

American Electric Power 1 Riverside Plaza Columbus, OH 43215 aep.com

March 18, 2021

Submitted Electronically via Email

Ms. Kirsten Hillyer, Environmental Engineer
U.S. Environmental Protection Agency
Office of Resource Conservation & Recovery (ORCR)
Materials Recovery & Waste Management Division (MRWMD)
Cube: S-6834
Washington, DC 20460

RE: Kentucky Power Company and Wheeling Power Company Mitchell Power Plant Alternative Closure Demonstration

Dear Ms. Hillyer,

Kentucky Power Company (Kentucky Power) and Wheeling Power Company (Wheeling) Mitchell Power Plant (Mitchell Plant), hereby submits the attached information to the U.S. Environmental Protection Agency (EPA) in response to your email to me dated Friday, March 12, 2021, requesting additional information for Mitchell Plant's Site Specific Alternative Deadline to Initiate Closure under 40 CFR 257.103(f)(1) for the Bottom Ash Pond (BAP) at the Mitchell Plant near Moundsville, West Virginia. Your email requested additional information to address the following:

- The groundwater quality data summary tables do not include data collected during 2020.
- The data for several landfill groundwater monitoring wells (e.g., 1103R, 1104F, 1501R, 1501F, 1503R, 1503F) are not included.
- The data collected during 2016 only are presented for 1104R, 1101F, and 1102R.

The 2020 annual groundwater monitoring reports, which include historical data tables, including groundwater data collected in 2020, for Mitchell Plant's Landfill and BAP, are included as attachments A and B, respectively.

Laboratory data for Mitchell Plant's landfill groundwater monitoring wells MW-1103R, MW-1104F, MW-1501R, MW-1501F, MW-1503R, and MW-1503F are not included in the demonstration request because those wells produced only enough groundwater to record static water level measurements and then went dry during the purging portion of the low-flow sampling process prior to the collection of any groundwater samples. The field data sheets showing that these wells went dry during the purging process for the year 2020 are provided in attachment C. These six monitoring wells have always gone dry during purging, thus there are no historical laboratory data from the wells to show in the annual groundwater monitoring report. The first annual groundwater monitoring report, dated 1/31/2018, shows that the wells produced insufficient water for sampling through all of the background sampling events and the first detection monitoring sampling event. This report is provided in attachment D.

Groundwater samples for Mitchell Plant's landfill groundwater monitoring well MW-1104R were collected only during the first background sampling event, on 6/21/2016, because during all subsequent sampling events, the well produced only enough groundwater to record static water level measurements and then went dry during the purging portion of the low-flow sampling process prior to the collection of any groundwater samples. Thus, there are no historical laboratory data from the well to show in the annual groundwater monitoring report after 6/21/2016. Groundwater samples for Mitchell Plant's landfill groundwater monitoring wells MW-1101F and MW-1102R were collected only through the third background sampling event, on 9/28/2016 for MW-1101F and on 10/3/2016 for MW-1102R, because during all subsequent sampling events, the wells produced only enough groundwater to record static water level measurements and then went dry during the purging portion of the lowflow sampling process prior to the collection of any groundwater samples. Thus, there are no historical laboratory data from MW-1101F to show in the annual groundwater monitoring report after 9/28/2016 or from MW-1102R after 10/3/2016. The field data sheets showing that MW-1104R, MW-1101F, and MW-1102R went dry during the purging process for the year 2020 are provided in attachment C. The first annual groundwater monitoring report, dated 1/31/2018, shows that the wells produced insufficient water for sampling through subsequent background sampling events and the first detection monitoring sampling event. This report is provided in attachment D.

In lieu of hard copies of these documents, electronic files are being submitted to you and Richard Huggins via email. If you have any questions regarding this submittal, please contact me at 614-716-2281 or damiller@aep.com.

Sincerely,

avid L. Miller

David A. Miller, P.E. Director, Land Environment & Remediation Services Environmental Services Division

Attachments

cc: Richard Huggins – USEPA

EPA ADDITIONAL INFORMATION REQUEST Attachment A

2020 Annual Groundwater Report for Mitchell Plant's Landfill

Annual Groundwater Monitoring Report

Kentucky Power Company Mitchell Plant Landfill Moundsville, WV

January 2021

Prepared by: American Electric Power Service Corporation 1 Riverside Plaza Columbus, Ohio 43215

An **AEP** Company

BOUNDLESS ENERGY"

Table of Contents

I. Overview	1
II. Groundwater Monitoring Well Locations and Identification Numbers	2
III. Monitoring Wells Installed or Decommissioned	2
IV. Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and Direction and Discussion	2
V. Groundwater Quality Data Statistical Analysis	2
VI. Alternative Source Demonstrations	3
VII. Discussion About Transition Between Monitoring Requirements or Alternate Monitoring Frequency	3
VIII. Other Information Required	3
IX. Description of Any Problems Encountered in 2020 and Actions Taken	3
X. A Projection of Key Activities for the Upcoming Year	3
Appendix 1 – Groundwater Data Tables and Figures	
Appendix 2 – Statistical Analyses	

Appendix 3 – Alternative Source Demonstrations

Appendix 4 – Notices for Monitoring Program Transitions

Appendix 5 – Well Installation/Decommissioning Logs

I. <u>Overview</u>

This *Annual Groundwater Monitoring Report* (Report) has been prepared to report the status of activities for the preceding year for the landfill at Kentucky Power Company's, a wholly owned subsidiary of American Electric Power Company (AEP), Mitchell Power Plant. The USEPA's CCR rules require that the Annual Groundwater Monitoring Report be posted to the operating record for the preceding year no later than January 31st.

In general, the following activities were completed in 2020:

- Groundwater samples were collected on October 23, 2019, on May 6, 2020 and on October 21, 2020, and analyzed for Appendix III constituents, as specified in 40 CFR 257.94 and AEP's *Groundwater Sampling and Analysis Plan (2016)*;
- Groundwater monitoring data underwent various validation tests, including tests for completeness, valid values, transcription errors, and consistent units;
- Appendix III parameters were compared to prediction limits (intervals for pH) established from background data established previously;
- The statistical evaluation concluded that there were statistically significant increases (SSIs) over background of one Appendix III parameter at one well;
- Because SSIs over background of an Appendix III parameter were detected, alternative source demonstration (ASD) studies were conducted resulting in May 2020 and November 2020 ASD reports, as discussed further in Section VI of this report.
- As required by 40 CFR 257.94, groundwater samples were collected and analyzed for all Appendix III constituents during a second semiannual sampling event on October 21, 2020, but this data has not yet undergone statistical interpretation.

The major components of this annual report, to the extent applicable at this time, are presented in sections that follow:

- A map, aerial photograph or a drawing showing the CCR management unit(s), all groundwater monitoring wells and monitoring well identification numbers;
- All of the monitoring data collected, including the rate and direction of groundwater flow, plus a summary showing the number of samples collected per monitoring well, the dates the samples were collected and whether the sample was collected as part of detection monitoring or assessment monitoring programs (Attached as Appendix 1);
- Statistical comparison of monitoring data to determine if there have been one or more SSIs over background levels (Attached as Appendix 2, where applicable);
- A discussion of whether any alternate source demonstrations were performed, and the conclusions (Attached as Appendix 3, where applicable);

- A summary of any transition between monitoring programs, for example the date and circumstances for transitioning from detection monitoring to assessment monitoring (Notices attached as Appendix 4, where applicable);
- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a statement regarding the rationale for the installation/decommission (Attached as Appendix 5, where applicable); and
- Other information required to be included in the annual report such as an alternate monitoring frequency, or assessment of corrective measures, if applicable.

In addition, this report summarizes key actions completed, and where applicable, describes any problems encountered and actions taken to resolve those problems. The report includes a projection of key activities for the upcoming year.

II. Groundwater Monitoring Well Locations and Identification Numbers

A figure that depicts the PE-certified groundwater monitoring network, the monitoring well locations, and their corresponding identification is provided in Appendix 1.

III. Monitoring Wells Installed or Decommissioned

There were no monitoring wells installed or decommissioned in 2020. The network design, as summarized in the *Groundwater Monitoring Network Design Report* (2016) and as posted at the CCR web site for Mitchell Plant, did not change. That design report, viewable on the AEP CCR web site, discusses the facility location, the hydrogeological setting, the hydrostratigraphic units, the uppermost aquifer, downgradient monitoring well locations and the upgradient monitoring well locations.

IV. <u>Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and</u> <u>Direction and Discussion</u>

Appendix 1 contains tables showing the groundwater quality data collected during the establishment of background quality and detection monitoring. Static water elevation data from each monitoring event also are shown in Appendix 1, along with the groundwater velocities, groundwater flow direction, and potentiometric maps developed after each sampling event.

V. Groundwater Quality Data Statistical Analysis

Statistical analysis of the detection monitoring samples collected on October 23, 2019 was completed on February 21, 2020. The evaluation concluded that an SSI of chloride over background levels was detected in one monitoring well. Statistical analysis of the detection monitoring samples collected on May 6, 2020 was completed on September 3, 2020. The evaluation concluded that an SSI of chloride over background levels was detected in one

monitoring well. Memoranda with the results of the statistical evaluations are provided in Appendix 2.

As required by 40 CFR 257.94, groundwater samples were collected and analyzed for all Appendix III constituents during a second semiannual sampling event on October 21, 2020. A statistical evaluation of these results will be completed in 2021.

VI. <u>Alternative Source Demonstrations</u>

Because SSIs over background of an Appendix III parameter were detected at Mitchell Plant's landfill, ASD studies were conducted resulting in May 2020 and November 2020 ASD reports. The reports concluded that the SSIs are not due to a release from the Mitchell Landfill, but were instead attributed to natural variation in groundwater quality. The reports are provided in Appendix 3.

VII. <u>Discussion About Transition Between Monitoring Requirements or Alternate</u> <u>Monitoring Frequency</u>

No transition between monitoring requirements occurred in 2020; the CCR unit remained in detection monitoring over the entire year. A statement to this effect is provided in Appendix 4. The sampling frequency of twice per year will be maintained for the Appendix III parameters (boron, calcium, chloride, fluoride, pH, sulfate and total dissolved solids).

Regarding defining an alternate monitoring frequency, the groundwater velocity and monitoring well production is high enough at this facility that no modification of the semiannual detection monitoring schedule is necessary.

VIII. Other Information Required

The Mitchell landfill has remained in its current status of detection monitoring. All required information has been included in this annual groundwater monitoring report.

IX. Description of Any Problems Encountered in 2020 and Actions Taken

No significant problems were encountered. Through the use of low-flow purging and sampling methodology, samples representative of uppermost aquifer groundwater were obtained and the schedule was met to support this annual groundwater report preparation. There were, however, dry wells encountered during sampling, but this did not affect the statistical evaluation or monitoring network at the landfill. The minimum requirement of one upgradient and three downgradient wells was still met.

X. <u>A Projection of Key Activities for the Upcoming Year</u>

Key activities for 2021 include the following:

• Detection monitoring on a semiannual schedule;

- Statistical evaluation of the detection monitoring results to determine any SSIs (or decreases with respect to pH);
- Responding to any new data received in light of CCR rule requirements;
- Preparation of the next annual groundwater report.

APPENDIX 1 - Groundwater Data Tables and Figures

Tables follow showing the groundwater monitoring data collected, the rate of groundwater flow each time groundwater was sampled, the number of samples collected per monitoring well, dates that the samples were collected, and whether each sample was collected as part of a detection monitoring or an assessment monitoring program. Figures follow showing the PE-certified groundwater monitoring network with the corresponding well identifications along with static water elevation data and groundwater flow directions each time groundwater was sampled in the form of annotated satellite images.

Table 1 - Groundwater Data Summary: MW-1101F Mitchell - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
6/15/2016	Background	0.042	88.3	3.87	0.22	7.4	64.3	395
8/3/2016	Background	0.380	91.0	3.30	0.21	7.4	62.1	425
9/28/2016	Background	0.054	88.6	3.73	0.26	8.7	58.1	466

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1101F Mitchell - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/15/2016	Background	0.21	1.64	159	0.023	0.08	0.6	0.294	0.304	0.22	0.525	0.012	< 0.002 U	3.87	0.2	0.02 J
8/3/2016	Background	0.14	1.46	155	0.033	0.08	0.6	0.244	1.494	0.21	0.673	0.017	< 0.002 U	4.04	0.2	< 0.01 U
9/28/2016	Background	0.18	1.79	142	0.029	0.12	0.8	0.231	1.561	0.26	0.511	0.016	< 0.002 U	3.39	0.3	0.02 J

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Table 1 - Groundwater Data Summary: MW-1101R Mitchell - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
6/15/2016	Background	0.287	6.91	8.41	1.20	8.2	76.4	741
8/3/2016	Background	0.518	5.00	10.3	1.56	8.4	76.4	750
9/28/2016	Background	0.382	6.12	13.3	1.83	8.5	43.5	43
11/16/2016	Background	1.80	19.4	15.2	2.29	8.6	32.2	801
2/14/2017	Background	0.501	2.23	15.4	2.40	8.6	32.0	806
4/12/2017	Background	0.360	4.02	14.4	2.17	8.7	39.2	798
5/24/2017	Background	0.380	1.91	15.1	2.41	8.7	28.6	793
7/25/2017	Background	0.415	1.76	15.8	2.61	8.7	28.7	788
10/11/2017	Detection	0.394	1.87	16.9	2.59	8.7	29.1	784
1/11/2018	Detection		1.75				28.8	
4/10/2018	Detection	0.344	1.75	16.5	2.62	8.5	29.0	790
8/29/2018	Detection	0.371	2.42	16.3	2.45	9.0	29.7	783
5/1/2019	Detection	0.376	1.90	16.9	2.62	10.5	28.7	809
6/12/2019	Detection	0.371	2.03	16.2	2.38	8.8	27.4	822
10/23/2019	Detection	0.389	1.81	17.2	2.70	8.7	28.4	820
5/6/2020	Detection	0.364	2.17	15.1	2.46	8.2	23.9	828
10/21/2020	Detection	0.409	2.42	16.6	2.57	9.1	28.5	845

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1101R Mitchell - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/15/2016	Background	0.82	8.11	185	0.031	0.03	1.1	0.650	0.493	1.20	1.22	0.002	0.003 J	31.8	0.5	0.05 J
8/3/2016	Background	1.10	10.8	149	0.023	0.03	1.0	0.363	0.4776	1.56	0.674	0.012	< 0.002 U	32.9	0.5	0.02 J
9/28/2016	Background	0.92	11.1	149	0.01 J	0.02	0.7	0.301	0.565	1.83	0.550	0.009	< 0.002 U	26.2	0.5	0.01 J
11/16/2016	Background	0.67	14.2	125	0.01 J	0.02 J	0.595	0.143	1.808	2.29	0.292	0.026	< 0.002 U	20.6	0.4	< 0.01 U
2/14/2017	Background	0.69	15.3	102	0.01 J	0.02 J	0.512	0.160	1.661	2.40	0.327	0.012	< 0.002 U	34.0	0.4	0.02 J
4/12/2017	Background	0.84	12.4	117	0.02 J	0.02 J	0.824	0.333	0.19	2.17	0.634	0.010	0.002 J	16.7	0.5	< 0.01 U
5/24/2017	Background	0.66	15.7	102	0.01 J	0.01 J	0.526	0.299	0.759	2.41	0.298	< 0.0002 U	< 0.002 U	14.8	0.3	< 0.01 U
7/25/2017	Background	0.62	14.5	91.3	0.01 J	0.01 J	0.377	0.126	0.977	2.61	0.235	0.009	< 0.002 U	18.3	0.3	0.02 J

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Table 1 - Groundwater Data Summary: MW-1102F Mitchell - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
6/15/2016	Background	0.109	4.34	12.4	0.56	8.0	37.2	523
8/3/2016	Background	0.280	5.48	11.9	0.58	8.2	35.9	535
10/3/2016	Background	0.160	5.45	11.8	0.60	8.1	29.5	519
11/15/2016	Background	0.117	4.87	11.7	0.56	8.1	27.4	551
2/14/2017	Background	0.109	5.04	11.3	0.53	8.2	29.9	521
4/12/2017	Background	0.109	4.67	11.3	0.53	8.3	30.6	530
5/24/2017	Background	0.118	5.31	13.7	0.56	8.3	31.8	521
7/26/2017	Background	0.202	5.41	11.4	0.57	8.3	31.5	519
10/10/2017	Detection	0.278	4.79	12.4	0.57	8.4	32.3	526
1/11/2018	Detection		4.47				32.1	
4/10/2018	Detection	0.109	4.40	13.4	0.63	8.2	33.2	539
8/28/2018	Detection	0.247	4.48	14.1	0.64	8.6	33.8	549
5/1/2019	Detection	0.126	4.69	15.2	0.66	9.5	37.6	577
6/12/2019	Detection	0.110	4.36	14.9	0.74	8.2	38.0	574
10/23/2019	Detection	0.114	4.46	16.3	0.68	8.3	38.8	564
1/31/2020	Detection			16.3		8.3		
5/6/2020	Detection	0.129	4.33	16.0	0.69	8.8	33.8	574
7/15/2020	Detection			16.0		8.4		
10/21/2020	Detection	0.147	3.81	17.3	0.76	9.0	39.2	580

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag. J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1102F Mitchell - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/15/2016	Background	0.71	9.37	214	< 0.005 U	0.04	0.4	0.096	0.352	0.56	0.335	0.003	< 0.002 U	28.1	0.3	< 0.01 U
8/3/2016	Background	0.69	8.16	212	< 0.005 U	0.02 J	0.4	0.090	0.881	0.58	0.183	0.006	< 0.002 U	25.8	0.3	0.01 J
10/3/2016	Background	0.64	8.45	194	0.005 J	0.01 J	0.5	0.286	0.972	0.60	0.298	0.002	< 0.002 U	23.9	0.3	< 0.01 U
11/15/2016	Background	0.63	8.49	212	0.005 J	0.008 J	0.435	0.074	1.859	0.56	0.141	0.003	< 0.002 U	22.9	0.3	< 0.01 U
2/14/2017	Background	0.62	8.66	197	0.006 J	0.006 J	0.411	0.049	1.015	0.53	0.131	0.004	< 0.002 U	21.4	0.3	0.02 J
4/12/2017	Background	0.56	7.68	191	0.005 J	0.01 J	0.399	0.079	0.1825	0.53	0.135	0.005	< 0.002 U	19.3	0.3	0.01 J
5/24/2017	Background	0.60	8.76	229	0.01 J	0.02	0.807	0.203	0.3252	0.56	0.335	< 0.0002 U	< 0.002 U	20.0	0.4	0.01 J
7/26/2017	Background	0.54	7.58	205	< 0.004 U	0.01 J	0.323	0.072	0.942	0.57	0.121	0.007	< 0.002 U	34.7	0.3	0.03 J

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Table 1 - Groundwater Data Summary: MW-1102R Mitchell - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
6/15/2016	Background	0.339	3.49	219	2.97	8.2	47.8	1,470
8/3/2016	Background	0.467	4.05	217	2.98	8.3	44.9	1,450
10/3/2016	Background	0.332	5.33	213	2.96	8.3	35.1	1,530

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1102R Mitchell - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/15/2016	Background	2.01	2.64	292	0.02 J	0.35	0.5	0.799	0.71	2.97	0.558	0.015	< 0.002 U	68.7	0.9	0.01 J
8/3/2016	Background	1.71	3.57	356	0.128	0.14	3.0	1.75	1.217	2.98	2.82	0.021	0.007 J	66.0	1.2	0.03 J
10/3/2016	Background	1.73	3.37	441	0.307	0.17	3.9	3.01	2.828	2.96	7.24	0.028	0.007	51.4	1.9	0.03 J

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Table 1 - Groundwater Data Summary: MW-1103F Mitchell - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
6/15/2016	Background	0.355	3.01	243	3.11	8.3	0.5	1,390
8/2/2016	Background	0.402	2.99	247	3.20	8.3	0.3	1,420
10/3/2016	Background	0.321	3.12	242	3.34	8.4	< 0.04 U	1,380
11/16/2016	Background	0.323	2.97	240	2.96	8.4	0.2	1,370
2/15/2017	Background	0.303	2.82	240	3.07	8.5	0.2	1,400
4/11/2017	Background	0.304	2.57	234	3.05	8.6	0.4	1,400
5/23/2017	Background	0.346	2.88	237	3.23	8.5	0.4	1,370
7/26/2017	Background	0.343	2.76	240	3.24	8.5	0.3	1,370
10/11/2017	Detection	0.328	3.09	247	3.17	8.6	0.5	1,390
4/11/2018	Detection	0.286	2.58	239	3.16	8.3	0.5	1,390
8/29/2018	Detection	0.332	2.76	244	3.03	8.6	0.4	1,380
5/2/2019	Detection	0.342	2.95	245	3.13	9.1	0.8	1,360
6/12/2019	Detection	0.329	2.96	233	3.55	8.3	0.9	1,410
10/23/2019	Detection	0.336	3.44	242	3.25	8.5	0.8	1,440
5/6/2020	Detection	0.358	3.48	235	2.96	8.9	0.8	1,420
10/21/2020	Detection	0.332	3.05	237	3.07	8.8	0.8	1,440

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1103F Mitchell - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/15/2016	Background	0.16	8.03	639	0.029	0.02	1.0	0.351	1.1	3.11	0.674	0.012	< 0.002 U	10.1	0.2	0.01 J
8/2/2016	Background	0.14	7.01	704	0.026	0.01 J	0.9	0.299	0.899	3.20	0.479	0.016	< 0.002 U	2.61	0.2	< 0.01 U
10/3/2016	Background	0.04 J	5.80	558	0.01 J	0.03	0.4	0.180	1.026	3.34	0.313	0.016	< 0.004 U	2.66	0.1 J	0.01 J
11/16/2016	Background	0.10	7.71	723	0.01 J	0.009 J	0.471	0.159	1.57	2.96	0.218	0.015	< 0.002 U	2.57	0.1	< 0.01 U
2/15/2017	Background	0.03 J	7.67	631	0.009 J	0.008 J	0.336	0.147	1.416	3.07	0.213	0.016	< 0.002 U	2.81	0.09 J	0.03 J
4/11/2017	Background	0.07	8.46	618	0.006 J	0.006 J	0.262	0.102	2.183	3.05	0.088	0.015	< 0.002 U	3.19	0.1	< 0.01 U
5/23/2017	Background	0.03 J	7.85	688	0.006 J	0.007 J	0.260	0.149	1.214	3.23	0.194	0.006	< 0.002 U	2.80	0.06 J	< 0.01 U
7/26/2017	Background	0.02 J	6.81	562	< 0.004 U	0.007 J	0.112	0.136	1.798	3.24	0.103	0.015	< 0.002 U	5.46	0.07 J	0.02 J

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Table 1 - Groundwater Data Summary: MW-1104R Mitchell - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
6/21/2016	Background	0.431	39.4	485	1.18	7.87	162	2,390

Notes:

mg/L: milligrams per liter

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag. J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

SU: standard unit

Table 1 - Groundwater Data Summary: MW-1104R Mitchell - LF Appendix IV Constituents

Collection Date	Monitoring Program	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/21/2016	Background	0.66	4.35	182	0.570	0.18	3.4	4.36	0.153	1.18	9.41	0.014	< 0.09 U	42.3	2.3	0.133

Notes:

 μ g/L: micrograms per liter <: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

mg/L: milligrams per liter

Table 1 - Groundwater Data Summary: MW-1502R Mitchell - LF Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
6/20/2016	Background	0.268	71.5	33.4	0.18	7.3	155	474
8/9/2016	Background	0.160	95.4	34.0	0.17	7.3	187	547
9/27/2016	Background	0.376	103	39.7	0.1 J	7.4	183	560
11/9/2016	Background	0.214	87.3	25.4	0.1 J	7.4	186	551
2/15/2017	Background	0.069	90.0	167	0.16	7.5	90.1	564
4/12/2017	Background	0.075	72.2	79.5	0.16	7.6	102	507
5/23/2017	Background	0.100	73.9	52.4	0.17	7.6	118	466
7/25/2017	Background	0.158	61.7	18.8	0.20	7.3	88.6	358
10/11/2017	Detection	0.132	91.0	24.5	0.1 J	7.3	159	535
1/11/2018	Detection		240				149	
4/10/2018	Detection	0.051	78.3	196	0.19	7.4	87.6	616
8/29/2018	Detection	0.150	95.7	99.3	0.17	7.7	167	650
5/2/2019	Detection	0.1 J	93.6	245	0.17	8.5	105	702
6/12/2019	Detection	0.127	80.7	155	0.23	7.3	114	661
10/23/2019	Detection	0.194	104	102	0.18	7.2	252	758
1/31/2020	Detection					7.4	120	474
5/6/2020	Detection	0.081	64.8	74.6	0.18	7.8	93.0	471
9/1/2020	Detection					7.2		
10/21/2020	Detection	0.267	92.5	56.6	0.18	7.7	249	679

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag. J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1502R Mitchell - LF Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/20/2016	Background	0.22	0.28	30.6	< 0.005 U	0.005 J	0.3	0.082	0.143	0.18	0.064	0.002	< 0.09 U	3.48	8.2	0.01 J
8/9/2016	Background	0.20	0.26	34.1	< 0.005 U	0.006 J	0.3	0.068	1.029	0.17	0.089	0.010	< 0.002 U	8.71	7.4	< 0.01 U
9/27/2016	Background	0.16	0.27	38.2	< 0.005 U	0.004 J	0.4	0.076	0.429	0.1 J	0.064	0.012	< 0.002 U	8.40	8.8	< 0.01 U
11/9/2016	Background	0.20	0.84	44.2	0.062	0.009 J	1.44	0.507	2.497	0.1 J	0.764	0.006	< 0.002 U	3.19	5.3	0.03 J
2/15/2017	Background	0.13	0.24	27.7	0.006 J	< 0.004 U	1.90	0.069	2.61	0.16	0.061	0.009	< 0.002 U	1.84	4.3	0.03 J
4/12/2017	Background	0.13	0.69	29.2	0.053	0.008 J	1.20	0.426	0.613	0.16	0.630	0.015	0.002 J	1.91	4.8	0.02 J
5/23/2017	Background	0.15	0.53	32.2	0.033	< 0.005 U	0.918	0.238	0.647	0.17	0.364	0.002	< 0.002 U	2.46	4.7	0.01 J
7/25/2017	Background	0.21	0.30	19.0	0.008 J	< 0.005 U	0.196	0.082	0.6323	0.20	0.088	0.009	< 0.002 U	2.47	3.2	0.03 J

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Table 1: Residence Time Calculation Summary Mitchell Landfill

			202	0-05	202	0-07	202	0-10
CCR Management Unit	Monitoring Well Pair	Well Diameter (inches)	Vertical Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Vertical Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Vertical Groundwater Velocity (ft/year)	Groundwater Residence Time (days)
	MW1101F/R ^[1]	2.0	2.4	25	2.4	25	2.4	25
	MW1102F/R ^[1]	2.0	1.2	49	1.0	59	1.0	64
	MW1103F/R ^[2]	2.0	1.8	35	1.8	34	1.8	35
Landfill	MW1104F/R ^[2]	2.0	1.2	52	0.7	86	0.6	107
	MW1501F/R ^[3]	4.0	2.2	55	2.2	54	2.3	54
	MW1502R ^[3]	4.0	NC	NC	NC	NC	NC	NC
	MW1503F/R ^[3]	4.0	1.3	96	1.4	89	1.5	84

Notes:

[1] - Sidegradient Well

[2] - Background Well

[3] - Downgradient Well

NC - No calculation can be generated

CCR Landfill (Approximate Limits of Waste)

Monitoring well coordinates provided by AEP.
 Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP.

