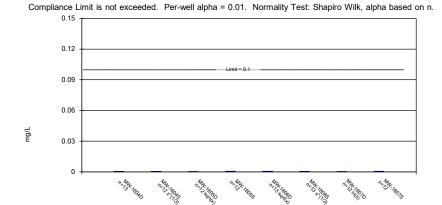


Constituent: Arsenic, total Analysis Run 12/1/2019 11:05 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

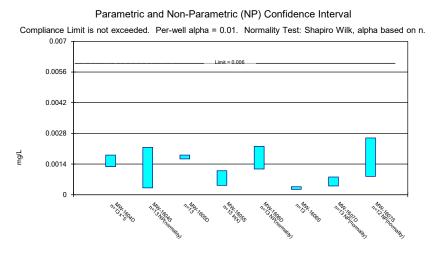



Constituent: Barium, total Analysis Run 12/1/2019 11:05 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Constituent: Beryllium, total Analysis Run 12/1/2019 11:05 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

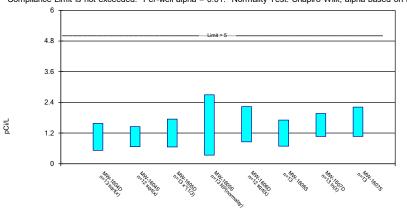
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Parametric Confidence Interval

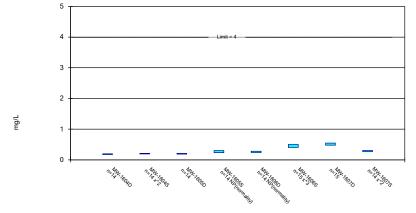
Constituent: Cadmium, total Analysis Run 12/1/2019 11:05 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

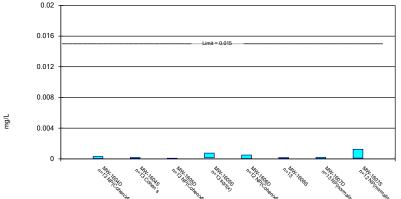

Constituent: Chromium, total Analysis Run 12/1/2019 11:05 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

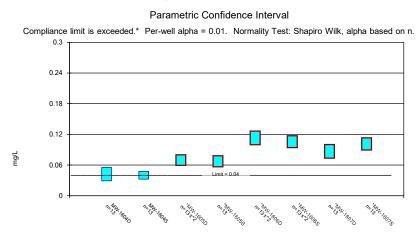



Constituent: Cobalt, total Analysis Run 12/1/2019 11:05 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Constituent: Combined Radium 226 + 228 Analysis Run 12/1/2019 11:05 AM View: Confidence Intervals -Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Fluoride, total Analysis Run 12/1/2019 11:05 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Lead, total Analysis Run 12/1/2019 11:05 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

 Non-Parametric Confidence Interval

 Compliance Limit is not exceeded. Per-well alpha = 0.01.

 0.0024

 0.0012

 0.0012

 0.0012

 0.0006

 0

 0.0006

 0

 0

 0

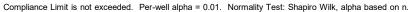
 0

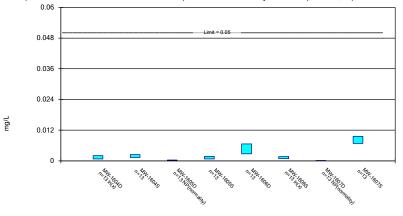
 0

 0


 0

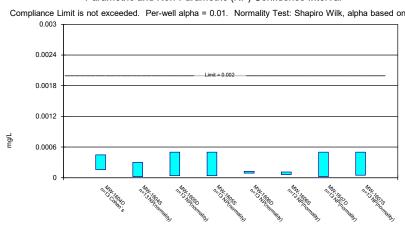
Constituent: Lithium, total Analysis Run 12/1/2019 11:05 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP Constituent: Mercury, total Analysis Run 12/1/2019 11:05 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP


Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval



Constituent: Molybdenum, total Analysis Run 12/1/2019 11:06 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Constituent: Selenium, total Analysis Run 12/1/2019 11:06 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Thallium, total Analysis Run 12/1/2019 11:06 AM View: Confidence Intervals - App IV Mountaineer BAP Client: Geosyntec Data: Mountaineer BAP

No alternative source demonstrations were completed in 2019.

The notifications of an SSL above a GWPS, as determined by statistical analysis following each assessment monitoring event in 2019, and the notice of initiation of Assessment of Corrective Measures follow.

Mountaineer Plant

<u>Notice of Statistically Significant Levels (SSLs) above the</u> <u>Groundwater Protection Standard (GWPS)</u>

CCR Unit – Bottom Ash Pond

As required by 40 CFR 257.95(g), this is a notification that on January 8, 2019 lithium was detected at SSLs above the GWPSs. This notification is being placed in the operating record, as required by 40 CRF 257.105(h)(8).

Mountaineer Plant

Notice for Initiating an Assessment of Corrective Measures

CCR Unit – Bottom Ash Pond

This notice is being provided, as required by 40 CFR 257.95(g)(5), that an Assessment of Corrective Measures was initiated on March 26, 2019 for Mountaineer Plant's Bottom Ash Pond due to the statistically significant concentrations detected above the established groundwater protection standard for lithium.

Mountaineer Plant

<u>Notice of Statistically Significant Levels (SSLs) above the</u> <u>Groundwater Protection Standard (GWPS)</u>

CCR Unit – Bottom Ash Pond

As required by 40 CFR 257.95(g), this is a notification that on July 12, 2019 lithium was detected at SSLs above the GWPSs. This notification is being placed in the operating record, as required by 40 CRF 257.105(h)(8).

Mountaineer Plant

Notice of Statistically Significant Levels (SSLs) above the Groundwater Protection Standard (GWPS)

CCR Unit - Bottom Ash Pond

As required by 40 CFR 257.95(g), this is a notification that on December 23, 2019 lithium was detected at SSLs above the GWPSs. This notification is being placed in the operating record, as required by 40 CRF 257.105(h)(8).

Monitoring well installation boring logs and well construction reports follow.

PROJECT AEP IGCC Mountaineer Plant - Bechtel Borings

ELEVATIO	ON <u>585</u> .	<u>8'</u> GW	L 0	HRS					_	PRC	DJECT NO	C0502	99.33
DATE	Aug. 23-	-25, 2006		HRS CLAS	SIFIED BY	Rich	ard	M. Ruffolo	- PA	AGE	1	_ of _	4
			-					DESCRIPTION	-]
DEPTH (FT.)		SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	RO	а.	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS			MATERIAL CLASSIFICATION	USCS OR	ROCK BROKENNESS		REMARI	٢S
1	2	3 O ^{S-1} 1.4	4	5 0.5	6	7		8		9		10	
1.5	<u>′ 10</u> 10	∪ _{1.4}				Br				nl	*0.0		
2.5	10				V. Stiff	D. E	srn	Sandy lean clay, some rock fragments and		↓	*3.0, dry		
	12 13	O S-2 1.5			♦			gravel 2.0" , Fill			*~10 ~~.		
4.0 5.0	13	✓ 1.5			<u>Hard</u>	⊢┤		<u> </u>	+		*>4.0, dry		
0.0	5 7	O ^{S-3} 1.4			V. Stiff					V CL	*3.0, dry		
6.5	, 11				V. Suii						0.0, ury		
7.5	7			7.5	• •			 Fly ash and silt mix, some rock and coal frags, 		• nl	*2.0, moist		
9.0	, 9 12	O ^{S-4} 1.3			Stiff D. Gray			Fill	<u> </u>	Ï	2.0, 110101		
10.0					•					¥.			
	² 2	O ^{S-5} 0.7			M. Stiff	Br	n	Lean clay w/sand, trace rock frags and gravel,	(ÇL	*1.0, moist		
11.5	3							Fill					
12.5	2												
14.0	3 3	O ^{S-6} 1.5	∆ ST-1								Shelby tub	e 12.0-14	.0'
15.0		0.7									*1.0, moist		
		O ^{S-7} 1.0									*1.0, moist		
16.5	2												
17.5	2 4 _	⊖ ^{S-8}											
19.0	4 5	O ^{S-8} 1.5							-		*1.0, moist		
20.0	2	○ ^{S-9}							-				
04.5	² 3 3	0.8	∆ st-2			┠─┤			+	↓	*1.0, moist		
21.5 22.5	5					┞─┤			CL	-ML	Shelby tub	e 20.0-22	2.0'
	2 2 2	O S-10			•				-				
24.0	2	0 _{1.0}		05.0	Stiff						*1.5, moist		
25.0	3_	O ^{S-11}		25.0	↓	↓	-		+	<u>★</u>	*4 5		
26.5	5 7	U 1.2			Stiff	Br	n	Silty clay, laminated, trace root frags, alluvial			*1.5, moist		
									+				
 													
				30.0				↓	1	Ļ			
<u> </u>	1	1	I	30.0	•			۲.	<u> </u>	*	I		

REMARKS ** 4-1/4" I.D. Hollow Stem Augers 0.0-6.5', 6.5-81.2' Mud rotary drilling with 3-7/8" Tri-Cone Roller Bit

w/SPT; 5-1/4** PVC casing 0.0-7.0'; NQ conventional rock core, CME 85 truck mount drill rig, Tim Caudill - Driller - FMSM

* POCKET PENETROMETER READINGS (TSF)

PROJECT AEP IGCC Mountaineer Plant - Bechtel Borings

ELEVATIO	ON <u>585</u>	. <u>8'</u> GW	/L 0	HRS						_	PRO	DJECT NO	D <u>C0502</u>	99.33
DATE	Aug. 23	-25, 2006	_	HRS CLAS	SIFIED) BY	Rich	nard	M. Ruffolo	PA	GE	2	of	4
									DESCRIPTION					
DEPTH (FT.)		SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	RO	а.	SOIL DENSITY - CONSISTENCY OR	RO		COLOR	MATERIAL CLASSIFICATION	USCS OR	ROCK BROKENNESS		REMAR	Ś
1	2	3	4	5	6			7	8		9		10	
31.5	³ 4	O ^{S-12} 0.8	-		M. S	Stiff	В	rn	Gravelly clay, <1.0" gravel, alluvial	-	cl	*1.0, wet		
				25.0										
35.0	4_	O S-13		35.0				<u>*</u>	▼		<u>♥</u>			
36.5	5	1.5			M. S	Stiff	D. (Gray	Lean clay w/sand, homogeneous, organic			*0.5, wet		
									decomposing odor, trace leaf and root					
				1					fragments, alluvial					
40.0	3 -	○ ^{S-14}					DO	Gray/						
44.5	3	1.5						lik I				*1.0, wet-	-moist	
41.5	5													
45.0				45.0			,	v	V		¥			
	⁹ 22	O ^{S-15} 1.1			Der	ise	В	rn	Silty gravel (<2.0".) with sand (med-coarse gr)	g	ım	Wet		
46.5	13								alluvial					
	1			1						l				
50.0				50.0		,			•		¥.			
	4 4	O S-16 1.1			Loc	ose	В	rn	▼ Sand. alluvial		SP SP	Wet		
51.5		1.1		1										
			1	┨┠┼╂┼╫						\vdash				
	1			1				-		\vdash	-			
55.0			+							+				
55.0	2 _	O S-17	-			<u> </u>				\vdash				
56.5	² 5	1.0			M. D	ense				+				
	Ì			1						+				
			-							\vdash				
								<u> </u>		_				
						/	· ·	¥	¥	'	↓			

REMARKS ** _______ 4-1/4" I.D. Hollow Stem Augers 0.0-6.5', 6.5-81.2' Mud rotary drilling with 3-7/8" Tri-Cone Roller Bit

w/SPT; 5-1/4" PVC casing 0.0-7.0'; NQ conventional rock core, CME 85 truck mount drill rig, Tim Caudill - Driller - FMSM

* POCKET PENETROMETER READINGS (TSF)

PROJECT AEP IGCC Mountaineer Plant - Bechtel Borings

ELEVATIO	N585.8	8' GW						-	PRC	DJECT NO <u>C050299.33</u>
DATE	Aug. 23-	25, 2006		HRS CLAS	SIFIED BY	Richard I	M. Ruffolo	PA	GE	<u>3</u> of <u>4</u>
			Γ				DESCRIPTION			
DEPTH (FT.)		SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	RO	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS
1	2	3	4	5	6	7	8	ç	9	10
	¹¹ 9 8	O ^{S-18} 0.8	<u> </u>		M. Dense	D. Brn	Sand w/gravel, alluvial	S	Ρ	Wet
61.5	0		╞	1		\vdash				
			+	1						
6E 0		<u> </u>	+	1						
65.0	8 9	O S-19 0.6	\vdash	1						
66.5	9 11	0.6								
70.0				70.0	•	+	-		,	
	¹⁴ 14	O S-20 1.4			Dense		silty sand (fine-med. gr.), alluvial			Wet
71.5	18	1.4			Deliac		Sing Sand (interned. gr.), and via	51		Wet
75.0				75.0		•	*	,		
	6 11	O S-21 1.5			M. Dense		Sand, well graded w/fine gravel	s	w	Wet
76.5	9			1						
				1						
]						
80.0				1						
	11 15	O S-22 1.2		81.0			•			
81.2	50/0.2				V. Dense ///=////⊈/=	Tan ////=///=	Decomposed sandstone ////=///=////////////////////////////	g ////	р 	T.O.R. @ 504.6"
82.2	1.35	∇			M. Soft	Gray	Sandstone (med. gr)	V. I	BR	
83.7		R-1 9	57	}	M. Hard			В		
							-85.0-85.2' clay seam			
	10.0 10.0	R-2 10	83				-87.23'clay seam			
							89.5 becomes coarse grained 89.4-89.8 very broken zone	,	,	
					•	↓	•	V.E	BR	89.9 Lose Water

w/SPT; 5-1/4" PVC casing 0.0-7.0'; NQ conventional rock core, CME 85 truck mount drill rig, Tim Caudill - Driller - FMSM

* POCKET PENETROMETER READINGS (TSF)

** METHOD OF ADVANCING AND CLEANING BORING

BORING S-107

PROJECT AEP IGCC Mountaineer Plant - Bechtel Borings

HRS CAASIFICATION PAGE	ELEVATI	ON585	i.8'	GW	L 0	HRS						_	PRC	DJECT NO <u>C0502</u>	99.33
Image: height back back back back back back back back	DATE	Aug. 23	8-25, 20	006			SIFI	ED BY	Rie	chard	M. Ruffolo	PA	GE	of	4
Image: height back back back back back back back back											DESCRIPTION				
Image: Second secon							SOIL DENSITY -	RC			MATERIAL CLASSIFICATION				ĸs
Image: Sector of the secto	1	2	:	3	4	5	5 6 7 8							10	
93.7 A 93.7 A 93.7 A 4 4 4 A A A A A A A A A A A A A A A							<u> </u>		┢						
						1						В	L	~91.0 approx. half of wa	ater return
Image: sector	93.7			Υ		93.7		¥		¥	+		,		
Image: Problem intermediate											End of boring				
Image: Problem intermediate															
Image: Problem intermediate															
Image: Section of the section of t			-												
Image: Problem intermediate															
Image: Section of the section of th															
Image: Sector of the sector															
Image: Section of the section of th															
Image: Section of the section of th															
Image: Constraint of the symbol of the sy									_						
Image: Section of the section of t															
Image: Constraint of the symbol of the sy									-						
Image: Constraint of the second se									╢						
Image: Sector	<u> </u>						<u> </u>		\vdash						
Image: Second secon												L			
I I															
Image: Sector of the sector															
	<u> </u>						<u> </u>								
			-				<u> </u>		┢						
							<u> </u>		-						
		1					<u> </u>					1			

REMARKS ** 4-1/4" I.D. Hollow Stem Augers 0.0-6.5', 6.5-81.2' Mud rotary drilling with 3-7/8" Tri-Cone Roller Bit

w/SPT; 5-1/4* PVC casing 0.0-7.0'; NQ conventional rock core, CME 85 truck mount drill rig, Tim Caudill - Driller - FMSM

PROJECT	AEP IGO	CC Mountair	neer Pl	ant - B	echtel Boring	s		_	BO	RING NO. S-112
ELEVATIC	ON <u>583</u>	.4' GWI	L 0	HRS				_	PRO	DJECT NO <u>C050299.33</u>
B 4 7 5						<u> </u>		PA	GF	1
DATE	Aug. 28-2	29, 2006	-	CLAS	SIFIED BY	Richard I	M. Ruffolo	-		of
							DESCRIPTION	4		
DEPTH (FT.)	BLOWS PER SIX INCHES OR CORE RECOVERY,RUN		RC	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION	USCS OR	ROCK BROKENNESS	REMARKS
1	2 12	3	4	5	6	7	8	9		10
1.5	32 31	0 _{1.5}		-	V. Dense	Brn	Sand w/silt and gravel rock fragments, Fill	sp-	sm	Dry
2.5	44			2.5	+	•	•		,	
4.0	11 19 20	O S-2 1.3			Dense	Brn	Sand w/silt and gravel, Fill	sn-	sm	Moist
5.0		1.5		5.0			V		,	
	2 3	O ^{S-3} 0.5			Stiff	L. Brn	Lean clay, homogeneous, alluvial	С	L	*2.0, moist
6.5	3		6.5 Δ ST-5	-						*2.0 bottom of Shelby tube
7.5	4 3	0.04	Rec. 1.8							
9.0	3 4	O S-4 1.3	8.5 5	-			- with fine sand			*2.0, moist
10.0	3	○ S-5		10.0	+	+	•	_ +		
11.5	6	O S-5 1.0			V. Stiff	Brn	Lean clay, mottled, alluvial	ç	L	*3.0, moist
12.5							- trace root fragments	+		
14.0	3 6	O S-6								*2.5, moist
14.0	0	1.1								2.5, moist
	4 6	O S-7 1.3								*2.5, moist
16.5	8									
17.5	3	- S °	17.5 ST-6	1						
19.0	6	O S-8 1.3	Rec. 2.0 19.5							*2.5, moist
20.0	1	S-9	13.0	20.0	↓	↓	•	_ +		*2.0 bottom of Shelby tube
21.5	3 4	0 <u>1.5</u>		-	M. Stiff	Brn	Sandy lean clay, homogeneous,		:	*1.0, wet
22.5	5			22.5	+		alluvial ▼	+		
24.0	5 5 5	O S-10 1.2			Loose	Brn	Silty sand (fine gr), alluvial	SI	n	Moist
24.0	5	1.2		1				3	.1	
	4 5	O S-11 1.0]						Moist
26.5	4									
				_						
				-						
				30.0	•	+	↓		,	

conventional rock core; Tim Caudill, Driller - FMSM; CME 85 Truck Mount Rig; 3-1/4" I.D. PVC casing 0.0-7.0

PROJECT AEP IGCC Mountaineer Plant - Bechtel Borings BORING NO. S-112 ELEVATION _______ GWL 0 HRS _ PROJECT NO C050299.33 HRS PAGE _____ of _____ DATE Aug. 28-29, 2006 CLASSIFIED BY Richard M. Ruffolo DESCRIPTION **BLOWS PER SIX INCHES** ROCK BROKENNESS OR CORE RECOVERY/RUN RQD (%) OR TORVANE % ROCK RECOVERY SAMPLE NO., TYPE & CONSISTENCY OR RECOVERY OR **USCS OR** ROCK HARDNESS SOIL DENSITY -MATERIAL CLASSIFICATION REMARKS DEPTH (FT.) PROFILE COLOR 4 5 7 1 2 3 6 8 9 10 O ^{S-12} 1.1 5 4 M. Dense Brn Sitly sand w/gravel, alluvial sm Moist 12 31.5 35.0 S-13 15 Ο 19 Dense Wet 1.2 15 36.5 40.0 S-14 11 Ο 19 Wet 1.0 26 41.5 45.0 S-15 1.1 11 0 14 M. Dense - coarse gravel and interbedded fines Wet 46.5 50.0 O S-16 1.2 5 19 sp-sm Wet Sand w/silt and gravel Dense Brn 27 51.5 55.0 55.0 O S-17 1.0 14 8 M. Dense Brn Sand (med-coarse gr.),w/fine gravel, trace Wet sp 56.5 silt, alluvial ¥

conventional rock core; Tim Caudill, Driller - FMSM; CME 85 Truck Mount Rig; 3-1/4" I.D. PVC casing 0.0-7.0

^{*} POCKET PENETROMETER READINGS (TSF)

PROJECT AEP IGCC Mountaineer Plant - Bechtel Borings

ELEVATION <u>583.4'</u> GWL									-	PR	OJECT N	0 <u> </u>	0299.33	
DATE	Aug. 28-	29, 20	006		HRS CLAS	SIFIED BY	Rich	ard N	M. Ruffolo	PA	GE	3	of	3
									DESCRIPTION					
DЕРТН (FT.)		SAMPLE NO., TYPE &	%	RQD (%) OR TORVANE	ш	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS			MATERIAL CLASSIFICATION	USCS OR	ROCK BROKENNESS		REMAR	ĸs
1	2		3 18	4	5	6	7	7	8	9	9		10	
61.5	⁴ 4 5	0	3							-	-	Wet		
01.0							+			\vdash	-			
65.0					65.0	+		,	↓ _					
	5 4 0 S-19 1.0					Loose	В	rn	Silty sand, fine gr., homogeneous, alluvial	s	m	Wet		
66.5														
							_							
							_							
70.0	10	0 ^{S-1}	20			+		,	▼	,				
71.5	10 12 14	U 1.0	0			M. Dense	B	rn	Sand w/silt, alluvial	SW	-sm	Wet		
										i				
75.0														
	9 8	O S-: 0.8	21 8							<u> </u>		Wet		
76.5	12						+			<u> </u>				
						↓		,	¥	<u> </u>	-	Wet,	difficult dr	illing
79.0 79.1	50/0.1	O S-	22 0.1		79.0 79.1	∕V. Dense		ay /	Decomposed sandstone	ç V	јр •	79.0 roller I	bit refusal	
-			/		· <i>·</i> =///	<i>/ <u>≡</u>// ≡//// M.</i> Hard			Sandstone, med. gr., few ~20° x-beds		<i>7//≡</i> or	T.U.R. El	ev 504.3	
							G	ay	Sanustone, meu. gr., iew ~20 X-Deus		or ol			
										Ľ				
	10.0 10.0	R-1	100	95										
											n			
										-				
							+			┢	-			
89.1					89.1	•		,	Prof of boring		•			
							1		End of boring	1				

conventional rock core; Tim Caudill, Driller - FMSM; CME 85 Truck Mount Rig; 3-1/4" I.D. PVC casing 0.0-7.0

* POCKET PENETROMETER READINGS (TSF)

** METHOD OF ADVANCING AND CLEANING BORING

BORING <u>S-112</u>

PROJECT AEP IGCC Mountaineer Plant - Bechtel Borings

ELEVATIO	ON <u>587</u> .							_ I	PRO	DJECT NO <u>C050299.33</u>
DATE	Operation O	0000		HRS		Disksaul	AA D	- PAC	ΞE	1 of3
DATE	<u>Sept. 6-8,</u>	2006	_	CLAS	SIFIED BY	Richard	M. Ruffolo			
							DESCRIPTION	_		
DEPTH (FT.)			RQ	PROFILE	SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	COLOR	MATERIAL CLASSIFICATION		ROCK BROKENNESS	REMARKS
1	2	3 ○ ^{S-1}	4	5 0.3	6	7	8	9		10
1.5	² 5	O ^{S-1} 1.5			Hard	Brn	Lean clay, fill	CL	_	0.3' of topsoil
2.5	0			-						*>4.0, dry
	3 _	○ ^{S-2}		-	+					
4.0	5	O ^{S-2} 1.5		-	Stiff					*2.0, Moist
5.0	1	O 5-3								
6.5	2 4	1.5		6.5	+	•	▼			*2.0, Moist
7.5			7.5		0::#	Dura				
0.0	3	O S-4 1.5		1	Stiff	Brn	Silt w/fine sand, laminated, alluvial	ML		*1 0 Maiat
9.0 10.0	3	1.5	Rec. 2.0							*1.0, Moist *2.0 bottom of Shelby tube
10.0	³ 3	O ^{S-5} 1.5								*1.0, Moist
11.5	5	- 1.5	Rec. 2.0	-						*1.0 bottom of Shelby tube
12.5	2									
14.0	1 2	O ^{S-6} 1.5					- interbedded fine sand			*1.0, Moist
15.0		1.0								,
	1 1	O 8-7 1.5								*1.0, Moist
16.5	2]						
17.5	7			17.5	*	¥	¥	•	_	
19.0	¹³ 12	O ^{S-8} 0.9			M. Dense	Brn	Sand w/silt and gravel, alluvial	sp-s	m	Moist
20.0		<i>a</i> -		1						
	6 10	O ^{S-9} 0.9		1						Moist
21.5	17			1						
22.5	22	S 10	<u> </u>	4	•					
24.0	²⁰ 30	O S-10 1.5	_	1	Dense					Moist
25.0	22	○ S-11		4						
	²² 16 30	1.0	_	-						Moist
26.5	30			-						End 9/6
				-						
				-				+		
					↓	+	+	↓		

Install 5-1/4" PVC pipe; 0.0-7.0'; NQ conventional rock core; CME 55 Truck Mount Drill Rig, Mark Martin, driller - FMSM

* POCKET PENETROMETER READINGS (TSF)

** METHOD OF ADVANCING AND CLEANING BORING

BORING S-203

PROJECT AEP IGCC Mountaineer Plant - Bechtel Borings

ELEVATI	ION <u>587</u>	.1' GW								_	PR	OJECT NQ	C050)299.33
DATE	Sept. 6-8,	2006		HRS CLAS	SIFIED	BY	Richa	ard I	M. Ruffolo	PA	GE	2	– of	3
									DESCRIPTION					
DEPTH (FT.)		SAMPLE NO., TYPE & RECOVERY OR % ROCK RECOVERY	RO	ш.	SOIL DENSITY - CONSISTENCY OR	Ř	COLOR		MATERIAL CLASSIFICATION	USCS OR	ROCK BROKENNESS	F	REMAR	Ś
1	2 18	3	4	5	6		7		8		9		10	
31.5	10 12 29	$\bigcirc \begin{array}{c} \text{S-12} \\ 0.4 \end{array}$										Moist		
51.5														
35.0		0.40			•									
	¹⁵ 12	O ^{S-13} 1.0			M. De	ense						Wet		
36.5	18	3												
40.0		0.11												
	¹⁰ 8	O S-14 1.0										Wet		
41.5	8	3												
45.0		0.45		45.0	. ↓		•		•	,	•			
	4 3	O ^{S-15} 0.6			Loos	se	Brr	n	Sand (med. Gr) trace silt and gravel, alluvial	s	р	Wet		
46.5	5	5												
										<u> </u>				
50.0		8.40			↓					<u> </u>				
	7 7	O ^{S-16} 1.5			M. De	ense				<u> </u>		Wet		
51.5	11													
										<u> </u>				
55.0		0.47		55.0	↓		♦		↓					
	¹³ 11	O ^{S-17} 1.0			M. De	ense	Brr	n	Sand (fine-coarse gr), trace fine gravel, alluvial	s	W	Wet		
56.5	18	3												
					↓		♦		↓		,			

REMARKS ** _______ 4-1/4" I.D. Hollow Stem Augers 0.0-6.5' and Mud Rotary Drilling w 4-1/4" Tri-Cone Roller bit in conjunction w/SPT

Install 5-1/4" PVC pipe; 0.0-7.0'; NQ conventional rock core; CME 55 Truck Mount Drill Rig, Mark Martin, driller - FMSM

PROJECT	AEP IGCC N	lountaine	eer Plan	t - Becł	ntel Borings			_	BOI	RING NO. S-203
ELEVATIO	DN587.1	<u> </u>	GWL (_	PR	DJECT NO <u>C050299.33</u>
DATE	Sont 6 9 20	06		HRS	SIFIED BY	Disbord	M. Duffele	- PAG	GE	<u>3</u> of <u>3</u>
DATE	Sept. 6-8, 20	00		CLAS		RICHARU	W. Kullolo	-		
							DESCRIPTION	_		
. DEPTH (FT.)		SA	% ROCK RECOVERY RQD (%) OR TORVANE		SOIL DENSITY - CONSISTENCY OR ROCK HARDNESS	I COLOR	MATERIAL CLASSIFICATION		ROCK BROKENNESS	REMARKS
1	2	3 O ^{S-18} 1.5	4	5	6	7	8	9		10
61.5	17 15	0 1.5		-	Dense	Brn	Sand w/silt and gravel, alluvial	sp-s	sm	Wet
01.5				7		\vdash		+		
				-						
65.0				1			<u> </u>			
	¹⁴ 16	O S-19 1.0		1	★ M. Dense					Wet
66.5	10	- 1.0		_	M. Dense					wei
				1						
				1						
70.0				70.0	•	¥	•	•	,	
	17	O ^{S-20} 1.5			Dense	Brn	Sand w/silt, alluvial	sw-	sm	Wet
71.5	14			_						
				4						
				4						
75.0	17	S-21		4						
	17 18 26	$O_{0.8}^{S-21}$		4						Wet
76.5	20			4	├ ──┤───┤					
				-						
				-						
80.0	11	O S-22		80.0	+			+		
81.5	11 14	0 0.9			M. Dense	Brn	Gravel w/sand, 80% coarse gravel, 20% sand	gr		Wet, end 9/7
81.8		Ť		81.8 /// <i>=////</i>	<i>≢//≡////≡//// M.</i> Hard	▼ =//=///=	● alluvial //=///=///=////=////=////=///=///=///=	/ <i>≣″/∃//</i> V.E	11=	81.7' Roller bit refusal 81.8' seat casing
				1		Giay	x-beds	V. E		T.O.R. elev 505.3'
				1			83.0-83.2' ~45° fractures	M		
	7.8 8.0	R-1	98 81	1			83.4-83.6' horizontal Fe stain fracture			
	-			1						
]						
							88.2-88.3' horizontal Fe stain fracture	В	r	88.5' Lose water
89.8		Δ		89.8	•	*	End of boring			

REMARKS ** ______ 4-1/4" I.D. Hollow Stem Augers 0.0-6.5' and Mud Rotary Drilling w 4-1/4" \$ Tri-Cone Roller bit in conjunction w/SPT______

Install 5-1/4" 2 PVC pipe; 0.0-7.0'; NQ conventional rock core; CME 55 Truck Mount Drill Rig, Mark Martin, driller - FMSM

* POCKET PENETROMETER READINGS (TSF)

** METHOD OF ADVANCING AND CLEANING BORING

BORING S-203

Log of Boring SB-1805

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: HWT Casing with advancer, 3 1/4" ID HSA, PWL Coring

Sampling Method: 2" O.D and 3" O.D. Split Spoon with automatic	Groundw	ater Rea	adings Depth		Depth	Depth	Stab.	
hammer; 2" OD Shelby tube; NQ2 5-ft long core barrel	Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time	
Drilling Company: Terracon Consultants, Inc.	06/22/18	07:00	38.7'	Ground Surface	0'	133.8'	~ 14 hours	

Date Started: 06/18/18

Foreman: N. Francis/K. Fowler

Date Finished: 06/21/18

Logge	-						C+	ratum		
Depth (ft)	Drill Rate (min/ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		escription	Geologic Description	Remarks
0 —								0'		
2 —										
4 —										
6 —		S-01	5 - 6.5	2 2 3	18/18	PID: NM	s	ILT & CLAY	S-01 (5 to 6.5'): Medium stiff, reddish brown, SILT & CLAY, seam of fine Sand. Moist.	
8 —										
- 10—		S-02	10 - 11.5	2 2 4	18/18	PID: NM	CI	10'	S-02A (10 to 11'): Medium stiff, reddish brown, Clayey SILT. Moist.	
- 12—								11'	S-02B (11 to 11.5'): Loose, reddish brown, fine to coarse SAND, some Silt. Moist.	
- 14										
- 16		S-03	15 - 16.5	2 2 2	18/14	PID: NM			S-03 (15 to 16.5'): Very loose, brown, fine SAND, little Silt. Moist. Stratified at approximately 16 feet.	
- 18—								FINE TO COARSE SAND		
20—		S-04	20 - 21.5	8 12 12	18/12	PID: NM			S-04 (20 to 21.5'): Medium dense, brown, fine to coarse SAND, trace Gravel, trace Silt. Moist.	
22										
_ 24—										

Log of Boring SB-1805

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: HWT Casing with advancer, 3 1/4" ID HSA, PWL Coring

Sampling Method: 2" O.D and 3" O.D. Split Spoon with automatic	Groundw	ater Rea	adings					
hammer: 2" OD Shelby tube: NQ2 5-ft long core barrel			Depth		Depth	Depth	Stab.	
nammer, 2 OD Sheiby tube, Noz 5-it long core barrer	Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time	
Drilling Company: Terracon Consultants, Inc.	06/22/18	07:00	38.7'	Ground Surface	0'	133.8'	~ 14 hours	

Foreman: N. Francis/K. Fowler

Date Started: 06/18/18

Date Finished: 06/21/18

	_		Sample	Inform	ation		Stratum		
Depth (ft)	Drill Rate (min/ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data	Description	Geologic Description	Remarks
- 26		S-05	25 - 26.5	·	18/10	PID: NM		S-05 (25 to 26.5'): Medium dense, brown, fine to coarse SAND, little Gravel, trace Silt. Moist.	
28—									
30— -		S-06	30 - 31.5	4 15 10	18/11	PID: NM		S-06 (30 to 31.5'): Medium dense, brown, fine to coarse SAND, trace Gravel, trace Silt. Moist.	
32— -									
34 —									
- 36—		S-07	35 - 36.5	4 4 7	18/9	PID: NM		S-07 (35 to 36.5'): Medium dense, brown, fine to coarse SAND, trace Gravel, trace Silt. Moist.	
- 38—		S-08	36.5 - 38.5	4 6 8 8	24/11	pid: NM	FINE TO COARSE SAND	S-08 (36.5 to 38.5'): Medium dense, brown/black, fine to coarse SAND, trace Silt. Moist.	
_		S-09	38.5 - 40.5	3 5 5 7	24/12	PID: NM		S-09 (38.5 to 40.5'): Loose, brown/black, fine to coarse SAND, trace Gravel, trace Silt. Moist.	
40		S-10	40.5 - 42.5	3 6 5	24/13	PID: NM		S-10 (40.5 to 42.5'): Medium dense, brown/black, fine to coarse SAND, trace Gravel, trace Silt. Moist.	
42—		S-11	42.5 - 44.5	7 3 4	24/0	PID: NM		S-11 (42.5 to 44.5'): No recovery.	
44		S-12	44.5 - 46.5	8 7 7 6	24/4	PID: NM		S-12 (44.5 to 46.5'): Loose, brown, fine to medium SAND, trace Silt. Wet.	
46		S-13	46.5 -	8 2	24/11	PID: NM		S-13 (46.5 to 48.5'): Loose, brown, fine to	
- 48		3-13	46.5 - 48.5	2 3 6 8	24/11	riu: NIVI		coarse SAND, trace Silt. Wet.	
_		S-14	48.5 - 50.5	1 3 5 7	24/11	PID: NM		S-14 (48.5 to 50.5'): Loose, brown, fine to medium SAND, trace Silt. Wet.	

Log of Boring SB-1805

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: HWT Casing with advancer, 3 1/4" ID HSA, PWL Coring

Sampling Method: 2" O.D and 3" O.D. Split Spoon with automatic	Groundw	ater Rea	adings				
hammer; 2" OD Shelby tube; NQ2 5-ft long core barrel			Depth		Depth	Depth	Stab.
nammer, 2 OD Sheiby tube, Noz 5-it long core barrer	Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time
Drilling Company: Terracon Consultants, Inc.	06/22/18	07:00	38.7'	Ground Surface	0'	133.8'	~ 14 hours

Foreman: N. Francis/K. Fowler

Date Started: 06/18/18

Date Finished: 06/21/18 Checked By: A. Ashton Logged By: L. Corenthal

	Drill		Sample	Informa	ation			Stratum		
Depth (ft)	Rate (min/ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Remarks
50—	-									-
-	-	S-15	50.5 - 52	3 5 7	18/9	PID: NM			S-15 (50.5 to 52'): Medium dense, brown, fine to coarse SAND, little Silt. Wet.	At S-15 switch to 3 inch split spoon (18 inches long) from 2 inch split spoon (24 inches long) to increase sample volume.
52		S-16	52 - 53.5	1 3 5	18/0	PID: NM			S-16 (52 to 53.5'): No recovery.	-
54—	-	S-17	53.5 - 55	1 6 10	18/6	PID: NM			S-17 (53.5 to 55'): Medium dense, brown, fine to coarse SAND, trace Silt. Wet.	-
- 56—		S-18	55 - 56.5	2 4 7	18/7	PID: NM			S-18 (55 to 56.5'): Medium dense, grayish brown, fine to coarse SAND, trace Silt. Wet.	-
-		S-19	56.5 - 58	1 3 7	18/0	PID: NM			S-19 (56.5 to 58'): No recovery.	
58—		S-20	58 - 59	NM	12/18	PID: NM			S-20 (58 to 59'): Brown, fine to coarse SAND, little Silt, trace Gravel. Wet.	S-20 sampled by Shelby tube, no recovery and refusal after 1 foot. Then collected with 2 inch split
60		S-21	59 - 60.5	3 8 6	18/14	PID: NM			S-21 (59 to 60.5'): Medium dense, brown, fine to coarse SAND, little Silt, trace Gravel. Wet. Seam black fine to medium SAND at 60 feet.	spoon and switch to 2 inch split spoon after S-20.
-	-	S-22	60.5 - 62	6 7 11	18/22	PID: NM			S-22 (60.5 to 62'): Medium dense, brown, fine to coarse SAND, little Silt, trace Gravel. Wet.	
62—		S-23	62 - 63.5	2 6 9	18/13	PID: NM		FINE TO COARSE SAND	S-23 (62 to 63.5'): Medium dense, brown, fine to coarse SAND, trace Silt, trace Gravel. Wet.	
64—		S-24	63.5 - 65	3 5 7	18/12	PID: NM			S-24 (63.5 to 65'): Medium dense, brown, fine to coarse SAND, some Silt. Wet.	
- 66		S-25	65 - 66.5	3 6 7	18/18	PID: NM			S-25 (65 to 66.5'): Medium dense, brown, fine to medium SAND, little Silt. Wet.	Start introducing Bentonite/water mix due to heaving sands.
-		S-26	66.5 - 68	8 11 9	18/18	PID: NM			S-26 (66.5 to 68'): Medium dense, gray/brown, fine to coarse SAND, little Silt, trace Gravel. Wet.	
68—	-	S-27	68 - 69.5	3 6 9	18/14	PID: NM			S-27 (68 to 69.5'): Medium dense, gray, fine to coarse SAND, little Silt, trace Gravel. Wet.	
70—		S-28	69.5 - 71	10 11 15	18/15	PID: NM			S-28 (69.5 to 71'): Medium dense, gray, fine to coarse SAND, little Gravel, trace Silt. Wet.	
- 72—		S-29	71 - 72.5	10 13 19	18/11	PID: NM			S-29 (71 to 72.5'): Medium dense, gray, fine to coarse SAND, little Gravel, trace Silt. Wet.	
-		S-30	72.5 - 74	8 12 10	18/11	PID: NM			S-30 (72.5 to 74'): Medium dense, gray, fine to coarse SAND, trace Gravel, trace Silt. Wet.	
74—		S-31	74 - 75.5	11 13 14	18/10	PID: NM			S-31 (74 to 75.5'): Medium dense, gray, fine to coarse SAND, little Gravel, trace Silt. Wet.	