Mitchell Power Generation Plant Marshall County, West Virginia

Geosyntec[▷] consultants

Columbus, Ohio

2018/01/26

Figure

1a

Geosyntec[>]

Columbus, Ohio

2018/01/26

1b

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- - Groundwater Elevation Contour (Inferred)

Notes

- Monitoring well coordinates and water level data (collected on October 22, 2019) provided by AEP.

-Site features based on information available in the Groundwater Monitoring Network Evaluation (AMEC, 2016) provided by AEP. - Groundwater elevation units are feet above mean sea level (NAVD 88).

Potentiometric Surface Map - Fish Creek October 2019

Mitchell Power Generation Plant Marshall County, West Virginia

Geosyntec[▷] consultants

Columbus, Ohio

eet

2019/12/13

2

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- - Groundwater Elevation Contour (Inferred)

Notes

- Monitoring well coordinates and water level data (collected on October 22, 2019) provided by AEP.

-Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP. - Groundwater elevation units are feet above mean sea level (NAVD 88).

October 2019						
Mitchell Power Generation Plant Marshall County, West Virginia						
Geosyntec [▶]	Figure					

consultants

Clumbus, Ohio

Feet

2019/12/13

3

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- - Groundwater Elevation Contour (Inferred)

Notes

- Monitoring well coordinates and water level data (collected on May 6, 2020) provided by AEP.

-Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP. - Groundwater elevation units are feet above mean sea level (NAVD 88).

Potentiometric Surface Map - Fish Creek May 2020

Mitchell Power Generation Plant Marshall County, West Virginia

Geosyntec[▷] consultants

Figure

Columbus, Ohio

Feet

2020/06/08

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- - Groundwater Elevation Contour (Inferred)

Notes

- Monitoring well coordinates and water level data (collected on May 6, 2020) provided by AEP.

-Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP. - Groundwater elevation units are feet above mean sea level (NAVD 88).

Potentiometric Surface Map - Rush Run May 2020						
Mitchell Marsha	Mitchell Power Generation Plant Marshall County, West Virginia					
Geosy	Geosyntec⊳					
con	F					
Clumbus, Ohio	2020/06/09	5				

Feet

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- - Groundwater Elevation Contour (Inferred)

Notes

Notes
Monitoring well coordinates and water level data (collected on July 15, 2020) provided by AEP.
Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP.
Groundwater elevation units are feet above mean sea level (NAVD 88).

250 500 500 0 Feet

Potentiometric Surface Map - Fish Creek July 2020					
Mitchell Power Generation Plant Marshall County, West Virginia					
Geosy	Figure				
con	6				
Columbus, Ohio	2020/09/11	0			

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- - Groundwater Elevation Contour (Inferred)

Notes
Monitoring well coordinates and water level data (collected on July 15, 2020) provided by AEP.
-Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP.
Groundwater elevation units are feet above mean sea level (NAVD 88).
No free water measured at MW-1502R in July 2020.

Feet

Potentiometric Surface Map - Rush Run July 2020						
Mitchell Power Generation Plant Marshall County, West Virginia						
Geosy	Figure					
con	7					
Clumbus, Ohio	2020/10/26					

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- - Groundwater Elevation Contour (Inferred)

Notes

- Monitoring well coordinates and water level data (collected on October 20, 2020) provided by AEP.

-Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP. - Groundwater elevation units are feet above mean sea level (NAVD 88).

Potentiometric Surface Map - Fish Creek October 2020

Mitchell Power Generation Plant Marshall County, West Virginia

Geosyntec[▷] consultants

Columbus, Ohio

2020/12/29

8

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- - Groundwater Elevation Contour (Inferred)

Monitoring well coordinates and water level data (collected on October 20, 2020) provided by AEP.
-Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP.
- Groundwater elevation units are feet above mean sea level (NAVD 88).

Potentiometric Surface Map - Rush Run October 2020							
Mitchell Marsha	Mitchell Power Generation Plant Marshall County, West Virginia						
Geosy	Figure						
con	0						
Clumbus, Ohio	2021/01/05	9					

APPENDIX 2 - Statistical Analyses

The memoranda summarizing the February and September 2020 statistical evaluations follow.
STATISTICAL ANALYSIS SUMMARY-Background Update Calculations Landfill – Mitchell Plant Moundsville, West Virginia

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

Geosyntec Consultants

engineers | scientists | innovators

941 Chatham Lane Suite 103 Columbus, Ohio 43221

February 21, 2020

CHA8473

TABLE OF CONTENTS

SECTION 1	Execut	tive Summary	1							
SECTION 2	2 Landfi	ll Evaluation	2-1							
2.1	Previo	Previous Background Calculations2-								
2.2	Data V	/alidation & QA/QC	2-1							
2.3	Statist	ical Analysis	2-2							
	2.3.1	Outlier Evaluation	2-2							
	2.3.2	Establishment of Updated Background Dataset	2-2							
	2.3.3	Updated Prediction Limits	2-3							
2.4	Conclu	usions	2-4							
SECTION 3	Refere	nces								

LIST OF TABLES

Table 1	Detection Monitoring Groundwater Data Summary
Table 2	Background Level Summary

LIST OF ATTACHMENTS

Attachment ACertification by a Qualified Professional EngineerAttachment BStatistical Analysis Output

LIST OF ACRONYMS AND ABBREVIATIONS

ANOVA	Analysis of Variance
CCR	Coal Combustion Residuals
CCV	Continuing Calibration Value
CFR	Code of Federal Regulations
EPA	Environmental Protection Agency
LF	Landfill
LFB	Laboratory Fortified Blanks
LPL	Lower Prediction Limit
LRB	Laboratory Reagent Blanks
NELAP	National Environmental Laboratory Accreditation Program
PQL	Practical Quantitation Limit
QA	Quality Assurance
QC	Quality Control
SSI	Statistically Significant Increase
TDS	Total Dissolved Solids
UPL	Upper Prediction Limit
USEPA	United States Environmental Protection Agency

SECTION 1

EXECUTIVE SUMMARY

In accordance with the United States Environmental Protection Agency's (USEPA's) regulations regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (40 CFR 257.90-257.98, "CCR rule"), groundwater monitoring has been conducted at the lined landfill (LF), an existing CCR unit at the Mitchell Power Plant located in Moundsville, West Virginia.

Eight monitoring events were completed prior to June 2017 to establish background concentrations for Appendix III and Appendix IV parameters under the CCR rule. Four semiannual detection monitoring events were conducted between October 2017 and June 2019. Data from these four events, including both initial and verification results, and an additional event completed in January 2018 were evaluated for inclusion in the background dataset. Groundwater data underwent several validation tests, including those for completeness, sample tracking accuracy, transcription errors, and consistent use of measurement units. No data quality issues were identified which would impact the usability of the data.

The detection monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. The compliance data were reviewed for outliers, which were removed (when appropriate) prior to updating upper prediction limits (UPLs) for each Appendix III parameter to represent background values. Oversight on the use of statistical calculations was provided by Dr. Kirk Cameron of MacStat Consulting, Ltd. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A.

SECTION 2

LANDFILL EVALUATION

2.1 <u>Previous Background Calculations</u>

Eight background monitoring events were completed from September 2016 through June 2017 to establish background concentrations for Appendix III and Appendix IV parameters under the CCR rule. Additional data were collected prior to background monitoring for the CCR Rule at the Mitchell LF, including data collected prior to placement of CCR at the LF. The historical data collected for chloride, fluoride, pH, sulfate, and total dissolved solids (TDS) were also included in the previous background calculation. The data were reviewed for outliers and trends prior to calculating upper prediction limits (UPLs) for each Appendix III parameter. Lower prediction limits (LPLs) were also established for pH. Intrawell prediction limits were selected for all parameters with a one-of-two resampling plan. The statistical analyses to establish background levels were previously documented in the January 2018 *Statistical Analysis Summary* report (Geosyntec, 2018).

2.2 Data Validation & QA/QC

Since October 2017, four semiannual detection monitoring events have been conducted at the LF. If the initial results for each detection monitoring event identified possible exceedances, verification sampling was completed on an individual well/parameter basis. Thus, a minimum of four samples were collected from each compliance well. A summary of data collected during these detection monitoring events may be found in Table 1. Results for chloride and sulfate samples collected at select wells for an additional event in January 2018, which was also included in the update to background levels, are also provided in Table 1.

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program (NELAP). Quality assurance and quality control (QA/QC) samples completed by the analytical laboratory included the use of laboratory reagent blanks (LRBs), continuing calibration verification (CCV) samples, and laboratory fortified blanks (LFBs).

The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.6.23 statistics software. The export was checked against the analytical data for transcription errors and completeness. No QA/QC issues were noted which would impact data usability.

2.3 <u>Statistical Analysis</u>

The data used to conduct the statistical analyses described below are summarized in Table 1. Statistical analyses for the LF were conducted in accordance with the January 2017 *Statistical Analysis Plan* (AEP, 2017), except where noted below. The complete statistical analysis results are included in Attachment B.

Time series plots of Appendix III parameters are included in Attachment B and were used to evaluate concentrations over time and to provide an initial screening of suspected outliers and trends. Box plots were also compiled to provide visual representation of variations between wells and within individual wells (Attachment B).

2.3.1 Outlier Evaluation

Potential outliers were evaluated using Tukey's outlier test; i.e., data points were considered potential outliers if they met one of the following criteria:

$$x_i < \tilde{x}_{0.25} - 3 \times IQR \quad (1)$$

or
$$x_i > \tilde{x}_{0.75} + 3 \times IQR \quad (2)$$

where:

 $\begin{array}{ll} x_i = & \text{individual data point} \\ \tilde{x}_{0.25} = & \text{first quartile} \\ \tilde{x}_{0.75} = & \text{third quartile} \\ IQR = & \text{the interquartile range} = \tilde{x}_{0.75} - \tilde{x}_{0.25} \end{array}$

Tukey's outlier test and visual inspection indicated three potential outliers, which were removed from the dataset (Attachment B). These outliers include:

- The calcium concentration of 240 mg/L at MW-1502R from January 11, 2018;
- The pH of 10.5 at MW-1101R from May 1, 2019; and
- The pH of 8.5 from MW-1502R from May 2, 2019.

2.3.2 Establishment of Updated Background Dataset

Analysis of variance (ANOVA) was conducted during the initial background screening to assist in identifying if intrawell tests are the most appropriate statistical approach for assessing Appendix III parameters. Intrawell tests compare compliance data from a single well to background data within the same well and are most appropriate when 1) upgradient wells exhibit spatial variation;

2) when statistical limits constructed from upgradient wells would not be conservative from a regulatory perspective; or 3) when downgradient water quality is not impacted compared to upgradient water quality for the same parameter. Evidence at the LF shows that a minimum of 14 years would be required for water at downgradient monitoring wells to exhibit changes as a result of practices at the site. Since the lined LF has only accepted waste since 2014, the downgradient monitoring wells are representative of background conditions. Periodic updating of background statistical limits is necessary as natural systems continuously change due to physical changes to the environment. For intrawell analyses, data for all wells and constituents are re-evaluated when a minimum of four new data points are available. These four (or more) new data points are used to determine if earlier concentrations are representative of present-day groundwater quality.

Mann-Whitney (Wilcoxon rank-sum) tests were used to compare the medians of historical data (September 2016 - June 2017) to the new compliance samples (October 2017 – June 2019). Results were evaluated to determine if the medians of the two groups were similar at the 99% confidence level. Where no significant difference was found, the new compliance data were added to the background dataset. Where a statistically significant difference was found between the medians of the two groups, the data were reviewed to evaluate the cause of the difference and to determine if adding newer data to the background dataset, replacing the background dataset with the newer data, or continuing to use the existing background dataset was most appropriate. If the differences appeared to have been caused by a release, then the previous background dataset would have continued to be used.

The complete Mann-Whitney test results and a summary of the significant findings can be found in Attachment B. Statistically significant differences were found for chloride, fluoride, and TDS at MW-1102F. However, the reported concentrations were lower than the upgradient well, thus the records were updated to use the most recent portion of the record for construction of updated prediction limits, as it is assumed the changes in groundwater quality is unrelated to the unit. While the Mann-Whitney test did not note a significant difference between the two medians for chloride at MW-1502R, more recent concentrations are highly variable and appear to be increasing over time. Therefore, the previously calculated upper prediction limit will be used until additional samples are collected to better evaluate influences on the chloride concentration.

2.3.3 Updated Prediction Limits

After the revised background set was established, a parametric or non-parametric analysis was selected based on the distribution of the data and the frequency of non-detect data. Estimated results less than the practical quantitation limit (PQL) – i.e., "J-flagged" data – were considered detections and the estimated results were used in the statistical analyses. Non-parametric analyses were selected for datasets with at least 50% non-detect data or datasets that could not be normalized. Parametric analyses were selected for datasets (either transformed or untransformed) that passed the Shapiro-Wilk / Shapiro-Francía test for normality. The Kaplan-Meier non-detect adjustment was applied to datasets with between 15% and 50% non-detect data. For datasets with fewer than 15% non-detect data, non-detect data were replaced with one half of the PQL. The

selected analysis (i.e., parametric or non-parametric) and transformation (where applicable) for each background dataset are shown in Attachment B.

Intrawell UPLs were updated using all the historical data through June 2019 to represent background values. Intrawell LPLs were also generated for pH. As described in Section 2.3.2, the only exceptions were for chloride, fluoride, and TDS at MW-1102F which deselected historic higher measurements in favor of more conservative limits that better represent present-day groundwater quality conditions, and for chloride at MW-1502R where the original background dataset was used. The updated prediction limits are summarized in Table 3.

The intrawell UPLs were calculated for a one-of-two retesting procedure; i.e., if at least one sample in a series of two does not exceed the UPL, then it can be concluded that an SSI has not occurred. In practice, where the initial result does not exceed the UPL, a second sample will not be collected. The retesting procedures allowed achieving an acceptably high statistical power to detect changes at downgradient wells for constituents evaluated using intrawell prediction limits.

2.4 <u>Conclusions</u>

Four detection monitoring events were completed in accordance with the CCR Rule. An additional event completed in January 2018 was also included in the new dataset. The laboratory and field data from these events were reviewed prior to statistical analysis, with no QA/QC issues identified that impacted data usability. Mann-Whitney tests were completed to evaluate whether data from the detection monitoring events could be added to the existing background dataset. Where appropriate, the background datasets were updated, and UPLs and LPLs were recalculated using intrawell prediction limits with a one-of-two retesting procedure for all Appendix III parameters.

SECTION 3

REFERENCES

American Electric Power (AEP). 2017. Statistical Analysis Plan – Mitchell Plant. January 2017.

Geosyntec Consultants, 2018. Statistical Analysis Summary. Landfill – Mitchell Plant. January 2018.

United States Environmental Protection Agency (USEPA). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance. EPA 530/R-09-007. March 2009.

TABLES

Table 1: Groundwater Data SummaryMitchell - Landfill

				MW- 1	1101R		MW-1102F						
Parameter	Unit	10/11/2017	1/11/2018	4/10/2018	8/29/2018	5/1/2019	6/12/2019	10/10/2017	1/11/2018	4/10/2018	8/28/2018	5/1/2019	6/12/2019
		2017-D1	*	2018-D1	2018-D2	2019-D1	2019-D1-R1	2017-D1	*	2018-D1	2018-D2	2019-D1	2019-D1-R1
Boron	mg/L	0.394	-	0.344	0.371	0.376	0.371	0.278	-	0.109	0.247	0.126	0.110
Calcium	mg/L	1.87	1.75	1.75	2.42	1.90	2.03	4.79	4.47	4.40	4.48	4.69	4.36
Chloride	mg/L	16.9	-	16.5	16.3	16.9	16.2	12.4	-	13.4	14.1	15.2	14.9
Fluoride	mg/L	2.59	-	2.62	2.45	2.62	2.38	0.570	-	0.630	0.640	0.660	0.740
Total Dissolved Solids	mg/L	784	-	790	783	809	822	526	-	539	549	577	574
Sulfate	mg/L	29.1	28.8	29.0	29.7	28.7	27.4	32.3	32.1	33.2	33.8	37.6	38.0
pH	SU	8.7	-	8.5	9.0	10.5	8.8	8.4	-	8.2	8.6	9.5	8.2

				MW-1103F			MW-1502R						
Parameter	Unit	10/11/2017	4/10/2018	8/29/2018	5/2/2019	6/12/2019	10/11/2017	1/11/2018	4/10/2018	8/29/2018	5/2/2019	6/12/2019	
		2017-D1	2018-D1	2018-D2	2019-D1	2019-D1-R1	2017-D1	*	2018-D1	2018-D2	2019-D1	2019-D1-R1	
Boron	mg/L	0.328	0.286	0.332	0.342	0.329	0.132	-	0.051	0.150	0.100 J	0.127	
Calcium	mg/L	3.09	2.58	2.76	2.95	2.96	91.0	240	78.3	95.7	93.6	80.7	
Chloride	mg/L	247	239	244	245	233	24.5	-	196	99.3	245	155	
Fluoride	mg/L	3.17	3.16	3.03	3.13	3.55	0.100 J	-	0.190	0.170	0.170	0.230	
Total Dissolved Solids	mg/L	1390	1390	1380	1360	1410	535	-	616	650	702	661	
Sulfate	mg/L	0.500	0.500	0.400	0.800	0.900	159	149	87.6	167	105	114	
pH	SU	8.6	8.3	8.6	9.1	8.3	7.3	_	7.4	7.7	8.5	7.3	

Notes:

mg/L: milligrams per liter

SU: standard unit

J: Estimated value. Parameter was detected in concentrations below the reporting limit

--: Not Measured

D1: First semi-annual detection monitoring event of the year

D2: Second semi-annual detection monitoring event of the year

R1: First verification event associated with detection monitoring round

*January 2018 data are not associated with any semiannual detection monitoring events but were included in the background update.

Table 2: Background Level SummaryMitchell Plant - Landfill

Parameter	Unit	Description	MW-1101R	MW-1102F	MW-1502R
Boron	mg/L	Intrawell Background Value (UPL)	0.525	0.280	0.265
Calcium	mg/L	Intrawell Background Value (UPL)	6.91	5.71	109
Chloride	mg/L	Intrawell Background Value (UPL)	18.1	15.4	191
Fluoride	mg/L	Intrawell Background Value (UPL)	3.14	0.781	0.244
лЦ	SIT	Intrawell Background Value (UPL)	9.1	9.5	7.7
pm	30	Intrawell Background Value (LPL)	7.9	7.6	7.1
Sulfate	mg/L	Intrawell Background Value (UPL)	38.4	45.0	213
Total Dissolved Solids	mg/L	Intrawell Background Value (UPL)	1600	577	744

Notes:

UPL: Upper prediction limit LPL: Lower prediction limit

ATTACHMENT A Certification by a Qualified Professional Engineer

Certification by a Qualified Professional Engineer

I certify that the selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Mitchell Landfill CCR management area and that the requirements of 40 CFR 257.93(f) have been met.

DAVID ANTHONY MILLER

Printed Name of Licensed Professional Engineer

David Anthony Miller Signature

22663 DR STATE OF THUM

22663

WEST VIRGINIA

License Number

Licensing State

02.27.2020

Date

ATTACHMENT B Statistical Analysis Output

GROUNDWATER STATS CONSULTING

December 11, 2019

Geosyntec Consultants Attn: Ms. Allison Kreinberg 940 Chatham Lane, #103 Columbus, OH 43221

RE: Background Update - Mitchell Landfill

Dear Ms. Kreinberg,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the background update of groundwater data for American Electric Power's Mitchell Landfill. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the USEPA Unified Guidance (2009).

The Mitchell Landfill is a lined landfill regulated under the CCR program. Sampling for background under the CCR program at all wells began in 2016. The existing data collected prior to 2016 for chloride, fluoride, pH, sulfate and TDS is included in the screened background. Waste placement began in 2014, and based on reported groundwater flow and transport times, as well as downgradient well placement relative to the landfill, a minimum of 14 years would be required for water at downgradient wells to reflect changes should they occur as a result of practices of the site. Therefore, the statistical method is selected during the background screening was based on this information as well as the behavior of groundwater upgradient of the facility.

The monitoring well network, as provided by Geosyntec Consultants, consists of the following: upgradient wells MW_1103F, and MW_1104R; and downgradient wells MW_1101F, MW_1101R, MW_1102F, MW_1102R, MW_1502R and MW_1503F. Note that due to wells being dry at the time of sampling, only upgradient wells MW_1103F and

downgradient wells MW_1101R, MW_1102F, and MW_1502R are included in this analysis and background update.

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was reviewed by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to Groundwater Stats Consulting.

The following Appendix III detection monitoring constituents were evaluated: boron, calcium, chloride, fluoride, pH, sulfate, and TDS.

Time series plots for these parameters at all wells are provided for the purpose of evaluating data at these wells (Figure A). Additionally, box plots are included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to identify suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells.

Proposed background data at all wells were evaluated during the background screening conducted in January 2018 for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves were provided to demonstrate that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance recommendations as discussed below.

Summary of Statistical Method:

1) Intrawell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, fluoride, pH, sulfate and TDS.

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are nondetects, a nonparametric test is utilized. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits.

• No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).

- When data contain <15% nondetects in background, simple substitution of onehalf the reporting limit may be utilized in the statistical analysis. The reporting limit utilized for nondetects is the practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% nondetects, the Kaplan-Meier nondetect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% nondetects.

Summary of Background Screening – Conducted in January 2018

Outlier Evaluation

Time series plots are used to identify suspected outliers, or extreme values that would result in limits that are not conservative from a regulatory perspective, in proposed background data. Suspected outliers at all wells for Appendix III parameters were formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits. A summary of those values was submitted with the screening.

Tukey's outlier test noted a few outliers. Any values identified as outliers are plotted in a lighter font on the time series graph. Note that while the test did not identify an outlier for TDS at well MW-1101R for the reported measurement of 43 mg/L, this value was flagged as an outlier in the database as it does not appear to represent the population based on all other reported measurements at this well. A substitution of the most recent reporting limit was applied when varying detection limits existed in data.

No true seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release.

While trends may be visual, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test was used to evaluate all data at each well to identify statistically significant increasing or decreasing trends. In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, earlier data are evaluated to determine whether earlier concentration levels are significantly different than current reported concentrations and will be deselected as necessary. When the historical records of data are truncated for the reasons above, a summary report will be provided to show the date ranges used in construction of the statistical limits.

The results of the trend analyses showed several statistically significant decreasing trends as may be seen on the Trend Test Summary Table that accompanies the trend tests. A statistically significant increasing trend was noted for fluoride in well MW-1101R; however, the concentrations at this well are lower than those observed in the upgradient well and follow a similar pattern. Additionally, statistically significant increasing trends were noted for pH in upgradient well MW_1103F and downgradient well MW_1101R. Generally, when similar patterns in concentrations are observed upgradient of the facility, it is an indication that groundwater is naturally changing over time. All of the observed trends are relatively low in magnitude when compared to average concentrations; therefore, no adjustments were made to the data sets. The trend test results were submitted with the screening.

<u>Appendix III – Determination of Spatial Variation</u>

The Analysis of Variance (ANOVA) is typically used to statistically evaluate differences in average concentrations among multiple upgradient wells, which assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells would not be conservative from a regulatory perspective; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

However, the ANOVA could not be performed for the Mitchell Landfill because there is only one upgradient well with greater than 4 reported values. Therefore, all data were further evaluated as described below for the appropriateness of intrawell testing for Appendix III parameters to accommodate the groundwater quality.

Appendix III - Statistical Limits

Intrawell limits constructed from carefully screened background data from within each well serve to provide statistical limits that are conservative (i.e. lower) from a regulatory perspective, and that will rapidly identify a change in more recent compliance data from within a given well. This statistical method removes the element of variation from across wells and eliminates the chance of mistaking natural spatial variation for a release from the facility. Prior to performing intrawell prediction limits, several steps are required to reasonably demonstrate downgradient water quality does not have existing impacts from the practices of the facility.

Exploratory data analysis was used as a general comparison of concentrations in downgradient wells for all Appendix III parameters recommended for intrawell analyses to concentrations reported in the upgradient well. Upper tolerance limits are used in conjunction with confidence intervals to determine whether the estimated averages in downgradient wells are higher than observed levels upgradient of the facility. The upper tolerance limits were constructed to represent the extreme upper range of possible background levels at the site.

In cases where downgradient average concentrations are higher than observed concentrations upgradient for a given constituent, an independent study and hydrogeological investigation would be required to identify local geochemical conditions and expected groundwater quality for the region to justify an intrawell approach. Such an assessment is beyond the scope of services provided by Groundwater Stats Consulting. When there is not an obvious explanation for observed concentration differences in downgradient wells relative to reported concentrations in upgradient wells, interwell prediction limits will initially be selected for the statistical method until further evidence shows that concentrations are due to natural variation rather than a result of the facility.