Log of Boring SB-1805

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: HWT Casing with advancer, 3 1/4" ID HSA, PWL Coring

Sampling Method: 2" O.D and 3" O.D. Split Spoon with automatic	Groundw	ater Rea	adings					
hammer; 2" OD Shelby tube; NQ2 5-ft long core barrel			Depth		Depth	Depth	Stab.	
nammer, 2 OD Sneiby tube, NG2 5-it long core barren	Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time	
Drilling Company: Terracon Consultants, Inc.	06/22/18	07:00	38.7'	Ground Surface	0'	133.8'	~ 14 hours	

Date Started: 06/18/18

Ref. Pt.
Ground Surface

Foreman: N. Francis/K. Fowler

Date Finished: 06/21/18

99-	-	Corenth				: A. Ashton	Stratum		
Depth (ft)	Drill Rate (min/ft)	Sample No.	Sample Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data	Description	Geologic Description	Remarks
- 76—	-	S-32	75.5 - 77	8 12 15	18/13	Pid: NM		S-32 (75.5 to 77'): Medium dense, gray/brown, fine to coarse SAND, trace Gravel, trace Silt. Wet.	
- 78—		S-33	77 - 78.5	7 10 14	18/11	PID: NM		S-33 (77 to 78.5'): Medium dense, gray/brown, fine to coarse SAND, trace Gravel, trace Silt. Wet.	
_		S-34	78.5 - 80	7 9 10	18/0	PID: NM		S-34 (78.5 to 80'): No recovery.	
80—		S-35	80 - 81.5	4 5 12	18/0	PID: NM	FINE TO COARSE SAND	S-35 (80 to 81.5'): No recovery.	
82—		S-36	81.5 - 83	19 18 17	18/10	PID: NM		S-36 (81.5 to 83'): Dense, brown, fine to coarse SAND, some Gravel, trace Silt. Wet.	
- 84 —		S-37	83 - 83.9	17 50/5"	11/10	PID: NM		S-37 (83 to 83.9'): Very dense, brown, fine to coarse SAND, some Gravel, little Silt. Wet. Sandstone in tip.	
_	NM	S-38 C-01	84.5 - 84.7 84.7 -	50/2"	2/7 55/39	PID: NM	84.7'	S-38 (84.5 to 84.7'): Very dense, gray, fine to medium SAND. Wet.	Auger refusal at 84.7 ft. Begin PWL coring.
86—	-		89.3					C-01 (84.7 to 89.3'): Medium hard, medium gray, fine to medium-grained, slightly micaceous Sandstone, with very thin to thin horizontal partings spaced 2 to 3 inches apart. Thin horizontal black lenses	
- 88—	-							fine to medium grained carbonaceous Sandstone between 86 and 86.4 feet. Brown fine grained sandstone cobble in upper 0.2 feet Moderately fractured. REC=71%. RQD=0%.	
- 90 <i>-</i> -	8	C-02	89.3 - 94.3		60/27			C-02 (89.3 to 94.3'): Medium hard to very soft, medium gray, fine to medium-grained, slightly micaceous Sandstone, with very thin to thin horizontal partings spaced 2 to	
- 92—	-						SANDSTONE	3 inches apart. Very soft, medium spaced Sandstone layers are 2 to 4 inches. Soft, medium spaced horizontal Silty Clay inclusions. Extremely fractured to sound. REC=45%. RQD=45%.	
-							SANDOTONE		
94 —	7	C-03	94.3 - 99.3		60/60			C-03 (94.3 to 99.3'): Medium hard to very soft, medium gray, fine to medium-grained, slightly micaceous Sandstone, with thin to	
96								medium partings spaced 1 inch to 13 inches apart. Thin horizontal layers of very soft fine to medium grained Sandstone from 94.3 to 96.9 feet. Moderately fractured. REC=100%. RQD=62%.	
98—									
-	6	C-04	99.3 - 104.3		60/60			C-04 (99.3 to 104.3'): Medium hard to very soft, gray, fine to medium-grained,	

Log of Boring SB-1805

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: HWT Casing with advancer, 3 1/4" ID HSA, PWL Coring

Groundwater Readings Date Time to Water 06/22/18 07:00 38.7' Sampling Method: 2" O.D and 3" O.D. Split Spoon with automatic hammer; 2" OD Shelby tube; NQ2 5-ft long core barrel Depth of Casing 0' Depth of Hole 133.8' Ref. Pt. Drilling Company: Terracon Consultants, Inc. Ground Surface

Foreman: N. Francis/K. Fowler

Date Started: 06/18/18

Stab. Time ~ 14 hours

6/18/18	Date Finished: 06/21/18
Corenthal	Checked By: A Ashton

	.		Sample	e Informa	ation		9	Stratum		
Depth (ft)	Drill Rate (min/ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Remarks
100— - 102—									SANDSTONE, with very thin to thin partings spaced 1 inch to 11 inches apart. Thin horizontal layers of very soft fine to medium grained Sandstone between 100.5 and 101.5 feet Extremely fractured to sound. REC=100%. RQD=38%.	
104										
_	3	C-05	104.3 - 109.3		60/60				C-05 (104.3 to 109.3'): Medium hard to hard, gray, very fine to fine-grained, SANDSTONE, Medium spaced moderately	
106—	-								dipping to low angle to low angle black fine grained Sandstone lenses from 104.3 to 108.3 feet. Very soft gray fine to medium-grained very thin to thin horizontal partings spaced 2 to 4 inches apart from 108.3 to 109.3 feet. Broken platy dark gray	
108—	-								zone at 108.3 feet. Moderately fractured to sound. REC=100%. RQD=80%.	
- 110	NM	C-06	109.3 - 114.3		60/60			SANDSTONE	C-06 (109.3 to 114.3'): Medium hard to soft, gray, very fine to medium-grained, SANDSTONE, very thin to thin horizontal low angle partings spaced less then 1inch to 3 inches apart. Black fine to	
112									medium-grained very thinly spaced Sandstone lenses from 109.3 to 109.9 Extremely fractured. REC=100%. RQD=0%.	
114										
-	5	C-07	114.3 - 119.3		60/60				C-07 (114.3 to 119.3'): Medium hard to soft, light medium gray, very fine to medium-grained, SANDSTONE, very thin to medium horizontal partings spaced 1 to	
116	-								6 inches apart. Black fine to medium-grained very thin to medium spaced sandstone lenses from 114.3 to 117 feet. Extremely fractured to sound. REC=100%. RQD=52%.	
118—										
- 120	4	C-08	119.3 - 124.3		60/60			119.6'	C-08 (119.3 to 124.3'): Medium hard to soft, light gray, very fine to medium-grained, SANDSTONE, with thin horizontal partings spaced 2 to 5 inches	
- 122—								SHALE	apart and very thinly spaced clack horizontal lenses. Bed of very soft to soft, dark gray, very fine grained Silty clay Shale with very thin to thinly partings spaced less than 1 inch to 5 inches apart. Shale from 119.6 to 122.3 feet Extremely fractured to clicitly fractured to	
-								SANDSTONE	slightly fractured. REC=100%. RQD=38%.	
124—	8	C-09	124.3 - 129.3		60/53				C-09A (124.3 to 125.3'): Medium hard, light gray, very fine to medium-grained,	

Log of Boring SB-1805

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: HWT Casing with advancer, 3 1/4" ID HSA, PWL Coring

Sampling Method: 2" O.D and 3" O.D. Split Spoon with automatic hammer; 2" OD Shelby tube; NQ2 5-ft long core barrel Drilling Company: Terracon Consultants, Inc.

Groundwater Readings Depth Date Time to Water 06/22/18 07:00 38.7'

Depth of Casing 0' Ref. Pt. Ground Surface

Depth of Hole 133.8' Stab. Time ~ 14 hours

Foreman: N. Francis/K. Fowler

Date Started: 06/18/18

Date Finished: 06/21/18

Logge	d By: L.	Corentha	al	Chec	ked By	: A. Ashton				
	Drill		Sample	Informa	ation			Stratum		
Depth (ft)	Rate (min/ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Remarks
- 126								SANDSTONE	SANDSTONE, with very thin to thin black lenses. Sound. REC=88%. RQD=65%.	
- 128								COAL	C-09B (125.3 to 129.3'): Very soft to soft, black, very fine grained, COAL, with thinly spaced horizontal partings, very soft gray very fine grained horizontal Clay-rich zone from 125.5 to 125.8 feet, very thin to thin Clay lenses with Pyrite throughout. Vertical crack with calcite minderalization from 127.6 to 129.8 feet. Extremely to moderately fractured.	
130	NM	C-10	129.3 - 131.8		30/30			130.4'	C-10A (129.3 to 130.4'): Very soft to soft, black, very fine grained, COAL, with thin to very thin horizontal partings. Vertical cracks with calcite mineralization from 129.2 to 129.8 feet and 130.0 to 130.3 feet. Extremely to moderately fractured.	
132	NM	C-11	131.8 - 133.8		24/20			SHALE	REC=100%. RQD=37%. C-10B (130.4 to 131.8'): Very soft to medium hard, dark gray, very fine grained, SILTY CLAY SHALE, with very thin to thin horizontal partings. Clay rich zone from	
134 - 136-								133.8'	130.4 to 130.8 feet. Slight Organic sheen. Extremely fractured. C-11 (131.8 to 133.8'): Very soft to medium hard, dark gray, very fine grained, SILTY CLAY SHALE, with very thin horizontal, bedding. slight Organic sheen. Extremely to moderately fractured. REC=83%. RQD=0%.	
_									Boring terminated at 133.8 feet. No refusal encountered.	
138-									NOTES: 1. Approximately 5200 gallons of potable water was introduced during drilling upon averable in the during drilling upon	
140									completion of coring (approximately 3,200 gallons was used to advance to top of bedrock from a combination of potable wells and the plant fire suppression system; approximately 2,000 gallons of water from the plant fire suppression	
142									system was used during bedrock coring). 2. Continuous sampling started approximately 5 ft above the water table based on a water level measurement collected by Sanborn Head on 6/18/2018 at	
- 144									15:20 at MŴ-1605S of 44.84 ft below Top of PVC Riser and at 15:34 at MW-1604S of 51.99 ft below Top of PVC Riser.	
- 146-									 Advanced HWT casing to 29 ft bgs. Due to damage to casing advancer at 29 ft, advanced 3 1/4" ID hollow stem augers to 30 ft bgs to auger refusal at 84.7 ft bgs. Advanced HWT casing with roller bit advancer to 84.7 ft and began PWL coring at 84.7 ft. 	
- 148									4. Approximately 1 week following completion of sample collection, the borehole was completed as a monitoring well by Terracon Consultants, Inc. Monitoring well installation was not observed by Sanborn Head personnel.	

BORING LOG P:\4300S4345.00\WORKLOGS\4345.00 LOGS.GPJ 2017 SANBORN HEAD V1.GLB 2017 SANBORN HEAD V1.GDT 12/7/18

150

CC	Syntec onsultants	>	Clien Proje Addre	ct:	American Electric Power CHW8293 New Haven, WV		W Well No. Page:	/ELL LOG MW-1921 1 of 5	
Drilling Start Date Drilling End Date Drilling Company Drilling Method: Drilling Equipmer Driller: Logged By:	: 1/24/2019 7: AEP Hollow St	em Auge ounted ro		Bori Sam DTV Groi Top	ng Depth (ft): 91.3 ng Diameter (in): 8.25 npling Method(s): SPT V After Drilling (ft): und Surface Elev. (ft):595.639 of Casing Elev. (ft):598.659 ation (X,Y):1,703,415.81, 721,382.16	Well D Scree Riser Scree	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	87.5 2 0.010 Sch 40 PVC Sch 40 PVC Slot Grout, Bentonite #5 Sand	
DEPTH (ft) LITHOLOGY WATER LEVEL	WELL COMPLETION Sample Type	Date & Time Blow Counts		N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTIO	N	RE	MARKS	DEPTH (ft)
	 SS01 SS02 SS03 SS03 SS04 SS04 SS05 SS06 SS06 SS07 SS08 SS08 SS09 SS10 SS11 SS11 SS12 SS13 	2 4 6 2 8 7 3 5 8 4 6 6 2 2 4 5 5 7 7 3 5 5 6 6 4 4 6 13 3 5 5 6 6 4 4 8 3 3 7 7 12 1 1 1 3 3 3 3 10 2 4 4 5 5 7 7 3 5 7 7 3 5 7 7 3 5 7 7 3 5 7 7 3 5 7 7 3 5 7 7 3 5 7 7 7 3 5 7 7 7 3 5 7 7 7 7	1.0 1.4 1.3 1.4 1.5 1.5 1.5 1.5 1.0 2 2 0.9 1.2 0.9 1.2		(0') Medium dense, light brown to red, CLA SILT (ML); dry, low to medium plasticity, cohesive, trace fine gravel and coal fragme fill. (12') Brown SAND (SP); saturated, fine to medium, rounded gravel inclusions >30%. (15') GRAVEL with sand (GP); rounded to rounded coarse to fine gravel, fine to mediu sand.	nts,	Soil becomes	wet at ~12'	- 0.0

Geosynt consulta engineers scientists inn	ants	Client Proje Addre	ct:	American Electric Power CHW8293 New Haven, WV		W Well No. Page:	/ELL LOG MW-1921 2 of 5	
Drilling End Date:1/2Drilling Company:AEDrilling Method:HoiDrilling Equipment:TruDriller:ZR	2/2019 4/2019 P Ilow Stem Aug Ick-mounted r /BH Christenson	Boring Diameter (in): 8.25 Well II Sampling Method(s): SPT Screet DTW After Drilling (ft): Riser otary Ground Surface Elev. (ft): 595.639 Screet Top of Casing Elev. (ft): 598.659 Seal N Location (X,Y): 1,703,415.81, 721,382.16 Filter				Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	87.5 2 0.010 Sch 40 PVC Sch 40 PVC Slott Grout, Bentonite #5 Sand	
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION	Sample Type Date & Time Date Plance	Recovery (ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTIO	N	RE	MARKS	DEPTH (ft)
	SS15 1 SS16 1 SS16 1 SS17 1 SS18 1 SS19 2 SS20 2 SS21 2 SS22 2 SS23 2 SS24 2 SS25 1 SS26 1	3 1.2 3 1.2 5 1.2 1 3 3 1.3 5 1.5 5 1.5 5 1.5 6 1.5 7 3 4 1.8 5 1.8 7 3 4 1.8 7 3 4 1.8 7 3		 (20.5') Gray, SILTY CLAY (CL); moist, metaplasticity, cohesive. (21.2') SAND (SP); saturated, some rounded gravel inclusions. (21.8') Gray/tan, CLAYEY SILT (ML); dry, I plasticity, noncohesive. (22.5') SAND (SP); saturated, fine-grained, grades to medium gravel. (23.2') Tan to brown gray, SILTY CLAY (Cl damp, medium to high plasticity, cohesive, vrounded gravel inclusions. (25.5') Gray, CLAY (CL); damp, medium plasticity, cohesive, with brown/orange mot 1/2 inch to 1 inch. (27.5') Gray, CLAY (CL); dry, medium plasticity, cohesive, with brown large mottles and silt. (28.3') Red, SILTY CLAY (CL); damp, medium plasticity, cohesive. (30.8') Red, CLAYEY SILT (ML); dry to dar medium to low plasticity. (35') Red, SANDY SILT (ML); wet, nonplast noncohesive, fine-grained. (37') Red-brown SAND (SP); saturated, medium- to fine-grained with some medium coarse gravel inclusions, nonuniform. 	/ ed / / ow / / / / tles ticity, / ticity, / / ticity, /			- 20.0 - - - - - - - - - - - - -

Drilling End Date: 1/24 Drilling Company: AEI	2/2019			New Haven, WV		Page:	3 of 5	
Drilling Equipment: Tru Driller: ZR /	low Stem Au ck-mounted	-	Borii Sam DTV Grou Top	ng Depth (ft): 91.3 ng Diameter (in): 8.25 npling Method(s): SPT V After Drilling (ft): und Surface Elev. (ft):595.639 of Casing Elev. (ft):598.659 ation (X,Y):1,703,415.81, 721,382.16	Well I Scree Riser Scree	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	tted e	
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION		Blow Counts Recovery (ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTIO	N	RE	MARKS	DEPTH (ft)
40 45 50 50 50 50 50 50 50 50 50 5	SS28 SS29 SS30 SS31 SS32 SS33 SS34 SS35 SS36 SS37 SS38 SS39	21 0.8 19 1.0 5 1.0 6 12 12 13 15 32 1.3 31 25 1.1 15 1.0 15 1.0 15 1.0 15 1.0 15 1.0 15 1.0 15 1.0 15 1.0 15 0.9 10 0.7 11 12 0.8 8 10 0.7 11 9 1.0 17 9 0.5 11 7 8 1.3 8 1.3		(45') Medium dense, brown GRAVEL with (GP); saturated, fine-grained gravel and medium- to coarse-grained sand, trace coa gravel and fine sand, nonuniform.	rse			-40.0 - - - -45.0 - - - - - - - - - - - - - - - - - - -

engineers scientists in		Client: American Electric Power Project: CHW8293 Address: New Haven, WV			WELL LOG Well No. MW-1921 Page: 4 of 5			
Drilling End Date:1/2Drilling Company:AleDrilling Method:HoDrilling Equipment:TrDrilling Equipment:Zr	22/2019 24/2019 EP Illow Stem Au uck-mounted R/BH Christenson	-	Sampling DTW Afte Ground S Top of Ca	epth (ft): 91.3 ameter (in): 8.25 Method(s): SPT er Drilling (ft): urface Elev. (ft): urface Elev. (ft): 595.639 asing Elev. (ft): 598.659 (X,Y): 1,703,415.81, 721,382.16	Well I Scree Riser Scree	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Naterial(s): Pack:	87.5 2 0.010 Sch 40 PVC Sch 40 PVC Slott Grout, Bentonite #5 Sand	
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION		Blow Counts Recovery (ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTIC	DN	RE	MARKS	DEPTH (ft)
	SS42 SS43 SS44 SS45 SS46 SS47 SS48 SS49 SS50 SS51 SS52	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	fine- fine ((69') (70') medi (70.5 (70.5) (70.5) (70.5) (70.5) (70.5)	2') Loose, brown SAND (SP); saturate to medium-grained, few coarse sand gravel, trace silt. Band of crumbly black organic materi Loose, brown SAND (SP); saturated, ium- to fine-grained, trace coarse sand 5') Becomes coarse-grained.	and al d. sand			- 60.0

		CO		nts	>		Clien Proje Addre	ct:	American Electric Power CHW8293 New Haven, WV		W Well No. Page:	VELL LOG MW-1921 5 of 5	
Drillin Drillin Drillin Drillin Driller	g Start g End I g Comp g Metho g Equip r: ed By:	Date: bany: od:	1/24 AEP Holl t: Truc ZR/8	ow St :k-mc	tem A punte	Auger d rota		Bori Sam DTV Grou Top	ng Depth (ft): 91.3 ng Diameter (in): 8.25 apling Method(s): SPT V After Drilling (ft):	Well I Scree Riser Scree	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	87.5 2 0.010 Sch 40 PVC Sch 40 PVC Slo Grout, Bentonit #5 Sand	
DEPTH (ft)	ГІТНОГОСУ	WATER LEVEL	WELL	Sample Type	Date & Time	Blow Counts	(f)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTIC	N	RE	MARKS	DEPTH (ft)
80				SS54 SS55 SS56 SS57 SS58 SS59 SS60 SS61		20 29 17 20 17 14 19 17 21 23 22 17 19 27 16 19 25 35 50/2 50/3	1.1 1.1 1.2 1.3 1.4 0.6		(81') Medium dense, brown SAND with gra (SP); saturated, coarse-grained sand and fine-grained gravel with few coarse gravel a medium sand, nonuniform. (87') Lens of fine loose sand at 87.0-87.5 f	and			- 80.0
95-	IOTES:		oring sa	mplec	l with ructe	2 in (d with	DD sp	blit spo	oon. tely 3ft of casing stick up and well cover.				95.0

		CO		nts	>		Clien Proje Addr	ect:	American Electric Power CHW8293 New Haven, WV		W Well No. Page:	/ELL LOG MW-1922D 1 of 6	
Drilling Drilling Drilling Drilling Drilling Driller: Logged	g End E g Comp g Metho g Equip	Date: bany: bd:	1/29 AEF Holl t: Tru ZR/	low Si ck-mo	em A bunte	d rot	Boring Diameter (in): 8.25 Well Sampling Method(s): SPT; Core Barrel Screet Iger DTW After Drilling (ft): Riser Ground Surface Elev. (ft): 591.006 Screet Top of Casing Elev. (ft): 594.016 Seal Location (X,Y): 1,701,767.67, 720,390.93 Filter			Well D Screer Riser N Screer	repth (ft): riameter (in): n Slot (in): Material: n Material: laterial(s): Pack:	83.5 2 0.010 Sch 40 PVC Sch 40 PVC Slo Grout, Bentonit #5 Sand	
DEPTH (ft)	ГІТНОГОGY	WATER LEVEL	WELL	Sample Type	Date & Time	Blow Counts	Recovery (ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION		RE	MARKS	DEPTH (ft)
0				SS01		4 7 8	1.3		 (0') Large stones. (1') Medium stiff to stiff, gray, CLAYEY SILT (ML); dry, low plasticity, few fine gravel, nonuniform. (2.5') Changes to dense and red-brown. 		Advanced holl	ow stem auger	- 0.0 - 5.0
- - - - - - - - -				SS02		2 3 4	1.3		(6.5') Changes to damp, cohesive, trace fine sand.				- - - -10.0
- - 15- -				SS03		2 4 4	0.8		(11.5') Loose, red-brown, SANDY SILT (ML); damp, nonplastic, noncohesive, trace clay, uniform.	;			- -
20	OTES:								(16.5') Loose to medium dense, red-brown, SANDY SILT (ML); damp, low plasticity, cohesive, with some clay, uniform.				20.0

Geosyntec Consultants	Clier Proje Addi	ect:	American Electric Power CHW8293 New Haven, WV		W Well No. Page:	/ELL LOG MW-1922D 2 of 6	
Drilling Start Date:1/28/2019Drilling End Date:1/29/2019Drilling Company:AEPDrilling Method:Hollow Stem AuDrilling Equipment:Truck-mountedDriller:ZR/BHLogged By:C. Christenson	rotary	rotary Ground Surface Elev. (ft): 591.006 Screet Top of Casing Elev. (ft): 594.016 Seal Location (X,Y): 1,701,767.67, 720,390.93 Filte				83.5 2 0.010 Sch 40 PVC Sch 40 PVC Slot Grout, Bentonite #5 Sand	
	Blow Counts Recovery (ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTIO	N	RE	MARKS	DEPTH (ft)
	3 10 0.9 13		(21.5') Loose, brown SAND (SP); medium- fine-grained, with trace coarse sand & grav	to el.			20.0
25	7 9 1.3 12		(26.5') Medium dense, gray-brown, CLAYE SILT (ML); lens. (27') Loose, brown SAND (SP); damp, noncohesive, medium-grained sand, with fo coarse sand and trace fine gravel.	اُد			- 25.0 - - - - - - - - - - - - 30.0
35-	5 6 0.3 7		(31.5') Loose, dark brown, SILTY and CLA SAND (SM); damp, noncohesive, medium-grained sand with some fine round gravel, nonuniform.				
40 	4 5 1.3 8		(36.5') Loose, brown, SILTY CLAY (CL); di low plasticity, cohesive, lens. (37') Loose, brown SAND (SP); damp, noncohesive, medium-grained sand with fe sand and gravel.	/			

Geosyntec consultants engineers scientists innovators	Pro		American Electric Power CHW8293 New Haven, WV		WELL LOG Well No. MW-1922D Page: 3 of 6		
, s	9 Stem Auger nounted rotary	Bor Sar DT Gro Top	ring Depth (ft): 114.2 ring Diameter (in): 8.25 mpling Method(s): SPT; Core Barrel W After Drilling (ft):	Well [Scree Riser Scree	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	83.5 2 0.010 Sch 40 PVC Sch 40 PVC Slot Grout, Bentonite #5 Sand	
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type	Date & Time Blow Counts Recovery (ft)		SOIL/ROCK VISUAL DESCRIPTIC	N	RE	MARKS	DEPTH (ft)
	9 5 1. 8	3	(41.5') Loose, brown, SILTY CLAY (CL); d. low plasticity, cohesive, trace sand. (42') Loose, brown SAND (SP); damp, nonplastic, noncohesive, fine- to medium-grained sand, uniform.	 amp, /			-40.0 - - - - -45.0
	2 9 1. 10 4	3	 (46.5') Changes to wet with few coarse sar trace fine gravel. (48.5') 2 inch dark gray clay lens at 48.5 fe (49.5') Medium dense, brown SAND (SP); nonplastic, noncohesive, medium- to fine-grained, uniform, with black partings throughout. 	et.			- - 50.0
55 - 55 - 55 - 55 - 55 - 55 - 55 - 55 -	9 4 7 1. 8 3 5 5 1. 10 6 8 0. 9 4	2 1 9	(52.5') With few fine to coarse gravel.				- - 55.0 - -
60 NOTES: Boring sample Well was cons	8 4 5 1. 4 ed with 2 in OD	split sp	oon to 85 ft and wireline NQ to 115 ft. ately 3ft of casing stick up and well cover.				60.0

Geosyr consu	ıltants	F	Client Projec Addre	ct:	American Electric Power CHW8293 New Haven, WV		WELL LOG Well No. MW-1922D Page: 4 of 6		
Drilling End Date: Drilling Company: Drilling Method: Drilling Equipment: Driller: 2	1/28/2019 1/29/2019 AEP Hollow Stem Truck-mount ZR/BH C. Christens	ted rota		Bor Sar DT\ Gro Top	ing Diameter (in): 8.25 npling Method(s): SPT; Core Barrel W After Drilling (ft): pund Surface Elev. (ft): 591.006 o of Casing Elev. (ft): 594.016	Well D Screer Riser I Screer	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	83.5 2 0.010 Sch 40 PVC Sch 40 PVC Slor Grout, Bentonite #5 Sand	
DEPTH (ft) LITHOLOGY WATER LEVEL WELL	COMPLETION Sample Type Date & Time	Blow Counts	f)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	N	RE	MARKS	DEPTH (ft)
	SS19 SS20 SS21 SS22 SS23 SS24 SS25 SS26 SS27 SS28 SS29 SS29 SS30 SS30 SS31	8 13 16 8 12 13 8 12 14 8 13 18 6 7 10 8 11 16 12 13 15 7 16 22 13 14 14 11 13 20 20 24 25 12 11 13 10 13 15 7 16 22 13 14 15 7 16 22 13 14 15 7 16 22 13 14 15 7 16 22 13 14 15 7 16 22 13 14 15 7 16 22 13 14 15 7 16 22 13 14 15 7 16 22 13 14 15 7 16 22 13 14 15 7 16 22 13 14 14 15 7 16 22 13 14 14 15 7 16 22 13 14 14 15 7 16 22 13 14 11 13 15 7 16 22 13 14 11 13 15 7 16 20 20 21 13 15 15 15 16 20 20 21 13 15 15 15 15 15 16 20 20 21 13 15 15 15 15 15 15 15 15 15 15	0.9 1.1 1.3 0.8 1.2 1.1 1.0 1.1 0.9 1.1 1.2 1.2 1.1 1.2 1.1		 (60') Loose to medium dense, brown SAND (SP); wet, some coarse sand, uniform. (61.5') Loose, gray-brown SAND (SP); wet, medium- to coarse-grained with few fine rou gravel, nonuniform. (63') Medium dense, gray-brown, SANDY S (ML); wet. (63.3') Medium dense, tan gray SAND (SP); fine- to medium-grained, with some coarse several black partings. (67.5') Trace fine gravel. (67.5') Some medium sand. (75') Some medium sand. (77') Medium dense, gray SAND (SP); wet, nonplastic, noncohesive, uniform. 	unded GILT _r / ; wet,			

Drilling Start Date: 122/2019 Boring Depth (t): 114.2 Well Depth (t): 2 Drilling Company: AEP Boring Depth (t): 14.2 Well Depth (t): 2 Drilling Company: AEP Drilling Company: AEP Drilling Company: AEP Drilling Company: AEP Drilling Company: ACD (th): 0.010 Drilling Company: AEP Drilling Company: AEP Drilling Company: Scient Material: Sch 40 PVC Stoted Drilling Company: C. Christenson Cocation (X,Y): 1,701,767.67,720,390.33 Scient Material: Sch 40 PVC Stoted Drilling Company: COLLECT Scient Material: Sch 40 PVC Stoted Scient Material: Scient Mate	Geosyntec Consultants	Client Projec Addre	ct:	American Electric Power CHW8293 New Haven, WV		W Well No. Page:	/ELL LOG MW-1922D 5 of 6	
Image: Constraint of the second se	Drilling End Date:1/29/2019Drilling Company:AEPDrilling Method:Hollow Stem AugDrilling Equipment:Truck-mounted reDriller:ZR/BH		Boring Diameter (in): 8.25 Well I Sampling Method(s): SPT; Core Barrel Screet DTW After Drilling (ft): Riser Y Ground Surface Elev. (ft): 591.006 Screet Top of Casing Elev. (ft): 594.016 Seal I			Diameter (in): n Slot (in): Material: n Material: Jaterial(s):	2 0.010 Sch 40 PVC Sch 40 PVC Slo Grout, Bentoni	
8522 18 12 12 12 13 13 14 15 16 16 16 16 16 17 17 18 16 17 17 18 17 18 18 17 18 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18			N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTIO	N	RE	MARKS	DEPTH (ft)
	SS32 SS33 SS33 SS33 SS33 SS34 SS34 SS34 SS34 SS35 SS35 SS34 SS35 SS35 SS36 SS36 SS35 SS36 SS 8 SS36 SS 8 SS	4 1.3 2 1 1 1.0 3 1.1 5 1.0 8.2		 (SP); wet, noncohesive, coarse-grained sat and fine-grained gravel with some coarse g and medium sand, nonuniform. (82.5') Dense, gray GRAVEL with sand (Gl wet, noncohesive, some coarse gravel and coarse sand and few medium sand, nonuni (84') Medium dense, brown gray GRAVEL sand (GP); wet, fine-grained gravel and coarse-grained sand with some coarse grav- and clay lens at 84.0 feet. (85.5') Auger refusal at 85.0 feet. (86') Moderately hard, fine- to medium-grai- light gray SANDSTONE with thin dark gray partings less that 1 inch apart, moderately fractured and fine-grained between 86.0-88 feet. (88') Sound and medium-grained below 88 feet. (94.2') Moderately hard to moderately soft, to medium gray, fine- to medium-grained SANDSTONE (very thin); dark gray, horizo partings approximately 12 to 14 inches apa 	Iight ntal		ng water rotary	- -

	consulta	nts		P	Client Proje Addre	ct:	American Electric Power CHW8293 New Haven, WV		W Well No. Page:	VELL LOG MW-1922D 6 of 6	
Drilling Start D Drilling End D Drilling Compa Drilling Method Drilling Equipr Driller: Logged By:	ate: 1/29 any: AEF d: Holl ment: True ZR/I	ow Ste ck-mou	unted	rota	ry	Bor Sar DT Grc Top	ing Depth (ft): 114.2 ing Diameter (in): 8.25 mpling Method(s): SPT; Core Barrel W After Drilling (ft):	Well I Scree Riser Scree	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Naterial(s): Pack:	83.5 2 0.010 Sch 40 PVC Sch 40 PVC Slo Grout, Bentonit #5 Sand	
DEPTH (ft) LITHOLOGY	WATER LEVEL WELL COMPLETION	Sample Type		Blow Counts	ť)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTIO	N	RE	MARKS	DEPTH (ft)
		CB 2			9.6	98	(104.2') Moderately hard to moderately soft medium gray, medium- to fine-grained SANDSTONE (thin to horizontal); dark gray partings every 4 to 6 inches, lightly fracture sound.	/			- 100.0 - - - - - - - - - - - - - - - - - -
NOTES:	Boring sa Well was	mpled v	with 2	2 in O with	D sp	lit spo	bon to 85 ft and wireline NQ to 115 ft. Itely 3ft of casing stick up and well cover.				

Ceosyntec Consultants	Client: Project: Address	American Electric Power CHW8293 :: New Haven, WV	WELL LOG Well No. MW-1923 Page: 1 of 4
Drilling Start Date:2/8/2019Drilling End Date:2/8/2019Drilling Company:AEPDrilling Method:Hollow Stem AugeDrilling Equipment:Truck-mounted roDriller:ZR/BHLogged By:C. Christenson	er C stary C	oring Diameter (in):8.25Weampling Method(s):SPTScTW After Drilling (ft):Risground Surface Elev. (ft):591.012Scop of Casing Elev. (ft):593.972Se	ell Depth (ft):65.5ell Diameter (in):2reen Slot (in):0.010ser Material:Sch 40 PVCreen Material:Sch 40 PVC Slottedal Material(s):Grout, Bentoniteser Pack:#5 Sand
DEPTH (ft) LITHOLOGY WATER LEVEL WATER LEVEL COMPLETION Sample Type Date & Time Date & Time		SOIL/ROCK VISUAL DESCRIPTION	REMARKS (1) HI dag
0 - - - - - - - - - - - - -	0.9	(0') Concrete. (0.5') Hydroexcavate from 0.5-11.5 ft.	No samples collected. No subsurface utilities encountered. 0.0 - -
NOTES: Boring sampled with 2 in Well was constructed wi	OD split th approxi	spoon. mately 3ft of casing stick up and well cover.	