Parametric tolerance limits were constructed with a target of 99% confidence and 95% coverage using pooled upgradient well data for each of the Appendix III parameters recommended for intrawell analyses. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. As more data are collected, the background population is better represented and the confidence and coverage levels increase.

Confidence intervals were constructed on downgradient wells having at least 4 samples for each of the Appendix III parameters, using the tolerance limits discussed above, to determine intrawell eligibility. When the entire confidence interval is above a background standard for a given parameter, interwell methods are initially recommended as the statistical method. Therefore, only the parameters with confidence intervals which did not exceed background standards are typically eligible for intrawell prediction limits.

Confidence intervals for the above parameters were found to be within their respective background limit for all Appendix III parameters except calcium and sulfate. However, as discussed previously, the landfill is lined with waste placement beginning in 2014. Evidence shows that a minimum of 14 years would be required for water at downgradient wells to exhibit any changes if they should occur as a result of practices at the site. Because of the limited upgradient well data, implementing an interwell statistical methodology for would likely result in statistical exceedances at downgradient wells due to spatial variation, rather than from practices at the facility. Therefore, intrawell methods are recommended for all Appendix III parameters.

All available data through July 2017 at each well were used to establish intrawell background limits, based on a 1-of-2 resample plan that will be used for future comparisons.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits will be necessary to accommodate these types of changes In the interwell case, newer data will be included in background when a minimum of 2 new samples are available. In the intrawell case, data for all wells and constituents are re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. In some cases, the earlier portion of data are deselected prior to construction of limits in order to provide sensitive limits that will rapidly detect changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of an additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified and further research would be required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered to be a false positive result and, therefore, no further action is necessary.

Background Update Summary – November 2019

Prior to updating background data sets, all Appendix III data through June 2019 were reevaluated using Tukey's outlier test and visual screening (Figure C). Several outliers were noted and flagged. As mentioned above, flagged data are displayed in a lighter font and as a disconnected symbol on the time series reports, as well as in a lighter font on the accompanying data pages. An updated summary of Tukey's test results and flagged outliers follows this letter.

The Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through July 2017 to the new compliance samples at each well through June 2019 to evaluate whether the groups are significantly different at the 99% confidence level, in which case background data may be updated with compliance data (Figure D). Typically, when the test concludes that the medians of the two groups are significantly different, particularly in the downgradient wells, the background are not updated to include the newer data but will be reconsidered in the future.

Statistically significant differences were found for chloride, fluoride and TDS for well MW_1102F. However, because these reported concentrations are considerably less than those reported in the upgradient well, these records were updated to use the most recent portion of the record with more stable concentrations for construction of updated prediction limits, with the assumption that the groundwater quality is changing unrelated to the facility. While no difference was noted with the Mann Whitney test at 99% confidence for chloride in downgradient well MW_1502R, more recent concentrations are highly variable and appear to be increasing over time. Therefore, this record was not updated at this time and will be re-evaluated during the next background update. A summary of these results follows this letter and the test results are included with the Mann Whitney test section at the end of this report. Additionally, a summary of well/constituent pairs using a truncated portion of their records follows this letter.

Intrawell prediction limits using all historical data through June 2019 (except for special cases discussed above), combined with a 1-of-2 resample plan, were constructed and a summary of the updated limits follows this letter (Figure E). Future compliance observations at each well will be compared to these background limits during each subsequent semi-annual sampling event.

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Mitchell Landfill. If you have any questions or comments, please feel free to contact me.

For Groundwater Stats Consulting,

Kristina Rayner

Kristina L. Rayner Groundwater Statistician

Date Ranges

Chloride, total (mg/L)

MW_1102F background:5/25/2016-6/12/2019 MW_1502R background:6/20/2016-7/25/2017 Fluoride, total (mg/L)

MW_1102F background:4/12/2017-6/12/2019 Sulfate, total (mg/L)

MW_1103F background:8/2/2016-6/12/2019 Total Dissolved Solids [TDS] (mg/L)

MW_1102F background:6/17/2015-6/12/2019

Time Series

Constituent: Calcium, total Analysis Run 10/29/2019 12:55 PM View: Time Series Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Time Series

Sanitas[™] v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Chloride, total Analysis Run 10/29/2019 12:55 PM View: Time Series Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Fluoride, total Analysis Run 10/29/2019 12:55 PM View: Time Series Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas[™] v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: pH, field Analysis Run 10/29/2019 12:55 PM View: Time Series Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas[™] v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

Constituent: Sulfate, total Analysis Run 10/29/2019 12:55 PM View: Time Series Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Total Dissolved Solids [TDS] Analysis Run 10/29/2019 12:55 PM View: Time Series Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas[™] v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Antimony, total Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Constituent: Arsenic, Total Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Barium, Total Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Beryllium, total Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Box & Whiskers Plot

Constituent: Boron, total Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Constituent: Cadmium, total Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Calcium, total Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Chloride, total Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Box & Whiskers Plot

Constituent: Chromium, total Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Constituent: Cobalt, total Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas[™] v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Combined Radium Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Fluoride, total Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas[™] v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Box & Whiskers Plot

Constituent: Lead, total Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Constituent: Lithium, total Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Mercury, total Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Molybdenum, total Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas[™] v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: pH, field Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Constituent: Selenium, Total Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Sulfate, total Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas[™] v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Thallium, Total Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Total Dissolved Solids [TDS] Analysis Run 10/28/2019 5:28 PM View: Time Series - All Wells Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Outlier Summary

Mitchell LF Client: Geosyntec Data: Mitchell Landfill Printed 10/29/2019, 10:36 AM

MW_1101R Boron, total (mg/L) MW_1502R Boron, total (mg/L) MW_1502R MW_1101R Calcium, total (mg/L) MW_1101R PH, field (SU) MW_1502R PH, field (SU) MW_1101R Sulfate, total (mg/L) MW_1103F Total Dissolved Solids [TDS] (mg/L) MW_1502R PH, field (SU) MW_1101R Sulfate, total Dissolved Solids [TDS] (mg/L) MW_1101R MW_1103F Total Dissolved Solids [TDS] (mg/L)

4/26/2012									690 (o)	
12/26/2012								1600 (o)		
2/21/2013								3500 (o)		
6/1/2016							67.3 (o)			
6/15/2016							76.4 (o)			
8/3/2016							76.4 (o)			
9/27/2016		0.376 (o)								
9/28/2016								43 (o)		
11/16/2016	1.8 (o)		19.4 (o)							
1/11/2018				240 (o)						
5/1/2019					10.5 (o)					
5/2/2019						8.49 (o)				

Outlier Analysis - Significant Results

Mitchell LF Client: Geosyntec Data: Mitchell Landfill Printed 10/28/2019, 4:34 PM

Constituent	Well	<u>Outlier</u>	<u>Value(s)</u>	Date(s)	Method	<u>N</u> <u>Mean</u>	Std. Dev.	Distribution	<u>Normality Test</u>
Boron, total (mg/L)	MW_1101R	Yes	1.8	11/16/2016	NP	13 0.4999	0.3953	ln(x)	ShapiroWilk
Calcium, total (mg/L)	MW_1502R	Yes	240	1/11/2018	NP	14 95.31	43.23	ln(x)	ShapiroWilk
pH, field (SU)	MW_1101R	Yes	10.5	5/1/2019	NP	27 8.565	0.5079	ln(x)	ShapiroWilk
pH, field (SU)	MW_1502R	Yes	8.49	5/2/2019	NP	13 7.502	0.3247	ln(x)	ShapiroWilk
Sulfate, total (mg/L)	MW_1101R	Yes	67.3,76.4,76.4	6/1/2016,6/15/2016,8/3/2016	NP	30 35.27	13.54	ln(x)	ShapiroWilk
Total Dissolved Solids [TDS] (mg/L)	MW_1101R	Yes	1600,3500,43	12/26/2012,2/21/2013,9/28/2016	NP	29 903.9	544.8	x^(1/3)	ShapiroWilk
Total Dissolved Solids [TDS] (mg/L)	MW_1103F (bg)	Yes	690,1900	4/26/2012,12/26/2012	NP	27 1359	204.6	x^2	ShapiroWilk

Outlier Analysis - All Results

Mitchell LF Client: Geosyntec Data: Mitchell Landfill Printed 10/28/2019, 4:35 PM

Constituent	Well	<u>Outlier</u>	<u>Value(s)</u>	Date(s)	Method	<u>N</u> <u>Mean</u>	Std. Dev.	Distribution	<u>Normality Test</u>
Boron, total (mg/L)	MW_1101R	Yes	1.8	11/16/2016	NP	13 0.4999	0.3953	ln(x)	ShapiroWilk
Boron, total (mg/L)	MW_1102F	No	n/a	n/a	NP	13 0.1595	0.0679	ln(x)	ShapiroWilk
Boron, total (mg/L)	MW_1103F (bg)	No	n/a	n/a	NP	13 0.3318	0.0286	ln(x)	ShapiroWilk
Boron, total (mg/L)	MW_1502R	No	n/a	n/a	NP	13 0.1523	0.08992	ln(x)	ShapiroWilk
Calcium, total (mg/L)	MW_1101R	No	n/a	n/a	NP	14 4.219	4.71	ln(x)	ShapiroWilk
Calcium, total (mg/L)	MW_1102F	No	n/a	n/a	NP	14 4.84	0.4263	ln(x)	ShapiroWilk
Calcium, total (mg/L)	MW_1103F (bg)	No	n/a	n/a	NP	13 2.882	0.1753	x^6	ShapiroWilk
Calcium, total (mg/L)	MW_1502R	Yes	240	1/11/2018	NP	14 95.31	43.23	ln(x)	ShapiroWilk
Chloride, total (mg/L)	MW_1101R	No	n/a	n/a	NP	28 15.64	2.29	x^6	ShapiroWilk
Chloride, total (mg/L)	MW_1102F	No	n/a	n/a	NP	30 10.51	2.547	normal	ShapiroWilk
Chloride, total (mg/L)	MW_1103F (bg)	No	n/a	n/a	NP	26 238.5	8.51	x^6	ShapiroWilk
Chloride, total (mg/L)	MW_1502R	No	n/a	n/a	NP	13 90	76.06	ln(x)	ShapiroWilk
Fluoride, total (mg/L)	MW_1101R	No	n/a	n/a	NP	23 2.471	0.4385	x^4	ShapiroWilk
Fluoride, total (mg/L)	MW_1102F	No	n/a	n/a	NP	22 0.5423	0.09201	normal	ShapiroWilk
Fluoride, total (mg/L)	MW_1103F (bg)	No	n/a	n/a	NP	23 3.054	0.2331	x^3	ShapiroWilk
Fluoride, total (mg/L)	MW_1502R	No	n/a	n/a	NP	13 0.1615	0.03976	x^2	ShapiroWilk
pH, field (SU)	MW_1101R	Yes	10.5	5/1/2019	NP	27 8.565	0.5079	ln(x)	ShapiroWilk
pH, field (SU)	MW_1102F	No	n/a	n/a	NP	29 8.116	0.3742	ln(x)	ShapiroWilk
pH, field (SU)	MW_1103F (bg)	No	n/a	n/a	NP	26 8.41	0.2575	ln(x)	ShapiroWilk
pH, field (SU)	MW_1502R	Yes	8.49	5/2/2019	NP	13 7.502	0.3247	ln(x)	ShapiroWilk
Sulfate, total (mg/L)	MW_1101R	Yes	67.3,76.4,76.4	6/1/2016,6/15/2016,8/3/2016	NP	30 35.27	13.54	ln(x)	ShapiroWilk
Sulfate, total (mg/L)	MW_1102F	No	n/a	n/a	NP	31 36.54	4.74	x^(1/3)	ShapiroWilk
Sulfate, total (mg/L)	MW_1103F (bg)	No	n/a	n/a	NP	27 3.635	3.763	ln(x)	ShapiroWilk
Sulfate, total (mg/L)	MW_1502R	No	n/a	n/a	NP	14 135.1	38.17	x^(1/3)	ShapiroWilk
Total Dissolved Solids [TDS] (mg/L)	MW_1101R	Yes	1600,3500,43	12/26/2012,2/21/2013,9/28/2016	NP	29 903.9	544.8	x^(1/3)	ShapiroWilk
Total Dissolved Solids [TDS] (mg/L)	MW_1102F	No	n/a	n/a	NP	30 498.7	55.58	x^6	ShapiroWilk
Total Dissolved Solids [TDS] (mg/L)	MW_1103F (bg)	Yes	690,1900	4/26/2012,12/26/2012	NP	27 1359	204.6	x^2	ShapiroWilk
Total Dissolved Solids [TDS] (mg/L)	MW_1502R	No	n/a	n/a	NP	13 553.2	92.07	x^2	ShapiroWilk

Tukey's Outlier Screening

Constituent: Boron, total Analysis Run 10/28/2019 4:24 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Boron, total Analysis Run 10/28/2019 4:24 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

n = 13

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 1.922, low cutoff = 0.01267, based on IQR multiplier of 3.

Constituent: Boron, total Analysis Run 10/28/2019 4:24 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill
Sanitas[™] v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Tukey's Outlier Screening Tukey's Outlier Screening MW_1101R MW_1102F 20 6 n = 14 n = 14 No outliers found. No outliers found. Tukey's method select-Tukey's method selected by user. ed by user. 16 4.8 Data were natural log Data were natural log transformed to achieve transformed to achieve best W statistic (graph best W statistic (graph shown in original units). shown in original units). 12 3.6 High cutoff = 156.8. low High cutoff = 9.461, low cutoff = 0.06399, based cutoff = 2.512, based on IQR multiplier of 3. on IQR multiplier of 3. mg/L mg/L 2.4 8 4 1.2 Ω Ω 6/12/19 6/15/16 1/19/17 8/25/17 4/1/18 11/5/18 6/12/19 6/15/16 1/19/17 8/25/17 4/1/18 11/5/18 Constituent: Calcium, total Analysis Run 10/28/2019 4:24 PM View: PLs - Intrawell Constituent: Calcium, total Analysis Run 10/28/2019 4:24 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas[™] v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Calcium, total Analysis Run 10/28/2019 4:24 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Constituent: Calcium, total Analysis Run 10/28/2019 4:24 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

n = 30

No outliers found. Tukey's method selected by user.

Ladder of Powers trans-formations did not improve normality; analysis run on raw data

High cutoff = 25.25, low cutoff = -5.2, based on IQR multiplier of 3.

6/12/19

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Chloride, total Analysis Run 10/28/2019 4:24 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Chloride, total Analysis Run 10/28/2019 4:24 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Tukey's Outlier Screening Tukey's Outlier Screening MW_1101R MW_1102F 0.8 3 n = 23 No outliers found. Tukey's method selected by user. 2.4 Data were x^4 transform-0.64 ed to achieve best W statistic (graph shown in 2 original units). High cutoff = 3.497, low cutoff = -2.736, based 1.8 0.48 on IQR multiplier of 3. mg/L mg/L 1.2 0.32 0.6 0.16 Ω Ω 2/25/12 8/10/13 1/25/15 7/11/16 12/26/17 6/12/19 2/29/12 8/14/13 1/28/15 7/13/16 12/27/17 Constituent: Fluoride, total Analysis Run 10/28/2019 4:25 PM View: PLs - Intrawell Constituent: Fluoride, total Analysis Run 10/28/2019 4:25 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Fluoride, total Analysis Run 10/28/2019 4:25 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

No outliers found. Tukey's method selected by user.

n = 22

6/12/19

Ladder of Powers trans-formations did not improve normality; analysis run on raw data

High cutoff = 0.995, low cutoff = 0.085, based on IQR multiplier of 3.

No outliers found. Tukey's method selected by user.

Data were square transformed to achieve best W statistic (graph shown

High cutoff = 0.2891, low cutoff = -0.1776, based on IQR multiplier

Constituent: Fluoride, total Analysis Run 10/28/2019 4:25 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

n = 29

6/12/19

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 9.933. low cutoff = 6.477, based on IQR multiplier of 3.

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

SU

Constituent: pH, field Analysis Run 10/28/2019 4:25 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Outlier is drawn as solid. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units)

High cutoff = 8.407, low cutoff = 6.582, based on IQR multiplier of 3.

Constituent: pH, field Analysis Run 10/28/2019 4:25 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Tukey's Outlier Screening Tukey's Outlier Screening MW_1101R MW_1102F 80 50 n = 30 Outliers are drawn as solid. Tukey's method selected by user. 64 40 Data were natural log transformed to achieve best W statistic (graph shown in original units). 48 30 High cutoff = 63.37, low cutoff = 15.84, based mg/L mg/L on IQR multiplier of 3. 32 20 16 10 Ω Ω 2/24/12 8/12/13 8/10/13 1/25/15 7/11/16 12/26/17 6/12/19 2/27/12 1/26/15 7/12/16 12/26/17 Constituent: Sulfate, total Analysis Run 10/28/2019 4:25 PM View: PLs - Intrawell Constituent: Sulfate, total Analysis Run 10/28/2019 4:25 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill Mitchell LF Client: Geosyntec Data: Mitchell Landfill

No outliers found. Tukey's method selected by user.

n = 31

6/12/19

Data were cube root transformed to achieve best W statistic (graph shown

in original units). High cutoff = 63.4, low cutoff = 17.22, based on IQR multiplier of 3.

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Sulfate, total Analysis Run 10/28/2019 4:25 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

n = 14 No outliers found. Tukey's method select-

ed by user. Data were cube root trans-

formed to achieve best W statistic (graph shown in original units).

High cutoff = 644, low cutoff = 3.612, based on IQR multiplier of 3.

Constituent: Sulfate, total Analysis Run 10/28/2019 4:25 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Constituent: Total Dissolved Solids [TDS] Analysis Run 10/28/2019 4:25 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Constituent: Total Dissolved Solids [TDS] Analysis Run 10/28/2019 4:25 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Total Dissolved Solids [TDS] Analysis Run 10/28/2019 4:25 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Constituent: Total Dissolved Solids [TDS] Analysis Run 10/28/2019 4:25 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Mann-Whitney - Significant Results

Mitchell LF Client: Geosyntec Data: Mitchell Landfill Printed 10/29/2019, 1:10 PM

Constituent	Well	Calc.	<u>0.01</u>	<u>Sig.</u>	Method
Chloride, total (mg/L)	MW_1102F	3.312	Yes	Yes	Mann-W
Fluoride, total (mg/L)	MW_1102F	3.023	Yes	Yes	Mann-W
Total Dissolved Solids [TDS] (mg/L)	MW_1102F	2.955	Yes	Yes	Mann-W

Mann-Whitney - All Results

Mitchell LF Client: Geosyntec Data: Mitchell Landfill Printed 10/29/2019, 1:10 PM

Constituent	Well	<u>Calc.</u>	<u>0.01</u>	<u>Sig.</u>	Method
Boron, total (mg/L)	MW_1101R	-1.139	No	No	Mann-W
Boron, total (mg/L)	MW_1102F	0.4453	No	No	Mann-W
Boron, total (mg/L)	MW_1103F (bg)	-0.6587	No	No	Mann-W
Boron, total (mg/L)	MW_1502R	-1.057	No	No	Mann-W
Calcium, total (mg/L)	MW_1101R	-2.074	No	No	Mann-W
Calcium, total (mg/L)	MW_1102F	-2.13	No	No	Mann-W
Calcium, total (mg/L)	MW_1103F (bg)	-0.4398	No	No	Mann-W
Calcium, total (mg/L)	MW_1502R	0.9515	No	No	Mann-W
Chloride, total (mg/L)	MW_1101R	0.3921	No	No	Mann-W
Chloride, total (mg/L)	MW_1102F	3.312	Yes	Yes	Mann-W
Chloride, total (mg/L)	MW_1103F (bg)	0.7236	No	No	Mann-W
Chloride, total (mg/L)	MW_1502R	1.537	No	No	Mann-W
Fluoride, total (mg/L)	MW_1101R	-0.2613	No	No	Mann-W
Fluoride, total (mg/L)	MW_1102F	3.023	Yes	Yes	Mann-W
Fluoride, total (mg/L)	MW_1103F (bg)	1.455	No	No	Mann-W
Fluoride, total (mg/L)	MW_1502R	0.8222	No	No	Mann-W
pH, field (SU)	MW_1101R	1.813	No	No	Mann-W
pH, field (SU)	MW_1102F	2.456	No	No	Mann-W
pH, field (SU)	MW_1103F (bg)	1.205	No	No	Mann-W
pH, field (SU)	MW_1502R	-0.08507	No	No	Mann-W
Sulfate, total (mg/L)	MW_1101R	-1.666	No	No	Mann-W
Sulfate, total (mg/L)	MW_1102F	-1.101	No	No	Mann-W
Sulfate, total (mg/L)	MW_1103F (bg)	-1.157	No	No	Mann-W
Sulfate, total (mg/L)	MW_1502R	-0.5809	No	No	Mann-W
Total Dissolved Solids [TDS] (mg/L)	MW_1101R	-0.4555	No	No	Mann-W
Total Dissolved Solids [TDS] (mg/L)	MW_1102F	2.955	Yes	Yes	Mann-W
Total Dissolved Solids [TDS] (mg/L)	MW_1103F (bg)	0	No	No	Mann-W
Total Dissolved Solids (TDS) (mg/L)	MW 1502R	2.269	No	No	Mann-W
	-				

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Boron, total Analysis Run 10/29/2019 1:07 PM View: Mann Whitney Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Constituent: Boron, total Analysis Run 10/29/2019 1:07 PM View: Mann Whitney Mitchell LF Client: Geosyntec Data: Mitchell Landfill

.

Sanitas[™] v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Calcium, total Analysis Run 10/29/2019 1:07 PM View: Mann Whitney Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Constituent: Calcium, total Analysis Run 10/29/2019 1:07 PM View: Mann Whitney Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Calcium, total Analysis Run 10/29/2019 1:07 PM View: Mann Whitney Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

 Constituent: Chloride, total
 Analysis Run 10/29/2019 1:07 PM
 View: Mann Whitney

 Mitchell LF
 Client: Geosyntec
 Data: Mitchell Landfill

Constituent: Chloride, total Analysis Run 10/29/2019 1:07 PM View: Mann Whitney Mitchell LF Client: Geosyntec Data: Mitchell Landfill

.

Sanitas[™] v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Chloride, total Analysis Run 10/29/2019 1:07 PM View: Mann Whitney Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

3

2.4

1.8

1.2

0.6

0

2/25/12

8/10/13

mg/L

Constituent: Fluoride, total Analysis Run 10/29/2019 1:07 PM View: Mann Whitney Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas[™] v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Mann-Whitney (Wilcoxon Rank Sum)

MW_1101R

1/25/15 7/11/16 12/26/17 6/12/19

Constituent: Fluoride, total Analysis Run 10/29/2019 1:07 PM View: Mann Whitney

Mitchell LF Client: Geosyntec Data: Mitchell Landfill

MW_1101R background

MW_1101R compliance

background median = 2.6

compliance median = 2.59

Table

1.282

1.645

2.326

1.96

Sig. No

No

No

No

Z = -0.2613

Alpha

0.1 0.05 0.025

0.01

۵

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Mann-Whitney (Wilcoxon Rank Sum) MW_1102F 10 MW_1102F background 8 MW 1102F compliance 6 background median = 8.12 SU 4 compliance median = 8.37 Z = 2.456 (two-tail) 2 Alpha 0.2 Table Sig. Yes 1.282 0.1 Yes Yes 1.96 0 0.02 2.326 Yes 8/10/13 7/11/16 12/26/17 6/12/19 2/24/12 1/25/15 0.01 2.576 No

> Constituent: pH, field Analysis Run 10/29/2019 1:07 PM View: Mann Whitney Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: pH, field Analysis Run 10/29/2019 1:07 PM View: Mann Whitney

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: pH, field Analysis Run 10/29/2019 1:07 PM View: Mann Whitney Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Constituent: pH, field Analysis Run 10/29/2019 1:07 PM View: Mann Whitney Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

50

40

30

20

10

0

2/24/12

mg/L

Constituent: Sulfate, total Analysis Run 10/29/2019 1:07 PM View: Mann Whitney Mitchell LF Client: Geosyntec Data: Mitchell Landfill

1/25/15 7/11/16 12/26/17 6/12/19

Mann-Whitney (Wilcoxon Rank Sum)

MW_1101R

Я

۵

Z = -1.666

Table 1.282

1.645

1.96

Alpha

0.1 0.05 0.025

0.01

Constituent: Sulfate, total Analysis Run 10/29/2019 1:07 PM View: Mann Whitney Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Table

1.282

2.326

1.96

Sig.

No

No

No

No

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

8/10/13

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Total Dissolved Solids [TDS] Analysis Run 10/29/2019 1:07 PM View: Mann Whitney Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Constituent: Total Dissolved Solids [TDS] Analysis Run 10/29/2019 1:07 PM View: Mann Whitney Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Mann-Whitney (Wilcoxon Rank Sum)

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.23d Sanitas software utilized by Groundwater Stats Consulting. UG

Sig. Yes Yes Yes 0.01 2.326 No

MW_1502R background

MW 1502R compliance

Constituent: Total Dissolved Solids [TDS] Analysis Run 10/29/2019 1:07 PM View: Mann Whitney Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Intrawell Prediction Limit Summary

Mitchell LF Client: Geosyntec Data: Mitchell Landfill Printed 12/11/2019, 2:45 PM

Constituent	Well	Upper Lim.	Lower Lim.	<u>Bg N</u>	Bg Mean	Std. Dev.	<u>%NDs</u>	ND Adj.	Transform	<u>Alpha</u>	Method
Boron, total (mg/L)	MW_1101R	0.5252	n/a	12	0.3916	0.06326	0	None	No	0.002505	Param Intra 1 of 2
Boron, total (mg/L)	MW_1102F	0.28	n/a	13	n/a	n/a	0	n/a	n/a	0.009692	NP Intra (normality) 1 of 2
Boron, total (mg/L)	MW_1103F	0.3912	n/a	13	0.3318	0.0286	0	None	No	0.002505	Param Intra 1 of 2
Boron, total (mg/L)	MW_1502R	0.2654	n/a	12	0.1337	0.06239	0	None	No	0.002505	Param Intra 1 of 2
Calcium, total (mg/L)	MW_1101R	6.91	n/a	13	n/a	n/a	0	n/a	n/a	0.009692	NP Intra (normality) 1 of 2
Calcium, total (mg/L)	MW_1102F	5.71	n/a	14	4.84	0.4263	0	None	No	0.002505	Param Intra 1 of 2
Calcium, total (mg/L)	MW_1103F	3.245	n/a	13	2.882	0.1753	0	None	No	0.002505	Param Intra 1 of 2
Calcium, total (mg/L)	MW_1502R	109.3	n/a	13	84.18	12.09	0	None	No	0.002505	Param Intra 1 of 2
Chloride, total (mg/L)	MW_1101R	18.1	n/a	28	1086131	472396	0	None	x^5	0.002505	Param Intra 1 of 2
Chloride, total (mg/L)	MW_1102F	15.41	n/a	14	12.68	1.338	0	None	No	0.002505	Param Intra 1 of 2
Chloride, total (mg/L)	MW_1103F	253.5	n/a	26	56970	3994	0	None	x^2	0.002505	Param Intra 1 of 2
Chloride, total (mg/L)	MW_1502R	190.8	n/a	8	7.046	2.754	0	None	sqrt(x)	0.002505	Param Intra 1 of 2
Fluoride, total (mg/L)	MW_1101R	3.137	n/a	23	6.289	1.914	0	None	x^2	0.002505	Param Intra 1 of 2
Fluoride, total (mg/L)	MW_1102F	0.7806	n/a	8	0.6125	0.0684	0	None	No	0.002505	Param Intra 1 of 2
Fluoride, total (mg/L)	MW_1103F	3.487	n/a	23	3.054	0.2331	0	None	No	0.002505	Param Intra 1 of 2
Fluoride, total (mg/L)	MW_1502R	0.2441	n/a	13	0.1615	0.03976	0	None	No	0.002505	Param Intra 1 of 2
pH, field (SU)	MW_1101R	9.104	7.877	26	8.491	0.3359	0	None	No	0.001253	Param Intra 1 of 2
pH, field (SU)	MW_1102F	9.45	7.59	29	n/a	n/a	0	n/a	n/a	0.004345	NP Intra (normality) 1 of 2
pH, field (SU)	MW_1103F	8.881	7.94	26	8.41	0.2575	0	None	No	0.001253	Param Intra 1 of 2
pH, field (SU)	MW_1502R	7.709	7.13	12	7.419	0.137	0	None	No	0.001253	Param Intra 1 of 2
Sulfate, total (mg/L)	MW_1101R	38.42	n/a	27	3.137	0.1302	0	None	x^(1/3)	0.002505	Param Intra 1 of 2
Sulfate, total (mg/L)	MW_1102F	45.04	n/a	31	36.54	4.74	0	None	No	0.002505	Param Intra 1 of 2
Sulfate, total (mg/L)	MW_1103F	0.9261	n/a	12	0.4125	0.2432	8.333	None	No	0.002505	Param Intra 1 of 2
Sulfate, total (mg/L)	MW_1502R	213	n/a	14	135.1	38.17	0	None	No	0.002505	Param Intra 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW_1101R	1600	n/a	27	n/a	n/a	0	n/a	n/a	0.002502	NP Intra (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW_1102F	577	n/a	18	n/a	n/a	0	n/a	n/a	0.005373	NP Intra (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW_1103F	1900	n/a	26	n/a	n/a	0	n/a	n/a	0.002667	NP Intra (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	MW_1502R	744.3	n/a	13	553.2	92.07	0	None	No	0.002505	Param Intra 1 of 2

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit

Intrawell Non-parametric, MW_1102F

Background Data Summary: Mean=0.3916, Std. Dev.=0.06326, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8759, critical = 0.805. Kappa = 2.112 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

> Constituent: Boron, total Analysis Run 12/11/2019 2:43 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2). Assumes 1 future value.

> Constituent: Boron, total Analysis Run 12/11/2019 2:43 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW_1103F (bg)

Background Data Summary: Mean=0.3318, Std. Dev.=0.0286, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9321, critical = 0.814. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW 1502R

Background Data Summary: Mean=0.1337, Std. Dev.=0.06239, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9428, critical = 0.805. Kappa = 2.112 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.009692 (1 of 2). Assumes 1 future value.

Constituent: Calcium, total Analysis Run 12/11/2019 2:43 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Background Data Summary: Mean=4.84, Std. Dev.=0.4263, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8855, critical = 0.825. Kappa = 2.041 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

> Constituent: Calcium, total Analysis Run 12/11/2019 2:43 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas[™] v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW_1103F (bg)

Background Data Summary: Mean=2.882, Std. Dev.=0.1753, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9275, critical = 0.814. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value. Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW 1502R

Background Data Summary: Mean=84.18, Std. Dev.=12.09, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9602, critical = 0.814. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

19

15.2

11.4

7.6

3.8

0

ng/L

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

MW_1102F background

Limit = 15.41

Background Data Summary (based on x⁵ transformation): Mean=1086131, Std. Dev.=472396, n=28. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9175, critical = 0.896. Kappa = 1.814 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Prediction Limit

Constituent: Chloride, total Analysis Run 12/11/2019 2:43 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

1/2/17 8/13/17 3/23/18 11/1/18 6/12/19

Background Data Summary: Mean=12.68, Std. Dev.=1.338, n=14. Normality test: Shapiro Wilk @alpha = 0.01,

calculated = 0.8748, critical = 0.825. Kappa = 2.041 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha =

Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW 1103F (bg)

Background Data Summary (based on square transformation): Mean=56970, Std. Dev.=3994, n=26. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8949, critical = 0.891. Kappa = 1.827 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

0.002505. Assumes 1 future value.

Within Limit

Prediction Limit Intrawell Parametric

Background Data Summary (based on square root transformation): Mean=7.046, Std. Dev.=2.754, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8468, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

4

3.2

2.4

1.6

0.8

0

0.05132). Report alpha = 0.002505. Assumes 1 future value.

ng/L

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW 1102F

Background Data Summary: Mean=0.6125, Std. Dev.=0.0684, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9276, critical = 0.749. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha =

0.002505. Assumes 1 future value.

Constituent: Fluoride, total Analysis Run 12/11/2019 2:43 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Background Data Summary (based on square transformation): Mean=6.289, Std. Dev.=1.914, n=23. Normality test:

Shapiro Wilk @alpha = 0.01, calculated = 0.92, critical = 0.881. Kappa = 1.857 (c=7, w=3, 1 of 2, event alpha =

2/25/12 8/10/13 1/25/15 7/11/16 12/26/17 6/12/19

Prediction Limit

Intrawell Parametric, MW 1101R

Constituent: Fluoride, total Analysis Run 12/11/2019 2:43 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW 1103F (bg)

MW_1101R

background

Limit = 3.137

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW 1502R

Background Data Summary: Mean=0.1615, Std. Dev.=0.03976, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8791, critical = 0.814. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Background Data Summary: Mean=3.054, Std. Dev.=0.2331, n=23. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.974, critical = 0.881. Kappa = 1.857 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

10

8

6

4

2

0

0.002505. Assumes 1 future value.

2/23/12

SU

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 29 background values. Well-constituent pair annual alpha = 0.00868. Individual comparison alpha = 0.004345 (1 of 2). Assumes 1 future value.

> Constituent: pH, field Analysis Run 12/11/2019 2:43 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW 1103F (bg)

Prediction Limit

Intrawell Parametric, MW 1101R

8/9/13 1/24/15 7/10/16 12/25/17 6/12/19

Background Data Summary: Mean=8.491, Std. Dev.=0.3359, n=26. Normality test: Shapiro Wilk @alpha = 0.01,

Constituent: pH, field Analysis Run 12/11/2019 2:43 PM View: PLs - Intrawell

Mitchell LF Client: Geosyntec Data: Mitchell Landfill

calculated = 0.9587, critical = 0.891. Kappa = 1.827 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha =

MW_1101R

background

Limit = 9.104

l imit = 7 877

Limit = 7.94

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW 1502R

Background Data Summary: Mean=7.419, Std. Dev.=0.137, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8945, critical = 0.805. Kappa = 2.112 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Background Data Summary: Mean=8.41, Std. Dev.=0.2575, n=26. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9446, critical = 0.891. Kappa = 1.827 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: pH, field Analysis Run 12/11/2019 2:43 PM View: PLs - Intrawell

Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Constituent: pH, field Analysis Run 12/11/2019 2:43 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit

Background Data Summary (based on cube root transformation): Mean=3.137, Std. Dev.=0.1302, n=27. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8947, critical = 0.894. Kappa = 1.82 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Background Data Summary: Mean=36.54, Std. Dev.=4.74, n=31. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9676, critical = 0.902. Kappa = 1.794 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Sulfate, total Analysis Run 12/11/2019 2:43 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Constituent: Sulfate, total Analysis Run 12/11/2019 2:43 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

MW_1103F background

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW 1502R

Background Data Summary: Mean=135.1, Std. Dev.=38.17, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8855, critical = 0.825. Kappa = 2.041 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Background Data Summary: Mean=0.4125, Std. Dev.=0.2432, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9261, critical = 0.805. Kappa = 2.112 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas[™] v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit

Intrawell Non-parametric, MW_1102F

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 27 background values. Well-constituent pair annual alpha = 0.004988. Individual comparison alpha = 0.002502 (1 of 2). Assumes 1 future value.

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 18 background values. Well-constituent pair annual alpha = 0.01072. Individual comparison alpha = 0.005373 (1 of 2). Assumes 1 future value.

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/11/2019 2:43 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill Constituent: Total Dissolved Solids [TDS] Analysis Run 12/11/2019 2:43 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Non-parametric, MW_1103F (bg)

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 26 background values. Well-constituent pair annual alpha = 0.005327. Individual comparison alpha = 0.002667 (1 of 2). Assumes 1 future value. Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, MW 1502R

Background Data Summary: Mean=553.2, Std. Dev.=92.07, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.97, critical = 0.814. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505. Assumes 1 future value.

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/11/2019 2:43 PM View: PLs - Intrawell Mitchell LF Client: Geosyntec Data: Mitchell Landfill

941 Chatham Lane, Suite 103 Columbus, Ohio 43212 PH 614.468.0415 FAX 614.468.0416 www.geosyntec.com

Memorandum

Subject:	Evaluation of Detection Monitoring Data at Mitchell Plant's Landfill (LF)
From:	Allison Kreinberg (Geosyntec)
Copies to:	Bill Smith (AEP)
To:	David Miller (AEP)
Date:	September 3, 2020

In accordance with the United States Environmental Protection Agency's (USEPA's) regulations regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (40 CFR 257 Subpart D, "CCR rule"), the first semi-annual detection monitoring event at the Mitchell Landfill (LF), an existing CCR unit at the Mitchell Power Plant located in Moundsville, West Virginia was completed on May 6, 2020. Based on the results, verification sampling was completed on July 15, 2020 and September 1, 2020.

Background values for the LF were previously calculated in January 2018. After a minimum of four detection monitoring events, the results of those events were compared to the existing background and the dataset was updated as appropriate. Revised upper prediction limits (UPLs) were calculated for each Appendix III parameter to represent background values. Lower prediction limits (LPLs) were also calculated for pH. Details on the calculation of these revised background values are described in Geosyntec's *Statistical Analysis Summary* report, dated February 21, 2020.

To achieve an acceptably high statistical power while maintaining a site-wide false-positive rate (SWFPR) of 10% per year or less, prediction limits were calculated based on a one-of-two retesting procedure. With this procedure, a statistically significant increase (SSI) is concluded only if both samples in a series of two exceed the UPL (or are below the LPL for pH). In practice, if the initial result did not exceed the UPL, a second sample was not collected or analyzed.

Detection monitoring results and the relevant background values are compared in Table 1 and noted exceedances are described in the list below.

Evaluation of Detection Monitoring Data – Mitchell LF September 3, 2020 Page 2

• Chloride concentrations exceeded the intrawell UPL of 15.4 mg/L in both the initial (16.0 mg/L) and second (16.0 mg/L) samples collected at MW-1102F. Therefore, an SSI over background is concluded for chloride at MW-1102F.

In response to the exceedance noted above, the Mitchell LF CCR unit will either transition to assessment monitoring or an alternative source demonstration (ASD) for chloride at MW-1102F will be conducted in accordance with 40 CFR 257.94(e)(2). If the ASD is successful, the Mitchell LF will remain in detection monitoring.

The statistical analysis was conducted within 90 days of completion of sampling and analysis in accordance with 40 CFR 257.93(h)(2). A certification of these statistics by a qualified professional engineer is provided in Attachment A.

Table 1: Detection Monitoring Data EvaluationMitchell Plant - Landfill

Parameter Units		Description	MW-1101R	MW-1102F	MW-1102F	MW-1502R	MW-1502R		
		Description	5/6/2020	5/6/2020	7/15/2020	5/6/2020	9/1/2020		
D	ma/I	Intrawell Background Value (UPL)	0.525 0.280		0.265				
DOIOII	mg/L	Analytical Result	0.364	0.129		0.081			
Calaium	ma/I	Intrawell Background Value (UPL)	6.91	5.	71	109			
Calcium	mg/L	Analytical Result	2.17	4.33		64.8			
Chloride n	ma/I	Intrawell Background Value (UPL)	18.1	15.4		191			
	mg/L	Analytical Result	15.1	16.0	16.0	74.6			
Fluoride	mg/L	Intrawell Background Value (UPL)	3.14	0.7	781	0.244			
		Analytical Result	2.46	0.69		0.18			
pH SU		Intrawell Background Value (UPL)	9.1	9.5		7.7			
	SU	Intrawell Background Value (LPL)	7.9	7.6		7.1			
		Analytical Result	8.2	8.8		7.8	7.2		
Sulfate	mg/L	Intrawell Background Value (UPL)	38.4	45.0		213			
		Analytical Result	23.9	33.8		93.0			
Total Dissolved Solids	mg/L	Intrawell Background Value (UPL)	1600	1600 577			744		
		Analytical Result	828	574		471			

Notes

UPL: Upper prediction limit

LPL: Lower prediction limit

Bold values exceed the background value.

Background values are shaded gray.

--: Not sampled

ATTACHMENT A Certification by a Qualified Professional Engineer

CERTIFICATION BY QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected statistical method, described above and in the February 21, 2020 Statistical Analysis Summary report, is appropriate for evaluating the groundwater monitoring data for the Mitchell LF CCR management area and that the requirements of 40 CFR 257.93(f) have been met.

DAVID ANTHONY MILLER

Printed Name of Licensed Professional Engineer

David Anthony Miller

Signature

22663 License Number

WEST VIRGINIA

Licensing State

09.04.2020 Date

APPENDIX 3 – Alternative Source Demonstrations

The May 2020 and November 2020 ASD reports follow.

APPENDIX 4 - Notices for Monitoring Program Transitions

No transition between monitoring requirements occurred in 2020; the CCR unit remained in detection monitoring over the entire year. Notices for monitoring program transitions are not applicable at this time.

No monitoring wells installed or decommissioned in 2020. Well installation/decommissioning logs are not applicable at this time.

EPA ADDITIONAL INFORMATION REQUEST Attachment B

2020 Annual Groundwater Monitoring Report for Mitchell Plant's Bottom Ash Pond

Annual Groundwater Monitoring Report

Kentucky Power Company Mitchell Plant Bottom Ash Pond Moundsville, WV

January 2021

Prepared by: American Electric Power Service Corporation 1 Riverside Plaza Columbus, Ohio 43215

An **AEP** Company

BOUNDLESS ENERGY**

Table of Contents

I. Overview	1
II. Groundwater Monitoring Well Locations and Identification Numbers	2
III. Monitoring Wells Installed or Decommissioned	2
IV. Groundwater Quality Data and Static Water Elevation Data, With Flow Rate a Direction and Discussion	and 3
V. Groundwater Quality Data Statistical Analysis	3
VI. Alternative Source Demonstrations	3
VII. Discussion About Transition Between Monitoring Requirements or Alternate Monitoring Frequency	3
VIII. Other Information Required	4
IX. Description of Any Problems Encountered in 2020 and Actions Taken	4
X. A Projection of Key Activities for the Upcoming Year	4
Appendix 1 – Groundwater Data Tables and Figures	

Appendix 2 – Statistical Analyses

Appendix 3 – Alternative Source Demonstrations

Appendix 4 – Notices for Monitoring Program Transitions

Appendix 5 – Well Installation/Decommissioning Logs

I. <u>Overview</u>

This *Annual Groundwater Monitoring Report* (Report) has been prepared to report the status of activities for the preceding year for the Bottom Ash Pond at Kentucky Power Company's, a wholly owned subsidiary of American Electric Power Company (AEP), Mitchell Power Plant. The USEPA's CCR rules require that the Annual Groundwater Monitoring Report be posted to the operating record for the preceding year no later than January 31st.

In general, the following activities were completed in 2020:

- Groundwater samples were collected on October 22, 2019 in accordance with 40 CFR 257.95(d)(1), and analyzed for all Appendix III constituents and those Appendix IV constituents that were detected during the previous sampling in accordance with 40 CFR 257.95(b) in June 2019. Groundwater samples were collected on March 17 and 18, 2020 and analyzed in accordance with 40 CFR 257.95(b) for all Appendix IV constituents. Groundwater samples were collected on May 5, 2020 in accordance with 40 CFR 257.95(d)(1), and analyzed for all Appendix III constituents and those Appendix IV constituents that were detected during the previous sampling in accordance with 40 CFR 257.95(d)(1), and analyzed for all Appendix III constituents and those Appendix IV constituents that were detected during the previous sampling in accordance with 40 CFR 257.95(d)(1), and analyzed for all Appendix III constituents and those Appendix IV constituents that were detected during the previous sampling in accordance with 40 CFR 257.95(b) in March 2020. Another groundwater sampling event in accordance with 40 CFR 257.95(d)(1) was initiated on October 20, 2020, but errors in sampling resulted in the omission of two monitoring parameters at some of the monitoring wells and the data set was not complete until January 2021, so data from this sampling event are not included in this report. All sampling was performed in accordance with 40 CFR 257.95 *et seq.*, and AEP's *Groundwater Sampling and Analysis Plan (2016)*;
- Groundwater monitoring data underwent various validation tests, including tests for completeness, valid values, transcription errors, and consistent units;
- Statistical analysis of the assessment monitoring samples collected in October 2019 and May 2020 was completed in February and August 2020, respectively.
- Because no statistically significant levels (SSLs) above the groundwater protection standard were detected, assessment monitoring continued.
- No alternative source demonstrations (ASDs) relative to the Appendix IV SSLs above the groundwater protection standard were conducted.
- As required by 40 CFR 257.95(d)(1), groundwater samples were collected and analyzed for all Appendix III constituents and those Appendix IV constituents that were detected during the March 2020 sampling in accordance with 40 CFR 257.95(b). This sampling was initiated in October 2020, but was not completed until January 2021 because of errors in sampling and the data has not yet undergone statistical interpretation.

The major components of this annual report, to the extent applicable at this time, are presented in sections that follow:

- A map, aerial photograph or a drawing showing the CCR management unit(s), all groundwater monitoring wells and monitoring well identification numbers;
- All of the monitoring data collected, including the rate and direction of groundwater flow, plus a summary showing the number of samples collected per monitoring well, the dates the samples were collected, and whether the sample was collected as part of detection monitoring or assessment monitoring programs (Attached as Appendix 1);
- Statistical comparison of monitoring data to determine if there have been statistically significant levels above the groundwater protection standards (Attached as Appendix 2, where applicable);
- A discussion of whether any alternate source demonstrations were performed, and the conclusions (Attached as Appendix 3, where applicable);
- A summary of any transition between monitoring programs, for example the date and circumstances for transitioning from detection monitoring to assessment monitoring (Notices attached as Appendix 4, where applicable);
- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a statement regarding the rationale for the installation/decommission (Attached as Appendix 5, where applicable); and
- Other information required to be included in the annual report such as an alternate monitoring frequency, or assessment of corrective measures, if applicable.

In addition, this report summarizes key actions completed, and where applicable, describes any problems encountered and actions taken to resolve those problems. The report includes a projection of key activities for the upcoming year.

II. Groundwater Monitoring Well Locations and Identification Numbers

A figure that depicts the PE-certified groundwater monitoring network, the monitoring well locations, and their corresponding identification is provided in Appendix 1.

III. Monitoring Wells Installed or Decommissioned

There were no monitoring wells installed or decommissioned in 2020. The network design, as summarized in the *Groundwater Monitoring Network Design Report* (2016) and as posted at the CCR web site for Mitchell Plant, did not change. That design report, viewable on the AEP CCR web site, discusses the facility location, the hydrogeological setting, the hydrostratigraphic units, the uppermost aquifer, downgradient monitoring well locations and the upgradient monitoring well locations.
IV. <u>Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and</u> <u>Direction and Discussion</u>

Appendix 1 contains tables showing the groundwater quality data collected during the establishment of background quality, detection monitoring, and assessment monitoring. Static water elevation data from each monitoring event also are shown in Appendix 1, along with the groundwater velocities, groundwater flow direction, and potentiometric maps developed after each sampling event.

V. Groundwater Quality Data Statistical Analysis

Statistical analysis of the assessment monitoring samples collected on October 22, 2019 and on May 5, 2020 was completed on February 11, and August 24, 2020, respectively. No SSLs above the groundwater protection standards were identified during either analysis. The results of these statistical analyses are documented in the corresponding statistical analysis summary reports, which are provided in Appendix 2.

As required by 40 CFR 257.95(d)(1), groundwater samples were collected and analyzed for all Appendix III constituents and those Appendix IV constituents that were detected during the March 2020 sampling in accordance with 40 CFR 257.95(b). This sampling was initiated in October 2020, but was not completed until January 2021 because of errors in sampling and the data has not yet undergone statistical interpretation. Statistical analysis of this data is scheduled to be completed in February 2021.

VI. Alternative Source Demonstrations

ASDs relative to Appendix IV SSLs above the groundwater protection standard were not necessary because no SSLs above the groundwater protection standards were identified from the completed sampling events required by 40 CFR 257.95(d)(1). A statement to this effect is provided in Appendix 3.

VII. <u>Discussion About Transition Between Monitoring Requirements or Alternate</u> <u>Monitoring Frequency</u>

No transition between monitoring requirements occurred in 2020; the CCR unit remained in assessment monitoring over the entire year. A statement to this effect is provided in Appendix 4.

The bottom ash pond would return to detection monitoring if all Appendix III and IV parameters are below background values for two consecutive monitoring events. If one or more Appendix IV parameters exceed the corresponding groundwater protection standard due to a release from the bottom ash pond, and are not demonstrated to be caused by a source other than the CCR unit or resulting from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality by means of an ASD, an assessment of corrective measures will be undertaken as required by 40 CFR 257.96.

Regarding defining an alternate monitoring frequency, the groundwater velocity and monitoring well production is high enough at this facility that no modification of the assessment monitoring schedule is necessary.

VIII. Other Information Required

The Mitchell bottom ash pond has progressed from detection monitoring to its current status in assessment monitoring. All required information has been included in this annual groundwater monitoring report.

IX. Description of Any Problems Encountered in 2020 and Actions Taken

No significant problems were encountered. Through the use of low-flow purging and sampling methodology, samples representative of uppermost aquifer groundwater were obtained and the schedule was met to support this annual groundwater report preparation.

X. <u>A Projection of Key Activities for the Upcoming Year</u>

Key activities for 2021 include the following:

- Assessment monitoring on a semiannual schedule;
- Statistical evaluation of the assessment monitoring results to determine any statistically significant increases (or decreases with respect to pH) over an established groundwater protection standard, or whether the concentrations have returned below background concentrations;
- Responding to any new data received in light of CCR rule requirements;
- Preparation of the next annual groundwater report.

APPENDIX 1 - Groundwater Data Tables and Figures

Tables follow showing the groundwater monitoring data collected, the rate of groundwater flow each time groundwater was sampled, the number of samples collected per monitoring well, dates that the samples were collected, and whether each sample was collected as part of a detection monitoring or an assessment monitoring program. Figures follow showing the PE-certified groundwater monitoring network with the corresponding well identifications along with static water elevation data and groundwater flow directions each time groundwater was sampled in the form of annotated satellite images.