Drilling Start Date: 28/2019 Boring Depth (ft): 70 Well Depth (ft): 65.5 Drilling Company: AEP Boring Dameter (in): 8.25 Screen Staft Date: Screen Material: Sch 40 PVC Drilling Company: AEP Drilling Company: AEP Drilling Company: AEP Drilling Company: AEP Screen Material: Sch 40 PVC Screen Material: Sch 40 PVC Screen Material: Sch 40 PVC Stoted S		Ge	CO		ants			Clien Proje Addre	ct:	American Electric PowerWELL LOGCHW8293Well No.MW-1923New Haven, WVPage:2 of 4	
U AS DINATION REMARKS Image: Second and s	Drillin Drillin Drillin Drillin Driller	g End E g Comp g Metho g Equip	Date: Dany: Dd:	2/8 AE Hol t: Tru ZR	/2019 P Ilow St Ick-mo /BH	ounte	d rot		Bor Sar DT\ Gro Top	Well Diameter (in):8.25Septing Method(s):SPTWell Diameter (in):2Screen Slot (in):0.010W After Drilling (ft):Riser Material:Sound Surface Elev. (ft):591.012So of Casing Elev. (ft):593.972Seal Material(s):Grout, BentoniteSite Deale50.012	ed
25- 2 1.5 - <td>DEPTH (ft)</td> <td>ГІТНОГОЄУ</td> <td>WATER LEVEL</td> <td>WELL COMPLETION</td> <td>Sample Type</td> <td></td> <td></td> <td></td> <td>N Value RQD (%)</td> <td>SOIL/ROCK VISUAL DESCRIPTION REMARKS</td> <td>DEPTH (ft)</td>	DEPTH (ft)	ГІТНОГОЄУ	WATER LEVEL	WELL COMPLETION	Sample Type				N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION REMARKS	DEPTH (ft)
30 30 4 1.3 30 12 1.5 (32) Loose, red-brown SAND with gravel (SP); 20 -30.0 35 12 1.5 (32) Loose, red-brown SAND with gravel (SP); dry, noncohesive, fine- to medium-grained sand with some coarse gravel, nonuniform. -35.0 35 9 1.5 (36.5) Loose to medium dense, red-brown, CLAYEY SILT (ML); wet, medium plasticity, cohesive, with fine sand. -35.0 37 1.5 (36.5) Loose to medium dense, red-brown, CLAYEY SILT (ML); wet, medium plasticity, cohesive, with fine sand. -35.0	-				^)		5	1.5			-
35- 9 35- 1.5 35- 9 1.5 1.5 (36.5') Loose to medium dense, red-brown, CLAYEY SILT (ML); wet, medium plasticity, cohesive, with fine sand. (37') Loose to medium dense, brown SAND (37') Loose to medium dense, brown SAND (37') Loose to medium dense, brown SAND (37') Loose to medium dense, fine- to medium-grained sand with some fine to coarse					A A A A A A A A A A A A A A A A A A A		4	1.3			- - -
Image: Solution of the solution					SS05		17	1.5		dry, noncohesive, fine- to medium-grained sand	- - -
	40-				SS06		13	1.5		CLAYEY SILT (ML); wet, medium plasticity, cohesive, with fine sand. (37') Loose to medium dense, brown SAND (SP); damp, nonplastic, noncohesive, fine- to medium-grained sand with some fine to coarse	- - 40.0

			onsulta ntists innov		>		Clien Proje Addro	ct:	American Electric Power CHW8293 New Haven, WV	W Well No. Page:	/ELL LOG MW-1923 3 of 4		
Drillin Drillin Drillin Drillin Drille	g Start I g End E g Comp g Metho g Equip r: ed By:	Date: bany bd:	: 2/8/2 : AEP Holle ht: Truc ZR/E	2019 ow St ck-mc 3H	tem A bunte	d rot		Bor Sar DT Gro Top	ing Depth (ft): 70 ing Diameter (in): 8.25 npling Method(s): SPT N After Drilling (ft): und Surface Elev. (ft): 591.012 of Casing Elev. (ft): 593.972 ation (X,Y):1,703,107.28, 722,110.27	Well Depth (ft):65.5Well Diameter (in):2Screen Slot (in):0.010Riser Material:Sch 40 PVCScreen Material:Sch 40 PVC SSeal Material(s):Grout, BentorFilter Pack:#5 Sand			
DEPTH (ft)	КОТОНТИ	WATER LEVEL	WELL	Sample Type	Date & Time	Blow Counts	f)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTIO	N	RE	MARKS	DEPTH (ft)
40 45				SS07		10 15 21	1.3						40.0 - - - 45.0
- - - 50				SS08		5 10 10	1.1						- - - 50.0
- - - 55-				SS09		4 9 14	2.0						- - - 55.0
- - - 60				SS10 SS11 SS12		11 12 19 8 10 14 8	1.1 1.5 1.3		(56.5') Changes to wet, cohesive clay layers approximately 6-inch intervals from 56.5-58	s at 8 ft.			- - - 60.0
Ν	IOTES:		Boring sai Vell was	mplec const	l with ructeo	2 in (d with	OD sp n appr	olit spo oxima	oon. tely 3ft of casing stick up and well cover.				

	OSYNTE consulta			Clien Proje Addre	ct:	American Electric Power CHW8293 New Haven, WV		V Well No. Page:	VELL LOG MW-1923 4 of 4	
Drilling Start I Drilling End D Drilling Comp Drilling Metho Drilling Equip Driller: Logged By:	Date: 2/8/2 any: AEP od: Holl ment: Truc ZR/8	2019 ow Stem ck-mount	ted rot		Bor San DT\ Gro Top	ing Depth (ft): 70 ing Diameter (in): 8.25 npling Method(s): SPT N After Drilling (ft): und Surface Elev. (ft): of Casing Elev. (ft): 593.972 ation (X,Y):1,703,107.28, 722,110.27	Well [Scree Riser Scree	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	65.5 2 0.010 Sch 40 PVC Sch 40 PVC Slot Grout, Bentonite #5 Sand	
DEPTH (ft) LITHOLOGY	WATER LEVEL WELL COMPLETION	Sample Type	Blow Counts	f)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTIC	N	RE	MARKS	DEPTH (ft)
		SS12 SS13 SS14 SS15 SS16 SS17 SS18	11 13 8 13 12 7 8 10 14 18 19 10 12 21 10 21 22 18 20 21	1.3 1.2 1.0 1.2 1.1 0.5 1.1		(61') Changes to medium- to coarse-graine sand. (64') Changes to dense. (68.5') Changes to coarse-grained sand. (70') Boring terminated.	ed			60.0 - - - - - - - - - - - - - - - - - -
NOTES:	Boring sa Well was	mpled wit	h 2 in ted wit	OD sp h appr	olit spo oxima	oon. tely 3ft of casing stick up and well cover.				

Ceosyntec Consultants	Client: Project: Address:	American Electric Power CHW8293 New Haven, WV	WELL LOG Well No. MW-1924 Page: 1 of 3				
Drilling Start Date:2/7/2019Drilling End Date:2/12/2019Drilling Company:AEPDrilling Method:Hollow Stem AugeDrilling Equipment:Hollow Stem AugeDriller:ZR/RBLogged By:K. Villars	Bor Sar Pr DT Pr Gro Top	Boring Diameter (in):8.25Well ISampling Method(s):SPT (2 in ID)ScreetDTW After Drilling (ft):RiserGround Surface Elev. (ft):586.072Screet			Depth (ft): 70.7 Diameter (in): 2 en Slot (in): 0.010 Material: Sch 40 PVC en Material: Sch 40 PVC Slotted Material(s): Grout, Bentonite Pack: #5 Sand		
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time Date & Time		SOIL/ROCK VISUAL DESCRIPTIO	N	RE	MARKS	DEPTH (ft)	
0 - - - - - - - - - - - - -	0.6	 (0') CONCRETE. (0.5') Hydroexcavate 0.5 feet to approximat feet bgs on 2/8/2019. (12') Loose, gray SAND (SP); moist, noncohesive, fine-grained with few medium trace coarse grained sand. (16.5') Very loose, red brown, WELL-GRAI SAND with silt (SW-SM); moist, low plastic fine-grained. (21.5') Medium dense to dense, brown, SA (SP); noncohesive, little to some gravel. 	DED ity,			- 0.0 - 5.0 	
NOTES:							

consultants Pro					>		Clien Proje Addre	ct:	American Electric Power CHW8293 New Haven, WV	WELL LOG Well No. MW-1924 Page: 2 of 3			
Drilling Start Date: 2/7/2019 Drilling End Date: 2/12/2019 Drilling Company: AEP Drilling Method: Hollow Stem Auger Drilling Equipment: Hollow Stem Auger Driller: ZR/RB Logged By: K. Villars					tem A tem A	-		Boring Diameter (in):8.25Well ISampling Method(s):SPT (2 in ID)ScreetDTW After Drilling (ft):RiserGround Surface Elev. (ft):586.072ScreetTop of Casing Elev. (ft):585.922Seal I			Depth (ft): 70.7 Diameter (in): 2 en Slot (in): 0.010 Material: Sch 40 PVC en Material: Sch 40 PVC Slotted Material(s): Grout, Bentonite Pack: #5 Sand		
DEPTH (ft)	ГІТНОГОЄУ	WATER LEVEL	WELL	Sample Type	Date & Time	Blow Counts	ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTIO	N	RE	MARKS	DEPTH (ft)
25				SS04		10 12 17	1.2						25.0 - - - -
30				SS05		10 14 16	1.2						30.0 - - - -
40-				SS06		11 12 15	1.4				Stop advancin resume advan	g on 2/11/2019 - icing on 2/12/2019	- - - -40.0
- - - 45-				SS07		13 13 11	1.3		(41.5') Grading change to sand with gravel.				- - - -45.0
 				SS08		4 7 13	1.6		(46.5') Medium, dark gray, WELL-GRADED SAND (SP); very moist, unconsolidated, tra coarse sand and silt with some medium sar some black staining in top 0.5 feet.	ice		uick Gel to hold nd prevent heaving	
N	IOTES:												

55 57 1.2 (51.5) Loose to medium dense, tan SAND (SP); wet, noncohesive, trace fine gravel. Below water table 55 6 1.5 (54.5) Loose to medium dense, tan SAND (SP); wet, noncohesive, trace fine gravel. Below water table - 55 5 1.5 (54.5) Medium dense, black to dark brown silty clay lens. - - 60 7 1.2 (56.9') Fractured rock lens. - 60 7 1.1 (56.9') Fractured rock lens. - 60 7 1.1 (56.9') Fractured rock lens. - 60 5515 1.1 1.2 - - 60 5515 1.1 1.2 - - 60 5515 1.1 1.2 - - 5516 1.1 1.2 - - - 65 5519 1.2 - - - - 5519 1.2 - - - - - 5519 1.2 - -	Geosyntec Consultants	Project: C	American Electric Power CHW8293 Iew Haven, WV	WELL LOG Well No. MW-1924 Page: 3 of 3				
Image: Second Hamiltonian Im	Drilling End Date:2/12/2019Drilling Company:AEPDrilling Method:Hollow Stem AugDrilling Equipment:Hollow Stem AugDriller:ZR/RB	Borir Sam Pr DTW Pr Grou Top o	Boring Dopti (it):8.25Well IBoring Diameter (in):8.25Well ISampling Method(s):SPT (2 in ID)ScreetDTW After Drilling (ft):RiserGround Surface Elev. (ft):586.072ScreetTop of Casing Elev. (ft):585.922Seal I			Diameter (in):2en Slot (in):0.010Material:Sch 40 PVCen Material:Sch 40 PVC SlottedMaterial(s):Grout, Bentonite		
55 500 5 1.2 (51.5) Loose to medium dense, tan SAND (SP); wet, noncohesive, trace fine gravel. Below water table - 55 6 1.5 1.5 (54.5) Medium dense, tan SAND (SP); wet, noncohesive, trace fine gravel. Below water table - 55 55 55 1.5 (54.5) Medium dense, black to dark brown silty clay lens. - - 60 5512 15 1.2 (56.9) Fractured rock lens. - 60 5513 1.1 1.2 - - 60 5513 1.1 1.2 - - 60 5513 1.1 1.2 - - 60 5513 1.1 1.2 - - 61 5513 1.1 - - - 651 15 1.1 - - - 651 15 1.1 - - - 651 15 1.1 - - - 651 12	DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time Date & Time		SOIL/ROCK VISUAL DESCRIPTIO	Ν	RE	MARKS	DEPTH (ft)	
75	55 - 55 - 55 - 55 - 55 - 55 - 55 - 55	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(54') Black staining/coal. (54.5') Medium dense, black to dark brown clay lens. (56.9') Fractured rock lens. (60.5') Medium to dense, light brown to gra brown, SAND (SP); wet, noncohesive, som sand and fine gravel, top 2 inches with blac staining.	silty	Below water ta	able	55.0 - - 55.0 - - - - - - - - - - - - - - - - - - -	

	Ge					>		Clien Proje Addre	ct:	American Electric Power CHW8293 New Haven, WV		W Well No. Page:	/ELL LOG MW-1925 1 of 3	
Drillin Drillin Drillin Drillin Drille	ig Start ig End I ig Comp ig Metho ig Equip r: ed By:	Date: bany: od:	: ; it: ;	2/15/ AEP Holic Holic ZR/R	ow St	tem A tem A	-		Bor Sa DT Grc Top	ing Depth (ft): 59.5 ing Diameter (in): 8.25 mpling Method(s): SPT (2 in ID) N After Drilling (ft):	Well I Scree Riser Scree	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	58.5 2 0.010 Sch 40 PVC Sch 40 PVC Slo Grout, Bentonit #5 Sand	
DEPTH (ft)	ГІТНОГОСУ	WATER LEVEL	WELL	COMPLETION	Sample Type	Date & Time	Blow Counts	iry (ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTIO	N	RE	MARKS	DEPTH (ft)
0					SS01		7 12 14	1.3		∖(0') TOPSOIL; with limestone cobble. (0.3') Stiff, light brown, LEAN CLAY (CL); r medium plasticity.	ſ			0.0
5					SS02		4 4 5	0						- 5.0 - - - - 10.0
- - - 15-					SS03		5 11 15	1.2		(12') Loose to medium dense, light brown, (SP); moist, noncohesive, fine-grained with some gravel.	SAND	SS-03-1 SS-03-2		- - - 15.0
- - - 20-					SS04		6 11 23	1.3						- - - 20.0
					SS05		11 21 30	0.9		(22.8') Narrow lens of black coal less than 0.1-inch thick.				25.0
	IOTES:													

					>		Clien Proje Addre	ct:	American Electric Power CHW8293 New Haven, WV		W Well No. Page:	/ELL LOG MW-1925 2 of 3	
Drillin Drillin Drillin Drillin Drille	ng Start ng End I ng Comp ng Metho ng Equip r: ed By:	Date: Dany Dd:	: 2/1 : AEF Hol nt: Hol ZR/	low St Iow St	tem A tem A	-		Bor Sa DT Gro Top	ing Depth (ft): 59.5 ing Diameter (in): 8.25 mpling Method(s): SPT (2 in ID) <i>N</i> After Drilling (ft): pund Surface Elev. (ft): 586.101 o of Casing Elev. (ft): 588.991 ration (X,Y): 1,702,277.23, 720,908.19	Well [Scree Riser Scree	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Naterial(s): Pack:	58.5 2 0.010 Sch 40 PVC Sch 40 PVC Slo Grout, Bentonit #5 Sand	
DEPTH (ft)	ГІТНОГОЄУ	WATER LEVEL	WELL	Sample Type	Date & Time	Blow Counts	Recovery (ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	N	RE	MARKS	DEPTH (ft)
25				SS06		6 13 21	0.9						- 25.0
30				SS07		17 27 29	1.3						-30.0 - - - - - - - 35.0
- - - 40-				SS08		5 10 10	0.8		(37') Grading to less gravel and wet. (37.6') Thin black coal lens.				- - - 40.0
- - - 45-				SS09 SS10 SS11		3 5 7 4 4 4 6 8	1.4 1.2 1		(41.5') Loose, light brown SAND (SP); wet, noncohesive, fine-grained trace coarse sand	d.	Fully saturated table	d, below water	- - - 45.0
- - - 50				SS12 SS13 SS14		4 7 3 6 4 6	1.2 1.2 1.3		(47') Trace silt.				
Ν	NOTES:												

Geosyntec consultants	Client: Project: Address:	American Electric Power CHW8293 New Haven, WV		W Well No. Page:	/ELL LOG MW-1925 3 of 3	
Drilling Start Date: 2/13/2019 Drilling End Date: 2/15/2019 Drilling Company: AEP Drilling Method: Hollow Stem Aug Drilling Equipment: Hollow Stem Aug Driller: ZR/RB Logged By: K. Villars	BC Si er D1 er Gr To Lo	oring Depth (ft): 59.5 oring Diameter (in): 8.25 ampling Method(s): SPT (2 in ID) ITW After Drilling (ft):	Well D Screer Riser I Screer	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	58.5 2 0.010 Sch 40 PVC Sch 40 PVC Slott Grout, Bentonite #5 Sand	
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time Blow Counts	Recovery (ft) N Value ROD (%)	SOIL/ROCK VISUAL DESCRIPTIO	N	RE	MARKS	DEPTH (ft)
50 50 55 55 55 55 55 55 55 55	1.3 1.3 1.4 3 3 1.7 3 3 3 1.2 2 1 1.1	 (52') Loose, gray brown, WELL-GRADED S (SW); wet, noncohesive, fine- to medium-grained. (55') Medium dense, light brown, WELL-GRADED SAND (SW); wet, noncoh fine-grained with few medium-grained sand silt. (56') 2-inch coal seam. (56.5') Medium dense, black, WELL-GRAD SAND (SW); wet, noncohesive, few coarse sand. (57.2') Medium dense, light brown, WELL-GRADED SAND (SW); wet, noncoh medium-grained with few coarse sand and t fine gravel. (58') Loose, gray brown, WELL-GRADED S (SW); wet, noncohesive, medium-grained w some fine sand and trace fine gravel, black dark green in top half of interval. (59.5') Boring terminated. 	esive, and ED esive, trace SAND vith	56.5-57.2 colle	ected	-50.0 - - - - - - - - - - - - - - - - - -
NOTES:						

Geosyn consu	ltants		Client Projec Addre	ct:	American Electric Power CHW8293 New Haven, WV		W Well No. Page:	/ELL LOG MW-1926 1 of 3	
Drilling End Date: 2 Drilling Company: 4 Drilling Method: 4 Drilling Equipment: 4 Driller: 2	/15/2019 /18/2019 VEP Iollow Stem / Iollow Stem / CR/RB	-		Bor San DT\ Gro Top	ing Depth (ft): 65 ing Diameter (in): 8.25 npling Method(s): SPT (2 in ID) W After Drilling (ft):	Well [Scree Riser Scree	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	63.5 2 0.010 Sch 40 PVC Sch 40 PVC Slot Grout, Bentonite #5 Sand	
DEPTH (ft) LITHOLOGY WATER LEVEL WELL	COMPLETION Sample Type Date & Time O	Blow Counts	(f	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTIO	N	RE	MARKS	DEPTH (ft)
	SS02	13 18 9 2 2 5 5 2 4 6	1 1.3 1.3		 (0') Hydroexcavated on 2/15/2019. (2.8') Loose, red brown, SILTY SAND (SM moist, cohesive, trace gravel. (6.5') Loose, dark gray brown, WELL-GRA SAND with gravel (SW); moist, noncohesiv/fine-grained sand. (7.2') Medium, light yellow brown, CLAY (C dry to moist, medium plasticity, few sand at trace fine gravel. (12') Very loose to loose, light brown, WELL-GRADED SAND (SW); moist, noncohesive, some gravel. (16.5') Changes to trace gravel. 	DED /e,			- 0.0
20	SS05	3 4 4	1.3						20.0

	Ge				>		Clien Proje Addre	ct:	American Electric Power CHW8293 New Haven, WV		W Well No. Page:	VELL LOG MW-1926 2 of 3	
Drillin Drillin Drillin		Date: bany: bd:	: 2/1 AE Hol at: Hol ZR	5/2019 8/2019 P Ilow S Ilow S /RB Villars	tem A tem A	-		Bor San DT\ Gro Top	ing Diameter (in): 8.25 npling Method(s): SPT (2 in ID) N After Drilling (ft): und Surface Elev. (ft): 597.783 of Casing Elev. (ft): 600.723	Well [Scree Riser Scree	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	63.5 2 0.010 Sch 40 PVC Sch 40 PVC Slo Grout, Bentonit #5 Sand	
DEPTH (ft)	ГІТНОГОЄУ	WATER LEVEL	WELL COMPLETION	Sample Type	Date & Time	Blow Counts	t)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	N	RE	MARKS	DEPTH (ft)
25				^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^		5 8 8	1.3						25.0
30				SS07		8 9 10	1.2		(31.5') Changes to poorly graded. (32') With black material.				- 35.0
				SS08		3 7 7	1.2		(36.5') Changes to without gravel.		Resume on 2	/18/2019	- - - -40.0
- - - 45-				A SS09		11 12 14	1.5		(41.5') Changes to medium dense and well-graded. (42.5') <0.1-inch black layer.				- - - -45.0
- - - 50-				SS10		6 12 12	1.3						50.0
N	IOTES:												