Table 1 - Groundwater Data Summary: MW-1504 Mitchell - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
6/13/2016	Background	0.054	220	99.1	0.23	6.9	375	990
8/1/2016	Background	0.070	220	103	0.25	7.0	403	970
9/26/2016	Background	0.098	225	103	0.24	7.1	389	946
11/8/2016	Background	0.053	219	92.8	0.19	7.1	369	930
2/7/2017	Background	0.162	218	81.7	0.20	7.1	291	904
4/4/2017	Background	0.105	237	89.8	0.21	7.3	362	924
5/16/2017	Background	0.113	225	93.5	0.22	7.2	371	995
7/19/2017	Background	0.129	230	96.3	0.15	7.2	405	999
10/9/2017	Detection	0.114	212	93.4	0.24	7.2	392	982
4/11/2018	Assessment	0.063	204	83.6	0.19	7.0	291	842
8/22/2018	Assessment	0.096	230	91.9	0.20	7.3	372	936
5/1/2019	Assessment	0.05 J	220	81.8	0.17	8.0	317	926
6/11/2019	Assessment	0.04 J	183	78.5	0.17	7.6	261	829
10/22/2019	Assessment	0.02 J	196	85.9	0.15	7.3	242	801
3/17/2020	Assessment				0.15	7.1		
5/5/2020	Assessment	0.04 J	230	96.2	0.12	7.5	372	1,020

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1504Mitchell - BAPAppendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/13/2016	Background	0.03 J	0.73	46.2	0.01 J	0.04	0.4	0.523	0.0838	0.23	0.379	0.002	< 0.002 U	0.59	0.1	0.02 J
8/1/2016	Background	0.02 J	0.52	42.7	0.009 J	0.04	0.5	0.549	0.248	0.25	0.222	< 0.0002 U	0.002 J	0.74	0.07 J	0.02 J
9/26/2016	Background	< 0.05 U	0.38	36.7	< 0.02 U	0.03 J	0.3	0.362	0.656	0.24	0.104	0.007	< 0.002 U	2.31	0.2 J	0.1 J
11/8/2016	Background	0.02 J	0.36	38.4	< 0.005 U	0.03	0.469	0.249	1.748	0.19	0.041	0.004	< 0.002 U	0.66	< 0.03 U	0.089
2/7/2017	Background	0.02 J	0.39	33.8	< 0.005 U	0.03	0.530	0.239	0.563	0.20	0.022	0.008	< 0.002 U	0.94	< 0.03 U	0.090
4/4/2017	Background	0.02 J	0.35	40.5	< 0.005 U	0.04	0.283	0.277	0.327	0.21	0.021	0.009	< 0.002 U	0.81	0.06 J	0.110
5/16/2017	Background	0.02 J	0.46	37.3	< 0.004 U	0.04	0.250	0.319	0.3882	0.22	0.01 J	0.011	< 0.002 U	0.55	0.05 J	0.02 J
7/19/2017	Background	0.03 J	0.41	34.9	< 0.004 U	0.04	0.175	0.382	0.401	0.15	0.087	0.012	< 0.002 U	1.25	< 0.03 U	0.03 J
4/11/2018	Assessment	0.02 J	0.36	36.9	0.005 J	0.03	0.562	0.114	0.349	0.19	0.052	0.004	< 0.004 U	0.41	0.04 J	0.03 J
8/22/2018	Assessment	0.05 J	0.28	37.9	< 0.004 U	0.03	0.331	0.093	1.048	0.20	0.037	0.006	< 0.002 U	0.33	0.04 J	0.03 J
5/1/2019	Assessment	< 0.02 U	0.22	36.4	< 0.02 U	0.03 J	0.305	0.071	0.675	0.17	0.02 J	< 0.009 U	< 0.002 U	< 0.4 U	< 0.03 U	< 0.1 U
6/11/2019	Assessment	< 0.02 U	0.24	33.5	< 0.02 U	< 0.01 U	0.05 J	0.04 J	0.261	0.17	< 0.02 U	< 0.009 U	< 0.002 U	< 0.4 U	0.7	< 0.1 U
10/22/2019	Assessment	0.06 J	0.29	37.0	< 0.02 U	0.03 J	0.399	0.475	0.613	0.15	< 0.05 U	0.00448	< 0.002 U	< 0.4 U	0.05 J	< 0.1 U
3/17/2020	Assessment	< 0.02 U	0.29	48.3	< 0.02 U	0.03 J	0.238	0.04 J	0.4423	0.15	< 0.05 U	0.00441	< 0.002 U	< 0.4 U	7.3	< 0.1 U
5/5/2020	Assessment	< 0.02 U	0.26	43.8	< 0.02 U	0.03 J	0.238	0.03 J	0.758	0.12	< 0.05 U	0.00442	< 0.002 U	< 0.4 U	3.8	< 0.1 U

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1505 Mitchell - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
6/14/2016	Background	10.8	288	365	< 0.05 U	7.1	337	1,530
8/1/2016	Background	10.6	294	358	< 0.05 U	7.1	337	1,580
9/26/2016	Background	10.3	289	345	< 0.05 U	7.2	317	1,420
11/8/2016	Background	9.12	261	316	< 0.05 U	7.2	307	1,470
2/7/2017	Background	10.0	296	318	< 0.05 U	7.2	317	1,340
4/4/2017	Background	8.80	293	303	< 0.05 U	7.3	324	1,350
5/16/2017	Background	10.1	278	298	< 0.05 U	7.2	316	1,550
7/19/2017	Background	9.13	267	293	< 0.05 U	7.3	318	1,390
10/10/2017	Detection	8.70	255	287	< 0.05 U	7.2	327	1,270
12/27/2017	Detection	8.02	259	288		7.3		1,220
4/11/2018	Assessment	8.00	282	289	< 0.05 U	7.0	401	1,220
8/22/2018	Assessment	8.00	274	284	0.02 J	7.3	383	1,520
5/1/2019	Assessment	7.31	287	285	< 0.01 U	7.8	408	1,580
6/11/2019	Assessment	7.79	279	261	0.03 J	7.7	404	1,450
10/22/2019	Assessment	7.37	285	260	0.03 J	7.2	455	1,480
3/17/2020	Assessment				0.03 J	7.2		
5/5/2020	Assessment	7.36	282	252	0.02 J	7.5	471	1,460

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1505Mitchell - BAPAppendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/14/2016	Background	0.06	1.40	57.7	0.049	0.03	33.2	0.966	0.466	< 0.05 U	1.02	0.006	0.002 J	2.94	0.2	0.074
8/1/2016	Background	0.11	3.73	81.0	0.150	0.05	10.4	2.69	1.2271	< 0.05 U	3.69	0.011	0.013	0.95	0.9	0.093
9/26/2016	Background	< 0.05 U	0.79	47.2	< 0.02 U	0.03 J	0.9	0.404	0.912	< 0.05 U	0.546	0.008	< 0.002 U	7.35	0.4 J	0.464
11/8/2016	Background	0.07	2.14	63.3	0.091	0.03	7.07	1.77	1.26	< 0.05 U	2.06	0.007	0.006	0.90	0.5	0.093
2/7/2017	Background	0.04 J	1.16	51.7	0.035	0.03	9.06	0.772	1.236	< 0.05 U	0.697	0.010	0.002 J	1.21	0.5	0.102
4/4/2017	Background	0.03 J	0.41	47.2	< 0.005 U	0.02	11.0	0.509	0.4842	< 0.05 U	0.091	0.007	< 0.002 U	1.54	0.3	0.057
5/16/2017	Background	0.04 J	0.73	45.5	0.01 J	0.02	4.93	0.594	0.604	< 0.05 U	0.224	0.017	< 0.002 U	0.85	0.4	0.067
7/19/2017	Background	0.04 J	0.78	45.9	0.02 J	0.03 J	2.38	0.628	1.222	< 0.05 U	0.434	0.012	< 0.002 U	1.69	0.9	0.08 J
4/11/2018	Assessment	0.03 J	0.44	46.0	0.006 J	0.03	1.16	0.151	0.582	< 0.05 U	0.116	0.005	< 0.002 U	0.67	0.7	0.065
8/22/2018	Assessment	0.05 J	0.38	48.0	0.007 J	0.03	1.40	0.257	0.576	0.02 J	0.150	0.008	< 0.002 U	1.35	0.4	0.070
5/1/2019	Assessment	0.03 J	0.29	48.7	< 0.02 U	0.03 J	0.665	0.199	0.2396	< 0.01 U	0.07 J	< 0.009 U	< 0.002 U	0.6 J	0.9	< 0.1 U
6/11/2019	Assessment	0.03 J	0.28	49.3	< 0.02 U	0.03 J	0.849	0.155	0.526	0.03 J	0.04 J	0.01 J	< 0.002 U	0.7 J	0.4	< 0.1 U
10/22/2019	Assessment	0.03 J	0.34	49.9	< 0.02 U	0.03 J	0.450	0.143	0.759	0.03 J	< 0.05 U	0.00534	< 0.002 U	< 0.4 U	0.1 J	< 0.1 U
3/17/2020	Assessment	< 0.02 U	0.31	42.8	< 0.02 U	0.02 J	0.624	0.100	0.715	0.03 J	< 0.05 U	0.00501	< 0.002 U	< 0.4 U	0.06 J	< 0.1 U
5/5/2020	Assessment	0.03 J	0.27	48.4	< 0.02 U	0.03 J	0.291	0.096	0.7905	0.02 J	< 0.05 U	0.00493	< 0.002 U	< 0.4 U	0.06 J	< 0.1 U

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1506 Mitchell - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
6/14/2016	Background	8.04	275	422	0.07 J	7.1	315	1,640
8/2/2016	Background	9.72	299	418	0.07 J	7.0	325	1,600
9/27/2016	Background	6.77	304	428	< 0.05 U	7.2	323	1,610
11/9/2016	Background	5.50	281	392	< 0.05 U	7.4	285	1,510
2/8/2017	Background	5.70	289	395	< 0.05 U	7.3	292	1,350
4/5/2017	Background	5.59	282	389	< 0.05 U	7.4	301	1,430
5/17/2017	Background	7.11	278	393	< 0.05 U	7.3	307	1,520
7/19/2017	Background	6.26	277	379	< 0.05 U	7.3	297	1,480
10/10/2017	Detection	8.03	257	357	< 0.05 U	7.3	326	1,390
12/27/2017	Detection	6.14	264	383		7.3		1,280
4/11/2018	Assessment	5.73	275	382	< 0.05 U	7.1	347	1,300
8/22/2018	Assessment	5.91	270	369	0.05 J	7.4	349	1,590
5/1/2019	Assessment	5.24	280	331	0.03 J	7.9	347	1,360
6/11/2019	Assessment	5.27	265	315	0.05 J	7.8	335	1,370
10/22/2019	Assessment	4.49	293	364	0.04 J	7.4	354	1,330
3/17/2020	Assessment				0.04 J	7.3		
5/5/2020	Assessment	4.07	290	379	0.03 J	7.5	337	1,530

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1506 Mitchell - BAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/14/2016	Background	0.07	1.65	73.0	0.053	0.04	1.1	1.31	0.488	0.07 J	1.25	0.006	0.004 J	0.74	0.2	0.070
8/2/2016	Background	0.05 J	1.01	70.4	0.026	0.04	0.8	0.799	0.67	0.07 J	0.601	0.015	0.003 J	0.68	0.09 J	0.060
9/27/2016	Background	0.05 J	1.14	62.0	0.030	0.03	1.0	0.739	1.263	< 0.05 U	0.744	0.015	0.002 J	0.55	0.2	0.064
11/9/2016	Background	0.03 J	0.64	57.4	0.01 J	0.02 J	0.959	0.251	2.196	< 0.05 U	0.272	0.008	< 0.002 U	0.45	0.07 J	0.05 J
2/8/2017	Background	0.03 J	0.62	52.9	0.008 J	0.02 J	4.28	0.305	0.4008	< 0.05 U	0.217	0.013	< 0.002 U	1.07	< 0.03 U	0.066
4/5/2017	Background	0.04 J	0.81	60.1	0.021	0.02	3.87	0.891	0.438	< 0.05 U	0.574	0.011	0.002 J	0.49	0.08 J	0.04 J
5/17/2017	Background	0.05 J	1.26	60.9	0.027	0.03	2.83	0.768	0.226	< 0.05 U	0.726	0.016	0.002 J	1.22	0.1	0.05 J
7/19/2017	Background	0.18	0.80	54.9	0.02 J	0.02 J	3.15	0.932	0.889	< 0.05 U	0.457	0.016	< 0.002 U	1.14	< 0.06 U	0.06 J
4/11/2018	Assessment	0.03 J	0.73	55.4	0.021	0.02 J	2.01	0.476	0.592	< 0.05 U	0.477	0.009	0.002 J	1.23	0.1	0.05 J
8/22/2018	Assessment	0.06	0.46	54.6	0.01 J	0.02	2.47	0.581	1.723	0.05 J	0.319	0.010	< 0.002 U	0.50	0.09 J	0.050
5/1/2019	Assessment	0.03 J	0.34	53.5	< 0.02 U	0.02 J	0.752	0.256	0.1879	0.03 J	0.135	0.02 J	< 0.002 U	2 J	0.07 J	< 0.1 U
6/11/2019	Assessment	0.03 J	0.42	49.8	< 0.02 U	0.01 J	1.11	0.290	1.009	0.05 J	0.234	< 0.009 U	< 0.002 U	0.4 J	0.04 J	< 0.1 U
10/22/2019	Assessment	0.03 J	0.37	52.7	< 0.02 U	0.02 J	0.708	0.167	0.997	0.04 J	0.1 J	0.00873	< 0.002 U	2 J	0.04 J	< 0.1 U
3/17/2020	Assessment	< 0.02 U	0.44	53.0	< 0.02 U	0.01 J	4.24	0.393	< 0.680 U	0.04 J	0.213	0.00825	< 0.002 U	1 J	0.09 J	< 0.1 U
5/5/2020	Assessment	0.02 J	0.33	52.2	< 0.02 U	0.01 J	0.592	0.162	0.478	0.03 J	0.2 J	0.00782	< 0.002 U	0.7 J	< 0.03 U	< 0.1 U

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1507 Mitchell - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
6/14/2016	Background	13.2	333	529	0.06 J	7.0	339	1,070
8/2/2016	Background	12.2	323	497	0.07 J	7.0	332	1,890
9/27/2016	Background	14.1	355	517	0.06 J	7.1	345	1,840
11/9/2016	Background	12.1	325	480	0.06 J	7.1	314	1,840
2/8/2017	Background	11.1	312	401	0.06 J	7.1	276	1,480
4/5/2017	Background	10.6	324	445	0.05 J	7.2	306	1,630
5/17/2017	Background	12.1	308	437	0.05 J	7.2	310	1,680
7/19/2017	Background	11.1	298	447	< 0.05 U	7.2	308	1,740
10/10/2017	Detection	10.7	289	430	0.06 J	7.2	316	1,660
12/27/2017	Detection	10.4	284	450		7.2		1,380
4/11/2018	Assessment	10.4	296	400	0.06 J	6.9	347	1,390
8/21/2018	Assessment	9.29	272	331	0.07	7.2	323	1,430
5/1/2019	Assessment	8.36	271	296	0.07	8.0	346	1,270
6/11/2019	Assessment	8.41	257	279	0.07	7.8	349	1,340
10/22/2019	Assessment	8.39	273	295	0.08	7.4	369	1,360
3/18/2020	Assessment				0.07	7.2		
5/5/2020	Assessment	7.72	262	310	0.05 J	7.4	350	1,330

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1507Mitchell - BAPAppendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/14/2016	Background	0.05 J	2.19	84.5	0.142	0.07	3.6	3.18	0.521	0.06 J	4.07	0.011	0.025	0.25	0.7	0.051
8/2/2016	Background	0.12	4.54	104	0.168	0.07	10.4	4.10	2.09	0.07 J	4.48	0.019	0.016	2.14	0.5	0.078
9/27/2016	Background	0.10	3.58	92.0	0.134	0.06	14.0	3.06	2.029	0.06 J	2.96	0.020	0.010	1.80	0.5	0.08 J
11/9/2016	Background	0.11	4.15	102	0.202	0.07	12.6	4.50	1.784	0.06 J	3.97	0.016	0.010	12.8	0.5	0.09 J
2/8/2017	Background	0.08	2.16	73.6	0.089	0.04	6.16	1.77	16.587	0.06 J	1.86	0.013	0.007	2.31	0.3	0.081
4/5/2017	Background	0.06	1.51	71.3	0.053	0.04	19.4	1.26	0.6	0.05 J	1.17	0.011	0.006	5.29	0.2	0.053
5/17/2017	Background	0.11	1.30	63.6	0.031	0.04	12.6	0.990	0.767	0.05 J	0.799	0.024	0.003 J	4.54	0.2	0.04 J
7/19/2017	Background	0.06 J	1.29	62.0	0.044	0.04	12.1	2.37	1.215	< 0.05 U	0.999	0.018	0.004 J	4.37	0.1 J	0.06 J
4/11/2018	Assessment	0.07	1.67	71.2	0.062	0.04	21.3	1.45	0.701	0.06 J	1.56	0.012	0.006	2.73	0.3	0.059
8/21/2018	Assessment	0.08	0.47	62.1	0.01 J	0.03	2.00	0.426	1.419	0.07	0.308	0.010	0.002 J	0.87	0.08 J	0.05 J
5/1/2019	Assessment	0.03 J	0.43	53.9	< 0.02 U	0.03 J	2.35	0.331	0.496	0.07	0.239	< 0.009 U	< 0.002 U	1 J	0.07 J	< 0.1 U
6/11/2019	Assessment	0.03 J	0.24	52.2	< 0.02 U	0.03 J	0.315	0.160	1.454	0.07	< 0.02 U	0.01 J	0.003 J	0.4 J	0.04 J	< 0.1 U
10/22/2019	Assessment	0.03 J	0.45	54.8	< 0.02 U	0.03 J	1.51	0.343	0.952	0.08	0.239	0.00814	0.003 J	< 0.4 U	0.08 J	< 0.1 U
3/18/2020	Assessment	< 0.02 U	0.44	53.0	< 0.02 U	0.03 J	2.69	0.342	0.381	0.07	0.217	0.00794	< 0.002 U	0.8 J	0.06 J	< 0.1 U
5/5/2020	Assessment	0.03 J	0.42	53.1	< 0.02 U	0.03 J	1.30	0.345	0.836	0.05 J	0.208	0.00757	< 0.002 U	0.7 J	0.08 J	< 0.1 U

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1508 Mitchell - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
6/14/2016	Background	0.509	204	211	0.1 J	6.9	291	1,060
8/1/2016	Background	0.690	218	237	0.1 J	7.0	302	1,100
9/26/2016	Background	1.03	215	238	0.1 J	7.0	304	1,110
11/8/2016	Background	1.36	234	227	0.08 J	7.2	304	1,140
2/8/2017	Background	1.04	236	220	0.08 J	7.1	301	1,070
4/5/2017	Background	0.780	228	215	0.08 J	7.2	311	1,070
5/16/2017	Background	0.846	218	208	0.07 J	7.1	296	1,130
7/18/2017	Background	1.00	224	214	0.06 J	7.1	305	1,110
10/9/2017	Detection	0.881	207	212	0.08 J	7.1	322	1,200
4/11/2018	Assessment	0.806	229	200	0.08	6.9	302	1,050
8/21/2018	Assessment	0.952	219	204	0.08	7.2	313	1,080
5/1/2019	Assessment	0.622	221	178	0.08	8.2	287	978
6/12/2019	Assessment	0.679	209	163	0.08	7.1	285	988
10/22/2019	Assessment	0.860	212	168	0.09	7.3	309	991
3/18/2020	Assessment				0.08	7.2		
5/6/2020	Assessment	0.486	198	148	0.06	7.2	273	947

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1508Mitchell - BAPAppendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/14/2016	Background	0.04 J	1.05	48.7	0.038	0.09	0.8	3.21	0.763	0.1 J	1.61	0.009	0.003 J	0.93	0.5	0.04 J
8/1/2016	Background	0.04 J	1.07	51.7	0.037	0.07	1.2	2.22	0.0803	0.1 J	1.34	< 0.0002 U	0.008	0.74	0.7	0.03 J
9/26/2016	Background	0.06 J	1.65	50.2	0.06 J	0.07 J	2.3	2.34	0.596	0.1 J	1.69	0.007	0.003 J	1.17	0.8	< 0.05 U
11/8/2016	Background	0.05 J	1.32	53.9	0.058	0.05	1.70	2.17	2.782	0.08 J	2.06	0.003	0.002 J	0.63	0.7	0.03 J
2/8/2017	Background	0.04 J	0.97	46.1	0.042	0.04	1.34	1.40	12.465	0.08 J	1.32	0.009	0.003 J	0.53	0.7	0.04 J
4/5/2017	Background	0.04 J	1.09	49.9	0.049	0.04	1.74	1.66	0.394	0.08 J	1.71	0.008	0.004 J	0.35	0.9	0.03 J
5/16/2017	Background	0.04 J	1.21	47.0	0.041	0.03	1.32	1.12	0.931	0.07 J	1.13	0.014	< 0.002 U	0.46	0.9	0.04 J
7/18/2017	Background	0.04 J	1.11	45.1	0.040	0.04	1.33	1.27	0.597	0.06 J	1.20	0.012	< 0.002 U	0.68	0.6	0.04 J
4/11/2018	Assessment	0.04 J	1.04	46.4	0.040	0.04	1.40	1.03	0.236	0.08	1.11	0.008	< 0.004 U	0.45	0.7	0.05 J
8/21/2018	Assessment	0.06	0.44	40.1	0.01 J	0.04	0.691	0.678	0.3152	0.08	0.384	0.007	< 0.002 U	0.25	0.4	0.03 J
5/1/2019	Assessment	0.03 J	0.60	37.4	0.02 J	0.03 J	0.735	0.637	0.636	0.08	0.540	< 0.009 U	< 0.002 U	< 0.4 U	0.3	< 0.1 U
6/12/2019	Assessment	< 0.02 U	0.41	35.2	< 0.02 U	0.03 J	0.590	0.419	0.295	0.08	0.336	< 0.009 U	< 0.002 U	< 0.4 U	0.2	< 0.1 U
10/22/2019	Assessment	0.05 J	0.35	34.8	< 0.02 U	0.03 J	1.20	0.521	1.491	0.09	0.2 J	0.00485	< 0.002 U	0.6 J	0.3	< 0.1 U
3/18/2020	Assessment	< 0.02 U	0.52	36.2	< 0.02 U	0.03 J	0.820	0.481	0.636	0.08	0.298	0.00484	< 0.002 U	0.8 J	0.1 J	< 0.1 U
5/6/2020	Assessment	< 0.02 U	0.44	35.4	< 0.02 U	0.03 J	0.654	0.413	0.5934	0.06	0.311	0.00483	< 0.002 U	0.7 J	0.1 J	< 0.1 U

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1509 Mitchell - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
6/14/2016	Background	12.4	280	435	0.16	7.0	380	1,730
8/9/2016	Background	11.6	292	401	0.16	7.1	388	1,670
9/27/2016	Background	10.6	292	371	0.1 J	7.1	418	1,540
11/8/2016	Background	8.29	258	333	0.1 J	7.1	400	1,410
2/7/2017	Background	7.65	280	360	0.15	7.1	416	1,450
4/5/2017	Background	6.22	290	358	0.1 J	7.2	416	1,560
5/17/2017	Background	7.36	284	354	0.1 J	7.2	420	1,520
7/19/2017	Background	6.54	279	346	0.1 J	7.2	418	1,560
10/10/2017	Detection	6.70	277	345	0.1 J	7.2	432	1,490
12/27/2017	Detection	6.31	271	315		7.1		1,360
4/11/2018	Assessment	6.81	272	324	0.15	6.9	488	1,390
8/21/2018	Assessment	6.97	279	323	0.14	7.2	465	1,540
5/1/2019	Assessment	8.73	287	328	0.13	8.5	429	1,480
6/11/2019	Assessment	8.37	273	311	0.13	7.8	432	1,410
10/22/2019	Assessment	8.02	273	297	0.15	7.3	468	1,420
3/18/2020	Assessment				0.13	7.3		
5/5/2020	Assessment	10.6	262	331	0.10	7.4	402	1,390

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1509 Mitchell - BAP Appendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/14/2016	Background	0.03 J	0.55	64.4	0.008 J	0.03	2.5	0.514	0.816	0.16	0.102	0.0009 J	< 0.002 U	1.43	0.1	0.03 J
8/9/2016	Background	0.03 J	0.62	64.4	0.01 J	0.02	0.5	0.484	0.45569	0.16	0.251	0.015	< 0.002 U	1.00	0.1	0.03 J
9/27/2016	Background	0.03 J	0.39	61.0	< 0.005 U	0.02	4.6	0.424	2.664	0.1 J	0.024	0.018	< 0.002 U	1.07	0.2	0.04 J
11/8/2016	Background	0.03 J	0.40	62.0	< 0.005 U	0.02	0.627	0.253	0.413	0.1 J	0.006 J	0.012	< 0.002 U	0.59	0.1	0.05 J
2/7/2017	Background	0.03 J	0.50	56.7	< 0.005 U	0.02	0.650	0.130	1.399	0.15	0.056	0.011	< 0.002 U	0.66	0.09 J	0.04 J
4/5/2017	Background	0.02 J	0.33	63.5	< 0.005 U	0.02 J	1.15	0.189	0.304	0.1 J	0.01 J	0.012	< 0.002 U	0.48	0.2	0.03 J
5/17/2017	Background	0.02 J	0.56	61.5	< 0.004 U	0.01 J	1.05	0.255	1.673	0.1 J	0.02 J	0.022	0.002 J	0.56	0.2	0.03 J
7/19/2017	Background	0.03 J	0.65	58.5	0.01 J	0.01 J	0.857	0.344	1.134	0.1 J	0.220	0.017	< 0.002 U	0.80	0.2 J	0.04 J
4/11/2018	Assessment	0.03 J	0.42	52.8	0.005 J	0.01 J	0.657	0.215	0.792	0.15	0.062	0.009	0.002 J	0.34	0.2	0.057
8/21/2018	Assessment	0.09	0.33	53.8	< 0.004 U	0.008 J	0.777	0.132	0.736	0.14	0.035	0.012	< 0.002 U	0.32	0.3	0.03 J
5/1/2019	Assessment	0.03 J	0.33	47.2	< 0.02 U	0.01 J	2.28	0.324	0.4075	0.13	0.114	< 0.009 U	< 0.002 U	< 0.4 U	0.2 J	< 0.1 U
6/11/2019	Assessment	0.03 J	0.28	48.6	< 0.02 U	0.02 J	1.47	0.097	0.559	0.13	0.05 J	0.02 J	< 0.002 U	< 0.4 U	0.2	< 0.1 U
10/22/2019	Assessment	0.03 J	0.37	47.2	< 0.02 U	0.01 J	1.22	0.164	1.441	0.15	0.08 J	0.00911	< 0.002 U	< 0.4 U	0.3	< 0.1 U
3/18/2020	Assessment	< 0.02 U	0.42	45.8	< 0.02 U	< 0.01 U	0.518	0.144	0.5514	0.13	0.2 J	0.00934	< 0.002 U	< 0.4 U	0.07 J	< 0.1 U
5/5/2020	Assessment	0.03 J	0.27	43.7	< 0.02 U	< 0.01 U	0.633	0.092	1.2019	0.10	0.05 J	0.00897	< 0.002 U	0.6 J	0.1 J	< 0.1 U

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1 - Groundwater Data Summary: MW-1510 Mitchell - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Total Dissolved Solids
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
6/14/2016	Background	9.36	283	334	0.06 J	7.0	358	1,520
8/2/2016	Background	9.18	294	333	0.06 J	7.0	356	1,410
9/27/2016	Background	10.1	296	338	0.05 J	7.1	367	1,410
11/9/2016	Background	9.22	280	325	< 0.05 U	7.1	332	1,420
2/8/2017	Background	10.4	281	314	0.06 J	7.2	325	1,270
4/5/2017	Background	9.23	261	303	0.06 J	7.3	313	1,330
5/17/2017	Background	10.8	249	306	0.05 J	7.2	307	1,340
7/18/2017	Background	9.86	255	311	< 0.05 U	7.2	309	1,410
10/9/2017	Detection	8.70	249	327	0.05 J	7.2	356	1,520
12/27/2017	Detection	8.83	261	339		7.2		1,300
4/12/2018	Assessment	10.4	292	322	< 0.05 U	7.0	398	1,290
8/21/2018	Assessment	9.13	268	334	0.09	7.3	428	1,550
5/1/2019	Assessment	8.83	287	325	0.10	8.1	467	1,460
6/12/2019	Assessment	8.50	266	293	0.10	6.9	469	1,430
10/22/2019	Assessment	9.30	259	283	0.11	7.2	483	1,360
3/18/2020	Assessment				0.11	7.4		
5/6/2020	Assessment	9.14	228	252	0.10	7.4	484	1,440