Ceosyntec Consultants	Client:American Electric PowerProject:CHW8293Address:New Haven, WV	WELL LOG Well No. MW-1926 Page: 3 of 3
Drilling Start Date:2/15/2019Drilling End Date:2/18/2019Drilling Company:AEPDrilling Method:Hollow Stem AugeDrilling Equipment:Hollow Stem AugeDriller:ZR/RBLogged By:K. Villars	Boring Diameter (in):8.25VSampling Method(s):SPT (2 in ID)SprDTW After Drilling (ft):FerGround Surface Elev. (ft):597.783Top of Casing Elev. (ft):600.723S	Vell Depth (ft):63.5Vell Diameter (in):2Screen Slot (in):0.010Riser Material:Sch 40 PVCScreen Material:Sch 40 PVC SlottedSeal Material(s):Grout, BentoniteFilter Pack:#5 Sand
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time Date & Time		REMARKS (1) HI dag
50 50 55 55 55 55 55 55 55 55	1.5 (31.3) Loose, light blown SAND (SW), wet, noncohesive, fine-grained. 1.5 (52.5') Trace black layer. 1.2 (54.5') Changes to trace to little gravel. 1.2 (56') Changes to medium sand and gray brow 1.5 (56') Changes to medium sand and gray brow 1.5 (56') Black stain and wet. 1.3 (62.8') Black stain and wet.	
NOTES:		

	Address: New Haven, WV Boring Depth (ft): 71			Well No. Page:	MW-1927 1 of 3		
Drilling Start Date:2/19/2019Drilling End Date:2/20/2019Drilling Company:AEPDrilling Method:Hollow Stem ADrilling Equipment:Hollow Stem ADriller:ZR/RBLogged By:K. Villars	-	Bor Sar DT\ Gro Top		Well I Scree Riser Scree	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	50.0 2 0.010 Sch 40 PVC Sch 40 PVC Slot Grout, Bentonite #5 Sand	
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION Sample Type Date & Time	Blow Counts Recovery (ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTIO	N	RE	MARKS	DEPTH (ft)
0 5 5 10 15 20 20	7 13 17 2 2 5 1.8 2 5 1.5 3 6 1.2		 (0') No recovery. (1.5') Soft to medium dense, light brown S/ (SP); moist, noncohesive, fine-grained with medium to coarse sand and silt. (6.5') Organic staining in upper few inches. 	trace			- 0.0
25 NOTES:	8 11 13		(21.5') Loose, light brown, WELL-GRADED SAND (SW); moist, noncohesive, some gra) avel.			

			onsulta		>		Clien Proje Addr	ect:	American Electric Power CHW8293 New Haven, WV		W Well No. Page:	/ELL LOG MW-1927 2 of 3	
Drillin Drillin Drillin Drillin Driller	g Start g End I g Comp g Metho g Equip c ed By:	Date: bany: od:	2/20 AE Hol t: Hol ZR	9/2019 0/2019 P Ilow Si Ilow Si /RB Villars	tem A tem A	-		Bori Sam DTV Grou Top	ng Diameter (in): 8.25 npling Method(s): SPT (2 in ID) V After Drilling (ft): und Surface Elev. (ft): 593.737 of Casing Elev. (ft): 596.737	Well E Scree Riser Scree	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Naterial(s): Pack:	50.0 2 0.010 Sch 40 PVC Sch 40 PVC Sk Grout, Bentoni #5 Sand	
DEPTH (ft)	КОООСК	WATER LEVEL	WELL COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft) T	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	N	RE	MARKS	DEPTH (ft)
25				SS06		9 11 13	1.1						25.0
30				SS07		9 10 13	1.2		(32') Coal-like black large gravel-sized partic	de.			- 30.0 - - - - - 35.0
				SS08		5 6 6	1.2		(37') Layered coal from 37.0-37.2 feet.				- - - 40.0
45				SS09		9 12 18	1.5		(41.5') Loose to medium dense, brown, SAN (SP); dry, fine-grained.	٩D			- - - -45.0
50-				SS10		7 7 7	1.3		(46.5') Black staining from 46.5-46.6 feet. (47') Changes to well-graded and wet.		Stop advancin 2/19/2019	g at 1630 on	
	IOTES:										2/19/2019		50.0

COI engineers scient	sultants	>	Clien Proje Addr	ect:	American Electric Power CHW8293 New Haven, WV		W Well No. Page:	/ELL LOG MW-1927 3 of 3	
Drilling Start Date: Drilling End Date: Drilling Company: Drilling Method: Drilling Equipment: Driller: Logged By:	2/19/2019 2/20/2019 AEP Hollow Sto ZR/RB K. Villars	-		Bor Sar DT Gro Top	ring Depth (ft): 71 ring Diameter (in): 8.25 mpling Method(s): SPT (2 in ID) W After Drilling (ft):	Well D Screer Riser I Screer	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	50.0 2 0.010 Sch 40 PVC Sch 40 PVC Sk Grout, Bentoni #5 Sand	
DEPTH (ft) LITHOLOGY WATER LEVEL	WELL COMPLETION Sample Type	Date & Time Blow Counts		N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	N	RE	MARKS	DEPTH (ft)
	SS11 SS12 SS13 SS14 SS14 SS16 SS16 SS16 SS16 SS17 SS16 SS17 SS18 SS19 SS20 SS21 SS22 SS22	4 6 8 4 4 4 4 3 3 3 6 5 6 111 6 107 17 9 111 16 8 111 16 7 7 13 22 111 12 17 11 12 17 11 12 17 11 12 15 16 14 11 12 15 16 10 17 17 12 15 16 11 11 12 12 16 11 11 12 12 11 11 12 12 11 11 12 12 11 11	1.2 1.1 1.1 1.1 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.1 2 1.1 2 1.1 2 1.1 2 1.1 2 1.1 2 1.1 2 1.1 2 1.2 3 3 1.2		(52.3') Black staining. (52.8') Black fragments. (56') Changes to poorly graded. (63') Faint black. (63.5') Medium dense, light brown, WELL-GRADED SAND (SW); wet, noncoho fine- to medium-grained with few gravel. (71') Boring terminated.		Begin advanci 2/20/2019 Static water le 1230 on 2/20/ Introduce Quid	vel at 50.18 at 2019	50.0

engineers scientists innovators	Address: New Haven, WV Boring Depth (ft): 100.2 Well D			Well No. Page:	MW-1928 1 of 5		
Drilling Start Date:2/21/2019Drilling End Date:2/25/2019Drilling Company:AEPDrilling Method:Hollow Stem ArDrilling Equipment:Hollow Stem ArDriller:ZR/RBLogged By:K. Villars	-	Bor Sar DT\ Gro Top		Well [Scree Riser Scree	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	99.5 2 0.010 Sch 40 PVC Sch 40 PVC Slo Grout, Bentonit #5 Sand	
	Blow Counts Recovery (ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTIO	Ν	RE	MARKS	DEPTH (ft)
	5 11 1.1 12		(0') No recovery. (1.5') Medium dense, yellow, red, brown, at gray FILL (FILL); little coarse angular grave with clay shale and lean clay (MINE SPOIL	el,			0.0 - - - 5.0
	6 9 1 14						- - -
15 -	16 9 1.1 9						- - - -15.0
	6 9 1.2 9						_ _ 20.0
25 NOTES:	6 8 1.2 8		(22') Soft to medium dense, red brown CLA (CL); moist, medium plasticity, some coars sand, few fractured sandstone.	λΥ e			- 25.0

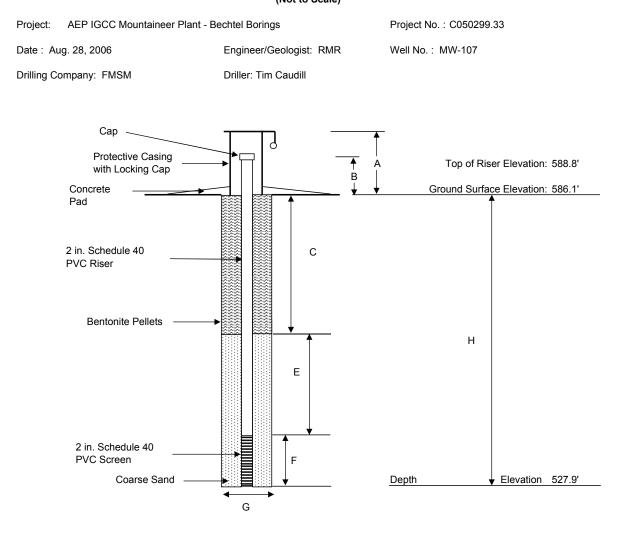
	Ge			tec tants	D		Clien Proje Addr	ect:	American Electric Power CHW8293 New Haven, WV		W Well No. Page:	/ELL LOG MW-1928 2 of 5	
Drillin Drillin Drillin Drillin Drille	g Start g End I g Comp g Metho g Equip r: ed By:	Date: bany od:	: 2/: : Al Ha it: Ha Zl	21/2019 25/2019 EP ollow S ollow S R/RB . Villars) tem A tem A	-		Bor Sar DTV Grou Top	ing Diameter (in): 8.25 npling Method(s): SPT (2 in ID) V After Drilling (ft): und Surface Elev. (ft): 646.848 of Casing Elev. (ft): 649.668	Well E Scree Riser Scree	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	99.5 2 0.010 Sch 40 PVC Sch 40 PVC Slot Grout, Bentonite #5 Sand	
DEPTH (ft)	ГІТНОГОСУ	WATER LEVEL	COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft) T	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	N	RE	MARKS	DEPTH (ft)
25				<pre>>^^</pre> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		15 3 4	0.9						
30				SS07		10 5 7	0.6				Little recovery rock in cutting	due to limestone shoe	
				SS08		17 12 18	0.5		(37') LIMESTONE and SANDSTONE; dry, noncohesive, fractured. (39') Medium dense, yellow, SILT with gray shale (ML); dry, noncohesive.		Red Clay (as i fractured rock		- - - - - -
- - - 45-				<pre>^^^ SS09 ^^^ SS09 ^^^ </pre>		7 14 16	1.7				Augers bring u	up wood fragments	- - - - -45.0
-				×××		7 9 10	1.2		(46.5') Changes to moist.				-
50 — N	IOTES:	:											<u> </u>

	consulta	nts	>		Clien Proje Addre	ct:	American Electric Power CHW8293 New Haven, WV		W Well No. Page:	/ELL LOG MW-1928 3 of 5	
Drilling Start Dar Drilling End Date Drilling Compan Drilling Method: Drilling Equipme Driller: Logged By:	e: 2/25 y: AEP Holl ent: Holl ZR/I	ow Ste ow Ste		-		Bori Sam DT\ Gro Top	ng Diameter (in): 8.25 pling Method(s): SPT (2 in ID) W After Drilling (ft): und Surface Elev. (ft): 646.848	Well E Scree Riser I Scree	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	99.5 2 0.010 Sch 40 PVC Sch 40 PVC Slo Grout, Bentonit #5 Sand	
DEPTH (ft) LITHOLOGY WATER LEVEL	WELL	Sample Type	Date & Time	Blow Counts	ery (ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	N	RE	MARKS	DEPTH (ft)
		SS11		6 7 11	1.8		(51.5') Medium dense, red, yellow, and blac SILT (ML); moist, non-plastic, cohesive, with some fine gravel and sand.				
- - - 60 -		SS12		3 6 8	2.1		(56.5') Soft, light and red brown, highly plas clay, moist.	tic	Top 0.5 feet m	ay be plug	- - - 60.0
		SS13		8 10 12	1.3		(61.5') Medium dense, light brown, POORL GRADED SAND (SP); moist, noncohesive, fine-grained with few coarse sand.	Y			- - - 65.0
- - - 70- - -		SS14		4 7 11	1.4		(66.5') Loose, gray brown, POORLY GRAD SAND (SP); moist to wet, noncohesive, med to fine-grained with trace fine gravel. (67.4') Black lenses at 67.4 and 67.6 feet.				- - 70.0
75		SS15 SS16 SS17		3 1 3 1 25 11	1.8		(71.5') Very loose, gray brown, POORLY GRADED SAND (SP); wet, noncohesive, fine-grained with few silt and layer of mediu black sand. (72.5') Layer of medium black sand.	m	Attempt static reading, not ye	water level et at water table	75.0
NOTES:											

Geosynte consulta engineers scientists inno	nts	Clier Proje Addr	ect:	American Electric Power CHW8293 New Haven, WV		Well No.	ELL LOG MW-1928 4 of 5	
Drilling End Date:2/24Drilling Company:AEIDrilling Method:HolDrilling Equipment:HolDrilling Equipment:ZR/	low Stem Ai low Stem Ai	Boring Diameter (in): 8.25 Well Diameter (in): 2 Sampling Method(s): SPT (2 in ID) Screen Slot (in): 0.010 Stem Auger DTW After Drilling (ft): Riser Material: Sch 40 PVC Stem Auger Ground Surface Elev. (ft): 646.848 Screen Material: Sch 40 PVC Slotted Top of Casing Elev. (ft): 649.668 Seal Material(s): Grout, Bentonite						
DEPTH (ft) LITHOLOGY WATER LEVEL WELL COMPLETION	Sample Type Date & Time O	Blow Counts Recovery (ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	N	REI	MARKS	DEPTH (ft)
	SS17 SS18 SS19 SS20 SS21 SS22 SS23 SS24 SS25 SS26 SS27 SS28 SS29 SS30 SS31 SS32	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		 (73.7') Black seam. (74') Medium dense, red brown, CLAYEY S with gravel (SC); wet, noncohesive. (74.5') Medium to loose, gray brown, SILTY SAND (SM); wet, noncohesive. (75.2') Medium dense, red brown, WELL-GRADED GRAVEL with clay and sai (GW-GC); wet, noncohesive. (76') Medium dense, brown to light brown, S SAND (SM); dry, well-graded, noncohesive, trace gravel. (80.2') Changes to moist. (81') Changes to wet. (83.2') Black seam. 	, nd SILTY	Transition zone Dry Dry Dry Dry Dry Thin woody de Drillers replace binding ??? SS 32 on 1	bris e mud due to sand	- 75.0

Geosy cons	sultants	Client: Projec Addre			ower		W Well No. Page:	VELL LOG MW-1928 5 of 5	
Drilling Start Date: Drilling End Date: Drilling Company: Drilling Method: Drilling Equipment: Driller: Logged By:	2/21/2019 2/25/2019 AEP Hollow Stem Auge Hollow Stem Auge ZR/RB K. Villars	ər	Top of Casing E	eter (in): 8.25 Well Diameter (in): 2 thod(s): SPT (2 in ID) Screen Slot (in): 0.010					
DEPTH (ft) LITHOLOGY WATER LEVEL WFLI	COMPLETION Sample Type Date & Time Blow Counts		SOIL/R	ROCK VIS	SUAL DESCRIPTI	ON	RE	MARKS	DEPTH (ft)
	507	2 0.2	with coarse s (99.5') Dens GRAVEL wit coarse-grain	sand. se, light br th silt (GV ned. DSTONE;	dry, micaceous,	-			
NOTES:									

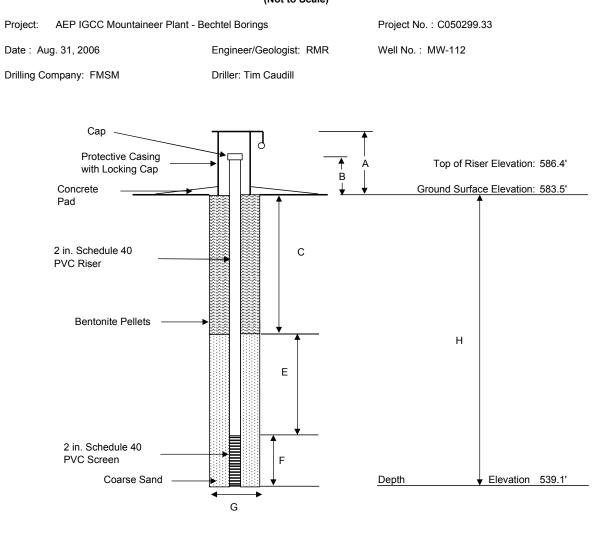
			onsulta		>		Clien Proje Addre	ct:	American Electric PowerWELL LOGCHW8293Well No.MW-1929New Haven, WVPage:1 of 4	
Drillin Drillin Drillin		Date: bany: od:	e: 3/19/2019 Boring Diameter (in): 8.25 Well Diameter (in): y: AEP Sampling Method(s): SPT (2 in ID) Screen Slot (in): Hollow Stem Auger DTW After Drilling (ft): Riser Material:							
DEPTH (ft)	КООТОНТІ	WATER LEVEL	WELL	Sample Type	Date & Time	Blow Counts	Recovery (ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION REMARKS	DEPTH (ft)
0				SS01		3 3 5	17/18		(0') Medium stiff, orange brown SILT with sand (ML); damp. Split spoon samples every 5 feet until water table	0
5				SS02		2 2 4	17/18		(6.5') Some thin sand.	- 5 - - -
10				SS03		2 2 3	17/18		(11.5') Medium-grained sand from 12.8-13.0 feet.	- 10 - - -
15				SS04		8 12 14	16/18		(16.5') Very stiff, orange brown SAND (SP); damp, medium-grained with few coarse sand and trace gravel.	- 15 - - -
20				SS05		8 12 15	16/18			- 20 - - -
25 -	IOTES:	:							· · · · · · · · · · · · · · · · · · ·	⊥ 25


		CO	onsulta	nts	>		Clien Proje Addre	ct:	American Electric Power CHW8293 New Haven, WV		WELL LOG Well No. MW-1929 Page: 2 of 4	
Drillin Drillin Drillin		Date: bany: bd:	3/19 AEF Holl t: Holl ZR	/2019 /2019 ow St ow St ow St	tem A tem A	-		Boring Depth (it):8.25Well Diameter (in):Boring Diameter (in):SPT (2 in ID)Screen Slot (in):Sampling Method(s):SPT (2 in ID)Riser Material:DTW After Drilling (ft):Riser Material:Screen Material:Ground Surface Elev. (ft):581.655Screen Material:Top of Casing Elev. (ft):584.635Seal Material(s):Location (X,Y):1,699,808.45, 725,147.52Filter Pack:			n Slot (in): Material: n Material: Material(s):	
DEPTH (ft)	ГІТНОГОСУ	WATER LEVEL	WELL	Sample Type	Date & Time	Blow Counts	ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTIO	N	REMARKS	DEPTH (ft)
25				SS06		12 17 17	15/18		(26.5') Hard, increasing gravels.			- 25
30				SS07		12 16 18	14/18		(31.5') Brown SAND (SP); medium- to coarse-grained with trace gravel, subrounde subangular.	ed to	-	- 30 - 35
				SS08 SS09		5 6 8 5 6 9 10	16/18 16/18		(36.5') Stiff, brown SAND with gravel (SP); medium- to coarse-grained, gravel is suban to angular.		SS-8 is wet; switch to continuous sampling After SS-9 mud added to borehole	
40				SS10 SS11 SS12		10 7 4 4 8 4 4 6	13/18 16/18 10/18		(39.5') Very stiff, without gravel. (41') Stiff SAND (SP); medium-grained with trace coarse sand, grades from overlying lay (42.5') Trace gravel.	ו yer.	-	- 40
45				SS13 SS14 SS15		5 5 4 5 4 5 3 5 3 5	11/18 7/18 14/18				-	- 45
50 -	OTES:			SS16		6 6 7	14/18					- 50

Geosynte consulta engineers scientists inno		Client Projec Addre	ct: C	American Electric Power CHW8293 New Haven, WV		WELL LOG Well No. MW-1929 Page: 3 of 4	
Drilling End Date:3/19Drilling Company:AEIDrilling Method:HolDrilling Equipment:HolDriller:ZR	9/2019 9/2019 Jow Stem Aug Iow Stem Aug Bannantine		Boring Depth (ft): 78.3 Well Depth (ft): Boring Diameter (in): 8.25 Well Diameter (in): Sampling Method(s): SPT (2 in ID) Screen Slot (in): DTW After Drilling (ft): Riser Material: Ground Surface Elev. (ft): 581.655 Screen Material: Top of Casing Elev. (ft): 584.635 Seal Material(s): Location (X,Y): 1,699,808.45,725,147.52 Filter Pack:			Diameter (in): n Slot (in): Material: n Material: //aterial(s):	
DEPTH (ft) LITHOLOGY WATER LEVEL WELL	Sample Type Date & Time Blow Counts TTO		N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTIO	N	REMARKS	DEPTH (ft)
	SS17 4 SS17 8 SS18 17 SS19 10 SS20 8 SS21 77 SS22 117 SS23 99 SS23 99 SS24 99 SS25 10 SS26 18 SS27 15 SS27 15 SS28 16 SS29 11 SS30 11 SS31 12 SS32 66 SS28 15 SS29 11 SS31 12 SS32 66 SS31 12 SS32 66	16/18 16/18 16/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 11/18 1 13/18 1 <td></td> <td> (50') Very stiff SAND (SP); medium-grained trace coarse sand. (56') Hard. (57.5') Very stiff. (60.5') Trace gravel. (62') SAND (SP); medium- to coarse-graine with trace gravel. (72.5') Very stiff, light brown SAND (SP); medium-grained. (74') Very stiff, brown SAND (SP); medium </td> <td>ed</td> <td></td> <td>- 50 - 55 - 55 - 55 - 60 - 60 - 65 - 65 - 70 - 70 - 70</td>		 (50') Very stiff SAND (SP); medium-grained trace coarse sand. (56') Hard. (57.5') Very stiff. (60.5') Trace gravel. (62') SAND (SP); medium- to coarse-graine with trace gravel. (72.5') Very stiff, light brown SAND (SP); medium-grained. (74') Very stiff, brown SAND (SP); medium 	ed		- 50 - 55 - 55 - 55 - 60 - 60 - 65 - 65 - 70 - 70 - 70

Consultants engineers scientists Innovators Drilling Start Date: 3/19/2019 Drilling End Date: 3/19/2019 Drilling Company: AEP Drilling Method: Hollow Stem Aug Drilling Equipment: Hollow Stem Aug	2 · · · · · · · · · · · · · · · · · · ·	WELL LOG Well No. MW-1929 Page: 4 of 4 Well Depth (ft): Well Diameter (in): Screen Slot (in): Riser Material: Screen Material:
Driller: ZR Logged By: J. Bannantine	Top of Casing Elev. (ft): 584.635 Location (X,Y): 1,699,808.45, 725,147.52	Seal Material(s): Filter Pack:
DEPTH (ft) LITHOLOGY WATER LEVEL WATER LEVEL COMPLETION Sample Type Date & Time Date & Time		N REMARKS (#) HIdag
	0 16/18 1 16/18 1 1 0 15/16	ck. Borehole abandoned with bentonite grout. MW-1929 installed. 80
NOTES:		

MONITORING WELL CONSTRUCTION DIAGRAM MW - 107 (Not to Scale)


STANDPIPE PIEZOMETER INSTALLATION SKETCH

DIMENSIONS (Feet)							
А	В	С	D	E	F		
~3.0	2.7	25.0		3.2	30.0		
G	Н		J	K	L		
0.7	58.2						

Remarks: Developed well Sept. 7, 2006

MONITORING WELL CONSTRUCTION DIAGRAM MW - 112 (Not to Scale)

STANDPIPE PIEZOMETER INSTALLATION SKETCH

DIMENSIONS (Feet)							
А	В	С	D	E	F		
~3.5	2.9	30.0		4.4	10.0		
G	Н		J	K	L		
0.7	44.4						

Remarks: Developed well Sept. 7, 2006

MONITORING WELL CONSTRUCTION DIAGRAM MW - 203 (Not to Scale)

Project: AEP IGCC Mountaineer Plant - Bechtel Borings Project No. : C050299.33 Date : Sept. 27, 2006 Engineer/Geologist: RMR Well No.: MW-203 Drilling Company: FMSM Driller: Mike Muncy Cap d **Protective Casing** Top of Riser Elevation: 589.7' with Locking Cap в Concrete Ground Surface Elevation: 587.0' Pad Bentonite/Cement Grout mix 2 in. Schedule 40 С PVC Riser D **Bentonite Pellets** Н Е 2 in. Schedule 40 F **PVC Screen** Coarse Sand Elevation 529.0' Depth G

STANDPIPE PIEZOMETER INSTALLATION SKETCH

DIMENSIONS (Feet)							
А	В	С	D	E	F		
~3.0	2.7	14.0	6.0	28.0	10.0		
G	Н	I	J	K	L		
0.8	58.0						

Remarks Developed well Sept. 28, 2006

ite Name/Physical Address: Site: AEP Mountaineer Plant ine 1: 1347 Graham Station Road ine 2: Sity: Letarl State: WV Up: 26253- Jounty: Mason	Well Registration No. WV00540-1805-18 Grid Location: a. Latitude: 38 58 29 ,0		Purpose of Monitoring Well:
CARACTER AND	b, Longitude: 81 86 18 .0 o. Method Used:Computer Mapped/Gen Company/Project Well No.: MW-1805	erated Coordinates	to monitor the hydrologic conditions of a coal seam. s
Vell Owner (Name, Firm, Address); Dener: Randall Brown line 1: American Electric Power - Mountaineer Plant line 2: 1347 Graham Station Road Ny: Letart State: WV Gr. 25253- None: 304-882-4024	Installed By (Name, Firm, Address): Installer: Kenn Fowler Line 1: Terracon Consultants, Inc. Line 2: 912 Monis Street City: Charleston State: WV Zip: 25301- Phone: 304-344-0821		Data Well Installed: 07/06/2018 Driller's WY Cert No. WW00540
Section B: (all number fields must be in decimal form	sat)		
1.Gap and Lock:		YES	
2. Protective Cover.	Protect	tive Cover Pipe	T CT Han
3.Monitoring Well Reference Point:		591 ft.	
4.Borehole Diameter:		5 inches.	
6.Ground Surface Seat. a.Materiat. concrete		"	IN THE TAY OF A DESCRIPTION
b.Installation Procedure: ASTM D5092 8.Surface Seal Bottom/Annular Space Top:		31.	8
7 Well Riser; a.OD Well Riser; 2.38 indites. b.ID W o.Material: PVC d Installation Procedure: ASTM D5002 8 Annulat Space Seal:	al Riser. 2.05 inches		0 0 0 0 0 0 0
a.Material: high solids grout - b.Installation Procedure: tramic pipe-pumped		14	
P.Well Development Procedure: overpump -	Schultzen and Bernstein Strategie		and have
10.Drilling Method Used: mud rotary -			1991 - C.
11 Annular Space Seal Bottom/Filter Seal Top:		117.5 ft	
12.Drilling Fluid Used: Yes Source: Mud 13.Fitter Pack Seat. a Material: bentonite pellet b.Installation Procedure: Gravity Fed			
o.Volume Added: 0.34 oubic feet		Heyelly	20.4
14.Bottom of Bentonite Seal/Fitter Pack Top:		120.6 ft.	10.00
15 Depth to Top of Somen:		123.5 ft.	
10.Screen: a.Materiat: PVC			
b.Installation Procedure: ASTM D5092 o.Siot Size: 0.01 Inches. d.Soreen Length: 10 ft.			
17.Filter Pack: a.Material: medium sand b.Installation Procedure: gravity fied			
18.Well Depth:		133.5 ft.	1100
19.Bottom of Filter Paolc		134 ft	
20.Bottom of Borehole:		134 R	
21.Backfil Material (below filter pack): medium sand		Salahar S	
22 Decontamination Procedures; water 23 Special Circumstances and Exceptions: No Varia			

	Ionical Froto	ction	Approved	ber: WV00528-0002-19
Site Name/Physical Address: Site: AEP/Mountaineer Plant Line 1: 1347 Graham Station Road Line 2: City: New Haven State: WV	Well Registration No Grid Location: a. Latitude: b. Longitude: c. Method Used:	. WV00528-0002- 38 58 38 .0 81 55 57 .0 GPS	NAME AND ADDRESS OF TAXABLE PARTY.	Purpose of Monitoring Well: Assessment
Zip: 25265- County: Mason Well Owner (Name, Firm, Address): Owner: AEP/Mountaineer Plant Line 1: 1347 Graham Station Road Line 2: City: New Haven State: WV Zip: 25265- Phone: 304-882-4000	Company/Project We MW-1921 Installed By (Name, F Installer: AEP/Dola Line 1: 4001 Bix Line 2: City: Grovepor State: OH Zip: 43125- Phone: 614-836-	irm, Address): an Lab by Road t		Date Well Installed: 04/01/2019 Driller's WV Cert No. WV00528
Section B: (all number fields must be in decimal fo	rmat)		VEC	
1.Cap and Lock: 2.Protective Cover:		Protect	YES ive Cover Pipe	
		110100		
3.Monitoring Well Reference Point: 4.Borehole Diameter:			0 ft. 8 inches.	
			o inches.	
5.Ground Surface Seal: a.Material: bentonite-cement grout b.Installation Procedure: tremie pipe			11	BURLED & OF HARD CONTRACTOR OF C
			3 ft.	0
 6.Surface Seal Bottom/Annular Space Top: 7.Well Riser: a.OD Well Riser: 2 inches. b.ID Well c.Material: PVC 	I Riser: 1.98 inches.		5 11.	
d.Installation Procedure: hand set				
8.Annular Space Seal: a.Material: high solids grout -				
b.Installation Procedure: tremie pipe-pumped				
9.Well Development Procedure: airlift - 10.Drilling Method Used: hollow stem auger -				
11.Annular Space Seal Bottom/Filter Seal Top:			68 ft.	
12.Drilling Fluid Used: No Source:			0011.	
13.Filter Pack Seal:				
a.Material: bentonite pellet				
b.Installation Procedure: Gravity Fed				
c.Volume Added: 150 pounds				
14.Bottom of Bentonite Seal/Filter Pack Top:			74 ft.	
15.Depth to Top of Screen:			77.4 ft.	
16.Screen:				治路 医臀
a.Material: PVC				
b.Installation Procedure: hand set				
c.Slot Size: 0.01 inches. d.Screen Length: 9.6 ft				
17.Filter Pack:				
a.Material: fine sand				
b.Installation Procedure: gravity				
18.Well Depth:			87.5 ft.	
19.Bottom of Filter Pack:			88.5 ft.	
20.Bottom of Borehole:			91.3 ft.	
21.Backfill Material (below filter pack): none				
22.Decontamination Procedures: high pressure wa	sh			Response and a set of the sector of the sect
23.Special Circumstances and Exceptions: No Va 24.WV Contractor License No.	riance Number:			

State of West Virginia		Monitoring Well Construction
-	entel Drotestien	Well Number: WV00528-0003-19
Department of Environn		Approved
Site Name/Physical Address: Site: AEP/Mountaineer Plant Line 1: 1347 Graham Station Road Line 2: City: New Haven	Well Registration No. WV00528-0003-19 Grid Location:	Purpose of Monitoring Well: Assessment
State: WV Zip: 25265- County: Mason Well Owner (Name, Firm, Address): Owner: AEP/Mountaineer Plant Line 1: 1347 Graham Station Road Line 2: City: New Haven State: WV Zip: 25265- Phone: 304-882-4000 Section B: (all number fields must be in decimal for	Company/Project Well No.: MW-1922D Installed By (Name, Firm, Address): Installer: AEP/Dolan Lab Line 1: 4001 Bixby Road Line 2: City: Groveport State: OH Zip: 43125- Phone: 614-836-4200	Date Well Installed: 04/01/2019 Driller's WV Cert No. WV00528
1.Cap and Lock:	Sinay	YES
2.Protective Cover:	Protective	e Cover Pipe
3.Monitoring Well Reference Point:		oft.
4.Borehole Diameter:		4 inches.
5.Ground Surface Seal: a.Material: bentonite-cement grout b.Installation Procedure: tremie pipe		AURITATION OF A STRUCTURE
6.Surface Seal Bottom/Annular Space Top:		3 ft.
7.Well Riser: a.OD Well Riser: 2 inches. b.ID We c.Material: PVC	II Riser: 1.98 inches.	
d.Installation Procedure: hand set		
8.Annular Space Seal: a.Material: high solids grout -		
b.Installation Procedure: tremie pipe-pumped		
9.Well Development Procedure: airlift -		
10.Drilling Method Used: hollow stem auger -		
11.Annular Space Seal Bottom/Filter Seal Top:		93.4 ft.
12.Drilling Fluid Used: No Source: 13.Filter Pack Seal: a.Material: bentonite pellet		
b.Installation Procedure: Gravity Fed		
c.Volume Added: 100 pounds		
14.Bottom of Bentonite Seal/Filter Pack Top:		101 ft.
15.Depth to Top of Screen:		103.4 ft.
16.Screen: a.Material: PVC		
b.Installation Procedure: hand set		
c.Slot Size: 0.01 inches. d.Screen Length: 9.6 f	t.	
17.Filter Pack: a.Material: fine sand		
b.Installation Procedure: gravity		
18.Well Depth:		113.5 ft.
19.Bottom of Filter Pack:		114.8 ft.
20.Bottom of Borehole:		114.8 ft.
21.Backfill Material (below filter pack): none		
22.Decontamination Procedures: high pressure wa 23.Special Circumstances and Exceptions: No Va 24.WV Contractor License No.		

State of West Virginia Department of Environn	nental	Prote	ction		g Well Construction nber: WV00528-0004-19 d
ite Name/Physical Address: Site: AEP/Mountaineer Plant .ine 1: 1347 Graham Stat .ine 2: Sity: New Haven State: WV	Well Regis Grid Loca a. Latitude b. Longitu c. Method	tion: e: ide:	WV00528-0004-1 38 58 28 .0 81 56 17 .0 GPS	state of the local data in the	Purpose of Monitoring Well: Assessment
Cite: VVV Cip: 25265- County: Mason /ell Owner (Name, Firm, Address): Dwner: AEP/Mountaineer Plant .ine 1: 1347 Graham Station Road .ine 2: City: New Haven	MW-19223		rm, Address): n Lab y Road		Date Well Installed: 04/01/2019 Driller's WV Cert No. WV00528
State: WV Lip: 25265- Phone: 304-882-4000	State: Zip: Phone:	OH 43125- 614-836-4	1200		
Section B: (all number fields must be in decimal for	ormat)				
1.Cap and Lock:				YES	
2.Protective Cover:			Protecti	ve Cover Pipe	
3.Monitoring Well Reference Point:				0 ft.	
4.Borehole Diameter:				8 inches.	
5.Ground Surface Seal: a.Material: bentonite-cement grout b.Installation Procedure: tremie pipe				,	utition is de linder a construction in a construction de la constructi
				3 ft.	
 Surface Seal Bottom/Annular Space Top: Well Riser: a.OD Well Riser: 2 inches. b.ID We c.Material: PVC 	ll Riser: 1.98	inches.		511.	
d.Installation Procedure: hand set					
8.Annular Space Seal: a.Material: high solids grout -					
b.Installation Procedure: tremie pipe-pumped					
9.Well Development Procedure: airlift -					
10.Drilling Method Used: hollow stem auger -					
11.Annular Space Seal Bottom/Filter Seal Top:				62.3 ft.	
12.Drilling Fluid Used: No Source:					
13.Filter Pack Seal: a.Material: bentonite pellet					
b.Installation Procedure: Gravity Fed					
c.Volume Added: 150 pounds					
14.Bottom of Bentonite Seal/Filter Pack Top:				70.7 ft.	
15.Depth to Top of Screen:				73.4 ft.	
16.Screen: a.Material: PVC					and the second s
a.Material: PVC b.Installation Procedure: hand set					
c.Slot Size: 0.01 inches. d.Screen Length: 9.6 f	+				
 a.Material: fine sand 					
b.Installation Procedure: gravity					
				83.5 ft.	
18.Well Depth: 19.Bottom of Filter Pack:				83.5 ft. 84.2 ft.	
20.Bottom of Borehole:				84.2 ft.	kangement
				04.∠ II.	
21.Backfill Material (below filter pack): none	ach				
22.Decontamination Procedures: high pressure wa 23.Special Circumstances and Exceptions: No Va		er:			

State of West Virginia Department of Environm	nental F	rote	ction		ng Well Construction nber: WV00528-0005-19 d
ite Name/Physical Address: Site: AEP/Mountaineer Plant Line 1: 1347 Graham Station Road Line 2: City: New Haven State: WV	Well Registra Grid Locatio a. Latitude: b. Longitud c. Method U	on: e:	WV00528-0005- ⁻ 38 58 45 .0 81 56 1 .0 GPS	Contraction of the local division of the loc	Purpose of Monitoring Well: Assessment
Zip: 25265- County: Mason Vell Owner (Name, Firm, Address): Owner: AEP/Mountaineer Plant Line 1: 1347 Graham Station Road Line 2: City: New Haven State: WV Zip: 25265- Phone: 304-882-4000	Installer: Line 1: Line 2: City: State: Zip: Phone:	-	r m, Address): n Lab y Road		Date Well Installed: 04/01/2019 Driller's WV Cert No. WV00528
Section B: (all number fields must be in decimal fo	rmat)				
1.Cap and Lock:				YES	r
2.Protective Cover:				Flush Mount	I THAN
3.Monitoring Well Reference Point:				0.6 ft.	The second
4.Borehole Diameter:				8 inches.	
5.Ground Surface Seal: a.Material: bentonite-cement grout b.Installation Procedure: tremie pipe				2	ALIBRICAL DATA OF THE O
6.Surface Seal Bottom/Annular Space Top:				3 ft.	
7.Well Riser: a.OD Well Riser: 2 inches. b.ID We c.Material: PVC d.Installation Procedure: hand set	ll Riser: 1.98 in	iches.		υn.	
8.Annular Space Seal: a.Material: high solids grout - b.Installation Procedure: tremie pipe-pumped					
9.Well Development Procedure: airlift -					
10.Drilling Method Used: hollow stem auger -					
11.Annular Space Seal Bottom/Filter Seal Top:				46 ft.	
12.Drilling Fluid Used: No Source:					
13.Filter Pack Seal:					
a.Material: bentonite pellet					
b.Installation Procedure: Gravity Fed					
c.Volume Added: 150 pounds					
14.Bottom of Bentonite Seal/Filter Pack Top:				74 ft.	
15.Depth to Top of Screen:				55.4 ft.	2.5
16.Screen:					
a.Material: PVC					
b.Installation Procedure: hand set					
c.Slot Size: 0.01 inches. d.Screen Length: 9.6 ft					
17.Filter Pack: a.Material: fine sand					
b.Installation Procedure: gravity					
18.Well Depth:				65.5 ft.	
19.Bottom of Filter Pack:				70 ft.	
20.Bottom of Borehole:				70 ft.	Construction of the second
21.Backfill Material (below filter pack): none					
22.Decontamination Procedures: high pressure wa	ish				
23.Special Circumstances and Exceptions: No Va 24.WV Contractor License No.		r:			