Notes:

mg/L: milligrams per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: MW-1510Mitchell - BAPAppendix IV Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
6/14/2016	Background	0.03 J	0.72	50.8	0.02 J	0.01 J	0.6	0.257	0.331	0.06 J	0.282	0.003	< 0.002 U	0.65	0.2	0.057
8/2/2016	Background	0.03 J	0.62	49.0	0.02 J	0.009 J	0.7	0.256	1.383	0.06 J	0.269	0.016	< 0.002 U	0.92	0.2	0.02 J
9/27/2016	Background	0.03 J	0.70	48.7	0.02 J	0.009 J	0.8	0.329	0.865	0.05 J	0.333	0.014	< 0.002 U	0.45	0.2	0.04 J
11/9/2016	Background	0.02 J	0.58	44.6	0.02 J	0.01 J	0.655	0.230	0.88	< 0.05 U	0.261	0.009	< 0.002 U	0.33	0.1	0.03 J
2/8/2017	Background	0.02 J	0.47	39.5	< 0.005 U	0.005 J	0.521	0.073	6.828	0.06 J	0.066	0.013	< 0.002 U	0.42	0.08 J	0.02 J
4/5/2017	Background	0.02 J	0.36	41.4	< 0.005 U	0.006 J	2.34	0.175	1.12829	0.06 J	0.094	0.011	< 0.002 U	0.27	0.07 J	< 0.01 U
5/17/2017	Background	0.02 J	0.53	40.2	< 0.004 U	0.005 J	1.40	0.138	0.176	0.05 J	0.049	0.015	< 0.002 U	0.28	0.1	0.01 J
7/18/2017	Background	0.02 J	0.51	41.0	0.007 J	0.008 J	6.41	0.234	0.97	< 0.05 U	0.125	0.014	< 0.002 U	0.85	0.1	0.01 J
4/12/2018	Assessment	0.03 J	0.42	43.3	0.01 J	0.005 J	27.4	0.217	0.094	< 0.05 U	0.119	0.006	0.002 J	3.30	0.1	0.02 J
8/21/2018	Assessment	0.03 J	0.37	42.6	0.008 J	0.006 J	5.64	0.383	1.237	0.09	0.133	0.011	< 0.002 U	0.43	0.1	0.01 J
5/1/2019	Assessment	0.02 J	0.29	41.7	< 0.02 U	< 0.01 U	1.75	0.172	0.5725	0.10	0.105	0.01 J	< 0.002 U	< 0.4 U	0.2 J	< 0.1 U
6/12/2019	Assessment	0.02 J	0.27	41.3	< 0.02 U	< 0.01 U	0.697	0.105	0.4098	0.10	0.07 J	0.02 J	< 0.002 U	< 0.4 U	0.2 J	< 0.1 U
10/22/2019	Assessment	0.02 J	0.33	38.7	< 0.02 U	< 0.01 U	1.12	0.154	0.333	0.11	0.07 J	0.00862	< 0.002 U	< 0.4 U	0.2	< 0.1 U
3/18/2020	Assessment	< 0.02 U	0.31	38.0	< 0.02 U	< 0.01 U	2.10	0.121	0.864	0.11	0.08 J	0.00808	< 0.002 U	< 0.4 U	0.2 J	< 0.1 U
5/6/2020	Assessment	< 0.02 U	0.29	36.7	< 0.02 U	< 0.01 U	0.886	0.109	0.7374	0.10	0.07 J	0.00750	< 0.002 U	< 0.4 U	0.2 J	< 0.1 U

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

<: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL) followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

Table 1: Residence Time Calculation Summary Mitchell Bottom Ash Ponds

		202	0-03	202	0-05	2020-10		
CCR Management Unit	Monitoring Well	Well Diameter (inches)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Groundwater Velocity (ft/year)	Groundwater Residence Time (days)
	MW-1504 ^[1]	2.0	2.4	25.6	6.6	9.2	18.1	3.4
	MW-1505 ^[2]	2.0	4.3	14.1	7.3	8.4	19.5	3.1
Bottom	MW-1506 ^[2]	2.0	4.1	14.7	6.5	9.4	3.9	15.6
Ash	MW-1507 ^[2]	2.0	5.4	11.3	12.6	4.8	9.8	6.2
Pond	MW-1508 ^[3]	2.0	21.0	2.9	23.4	2.6	17.7	3.4
	MW-1509 ^[2]	2.0	9.2	6.6	14.5	4.2	12.8	4.8
	MW-1510 ^[1]	2.0	22.3	2.7	19.1	3.2	15.6	3.9

Notes:

[1] - Sidegradient Well

[2] - Downgradient Well

[3] - Upgradient Well

Monitoring Well Network

- Compliance Sampling Location
- Upgradient Sampling Location

Bottom Ash Pond

Notes - Monitoring well coordinates provided by AEP. - Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP.

Site Layout Bottom Ash Pond

Mitchell Power Generation Plant - Bottom Ash Pond Marshall County, West Virginia

Geosyntec [⊳]	
consultants	

Fi	g	u	r	e	
	9		•	-	

Columbus, Ohio

Feet

2018/01/26

APPENDIX 2 - Statistical Analyses

The February and August 2020 statistical analysis summaries concluding that no SSLs were identified at the CCR unit follow.

STATISTICAL ANALYSIS SUMMARY BOTTOM ASH POND Mitchell Plant Moundsville, West Virginia

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

Geosyntec Consultants

engineers | scientists | innovators

941 Chatham Lane Suite 103 Columbus, Ohio 43221

February 11, 2020

CHA8473

TABLE OF CONTENTS

SECTION 1	Executi	ive Summary	1
SECTION 2	Bottom	Ash Pond Evaluation	2-1
2.1	Data V	alidation & QA/QC	2-1
2.2	Statisti	cal Analysis	2-1
	2.2.1	Establishment of GWPSs	2-1
	2.2.2	Evaluation of Potential Appendix IV SSLs	2-2
	2.2.3	Establishment of Appendix III Prediction Limits	2-2
	2.2.4	Evaluation of Potential Appendix III SSIs	2-3
2.3	Conclu	sions	2-4
SECTION 3	Referer	nces	3-1

LIST OF TABLES

Table 1	Groundwater Data Summary
Table 2	Groundwater Protection Standards
Table 3	Revised Prediction Limits
Table 4	Appendix III Data Summary

LIST OF ATTACHMENTS

Attachment A	Certification by Qualified Professional Engineer
Attachment B	Statistical Analysis Output

LIST OF ACRONYMS AND ABBREVIATIONS

- AEP American Electric Power
- ASD Alternative Source Demonstration
- BAP Bottom Ash Pond
- CCR Coal Combustion Residuals
- CCV Continuing Calibration Verification
- CFR Code of Federal Regulations
- GWPS Groundwater Protection Standard
- LCL Lower Confidence Limit
- LFB Laboratory Fortified Blanks
- LPL Lower Prediction Limit
- LRB Laboratory Reagent Blanks
- MCL Maximum Contaminant Level
- NELAP National Environmental Laboratory Accreditation Program
- QA Quality Assurance
- QC Quality Control
- SSI Statistically Significant Increase
- SSL Statistically Significant Level
- SU Standard Units
- TDS Total Dissolved Solids
- UPL Upper Prediction Limit
- USEPA United States Environmental Protection Agency
- UTL Upper Tolerance Limit

SECTION 1

EXECUTIVE SUMMARY

In accordance with the United States Environmental Protection Agency's (USEPA's) regulations regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (40 CFR 257.90-257.98, "CCR rule"), groundwater monitoring has been conducted at the Bottom Ash Pond (BAP), an existing CCR unit at the Mitchell Power Plant located in Moundsville, West Virginia.

Based on detection monitoring conducted in 2017 and 2018, statistically significant increases (SSIs) over background were concluded for boron, calcium, chloride, and total dissolved solids (TDS), at the BAP. An alternative source was not identified following the detection monitoring events; thus, the BAP has been in assessment monitoring since 2018. During the most recent assessment monitoring event, completed in May 2019, Appendix III exceedances of boron, calcium, chloride, pH, sulfate, and TDS were observed, and the unit remained in assessment monitoring. The statistical summary of the results of the May 2019 sampling event was issued in a separate report (Geosyntec, 2019). Two assessment monitoring events were conducted at the BAP in June 2019 and October 2019, in accordance with 40 CFR 257.95. Only the results of the June and October assessment events are documented in this report.

Prior to conducting the statistical analyses, the groundwater data underwent several validation tests, including those for completeness, sample tracking accuracy, transcription errors, and consistent use of measurement units. No data quality issues were identified which would impact the usability of the data.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. Groundwater protection standards (GWPSs) were re-established for the Appendix IV parameters. Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether any were present at concentrations above the GWPSs. No statistically significant levels (SSLs) were identified. In addition, prediction limits were recalculated for Appendix III parameters. When compared to the revised prediction limits, concentrations for boron, calcium, chloride, fluoride, sulfate, and TDS remained above background. As a result, either the unit will remain in assessment monitoring or an alternative source demonstration (ASD) will be conducted to evaluate if the unit can return to detection monitoring. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A.

SECTION 2

BOTTOM ASH POND EVALUATION

2.1 <u>Data Validation & QA/QC</u>

During the assessment monitoring program, two sets of samples were collected for analysis from each upgradient and downgradient well to meet the requirements of 40 CFR 257.95(b) (June 2019) and 257.95(d)(1) (October 2019). Samples from the June 2019 event and the October 2019 event were analyzed for all Appendix III and Appendix IV parameters. A summary of data collected during these assessment monitoring events may be found in Table 1.

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program (NELAP). Quality assurance and quality control (QA/QC) samples completed by the analytical laboratory included the use of laboratory reagent blanks (LRBs), continuing calibration verification (CCV) samples, and laboratory fortified blanks (LFBs).

The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.6.23 statistics software. The export file was checked against the analytical data for transcription errors and completeness. No QA/QC issues were noted which would impact data usability.

2.2 <u>Statistical Analysis</u>

Statistical analyses for the BAP were conducted in accordance with the January 2017 *Statistical Analysis Plan* (AEP, 2017), except where noted below. Time series plots and results for all completed statistical tests are provided in Attachment B.

The data obtained in June and October 2019 were screened for potential outliers; however, no outliers were identified in either set of data (Attachment B).

2.2.1 Establishment of GWPSs

A GWPS was established for each Appendix IV parameter in accordance with 40 CFR 257.95(h) and the *Statistical Analysis Plan* (AEP, 2017). The established GWPS was determined to be the greater value of the background concentration and the maximum contaminant level (MCL) or risk-based level specified in 40 CFR 257.95(h)(2) for each Appendix IV parameter. To determine background concentrations, an upper tolerance limit (UTL) was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events. Generally, tolerance limits were calculated parametrically with 95% coverage and 95% confidence. Non-parametric tolerance limits were calculated for beryllium, cadmium, fluoride,

mercury, selenium, and thallium due to apparent non-normal distributions. Tolerance limits and the final GWPSs are summarized in Table 2.

2.2.2 Evaluation of Potential Appendix IV SSLs

A confidence interval was constructed for each Appendix IV parameter at each compliance well. Confidence limits were generally calculated parametrically ($\alpha = 0.01$); however, non-parametric confidence limits were calculated in some cases (e.g., when the data did not appear to be normally distributed or when the non-detect frequency was too high). An SSL was concluded if the lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). Calculated confidence limits are shown in Attachment B.

No SSLs were identified at the Mitchell BAP.

2.2.3 Establishment of Appendix III Prediction Limits

Upper prediction limits (UPL) were previously established for all Appendix III parameters following the background monitoring period (Geosyntec, 2018). Intrawell tests were used to evaluate potential SSIs for fluoride and sulfate, whereas interwell tests were used to evaluate potential SSIs for boron, calcium, chloride, pH, and TDS. While interwell prediction limits have been updated periodically during the assessment monitoring period as sufficient data became available, this represents the first update to the background dataset for parameters evaluated using intrawell tests.

Mann-Whitney (Wilcoxon rank-sum) tests were performed to determine whether the newer data are affected by a release from the BAP. Because the interwell Appendix III limits and the Appendix IV GWPSs are based on data from upgradient wells which would not be expected to have been impacted by a release, these tests were used for intrawell Appendix III tests only. Mann-Whitney tests were used to compare the medians of historical data (June 2016 - July 2017) to the new compliance samples (through May 2019) for fluoride and sulfate. Results were evaluated to determine if the medians of the two groups were similar at the 99% confidence level. Where no significant difference was found, the new compliance data were added to the background dataset. Where a statistically significant difference was found between the medians of the two groups, the data were reviewed to evaluate the cause of the difference and to determine if adding newer data to the background dataset, replacing the background dataset with the newer data, or continuing to use the existing background dataset was most appropriate. If the differences appeared to have been caused by a release, then the previous background dataset would have continued to be used.

The complete Mann-Whitney test results and a summary of the significant findings can be found in Appendix B. Two statistically significant differences were noted which included sulfate at MW-1506 and MW-1509. Typically, when the test concludes that the medians of the two groups are significantly different, the background data are not updated to include the newer data but will be reconsidered in the future. However, in both cases while the medians were slightly different, the recent reported measurements are similar to historical measurements. Therefore, the background data were updated along with all other records. After the revised background set was established, a parametric or non-parametric analysis was selected based on the distribution of the data and the frequency of non-detect data. Estimated results less than the practical quantitation limit (PQL) – i.e., "J-flagged" values – were considered detections and the estimated results were used in the statistical analyses. Non-parametric analyses were selected for datasets with at least 50% non-detect data or datasets that could not be normalized. Parametric analyses were selected for datasets (either transformed or untransformed) that passed the Shapiro-Wilk / Shapiro-Francía test for normality. The Kaplan-Meier non-detect adjustment was applied to datasets with between 15% and 50% non-detect data. For datasets with fewer than 15% non-detect data, non-detect data were replaced with one half of the PQL. The selected analysis (i.e., parametric or non-parametric) and transformation (where applicable) for each background dataset are shown in Attachment B.

UPLs were updated using all the historical data through May 2019 to represent background values. Lower prediction limits (LPLs) were also updated for pH. The updated prediction limits are summarized in Table 3. Intrawell tests were used to evaluate potential SSIs for fluoride and sulfate, whereas interwell tests were used to evaluate potential SSIs for boron, calcium, chloride, pH, and TDS. The UPLs were calculated for a one-of-two retesting procedure; i.e., if at least one sample in a series of two does not exceed the UPL, then it can be concluded that an SSI has not occurred. In practice, where the initial result does not exceed the UPL, a second sample will not be collected. The retesting procedures achieved an acceptably high statistical power to detect changes at downgradient wells for constituents evaluated using both interwell and intrawell prediction limits.

2.2.4 Evaluation of Potential Appendix III SSIs

The CCR rule allows CCR units to move from assessment monitoring to detection monitoring if all Appendix III and Appendix IV parameters were at or below background levels for two consecutive sampling events [40 CFR 257.95(e)]. Since no Appendix IV SSLs were identified, Appendix III results were analyzed to assess whether concentrations of Appendix III parameters at the compliance wells exceeded background concentrations.

Data collected during the June 2019 and October 2019 assessment monitoring events from each compliance well were compared to the prediction limits to assess whether the results are above background values. The results from these events and the prediction limits are summarized in Table 4. The following exceedances of the upper prediction limits (UPLs) were noted:

- Boron concentrations exceeded the interwell UPL of 1.36 mg/L at MW-1505 (7.79 mg/L and 7.37 mg/L), MW-1506 (5.27 mg/L and 4.49 mg/L), MW-1507 (8.41 mg/L and 8.39 mg/L), MW-1509 (8.37 mg/L and 8.02 mg/L), and MW-1510 (8.50 mg/L and 9.30 mg/L).
- Calcium concentrations exceeded the interwell UPL of 242 mg/L at MW-1505 (279 mg/L and 285 mg/L), MW-1506 (265 mg/L and 293 mg/L), MW-1507 (257 mg/L and 273 mg/L), MW-1509 (273 mg/L and 273 mg/L), and MW-1510 (266 mg/L and 259 mg/L).

- Chloride concentrations exceeded the interwell UPL of 238 mg/L at MW-1505 (261 mg/L and 260 mg/L), MW-1506 (315 mg/L and 364 mg/L), MW-1507 (279 mg/L and 295 mg/L), MW-1509 (311 mg/L and 297 mg/L), and MW-1510 (293 mg/L and 283 mg/L).
- Fluoride concentrations exceeded the intrawell UPL of 0.10 mg/L at MW-1510 (0.11 mg/L).
- Sulfate concentrations exceeded the intrawell UPL of 408 mg/L at MW-1505 (455 mg/L).
- TDS concentrations exceeded the interwell UPL of 1194 mg/L at MW-1505 (1450 mg/L and 1480 mg/L), MW-1506 (1370 mg/L and 1330 mg/L), MW-1507 (1340 mg/L and 1360 mg/L), MW-1509 (1410 mg/L and 1420 mg/L), and MW-1510 (1430 mg/L and 1360 mg/L).

Based on these results, concentrations of Appendix III parameters exceeded background levels at compliance wells at the Mitchell BAP during assessment monitoring. As a result, the Mitchell BAP CCR unit will remain in assessment monitoring.

2.3 <u>Conclusions</u>

A semi-annual assessment monitoring event was conducted in accordance with the CCR Rule. The laboratory and field data were reviewed prior to statistical analysis, with no QA/QC issues identified that impacted data usability. GWPSs were re-established for the Appendix IV parameters. A confidence interval was constructed at each compliance well for each Appendix IV parameter; SSLs were concluded if the entire confidence interval exceeded the GWPSs. No SSLs were identified.

Revised prediction limits were calculated for Appendix III parameters. Interwell tests were used to evaluate potential SSIs for boron, calcium, chloride, pH, and TDS, whereas intrawell tests were used to evaluate potential SSIs for fluoride and sulfate. Prediction limits were recalculated using a one-of-two retesting procedure. The Appendix III results were evaluated to assess whether concentrations of Appendix III parameters exceeded background levels. Boron, calcium, chloride, fluoride, sulfate, and TDS results exceeded background levels at select downgradient wells.

Based on this evaluation, either the Mitchell BAP CCR unit will remain in assessment monitoring or an ASD will be conducted to evaluate if the unit can return to detection monitoring.

SECTION 3

REFERENCES

American Electric Power (AEP). 2017. Statistical Analysis Plan – Mitchell Plant. January 2017.

Geosyntec Consultants (Geosyntec). 2018. Statistical Analysis Summary – Bottom Ash Pond, Mitchell Plant, Moundsville, West Virginia. January 15, 2018.

Geosyntec, 2019. Statistical Analysis Summary – Bottom Ash Pond, Mitchell Plant, Moundsville, West Virginia. July 10, 2019.

TABLES

Table 1 - Groundwater Data Summary Mitchell - Bottom Ash Pond

Component Un	Unit	MW	/-1504	MW	-1505	MW	-1506	MW	-1507	MW	-1508	MW	-1509	MW	-1510
··· •		6/11/2019	10/22/2019	6/11/2019	10/22/2019	6/11/2019	10/22/2019	6/11/2019	10/22/2019	6/12/2019	10/22/2019	6/11/2019	10/22/2019	6/12/2019	10/22/2019
Antimony	μg/L	0.100 U	0.0600	0.0300 J	0.0300	0.0300 J	0.0300	0.0300 J	0.0300	0.100 U	0.0500	0.0300 J	0.0300	0.0200 J	0.0200
Arsenic	μg/L	0.240	0.290	0.280	0.340	0.420	0.370	0.240	0.450	0.410	0.350	0.280	0.370	0.270	0.330
Barium	μg/L	33.5	37.0	49.3	49.9	49.8	52.7	52.2	54.8	35.2	34.8	48.6	47.2	41.3	38.7
Beryllium	μg/L	0.100 U	0.100 U												
Boron	mg/L	0.040 J	0.02	7.79	7.37	5.27	4.49	8.41	8.39	0.679	0.860	8.37	8.02	8.50	9.30
Cadmium	μg/L	0.0500 U	0.0300	0.0300 J	0.0300	0.0100 J	0.0200	0.0300 J	0.0300	0.0300 J	0.0300	0.0200 J	0.0100	0.0500 U	0.0500 U
Calcium	mg/L	183	196	279	285	265	293	257	273	209	212	273	273	266	259
Chloride	mg/L	78.5	85.9	261	260	315	364	279	295	163	168	311	297	293	283
Chromium	μg/L	0.0500 J	0.399	0.849	0.450	1.11	0.708	0.315	1.51	0.590	1.20	1.47	1.22	0.697	1.12
Cobalt	μg/L	0.0400 J	0.475	0.155	0.143	0.290	0.167	0.160	0.343	0.419	0.521	0.0970	0.164	0.105	0.154
Combined Radium	pCi/L	0.261	0.613	0.526	0.759	1.01	0.997	1.45	0.952	0.295	1.49	0.559	1.44	0.410	0.333
Fluoride	mg/L	0.170	0.150	0.0300 J	0.0300	0.0500 J	0.0400	0.0700	0.0800	0.0800	0.0900	0.130	0.150	0.100	0.110
Lead	μg/L	0.100 U	0.200 U	0.0400 J	0.200 U	0.234	0.100	0.100 U	0.239	0.336	0.200	0.0500 J	0.0800	0.0700 J	0.0700
Lithium	mg/L	0.0300 U	0.00448	0.0100 J	0.00534	0.0300 U	0.00873	0.0100 J	0.00814	0.0300 U	0.00485	0.0200 J	0.00911	0.0200 J	0.00862
Mercury	mg/L	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00300 J	0.00300	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U
Molybdenum	μg/L	2.00 U	2.00 U	0.700 J	2.00 U	0.400 J	2.00	0.400 J	2.00 U	2.00 U	0.600	2.00 U	2.00 U	2.00 U	2.00 U
Selenium	μg/L	0.700	0.0500	0.400	0.100	0.0400 J	0.0400	0.0400 J	0.0800	0.200	0.300	0.200	0.300	0.200 J	0.200
Total Dissolved Solids	mg/L	829	801	1450	1480	1370	1330	1340	1360	988	991	1410	1420	1430	1360
Sulfate	mg/L	261	242	404	455	335	354	349	369	285	309	432	468	469	483
Thallium	μg/L	0.500 U	0.500 U												
pH	SU	7.60	7.30	7.70	7.20	7.80	7.40	7.80	7.40	7.10	7.30	7.80	7.30	6.90	7.20

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Parameter was not present in concentrations above the method detection limit and is reported as the reporting limit

J: Estimated value. Parameter was detected in concentrations below the reporting limit

Table 2: Groundwater Protection StandardsMitchell Plant - Bottom Ash Pond

Constituent Name	MCL	CCR Rule-Specified	Background Limit	GWPS
Antimony, Total (mg/L)	0.006		0.00005	0.006
Arsenic, Total (mg/L)	0.01		0.0019	0.01
Barium, Total (mg/L)	2		0.056	2
Beryllium, Total (mg/L)	0.004		0.00006	0.004
Cadmium, Total (mg/L)	0.005		0.00009	0.005
Chromium, Total (mg/L)	0.1		0.0021	0.1
Cobalt, Total (mg/L)	n/a	0.006	0.0032	0.006
Combined Radium, Total (pCi/L)	5		2.16	5
Fluoride, Total (mg/L)	4		0.25	4
Lead, Total (mg/L)	0.015		0.0034	0.015
Lithium, Total (mg/L)	n/a	0.04	0.014	0.04
Mercury, Total (mg/L)	0.002		0.000008	0.002
Molybdenum, Total (mg/L)	n/a	0.1	0.0017	0.1
Selenium, Total (mg/L)	0.05		0.0009	0.05
Thallium, Total (mg/L)	0.002		0.0002	0.002

Notes:

Grey cell indicates calculated UTL is higher than MCL.

MCL = Maximum Contaminant Level

RSL = Regional Screening Level

GWPS = Groundwater Protection Standard

Calculated UTL (Upper Tolerance Limit) represents site-specific background values.

The higher of the calculated UTL or MCL/Rule-Specified Level is used as the GWPS.
Parameter	Units	Limit Type	MW-1504	MW-1505	MW-1506	MW-1507	MW-1508	MW-1509	MW-1510				
Boron	mg/L	UPL				1.36							
Calcium	mg/L	UPL	242										
Chloride	mg/L	UPL	238										
Fluoride	mg/L	UPL	0.275	0.03	0.1	0.09	0.1	0.17	0.1				
pН	SU	UPL				8.2							
pН	SU	LPL				6.9							
Sulfate	mg/L	UPL	461.7	408	369	373	325	489	497				
Total Dissolved Solids	mg/L	UPL				1194							

Notes:

UPL: Upper prediction limit

LPL: Lower prediction limit

Table 4: Appendix III Data SummaryMitchell Plant - Bottom Ash Pond

Parameter	Units	Description	MW	-1505	MW	-1506	MW-	1507	MW-	1509	MW-	-1510
i urumeter	Omts	Description	6/11/2019	10/22/2019	6/11/2019	10/22/2019	6/11/2019	10/22/2019	6/11/2019	10/22/2019	6/11/2019	10/22/2019
Poron	ma/I	Interwell Background Value (UPL)					1.	36				
DOIOII	iiig/L	Detection Monitoring Result	7.79	7.37	5.27	4.49	8.41	8.39	8.37	8.02	8.50	9.30
Calaium	ma/I	Interwell Background Value (UPL)					24	42				
Calciulii	iiig/L	Detection Monitoring Result	279	285	265	293	257	273	273	273	266	259
Chlorida	ma/I	Interwell Background Value (UPL)					23	38				
Chioride	iiig/L	Detection Monitoring Result	261	260	315	364	279	295	311	297	293	283
Eluorido	ma/I	Intrawell Background Value (UPL)	0.	03	0.	10	0.	09	0.	17	0.	10
Tuonde	mg/L	Detection Monitoring Result	0.03 J	0.03 J	0.05 J	0.04 J	0.07	0.08	0.13	0.15	0.10	0.11
		Interwell Background Value (UPL)					8	.2				
pН	SU	Interwell Background Value (LPL)					6	.9				
		Detection Monitoring Result	7.7	7.2	7.8	7.4	7.8	7.4	7.8	7.3	6.9	7.2
Sulfate	ma/I	Intrawell Background Value (UPL)	40	08	3	69	31	73	48	89	49	97
Sullate	iiig/L	Detection Monitoring Result	404	455	335	354	349	369	432	468	469	483
Total Dissolved Solids	ma/I	Interwell Background Value (UPL)					11	1194				
	iiig/L	Detection Monitoring Result	1450	1480	1370	1330	1340	1360	1410	1420	1430	1360

Notes:

UPL: Upper prediction limit

LPL: Lower prediction limit

Bold values exceed the background value.

Background values are shaded gray.

ATTACHMENT A Certification by Qualified Professional Engineer

Certification by Qualified Professional Engineer

I certify that the selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Mitchell Bottom Ash Pond CCR management area and that the requirements of 40 CFR 257.93(f) have been met.

AVID ANTHONY MILLER

Printed Name of Licensed Professional Engineer

aird Anthony Miller ture Signature

THOA 2266 TATE O

22663

WESTVIRGINIA

License Number

Licensing State

02.18.2020 Date

ATTACHMENT B Statistical Analysis Output

GROUNDWATER STATS CONSULTING

January 10, 2020

Geosyntec Consultants Attn: Ms. Allison Kreinberg 941 Chatham Lane, #103 Columbus, OH 43221

RE: Mitchell Bottom Ash Pond (BAP) – Background Update & Assessment Report 2019

Dear Ms. Kreinberg,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the background update and evaluation of groundwater data for the Fall 2019 sample event for American Electric Power Company's Mitchell Bottom Ash Pond. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the USEPA Unified Guidance (2009).

Sampling at each of the wells below began at Mitchell Bottom Ash Pond for the CCR program in 2016. The monitoring well network, as provided by Geosyntec Consultants, consists of the following: upgradient wells MW-1504 and MW-1508; and downgradient wells MW-1505, MW-1506, MW-1507, MW-1509 and MW-1510.

Data were sent electronically, and the statistical analysis was conducted according to the Statistical Analysis Plan and screening evaluation prepared by GSC and approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC.

The CCR program consists of the following constituents:

• **Appendix III** (Detection Monitoring) - boron, calcium, chloride, fluoride, pH, sulfate, and TDS; and

 Appendix IV (Assessment Monitoring) – antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium.

Time series graphs and box plots for Appendix III and IV parameters are provided for all wells and constituents; and are used to evaluate concentrations over the entire record as well as view variation within and across wells (Figures A and B). All data were initially screened for outliers and trends in December 2017. As a result of that screening, the statistical methods implemented at this site are listed below:

Summary of Statistical Method:

- 1) Intrawell prediction limits, combined with a 1-of-2 resample plan for fluoride and sulfate; and
- 2) Interwell prediction limits combined with a 1-of-2 resample plan for boron, calcium, chloride, pH, and TDS.

Parametric prediction limits are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are nondetects, a nonparametric test is utilized. The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. After testing for normality and performing any adjustments as discussed below (US EPA, 2009), data are analyzed using either parametric or non-parametric prediction limits.

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% nondetects in background, simple substitution of onehalf the reporting limit is utilized in the statistical analysis. The reporting limit utilized for nondetects is the practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% nondetects, the Kaplan-Meier nondetect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% nondetects.

Background Update – Appendix III Parameters – December 2019

Prior to updating background data, samples were re-evaluated for all wells for intrawell parameters and all upgradient wells for interwell parameters using Tukey's outlier test and visual screening with the May 2019 samples (Figure C). When values are identified as outliers, they are flagged in the database with "o" and are deselected prior to construction of statistical limits. Tukey's test identified a few new outliers during this screening, however, none of these values appeared to be in error or significantly different enough to warrant flagging. While Tukey's test did not identify the highest values for chromium and molybdenum in wells MW-1505 and MW-1510 (as a result of the natural log transformation), these values were significantly higher than the remaining measurements at these wells and did not appear to represent the populations at these wells. These values were flagged in the database. A list of all flagged outliers follows this letter. Additionally, flagged data are displayed in a lighter font and as a disconnected symbol on the time series reports, as well as in a lighter font on the accompanying data pages.

For constituents requiring intrawell prediction limits, the Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through July 2017 to the new compliance samples at each well through May 2019 to evaluate whether the groups are statistically different at the 99% confidence level, in which case background data may be updated with compliance data (Figure D). Two statistically significant differences were noted which included sulfate at wells MW_1506 and MW1509.

Typically, when the test concludes that the medians of the two groups are significantly different, particularly in the downgradient wells, the background are not updated to include the newer data but will be reconsidered in the future. However, in both cases while the medians were slightly different, the recent reported measurements are similar to historical measurements and, therefore, were updated at this time along with all other records. A summary of these results follows this letter and the test results are included with the Mann Whitney test section at the end of this report.

Intrawell prediction limits using all historical data through May 2019, combined with a 1-of-2 resample plan, were constructed for fluoride and sulfate (Figure E).

For parameters tested using interwell analyses, the Sen's Slope/Mann-Kendall trend test was used on upgradient wells to determine whether concentrations are statistically increasing, decreasing or stable (Figure F). No statistically significant increasing or decreasing trends were noted except for: chloride decreasing in upgradient well MW-1508 and pH increasing in upgradient well MW-1504.

The magnitude of these trends, however, is low relative to the average concentrations in these wells. Therefore, no adjustments were required at this time. A summary of these results is included with the trend tests.

Interwell prediction limits, combined with a 1-of-2 resample plan, were updated using all available data from upgradient wells through May 2019 for boron, calcium, chloride, pH, and TDS (Figure G). Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. A summary table of the updated limits may be found following this letter in the Prediction Limit Summary Tables.

Evaluation of Appendix IV Parameters

Tolerance limits were used to calculate background limits from all available pooled upgradient well data for Appendix IV parameters with a target of 95% confidence and 95% coverage to determine the background level for each constituent (Figure H). Background data are screened for outliers and extreme trending patterns that would lead to artificially elevated statistical limits. Any flagged values may be seen on the Outlier Summary following this letter.

For parametric limits the target is 95% confidence and 95% coverage. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. These limits were compared to the Maximum Contaminant Levels (MCLs) and CCR-Rule specified levels in the Groundwater Protection Standards (GWPS) table following this letter to determine the highest limit for use as the GWPS in the Confidence Interval comparisons (Figure I).

Confidence intervals were then constructed on downgradient wells for each of the Appendix IV parameters using the highest limit of the MCL, CCR-Rule specified levels, or background as discussed above (Figure J). Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard. No exceedances were noted at any of the downgradient wells. A summary of the confidence interval results follows this letter.

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Mitchell Bottom Ash Pond. If you have any questions or comments, please feel free to contact me.

For Groundwater Stats Consulting,

Easton Rayner Groundwater Analyst

Kristina Rayner

Kristina L. Rayner Groundwater Statistician

Sanitas[™] v.9.6.24 . UG Hollow symbols indicate censored values

Time Series

Constituent: Antimony, total Analysis Run 12/27/2019 9:59 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Time Series

Constituent: Arsenic, total Analysis Run 12/27/2019 9:59 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Barium, total Analysis Run 12/27/2019 9:59 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Beryllium, total Analysis Run 12/27/2019 9:59 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Time Series

Sanitas[™] v.9.6.24 . UG

Constituent: Calcium, total Analysis Run 12/27/2019 9:59 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Time Series

Constituent: Chloride, total Analysis Run 12/27/2019 9:59 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Cadmium, total Analysis Run 12/27/2019 9:59 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Time Series

Constituent: Cobalt, total Analysis Run 12/27/2019 9:59 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Combined Radium 226 + 228 Analysis Run 12/27/2019 9:59 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP Sanitas[™] v.9.6.24 . UG Hollow symbols indicate censored values.

Time Series

Constituent: Fluoride, total Analysis Run 12/27/2019 9:59 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP Sanitas[™] v.9.6.24 . UG Hollow symbols indicate censored values

Constituent: Lead, total Analysis Run 12/27/2019 9:59 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG Hollow symbols indicate censored values.

Time Series

Constituent: Lithium, total Analysis Run 12/27/2019 9:59 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG Hollow symbols indicate censored values

Constituent: Mercury, total Analysis Run 12/27/2019 9:59 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Molybdenum, total Analysis Run 12/27/2019 9:59 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Time Series

Constituent: Selenium, total Analysis Run 12/27/2019 9:59 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Sulfate, total Analysis Run 12/27/2019 9:59 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Hollow symbols indicate censored values.

Sanitas™ v.9.6.24 . UG

Constituent: Thallium, total Analysis Run 12/27/2019 9:59 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/27/2019 9:59 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Box & Whiskers Plot

Constituent: Antimony, total Analysis Run 12/27/2019 10:00 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Box & Whiskers Plot

Constituent: Arsenic, total Analysis Run 12/27/2019 10:00 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Barium, total Analysis Run 12/27/2019 10:00 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Beryllium, total Analysis Run 12/27/2019 10:00 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Box & Whiskers Plot

Box & Whiskers Plot

Constituent: Cadmium, total Analysis Run 12/27/2019 10:00 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Box & Whiskers Plot

Constituent: Calcium, total Analysis Run 12/27/2019 10:01 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Box & Whiskers Plot

Constituent: Chloride, total Analysis Run 12/27/2019 10:01 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Box & Whiskers Plot

Constituent: Chromium, total Analysis Run 12/27/2019 10:01 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Box & Whiskers Plot

Constituent: Cobalt, total Analysis Run 12/27/2019 10:01 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Combined Radium 226 + 228 Analysis Run 12/27/2019 10:01 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.24 . UG

Box & Whiskers Plot

Constituent: Fluoride, total Analysis Run 12/27/2019 10:01 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Box & Whiskers Plot

Constituent: Lead, total Analysis Run 12/27/2019 10:01 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Box & Whiskers Plot

Constituent: Lithium, total Analysis Run 12/27/2019 10:01 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Mercury, total Analysis Run 12/27/2019 10:01 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Box & Whiskers Plot

Constituent: Molybdenum, total Analysis Run 12/27/2019 10:01 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Box & Whiskers Plot

Constituent: pH, field Analysis Run 12/27/2019 10:01 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Box & Whiskers Plot

Constituent: Selenium, total Analysis Run 12/27/2019 10:01 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Sulfate, total Analysis Run 12/27/2019 10:01 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Thallium, total Analysis Run 12/27/2019 10:01 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/27/2019 10:01 AM View: All Data Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Outlier Summary

Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 12/27/2019, 9:57 AM

MW_1505 Chromium, total (mg/L) MW_1505 Chromium, total (mg/L) MW_1510 Chromium, total (mg/L) MW_1507 Combined Radium 226 + 228 (pCi/L) MW_1510 Combined Radium 226 + 228 (pCi/L) MW_1510 Combined Radium 226 + 228 (pCi/L) MW_1510 Solution (mg/L) MW_1510 Molybdenum, total (mg/L) MW_1505 Molybdenum, total (mg/L)

6/14/2016	0.0332 (o)						
9/26/2016						0.00735 (o)	
2/8/2017			16.587 (o)	12.465 (o)	6.828 (o)		
4/12/2018		0.0274 (o)					0.0033 (o)

Interwell Outlier Analysis - Significant Results

Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 12/23/2019, 12:35 PM

Constituent	Well	Outlier	Value(s)	Date(s)	Method	<u>Alpha</u>	<u>N</u>	Mean	Std. Dev.	Distribution	Normality Test
pH, field (SU)	MW_1504,M	Yes	8.01,8.18	n/a w/com	NP	NaN	28	7.201	0.2947	ln(x)	ShapiroWilk

Interwell Outlier Analysis - All Results

Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 12/23/2019, 12:35 PM

Constituent	Well	<u>Outlier</u>	Value(s)	Date(s)	Method	<u>Alpha</u>	<u>N</u>	Mean	Std. Dev.	Distribution	Normality Test
Boron, total (mg/L)	MW_1504,M	. No	n/a	n/a w/com	NP	NaN	28	0.4722	0.4236	ln(x)	ShapiroWilk
Calcium, total (mg/L)	MW_1504,M	. No	n/a	n/a w/com	NP	NaN	28	218.3	12.15	x^6	ShapiroWilk
Chloride, total (mg/L)	MW_1504,M	. No	n/a	n/a w/com	NP	NaN	28	148.9	61.33	ln(x)	ShapiroWilk
pH, field (SU)	MW_1504,M	Yes	8.01,8.18	n/a w/com	NP	NaN	28	7.201	0.2947	ln(x)	ShapiroWilk
Total Dissolved Solids [TDS] (m	MW_1504,M	. No	n/a	n/a w/com	NP	NaN	28	1002	98.35	x^2	ShapiroWilk

Constituent: Boron, total Analysis Run 12/23/2019 12:33 PM View: Interwell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Calcium, total Analysis Run 12/23/2019 12:33 PM View: Interwell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Chloride, total Analysis Run 12/23/2019 12:33 PM View: Interwell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: pH, field Analysis Run 12/23/2019 12:34 PM View: Interwell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

n = 28

Outliers are drawn as solid. Tukey's method select-

ed by user. Data were natural log

transformed to achieve best W statistic (graph shown in original units).

High cutoff = 7.868, low cutoff = 6.501, based on IQR multiplier of 3.

Tukey's Outlier Screening, Pooled Background

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/23/2019 12:34 PM View: Interwell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

No outliers found. Tukey's method select-ed by user.

Intrawell Outlier Analysis - All Results (No Significant)

Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 12/23/2019, 12:37 PM

Constituent	Well	<u>Outlier</u>	Value(s)	Date(s)	Method	<u>Alpha</u>	<u>N</u>	Mean	Std. Dev.	Distribution	Normality Test
Fluoride, total (mg/L)	MW_1504 (bg	I) No	n/a	n/a	NP	NaN	14	0.2007	0.03293	x^2	ShapiroWilk
Fluoride, total (mg/L)	MW_1505	n/a	n/a	n/a	NP	NaN	14	0.07929	0.03407	unknown	ShapiroWilk
Fluoride, total (mg/L)	MW_1506	No	n/a	n/a	NP	NaN	14	0.07929	0.02674	x^(1/3)	ShapiroWilk
Fluoride, total (mg/L)	MW_1507	No	n/a	n/a	NP	NaN	14	0.06571	0.01284	ln(x)	ShapiroWilk
Fluoride, total (mg/L)	MW_1508 (bg	I) No	n/a	n/a	NP	NaN	14	0.08286	0.01139	sqrt(x)	ShapiroWilk
Fluoride, total (mg/L)	MW_1509	No	n/a	n/a	NP	NaN	14	0.1264	0.0253	x^4	ShapiroWilk
Fluoride, total (mg/L)	MW_1510	No	n/a	n/a	NP	NaN	14	0.07786	0.02359	ln(x)	ShapiroWilk
Sulfate, total (mg/L)	MW_1504 (bg	I) No	n/a	n/a	NP	NaN	14	345.7	54.46	x^6	ShapiroWilk
Sulfate, total (mg/L)	MW_1505	No	n/a	n/a	NP	NaN	14	353.6	46.87	ln(x)	ShapiroWilk
Sulfate, total (mg/L)	MW_1506	No	n/a	n/a	NP	NaN	14	321.6	22.88	sqrt(x)	ShapiroWilk
Sulfate, total (mg/L)	MW_1507	No	n/a	n/a	NP	NaN	14	327.1	24.02	x^3	ShapiroWilk
Sulfate, total (mg/L)	MW_1508 (bg	I) No	n/a	n/a	NP	NaN	14	302.3	10.15	x^2	ShapiroWilk
Sulfate, total (mg/L)	MW_1509	No	n/a	n/a	NP	NaN	14	426.4	30.14	ln(x)	ShapiroWilk
Sulfate, total (mg/L)	MW_1510	No	n/a	n/a	NP	NaN	14	376.3	62.34	ln(x)	ShapiroWilk

Constituent: Fluoride, total Analysis Run 12/23/2019 12:36 PM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Fluoride, total Analysis Run 12/23/2019 12:36 PM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Fluoride, total Analysis Run 12/23/2019 12:36 PM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

n = 14

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.1112, low cutoff = 0.03778, based on IQR multiplier of 3.

Constituent: Fluoride, total Analysis Run 12/23/2019 12:36 PM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

No outliers found. Tukey's method selected by user.

n = 14

Data were x⁴ transform-ed to achieve best W statistic (graph shown in original units).

High cutoff = 0.2038, low cutoff = -0.1829, based on IQR multiplier of 3.

Sanitas[™] v.9.6.24 . UG

Constituent: Fluoride, total Analysis Run 12/23/2019 12:36 PM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Sulfate, total Analysis Run 12/23/2019 12:36 PM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

n = 14

No outliers found. Tukey's method selected by user.

Data were square root transformed to achieve best W statistic (graph shown in original units).

High cutoff = 512.4. low cutoff = 176.4, based on IQR multiplier of 3.

Sanitas[™] v.9.6.24 . UG

Constituent: Sulfate, total Analysis Run 12/23/2019 12:36 PM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.24 . UG

2/19/19

10/22/19

Constituent: Sulfate, total Analysis Run 12/23/2019 12:36 PM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 1231, low cutoff = 115.8, based on IQR multiplier of 3.

Appendix IV Outlier Analysis - Significant Results Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 12/23/2019, 12:44 PM

		M	Itchell BAP	Client: Geosynte	Data: Mitchell BAP	Printed 12/23/2	2019, 12	::44 PM			
Constituent	Well	<u>Outlier</u>	Value(s)	Date(s)	Method	Alpha	N	<u>Mean</u>	Std. Dev.	Distribution	Normality Test
Mercury, total (mg/L)	MW_1504,M	. Yes	0.000008	n/a w/com	NP	NaN	26	0.000	0.0000	ln(x)	ShapiroWilk

Appendix IV Outlier Analysis - Significant Results Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 12/23/2019, 12:44 PM

Constituent	Well	Outlier	Value(s)	Date(s)	Method	Alpha	N	Mean	Std. Dev.	Distribution	Normality Test
Antimony total (mg/L)	MW 1504 M	No	n/a	n/a w/com	NP	NaN		0.000	0.0000	x^(1/3)	ShapiroWilk
	MW 1504 M	No	n/a	n/a w/com	NP	NoN	26	0.000	0.0004041	In(x)	ShapiroWilk
	10100_1504,101	. NO	11/a	n/a w/com	NP	INAIN	20	0.000	0.0004041	III(X)	
Barium, total (mg/L)	MVV_1504,M	. No	n/a	n/a w/com	NP	NaN	26	0.04149	0.006228	ln(x)	ShapiroWilk
Beryllium, total (mg/L)	MW_1504,M	. n/a	n/a	n/a w/com	NP	NaN	26	0.000	0.0000	unknown	ShapiroWilk
Cadmium, total (mg/L)	MW_1504,M	. No	n/a	n/a w/com	NP	NaN	26	0.000	0.0000	ln(x)	ShapiroWilk
Chromium, total (mg/L)	MW_1504,M	. No	n/a	n/a w/com	NP	NaN	26	0.000	0.0005801	x^(1/3)	ShapiroWilk
Cobalt, total (mg/L)	MW_1504,M	. No	n/a	n/a w/com	NP	NaN	26	0.000	0.0008375	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW 1504,M	. No	n/a	n/a w/com	NP	NaN	25	0.6592	0.5945	ln(x)	ShapiroWilk
Eluoride total (mg/L)	MW 1504 M	No	n/a	n/a w/com	NP	NaN	28	0 1418	0.0647	ln(x)	ShaniroWilk
	MW 1504 M	No	n/a		ND	NoN	20	0.000	0.0006720		ShapiroWilk
Lead, total (IIIg/L)	10100_1504,101	. NO	11/a	n/a w/com		INAIN	20	0.000	0.0000739	(X)	Shapirovvik
Lithium, total (mg/L)	MW_1504,M	. No	n/a	n/a w/com	NP	NaN	26	0.00809	0.004519	normal	ShapiroWilk
Mercury, total (mg/L)	MW_1504,M	Yes	0.000008	n/a w/com	NP	NaN	26	0.000	0.0000	ln(x)	ShapiroWilk
Molybdenum, total (mg/L)	MW_1504,M	. No	n/a	n/a w/com	NP	NaN	26	0.000	0.0004126	ln(x)	ShapiroWilk
Selenium, total (mg/L)	MW_1504,M	. No	n/a	n/a w/com	NP	NaN	26	0.000	0.0003154	x^(1/3)	ShapiroWilk
Thallium, total (mg/L)	MW 1504,M	. No	n/a	n/a w/com	NP	NaN	26	0.000	0.0000	ln(x)	ShapiroWilk
Antimony total (mg/L)	 MW_1505	No	n/a	n/a	NP	NaN	13	0.000	0 0000	$\ln(\mathbf{x})$	ShaniroWilk
Antimony, total (mg/L)	MW 1506	No	n/a	n/a	ND	NoN	10	0.000	0.0000		ShapiroWilk
Antimony, total (mg/L)	10100_1506	NO	11/a	11/a		INAIN	13	0.000	0.0000	III(X)	Shapirovvik
Antimony, total (mg/L)	MW_1507	No	n/a	n/a	NP	NaN	13	0.000	0.0000	normal	ShapiroWilk
Antimony, total (mg/L)	MW_1509	n/a	n/a	n/a	NP	NaN	13	0.000	0.0000175	unknown	ShapiroWilk
Antimony, total (mg/L)	MW_1510	No	n/a	n/a	NP	NaN	13	0.000	0.0000	normal	ShapiroWilk
Arsenic, total (mg/L)	MW_1505	No	n/a	n/a	NP	NaN	13	0.00099	0.0009835	ln(x)	ShapiroWilk
Arsenic, total (mg/L)	MW 1506	No	n/a	n/a	NP	NaN	13	0.000	0.0003885	ln(x)	ShapiroWilk
Arsenic total (mg/L)	MW 1507	No	n/a	n/a	NP	NaN	13	0.001845	0.001///2	x^(1/3)	ShapiroWilk
	1007		1/4	1/4			10	0.001040	0.001442	x (1/3)	
Arsenic, total (mg/L)	MVV_1509	NO	n/a	n/a	NP	NaN	13	0.000	0.0001218	in(x)	Snapirovviik
Arsenic, total (mg/L)	MW_1510	No	n/a	n/a	NP	NaN	13	0.000	0.0001504	x^(1/3)	ShapiroWilk
Barium, total (mg/L)	MW_1505	No	n/a	n/a	NP	NaN	13	0.05242	0.009996	ln(x)	ShapiroWilk
Barium, total (mg/L)	MW_1506	No	n/a	n/a	NP	NaN	13	0.05828	0.006931	ln(x)	ShapiroWilk
Barium, total (mg/L)	MW_1507	No	n/a	n/a	NP	NaN	13	0.07286	0.0177	ln(x)	ShapiroWilk
Barium, total (mg/L)	 MW_1509	No	n/a	n/a	NP	NaN	13	0.05705	0.006493	x^5	ShapiroWilk
Barium total (mg/L)	 MW 1510	No	n/a	n/a	NP	NaN	13	0.04320	0.003881	$\ln(\mathbf{x})$	' ShaniroWilk
	MW 4505		n/a	n/a	ND	NUN	10	0.04525	0.000001		Chapiro Wilk
Beryilium, total (mg/L)	10100_1505	n/a	n/a	n/a	NP	inain	13	0.000	0.0000402	unknown	Snapirovviik
Beryllium, total (mg/L)	MW_1506	No	n/a	n/a	NP	NaN	13	0.000	0.0000	x^(1/3)	ShapiroWilk
Beryllium, total (mg/L)	MW_1507	No	n/a	n/a	NP	NaN	13	0.000	0.0000	x^(1/3)	ShapiroWilk
Beryllium, total (mg/L)	MW_1509	No	n/a	n/a	NP	NaN	13	0.000	0.0000179	ln(x)	ShapiroWilk
Beryllium, total (mg/L)	MW 1510	No	n/a	n/a	NP	NaN	13	0.000	0.0000	ln(x)	ShapiroWilk
Cadmium total (mg/l)	 MW_1505	n/a	n/a	n/a	NP	NaN	13	0 00003	0 0000	unknown	ShapiroWilk
Cadmium, total (mg/L)	MW 1506	No	n/a	n/a	NP	NoN	12	0.000	0.0000	xA(1/2)	ShapiroWilk
	1000	NU	11/a	11/a			10	0.000	0.0000	x (1/3)	
Cadmium, total (mg/L)	MVV_1507	NO	n/a	n/a	NP	NaN	13	0.000	0.0000	in(x)	Snapirovviik
Cadmium, total (mg/L)	MW_1509	No	n/a	n/a	NP	NaN	13	0.000016	0.0000	x^(1/3)	ShapiroWilk
Cadmium, total (mg/L)	MW_1510	No	n/a	n/a	NP	NaN	13	0.000	0.0000	ln(x)	ShapiroWilk
Chromium, total (mg/L)	MW_1505	No	n/a	n/a	NP	NaN	13	0.00642	0.008958	ln(x)	ShapiroWilk
Chromium, total (mg/L)	MW 1506	No	n/a	n/a	NP	NaN	13	0.001926	0.001265	ln(x)	ShapiroWilk
Chromium total (mg/l)		No	n/a	n/a	NP	NaN	13	0.009103	0 006975	sart(x)	ShapiroWilk
Chromium total (mg/L)	MW 1500	No	n/o	n/o	NP	NoN	12	0.001/11	0.001142		ShapiroWilk
	10100_1509	NO NO	11/a	11/a			15	0.001411	0.001142	III(X)	Shapirovvik
Chromium, total (mg/L)	MVV_1510	No	n/a	n/a	NP	NaN	13	0.003849	0.007334	ln(x)	ShapiroWilk
Cobalt, total (mg/L)	MW_1505	No	n/a	n/a	NP	NaN	13	0.000	0.0007459	ln(x)	ShapiroWilk
Cobalt, total (mg/L)	MW_1506	No	n/a	n/a	NP	NaN	13	0.000	0.0003431	sqrt(x)	ShapiroWilk
Cobalt, total (mg/L)	MW_1507	No	n/a	n/a	NP	NaN	13	0.001842	0.001481	x^(1/3)	ShapiroWilk
Cobalt, total (mg/L)	MW 1509	No	n/a	n/a	NP	NaN	13	0.000	0.0001376	ln(x)	ShapiroWilk
Cobalt_total (mg/l)	 MW_1510	No	n/a	n/a	NP	NaN	13	0.000	0 0000	sart(x)	ShapiroWilk
Combined Radium 226 \pm 228 (pCi/l)	MW 1505	No	n/a	n/a	NP	NoN	12	0.7765	0.2542	×A(1/2)	ShapiroWilk
	10100_1505	NO NI	11/a	11/a		INAIN	13	0.7705	0.3342	x·(1/3)	Shapirovvik
Combined Radium 226 + 228 (pCi/L)	MVV_1506	No	n/a	n/a	NP	NaN	13	0.8521	0.5928	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW_1507	No	n/a	n/a	NP	NaN	12	1.169	0.5828	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW_1509	No	n/a	n/a	NP	NaN	13	0.9842	0.6713	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	MW_1510	No	n/a	n/a	NP	NaN	12	0.6986	0.4356	sqrt(x)	ShapiroWilk
Fluoride, total (mg/L)	MW 1505	n/a	n/a	n/a	NP	NaN	14	0.07929	0.03407	unknown	ShapiroWilk
Fluoride total (mg/l.)		No	n/a	n/a	NP	NaN	14	0 07020	0.02674	x^(1/3)	ShapiroWilk
	MAL 4507	No	n/a	n/a	ND	NoN	14	0.00574	0.04004		Chapito Wilk
	10100_1507	NO	11/a	11/a		NaN	14	0.065/1	0.01284	ш1(X)	SnapirovVilk
⊢luoride, total (mg/L)	MW_1509	No	n/a	n/a	NP	NaN	14	0.1264	0.0253	x^4	ShapiroWilk
Fluoride, total (mg/L)	MW_1510	No	n/a	n/a	NP	NaN	14	0.07786	0.02359	ln(x)	ShapiroWilk
Lead, total (mg/L)	MW_1505	No	n/a	n/a	NP	NaN	13	0.000	0.001057	ln(x)	ShapiroWilk
Lead, total (mg/L)	MW_1506	No	n/a	n/a	NP	NaN	13	0.000	0.0003173	x^(1/3)	ShapiroWilk
Lead. total (mg/L)	MW 1507	No	n/a	n/a	NP	NaN	13	0.001746	0.001597	x^(1/3)	ShapiroWilk
	MW 1500	No	n/a	n/a	NP	NaN	12	0.000	0.0000	()	ShapiroWill
	1009		n/a	n/a		NaN	10	0.000	0.0000	III(X)	
Lead, total (mg/L)	MW_1510	No	n/a	n/a	NP	NaN	13	0.000152	0.0000	In(x)	ShapiroWilk
Lithium, total (mg/L)	MW_1505	No	n/a	n/a	NP	NaN	13	0.009334	0.003674	ln(x)	ShapiroWilk
Lithium, total (mg/L)	MW_1506	No	n/a	n/a	NP	NaN	13	0.01252	0.004054	sqrt(x)	ShapiroWilk
Lithium, total (mg/L)	MW_1507	No	n/a	n/a	NP	NaN	13	0.0144	0.004737	ln(x)	ShapiroWilk
										· /	