State of West Virginia Department of Environn	Well Num	Monitoring Well Construction Well Number: WV00528-0006-19 Approved		
Site Name/Physical Address: Site: AEP/Mountaineer Plant Line 1: 1347 Graham Station Road Line 2: City: New Haven		No. WV00528-0006-19 38 58 43 .0 81 56 5 .0	the second se	Purpose of Monitoring Well: Assessment
State: WV Zip: 25265- County: Mason Well Owner (Name, Firm, Address): Owner: AEP/Mountaineer Plant Line 1: 1347 Graham Station Road Line 2: City: New Haven State: WV Zip: 25265- Phone: 304-882-4000	Installer: AEP. Line 1: 4001 Line 2: City: City: Grow State: OH Zip: 4312 Phone: 614-	n e, Firm, Address): /Dolan Lab I Bixby Road /eport		Date Well Installed: 04/01/2019 Driller's WV Cert No. WV00528
Section B: (all number fields must be in decimal for	ormat)		VEO	
1.Cap and Lock: 2.Protective Cover:			YES Flush Mount	C
			0.6 ft.	
3.Monitoring Well Reference Point: 4.Borehole Diameter:			8 inches.	
5.Ground Surface Seal:				and los
a.Material: bentonite-cement grout b.Installation Procedure: tremie pipe			T	and the set of the set
			0.4	00
6.Surface Seal Bottom/Annular Space Top: 7.Well Riser: a.OD Well Riser: 2 inches. b.ID We	ell Riser: 1.98 inches	S.	3 ft.	
c.Material: PVC d.Installation Procedure: hand set				
8.Annular Space Seal: a.Material: high solids grout -				
b.Installation Procedure: tremie pipe-pumped				
9.Well Development Procedure: airlift -				
10.Drilling Method Used: hollow stem auger - 11.Annular Space Seal Bottom/Filter Seal Top:			51.4 ft.	
12.Drilling Fluid Used: No Source:			01.410	
13.Filter Pack Seal:				
a.Material: bentonite pellet				
b.Installation Procedure: Gravity Fed				
c.Volume Added: 150 pounds				
14.Bottom of Bentonite Seal/Filter Pack Top:			57.8 ft.	TANK REPORT
15.Depth to Top of Screen:			60.6 ft.	
16.Screen: a.Material: PVC				1985) 1989
b.Installation Procedure: hand set				
c.Slot Size: 0.01 inches. d.Screen Length: 9.6	ft.			
17.Filter Pack:				
a.Material: fine sand				
b.Installation Procedure: gravity				
18.Well Depth:			70.7 ft.	
19.Bottom of Filter Pack:			71.2 ft.	Rights, T
20.Bottom of Borehole:			71.2 ft.	The other and the second
21.Backfill Material (below filter pack): none				《公共》。 在1993年1月
22.Decontamination Procedures: high pressure w	ash			
23.Special Circumstances and Exceptions: No Va 24.WV Contractor License No.	ariance Number:			

State of West Virginia Department of Environn	nental	Prote	ection		g Well Construction ber: WV00528-0007-19
ite Name/Physical Address: ite: AEP/Mountaineer Plant ine 1: 1347 Graham Station Road ine 2: ity: New Haven itate: WV	C. TANDARD STATE OF THE OWNER OF THE OWNER	stration No ation: e: ude:	. WV00528-0007-1 38 58 33 .0 81 56 11 .0 GPS	State of the state	Purpose of Monitoring Well: Assessment
ip: 25265- county: Mason fell Owner (Name, Firm, Address): owner: AEP/Mountaineer Plant ine 1: 1347 Graham Station Road ine 2: City: New Haven itate: WV ip: 25265- thone: 304-882-4000	Installer: Line 1: Line 2: City: State: Zip: Phone:		irm, Address): an Lab by Road rt		Date Well Installed: 04/01/2019 Driller's WV Cert No. WV00528
Section B: (all number fields must be in decimal for	ormat)				
I.Cap and Lock:			Dest	YES	
2.Protective Cover:			Protecti	ve Cover Pipe	I Bas
3.Monitoring Well Reference Point:				0 ft.	
4.Borehole Diameter:				8 inches.	
5.Ground Surface Seal: a.Material: bentonite-cement grout				91	ALE ALL ALL ALL ALL ALL ALL ALL ALL ALL
b.Installation Procedure: tremie pipe					8
S.Surface Seal Bottom/Annular Space Top:				3 ft.	20 03
7.Well Riser: a.OD Well Riser: 2 inches. b.ID We	ll Riser: 1.98	inches.			0 0
c.Material: PVC					0
d.Installation Procedure: hand set					
 Annular Space Seal: a.Material: high solids grout - b.Installation Procedure: tremie pipe-pumped 					
9.Well Development Procedure: airlift -					
10.Drilling Method Used: hollow stem auger -					
11.Annular Space Seal Bottom/Filter Seal Top:				38.5 ft.	
12.Drilling Fluid Used: No Source:					
13.Filter Pack Seal:					
a.Material: bentonite pellet					
b.Installation Procedure: Gravity Fed					
c.Volume Added: 150 pounds					and a second
14.Bottom of Bentonite Seal/Filter Pack Top:				45.7 ft.	
15.Depth to Top of Screen:				48.4 ft.	
16.Screen: a.Material: PVC					
b.Installation Procedure: hand set					
c.Slot Size: 0.01 inches. d.Screen Length: 9.61	t.				
17.Filter Pack: a.Material: fine sand					
b.Installation Procedure: gravity					
18.Well Depth:				58.5 ft.	
19.Bottom of Filter Pack:				59.5 ft.	Later a
20.Bottom of Borehole:				59.5 ft.	THE REPORT
21.Backfill Material (below filter pack): none					
22.Decontamination Procedures: high pressure wa	ash				-1011-010-010-010-010-010-010-010-010-0
23.Special Circumstances and Exceptions: No Va	riance Numb	ber:			

State of West Virginia				Well Construct	
Department of Environn	Approved	ber: WV00528-0			
Site Name/Physical Address: Site: AEP/Mountaineer Plant Line 1: 1347 Graham Station Road Line 2: City: New Haven State: WV	Well Registration No. Grid Location: a. Latitude: b. Longitude: c. Method Used:	. WV00528-0008-19 38 58 8 .0 81 55 51 .0 GPS		Purpose of Monitor Assessment	ing Well:
Zip: 25265- County: Mason Well Owner (Name, Firm, Address): Owner: AEP/Mountaineer Plant Line 1: 1347 Graham Station Road Line 2: City: New Haven State: WV Zip: 25265- Phone: 304-882-4000	Company/Project We MW-1926 Installed By (Name, F Installer: AEP/Dola Line 1: 4001 Bixl Line 2: City: Grovepor State: OH Zip: 43125- Phone: 614-836-	irm, Address): an Lab by Road t		Date Well Installed: 04/01/2019 Driller's WV Cert No WV00528	
Section B: (all number fields must be in decimal for	ormat)				
1.Cap and Lock:		Droto otiva	YES	r	r and a second s
2.Protective Cover:		Protective	e Cover Pipe	Tr	
3.Monitoring Well Reference Point:			0 ft.		
4.Borehole Diameter:			8 inches.	10	
5.Ground Surface Seal: a.Material: bentonite-cement grout			पत्रा	NULLEOF OF HIGHL	a o AlWithellieunville
b.Installation Procedure: tremie pipe			0.5	a	0.0
6.Surface Seal Bottom/Annular Space Top: 7.Well Riser: a.OD Well Riser: 2 inches. b.ID We	II Riser: 1.98 inches.		3 ft.	0 0	0
c.Material: PVC				9 (1976)	
d.Installation Procedure: hand set					
8.Annular Space Seal: a.Material: high solids grout -					
b.Installation Procedure: tremie pipe-pumped					
9.Well Development Procedure: airlift -					
10.Drilling Method Used: hollow stem auger -					
11.Annular Space Seal Bottom/Filter Seal Top:			44.5 ft.		
12.Drilling Fluid Used: No Source:					
13.Filter Pack Seal: a.Material: bentonite pellet				-	
b.Installation Procedure: Gravity Fed					
c.Volume Added: 150 pounds					
14.Bottom of Bentonite Seal/Filter Pack Top:			50.7 ft.	10.04	
15.Depth to Top of Screen:			53.4 ft.		
16.Screen: a.Material: PVC					1995 1999
b.Installation Procedure: hand set	¥				
c.Slot Size: 0.01 inches. d.Screen Length: 9.6 f		*			
17.Filter Pack: a.Material: fine sand					
b.Installation Procedure: gravity					
18.Well Depth:			63.5 ft.		
19.Bottom of Filter Pack:			65 ft.		
20.Bottom of Borehole:			65 ft.	and the second se	100 - 78 GB2 - 1
21.Backfill Material (below filter pack): none					and the second
22.Decontamination Procedures: high pressure wa	ash			Lauran	Emergina descaridos
23.Special Circumstances and Exceptions: No Va 24.WV Contractor License No.	ariance Number:				

State of West Virginia Department of Environn	nental	Prote	ction		g Well Construction ber: WV00528-0009-19
ite Name/Physical Address: Site: AEP/Mountaineer Plant Line 1: 1347 Graham Station Road Line 2: City: New Haven State: WV	Well Regis Grid Loca a. Latitud b. Longit c. Method	stration No. ation: e: ude: I Used:	WV00528-0009-1 38 58 39 .0 81 56 35 .0 GPS	NAME AND ADDRESS OF TAXABLE PARTY.	Purpose of Monitoring Well: Assessment
Zip: 25265- County: Mason Vell Owner (Name, Firm, Address): Dwner: AEP/Mountaineer Plant .ine 1: 1347 Graham Station Road .ine 2:	MW-1927		i rm, Address): In Lab		Date Well Installed: 04/01/2019 Driller's WV Cert No.
City: New Haven State: WV Zip: 25265- Phone: 304-882-4000	City: State: Zip: Phone:	Grovepor OH 43125- 614-836-4			WV00528
Section B: (all number fields must be in decimal for	rmat)				
1.Cap and Lock:				YES	p
2.Protective Cover:			Protecti	ve Cover Pipe	Tron Hann
3.Monitoring Well Reference Point:				0 ft.	
4.Borehole Diameter:				8 inches.	
5.Ground Surface Seal: a.Material: bentonite-cement grout b.Installation Procedure: tremie pipe				বা	A D A D A D A D A D A D A D A D A D A D
6.Surface Seal Bottom/Annular Space Top:				3 ft.	
7.Well Riser: a.OD Well Riser: 2 inches. b.ID We c.Material: PVC d.Installation Procedure: hand set	ll Riser: 1.98	inches.			
 8.Annular Space Seal: a.Material: high solids grout - b.Installation Procedure: tremie pipe-pumped 					
9.Well Development Procedure: airlift -					
10.Drilling Method Used: hollow stem auger -					
11.Annular Space Seal Bottom/Filter Seal Top:				50 ft.	
12.Drilling Fluid Used: No Source:					
13.Filter Pack Seal: a.Material: bentonite pellet					
b.Installation Procedure: Gravity Fed c.Volume Added: 150 pounds					
14.Bottom of Bentonite Seal/Filter Pack Top:				56 ft.	
15.Depth to Top of Screen:				58.4 ft.	
16.Screen: a.Material: PVC					
b.Installation Procedure: hand set					
c.Slot Size: 0.01 inches. d.Screen Length: 9.6 f	t.				
17.Filter Pack: a.Material: fine sand					
b.Installation Procedure: gravity					
18.Well Depth:				68.5 ft.	
19.Bottom of Filter Pack:				71 ft.	
20.Bottom of Borehole:				71 ft.	
21.Backfill Material (below filter pack): none					and the second
22.Decontamination Procedures: high pressure wa	ash				Remains that of the first section with restricted to a
23.Special Circumstances and Exceptions: No Va 24.WV Contractor License No.	riance Num	ber:			

State of West Virginia Department of Environn	Monitoring Well Construction Well Number: WV00528-0010-19 Approved					
Site Name/Physical Address: Site: AEP/Mountaineer Plant Line 1: 1347 Graham Station Road Line 2: City: New Haven State: WV	Well Regist Grid Locat a. Latitude b. Longitu c. Method	ion: :: de:	WV00528-0010-19 38 58 10 .0 81 56 25 .0 GPS	<u>, , , , , , , , , , , , , , , , , , , </u>	Purpose of Monitorin Assessment	ng Well:
Zip: 25265- County: Mason Well Owner (Name, Firm, Address): Owner: AEP/Mountaineer Plant Line 1: 1347 Graham Station Road Line 2: City: New Haven State: WV Zip: 25265- Phone: 304-882-4000	Company/F MW-1928 Installed By Installer: Line 1: Line 2: City: State: Zip: Phone:		r m, Address): n Lab y Road		Date Well Installed: 04/01/2019 Driller's WV Cert No. WV00528	
Section B: (all number fields must be in decimal for	ormat)					
1.Cap and Lock: 2.Protective Cover:			Protective	YES Cover Pipe	C	
			FIOLECLIVE	\$		- Ban
3.Monitoring Well Reference Point:				0 ft. 8 inches.		
4.Borehole Diameter: 5.Ground Surface Seal:				o inches.	6D	De la
a.Material: bentonite-cement grout					minial le a le de la sera la se	a O Joiwhiddlinamallal
b.Installation Procedure: tremie pipe					0.0	2
6.Surface Seal Bottom/Annular Space Top:				3 ft.	000	0.5
7.Well Riser: a.OD Well Riser: 2 inches. b.ID We c.Material: PVC	ll Riser: 1.98	inches.			0	0
d.Installation Procedure: hand set						
8.Annular Space Seal: a.Material: high solids grout -						
b.Installation Procedure: tremie pipe-pumped						
9.Well Development Procedure: airlift -						
10.Drilling Method Used: hollow stem auger -				79.3 ft.		
11.Annular Space Seal Bottom/Filter Seal Top:				79.5 IL		
12.Drilling Fluid Used: No Source: 13.Filter Pack Seal:						
a.Material: bentonite pellet						
b.Installation Procedure: Gravity Fed						
c.Volume Added: 150 pounds						
14.Bottom of Bentonite Seal/Filter Pack Top:				86.6 ft.	338	
15.Depth to Top of Screen:				89.4 ft.	11年1日。 15月1日日	
16.Screen: a.Material: PVC						
b.Installation Procedure: hand set						
c.Slot Size: 0.01 inches. d.Screen Length: 9.6 f	t.					
17.Filter Pack: a.Material: fine sand						
b.Installation Procedure: gravity						
18.Well Depth:				99.5 ft.		
19.Bottom of Filter Pack:				100.2 ft.		
20.Bottom of Borehole:				100.2 ft.	14580483	16.000
21.Backfill Material (below filter pack): none						SARA .
22.Decontamination Procedures: high pressure wa						
23.Special Circumstances and Exceptions: No Va 24.WV Contractor License No.	iriance Numb	er:				

State of West Virginia Department of Environn		g Well Construc ber: WV00528-				
Site Name/Physical Address: Site: AEP/Mountaineer Plant Line 1: 1347 Graham Station Road Line 2: City: New Haven		ration No. ion: :: de:	WV00528-0011-19 38 59 15 .0 81 56 43 .0 GPS	Approved	Purpose of Monito Assessment	oring Well:
State: WV Zip: 25265- County: Mason Well Owner (Name, Firm, Address): Owner: AEP/Mountaineer Plant Line 1: 1347 Graham Station Road Line 2: City: New Haven State: WV Zip: 25265- Phone: 304-882-4000	Installer: Line 1: Line 2: City: State: Zip: Phone:		m, Address): n Lab y Road		Date Well Installed 04/08/2019 Driller's WV Cert N WV00528	
Section B: (all number fields must be in decimal for	ormat)			VEO		
1.Cap and Lock: 2.Protective Cover:			Protective	YES Cover Pipe	L	
				0 ft.		
3.Monitoring Well Reference Point: 4.Borehole Diameter:				8 inches.		
5.Ground Surface Seal:					60	de
a.Material: bentonite-cement grout				713	MIGHAR AND HINDING ON	a California and a second seco
b.Installation Procedure: tremie pipe					8	8
6.Surface Seal Bottom/Annular Space Top:				3 ft.	20	00
7.Well Riser: a.OD Well Riser: 2 inches. b.ID We c.Material: PVC	II Riser: 1.98	inches.			000	0
d.Installation Procedure: hand set					》 第7年 新2月	
8.Annular Space Seal: a.Material: high solids grout -						
b.Installation Procedure: tremie pipe-pumped						
9.Well Development Procedure: airlift -						
10.Drilling Method Used: hollow stem auger -						
11.Annular Space Seal Bottom/Filter Seal Top:				30.9 ft.		
12.Drilling Fluid Used: No Source:					1933	
 13.Filter Pack Seal: a.Material: bentonite pellet b.Installation Procedure: Gravity Fed c.Volume Added: 150 pounds 						
14.Bottom of Bentonite Seal/Filter Pack Top:				42.7 ft.	11/2	
15.Depth to Top of Screen:				45.4 ft.		
16.Screen: a.Material: PVC						
b.Installation Procedure: hand set c.Slot Size: 0.01 inches. d.Screen Length: 9.6 f	t.					
17.Filter Pack: a.Material: fine sand						
b.Installation Procedure: gravity					1.522	
18.Well Depth:				55.5 ft.		
19.Bottom of Filter Pack:				56.8 ft.		
20.Bottom of Borehole:				56.8 ft.	1.1	NOVE DOWN
21.Backfill Material (below filter pack): none					同時間	a mark
22.Decontamination Procedures: high pressure wa	ash				Control of the second	adam internetional field
23.Special Circumstances and Exceptions: No Va 24.WV Contractor License No.	ariance Numb	er:				