Appendix IV Outlier Analysis - Significant Results Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 12/23/2019, 12:44 PM

Constituent	Well	Outlier	Value(s)	Date(s)	Method	<u>Alpha</u>	<u>N</u>	Mean	Std. Dev.	Distribution	Normality Test
Lithium, total (mg/L)	MW_1509	No	n/a	n/a	NP	NaN	13	0.01331	0.005495	normal	ShapiroWilk
Lithium, total (mg/L)	MW_1510	No	n/a	n/a	NP	NaN	13	0.01159	0.004465	normal	ShapiroWilk
Mercury, total (mg/L)	MW_1505	n/a	n/a	n/a	NP	NaN	13	0.000	0.0000	unknown	ShapiroWilk
Mercury, total (mg/L)	MW_1506	No	n/a	n/a	NP	NaN	13	0.000	5.4e-7	ln(x)	ShapiroWilk
Mercury, total (mg/L)	MW_1507	No	n/a	n/a	NP	NaN	13	0.000	0.0000	ln(x)	ShapiroWilk
Mercury, total (mg/L)	MW_1509	n/a	n/a	n/a	NP	NaN	13	0.000	1.9e-7	unknown	ShapiroWilk
Mercury, total (mg/L)	MW_1510	n/a	n/a	n/a	NP	NaN	13	0.000	1.4e-7	unknown	ShapiroWilk
Molybdenum, total (mg/L)	MW_1505	No	n/a	n/a	NP	NaN	13	0.00167	3 0.001815	ln(x)	ShapiroWilk
Molybdenum, total (mg/L)	MW_1506	No	n/a	n/a	NP	NaN	13	0.000	0.0005515	ō ln(x)	ShapiroWilk
Molybdenum, total (mg/L)	MW_1507	No	n/a	n/a	NP	NaN	13	0.00303	8 0.003355	ln(x)	ShapiroWilk
Molybdenum, total (mg/L)	MW_1509	No	n/a	n/a	NP	NaN	13	0.000	0.0003284	l sqrt(x)	ShapiroWilk
Molybdenum, total (mg/L)	MW_1510	No	n/a	n/a	NP	NaN	13	0.000	0.000794	ln(x)	ShapiroWilk
Selenium, total (mg/L)	MW_1505	No	n/a	n/a	NP	NaN	13	0.000	0.000266	sqrt(x)	ShapiroWilk
Selenium, total (mg/L)	MW_1506	No	n/a	n/a	NP	NaN	13	0.000	0.0000	ln(x)	ShapiroWilk
Selenium, total (mg/L)	MW_1507	No	n/a	n/a	NP	NaN	13	0.000	0.0002139	9 x^(1/3)	ShapiroWilk
Selenium, total (mg/L)	MW_1509	No	n/a	n/a	NP	NaN	13	0.000	0.0000	normal	ShapiroWilk
Selenium, total (mg/L)	MW_1510	No	n/a	n/a	NP	NaN	13	0.000	0.0000563	3 In(x)	ShapiroWilk
Thallium, total (mg/L)	MW_1505	No	n/a	n/a	NP	NaN	12	0.000	0.0000	ln(x)	ShapiroWilk
Thallium, total (mg/L)	MW_1506	No	n/a	n/a	NP	NaN	13	0.000	0.0000	ln(x)	ShapiroWilk
Thallium, total (mg/L)	MW_1507	No	n/a	n/a	NP	NaN	13	0.000	0.0000	ln(x)	ShapiroWilk
Thallium, total (mg/L)	MW_1509	No	n/a	n/a	NP	NaN	13	0.000	0.0000	ln(x)	ShapiroWilk
Thallium, total (mg/L)	MW_1510	No	n/a	n/a	NP	NaN	13	0.000	0.0000	ln(x)	ShapiroWilk

Constituent: Arsenic, total Analysis Run 12/23/2019 12:39 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Barium, total Analysis Run 12/23/2019 12:39 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

High cutoff = 0.02822low cutoff = 0.00001333, based on IQR multiplier of 3.

n = 26 No outliers found. Tukey's method select-

ed by user. Data were square transformed to achieve best

W statistic (graph shown in original units).

The results were invalidated, because both the lower and upper quartiles represent reporting limits.

Constituent: Beryllium, total Analysis Run 12/23/2019 12:39 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Chromium, total Analysis Run 12/23/2019 12:39 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.24 . UG

Constituent: Cobalt, total Analysis Run 12/23/2019 12:39 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

n = 25

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 9.364, low cutoff = 0.02336, based on IQR multiplier of 3.

Constituent: Combined Radium 226 + 228 Analysis Run 12/23/2019 12:39 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

MW_1504,MW_1508 \diamond \diamond \diamond \diamond 0 \diamond \diamond

6/18/18

2/18/19

10/22/19

10/16/17

n = 26

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 27.03. low cutoff = 2.1e-9, based on IQR multiplier of 3.

Sanitas[™] v.9.6.24 . UG

Constituent: Lithium, total Analysis Run 12/23/2019 12:39 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.24 . UG

Constituent: Mercury, total Analysis Run 12/23/2019 12:39 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Tukey's Outlier Screening, Pooled Background

Constituent: Selenium, total Analysis Run 12/23/2019 12:39 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

No outliers found. Tukey's method selected by user. Data were natural log

transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.02801, low cutoff = 1.8e-7, based on IQR multiplier of 3.

Constituent: Thallium, total Analysis Run 12/23/2019 12:39 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Antimony, total Analysis Run 12/23/2019 12:40 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Antimony, total Analysis Run 12/23/2019 12:40 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Antimony, total Analysis Run 12/23/2019 12:40 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Antimony, total Analysis Run 12/23/2019 12:40 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

n = 13 No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.05679, low cutoff = 0.000008066, based on IQR multiplier of 3.

Constituent: Arsenic, total Analysis Run 12/23/2019 12:40 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Arsenic, total Analysis Run 12/23/2019 12:40 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

2/19/19

10/22/19

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

6/19/18

Sanitas[™] v.9.6.24 . UG

Tukey's Outlier Screening

Constituent: Arsenic, total Analysis Run 12/23/2019 12:40 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Arsenic, total Analysis Run 12/23/2019 12:40 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Barium, total Analysis Run 12/23/2019 12:40 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Barium, total Analysis Run 12/23/2019 12:40 PM View: AIV

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

n = 13

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.09469, low cutoff = 0.03452, based on IQR multiplier of 3.

n = 13 No outliers found. Tukey's method select-

ed by user. Data were x^5 transform-

ed to achieve best W statistic (graph shown in original units).

High cutoff = 0.07793, low cutoff = -0.06896, based on IQR multiplier of 3.

10/22/19

Sanitas[™] v.9.6.24 . UG

Constituent: Barium, total Analysis Run 12/23/2019 12:40 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.24 . UG

Constituent: Beryllium, total Analysis Run 12/23/2019 12:40 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

n = 13 No outliers found. Tukey's method select-

ed by user. Data were cube root transformed to achieve best

W statistic (graph shown in original units). High cutoff = 0.0009548,

low cutoff = -0.000001234, based on IQR multiplier of 3.

 \sim

10/22/19

Sanitas[™] v.9.6.24 . UG

Constituent: Beryllium, total Analysis Run 12/23/2019 12:40 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.24 . UG

n = 13

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.001, low cutoff = 3.2e-7, based on IQR multiplier of 3.

Constituent: Beryllium, total Analysis Run 12/23/2019 12:40 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Cadmium, total Analysis Run 12/23/2019 12:40 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Cadmium, total Analysis Run 12/23/2019 12:40 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Cadmium, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Cadmium, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

ed by user. Data were cube root trans-

formed to achieve best W statistic (graph shown in original units).

High cutoff = 0.00007872, low cutoff = 0.000003624, based on IQR multiplier of 3.

Constituent: Cadmium, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Chromium, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Chromium, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

shown in original units).

ed by user.

No outliers found. Tukey's method select-

n = 13

High cutoff = 13.29, low cutoff = 6.4e-7, based on IQR multiplier of 3.

Data were natural log

transformed to achieve

best W statistic (graph

Constituent: Chromium, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Chromium, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Chromium, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Cobalt, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.5646, low cutoff = 0.000004347, based on IQR multiplier of 3.

Constituent: Cobalt, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Cobalt, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Cobalt, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Cobalt, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Combined Radium 226 + 228 Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

No outliers found. Tukey's method select-

ed by user. Data were natural log

transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.006679, low cutoff = 0.000008413, based on IQR multiplier of 3.

Tukey's Outlier Screening

Constituent: Combined Radium 226 + 228 Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Combined Radium 226 + 228 Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Combined Radium 226 + 228 Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

n = 12

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 24.67, low cutoff = 0.04234, based on IQR multiplier of 3.

Constituent: Combined Radium 226 + 228 Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Fluoride, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.24 . UG

Constituent: Fluoride, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP Sanitas™ v.9.6.24 . UG

Constituent: Fluoride, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

No outliers found. Tukey's method selected by user.

Data were cube root transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.4243, low cutoff = 0.0005341, based on IQR multiplier of 3.

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

MW_1505

Constituent: Lead, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

6/19/18

2/19/19

10/22/19

Sanitas[™] v.9.6.24 . UG

Constituent: Lead, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

No outliers found. Tukey's method selected by user. Data were natural log

n = 13

transformed to achieve best W statistic (graph shown in original units)

High cutoff = 0.5822, low cutoff = 1.4e-7, based on IQR multiplier of 3.

Constituent: Lead, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

n = 13 No outliers found. Tukey's method select-

ed by user. Data were natural log

transformed to achieve best W statistic (graph shown in original units)

High cutoff = 0.01437, low cutoff = 0.000001291, based on IQR multiplier of 3.

Sanitas[™] v.9.6.24 . UG

Constituent: Lithium, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

MW_1510

6/19/18

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

2/19/19

10/22/19

n = 13 No outliers found. Tukey's method selected by user.

Data were square root transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.04643, low cutoff = 0.000009968, based on IQR multiplier of 3.

Constituent: Lithium, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

mg/L

Sanitas™ v.9.6.24 . UG

Tukey's Outlier Screening Tukey's Outlier Screening MW_1507 MW_1509 0.03 0.03 n = 13 No outliers found. Tukey's method selected by user. 0.024 0.024 Data were natural log transformed to achieve best W statistic (graph shown in original units). 0.018 0.018 High cutoff = 0.1014, low cutoff = 0.001913, based on IQR multiplier mg/L of 3. 0.012 0.012 0.006 0.006 Ω 0 6/14/16 2/14/17 10/17/17 6/19/18 2/19/19 10/22/19 6/14/16 2/14/17 10/17/17

Constituent: Lithium, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

n = 13

No outliers found. Tukey's method selected by user.

Ladder of Powers trans-formations did not improve normality; analysis run on raw data.

High cutoff = 0.03984, low cutoff = -0.01228, based on IQR multiplier of 3.

Constituent: Lithium, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Lithium, total Analysis Run 12/23/2019 12:41 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Mercury, total Analysis Run 12/23/2019 12:42 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Mercury, total Analysis Run 12/23/2019 12:42 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Mercury, total Analysis Run 12/23/2019 12:42 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Mercury, total Analysis Run 12/23/2019 12:42 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP Sanitas[™] v.9.6.24 . UG

Constituent: Mercury, total Analysis Run 12/23/2019 12:42 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Molybdenum, total Analysis Run 12/23/2019 12:42 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Molybdenum, total Analysis Run 12/23/2019 12:42 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Molybdenum, total Analysis Run 12/23/2019 12:42 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Molybdenum, total Analysis Run 12/23/2019 12:42 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Molybdenum, total Analysis Run 12/23/2019 12:42 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Selenium, total Analysis Run 12/23/2019 12:42 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Selenium, total Analysis Run 12/23/2019 12:42 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP Sanitas™ v.9.6.24 . UG

Constituent: Selenium, total Analysis Run 12/23/2019 12:42 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

n = 13 No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.0016. low cutoff = 0.0000125. based on IQR multiplier of 3.

Constituent: Selenium, total Analysis Run 12/23/2019 12:42 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Tukey's Outlier Screening

Constituent: Selenium, total Analysis Run 12/23/2019 12:42 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Thallium, total Analysis Run 12/23/2019 12:42 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Thallium, total Analysis Run 12/23/2019 12:42 PM View: AIV

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

n = 13

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.00245, low cutoff = 0.0000027, based on IQR multiplier of 3.

Constituent: Thallium, total Analysis Run 12/23/2019 12:42 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Thallium, total Analysis Run 12/23/2019 12:42 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Thallium, total Analysis Run 12/23/2019 12:42 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Mann-Whitney - Significant Results

Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 12/27/2019, 9:40 AM

Constituent	Well	Calc.	<u>0.01</u>	Method
Sulfate, total (mg/L)	MW_1506	2.858	Yes	Mann-W
Sulfate, total (mg/L)	MW_1509	2.866	Yes	Mann-W

Mann-Whitney - All Results

Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 12/27/2019, 9:40 AM

Constituent	Well	Calc.	<u>0.01</u>	Method
Fluoride, total (mg/L)	MW_1504 (bg)	-1.178	No	Mann-W
Fluoride, total (mg/L)	MW_1505	-0	No	Mann-W
Fluoride, total (mg/L)	MW_1506	-1.759	No	Mann-W
Fluoride, total (mg/L)	MW_1507	1.096	No	Mann-W
Fluoride, total (mg/L)	MW_1508 (bg)	-0	No	Mann-W
Fluoride, total (mg/L)	MW_1509	0.3867	No	Mann-W
Fluoride, total (mg/L)	MW_1510	0.827	No	Mann-W
Sulfate, total (mg/L)	MW_1504 (bg)	-1.319	No	Mann-W
Sulfate, total (mg/L)	MW_1505	2.569	No	Mann-W
Sulfate, total (mg/L)	MW_1506	2.858	Yes	Mann-W
Sulfate, total (mg/L)	MW_1507	1.976	No	Mann-W
Sulfate, total (mg/L)	MW_1508 (bg)	-0	No	Mann-W
Sulfate, total (mg/L)	MW_1509	2.866	Yes	Mann-W
Sulfate, total (mg/L)	MW_1510	2.492	No	Mann-W

Constituent: Fluoride, total Analysis Run 12/27/2019 9:38 AM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Fluoride, total Analysis Run 12/27/2019 9:38 AM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG Hollow symbols indicate censored values.

Constituent: Fluoride, total Analysis Run 12/27/2019 9:38 AM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Fluoride, total Analysis Run 12/27/2019 9:38 AM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Fluoride, total Analysis Run 12/27/2019 9:38 AM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Fluoride, total Analysis Run 12/27/2019 9:38 AM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

11/5/18

6/12/19

3/31/18

0.02

2.326

2.576

No

No

Sanitas[™] v.9.6.24 . UG

0

6/14/16

1/18/17

8/25/17

Sanitas[™] v.9.6.24 . UG

Constituent: Sulfate, total Analysis Run 12/27/2019 9:39 AM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Fluoride, total Analysis Run 12/27/2019 9:38 AM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Sulfate, total Analysis Run 12/27/2019 9:39 AM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Mann-Whitney (Wilcoxon Rank Sum)

MW_1505

~

٠

Alpha

0.2 0.1 0.05

0.02

MW_1505 background

MW_1505 compliance

background median = 317.5

compliance median = 401

Z = 2.569 (two-tail)

Table 1.282

1.645

2.326

2.576

1.96

Sig.

Yes

Yes

Yes

Yes

No

Constituent: Sulfate, total Analysis Run 12/27/2019 9:39 AM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Sulfate, total Analysis Run 12/27/2019 9:39 AM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

mg/L

500

400

300

200

100

0

6/14/16

1/18/17

8/24/17

3/31/18

11/4/18

Constituent: Sulfate, total Analysis Run 12/27/2019 9:39 AM View: Intrawell AIII

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

6/11/19

3/31/18 11/4/18 6/11/19

Mann-Whitney (Wilcoxon Rank Sum)

MW_1509

MW_1509 background

MW_1509 compliance

background median = 416

compliance median = 432

Z = 2.866 (two-tail)

Table 1.282 1.645 1.96

2.326 2.576 Sig. Yes Yes

Yes

Yes

Yes

Alpha 0.2 0.1 0.05 0.02 0.01

٠

Constituent: Sulfate, total Analysis Run 12/27/2019 9:39 AM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

mg/L

500

300

200

100

0

6/14/16

1/18/17

8/24/17

400

Intrawell Prediction Limit Summary

Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 12/27/2019, 9:49 AM

Constituent	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Fluoride, total (mg/L)	MW_1504	0.2746	n/a	n/a	1 future	13	0	No	0.001504	Param Intra 1 of 2
Fluoride, total (mg/L)	MW_1505	0.03	n/a	n/a	1 future	13	84.62	n/a	0.009692	NP Intra (NDs) 1 of 2
Fluoride, total (mg/L)	MW_1506	0.1	n/a	n/a	1 future	13	61.54	n/a	0.009692	NP Intra (NDs) 1 of 2
Fluoride, total (mg/L)	MW_1507	0.09448	n/a	n/a	1 future	13	7.692	x^(1/3)	0.001504	Param Intra 1 of 2
Fluoride, total (mg/L)	MW_1508	0.1	n/a	n/a	1 future	13	0	n/a	0.009692	NP Intra (normality)
Fluoride, total (mg/L)	MW_1509	0.1712	n/a	n/a	1 future	13	0	x^3	0.001504	Param Intra 1 of 2
Fluoride, total (mg/L)	MW_1510	0.1	n/a	n/a	1 future	13	23.08	n/a	0.009692	NP Intra (normality)
Sulfate, total (mg/L)	MW_1504	461.7	n/a	n/a	1 future	13	0	No	0.001504	Param Intra 1 of 2
Sulfate, total (mg/L)	MW_1505	408	n/a	n/a	1 future	13	0	n/a	0.009692	NP Intra (normality)
Sulfate, total (mg/L)	MW_1506	368.7	n/a	n/a	1 future	13	0	No	0.001504	Param Intra 1 of 2
Sulfate, total (mg/L)	MW_1507	373.2	n/a	n/a	1 future	13	0	No	0.001504	Param Intra 1 of 2
Sulfate, total (mg/L)	MW_1508	325.4	n/a	n/a	1 future	13	0	No	0.001504	Param Intra 1 of 2
Sulfate, total (mg/L)	MW_1509	488.8	n/a	n/a	1 future	13	0	No	0.001504	Param Intra 1 of 2
Sulfate, total (mg/L)	MW_1510	496.8	n/a	n/a	1 future	13	0	No	0.001504	Param Intra 1 of 2

Prediction Limit Intrawell Parametric, MW_1504 (bg)

Background Data Summary: Mean=0.2046, Std. Dev.=0.03072, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9628, critical = 0.814. Kappa = 2.279 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504. Assumes 1 future value.

Constituent: Fluoride, total Analysis Run 12/27/2019 9:48 AM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

mg/L

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 13 background values. 84.62% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2). Assumes 1 future value.

> Constituent: Fluoride, total Analysis Run 12/27/2019 9:48 AM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG Hollow symbols indicate censored values

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 13 background values. 61.54% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2). Assumes 1 future value.

Sanitas™ v.9.6.24 . UG

mg/L

Hollow symbols indicate censored values.

Background Data Summary (based on cube root transformation): Mean=0.3999, Std. Dev.=0.02439, n=13, 7.692% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8228, critical = 0.814. Kappa = 2.279 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504. Assumes 1 future value.

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2). Assumes 1 future value.

Constituent: Fluoride, total Analysis Run 12/27/2019 9:48 AM View: Intrawell AIII

Sanitas[™] v.9.6.24 . UG Hollow symbols indicate censored values

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. 23.08% NDs. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2). Assumes 1 future value.

Sanitas[™] v.9.6.24 . UG

Sanitas™ v.9.6.24 . UG

Background Data Summary: Mean=353.7, Std. Dev.=47.41, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8641, critical = 0.814. Kappa = 2.279 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504. Assumes 1 future value.

Background Data Summary (based on cube transformation): Mean=0.00216, Std. Dev.=0.001254, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8158, critical = 0.814. Kappa = 2.279 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.005132). Report alpha = 0.005132

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Prediction Limit

Constituent: Fluoride, total Analysis Run 12/27/2019 9:48 AM View: Intrawell AllI

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

mg/L

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 13 background values. Well-constituent pair annual alpha = 0.01929. Individual comparison alpha = 0.009692 (1 of 2). Assumes 1 future value.

Constituent: Sulfate, total Analysis Run 12/27/2019 9:48 AM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Prediction Limit

Constituent: Sulfate, total Analysis Run 12/27/2019 9:48 AM View: Intrawell AIII

Sanitas™ v.9.6.24 . UG

Background Data Summary: Mean=323.9, Std. Dev.=21.63, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9109, critical = 0.814. Kappa = 2.279 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504. Assumes 1 future value.

Sanitas[™] v.9.6.24 . UG

Background Data Summary: Mean=301.8, Std. Dev.=10.37, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9642, critical = 0.814. Kappa = 2.279 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504. Assumes 1 future value.

Prediction Limit Intrawell Parametric, MW_1506

Background Data Summary: Mean=319.2, Std. Dev.=21.75, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9405, critical = 0.814. Kappa = 2.279 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504. Assumes 1 future value.

Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Prediction Limit

Constituent: Sulfate, total Analysis Run 12/27/2019 9:48 AM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.24 . UG

mg/L

Background Data Summary: Mean=423.2, Std. Dev.=28.79, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9163, critical = 0.814. Kappa = 2.279 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504. Assumes 1 future value.

Constituent: Sulfate, total Analysis Run 12/27/2019 9:48 AM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Sulfate, total Analysis Run 12/27/2019 9:48 AM View: Intrawell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Background Data Summary: Mean=368.1, Std. Dev.=56.47, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8801, critical = 0.814. Kappa = 2.279 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.001504. Assumes 1 future value.

Interwell Appendix III Trend Test - Significant Results

Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 12/23/2019, 1:51 PM

Constituent	Well	Slope	Calc.	<u>Critical</u>	Sig.	N	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Chloride, total (mg/L)	MW_1508 (bg)	-19.98	-67	-48	Yes	14	0	n/a	n/a	0.01	NP
pH, field (SU)	MW_1504 (bg)	0.1603	56	48	Yes	14	0	n/a	n/a	0.01	NP

Interwell Appendix III Trend Test - All Results

Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 12/23/2019, 1:51 PM

Constituent	Well	Slope	Calc.	<u>Critical</u>	Sig.	N	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron, total (mg/L)	MW_1504 (bg)	-0.01117	-23	-48	No	14	0	n/a	n/a	0.01	NP
Boron, total (mg/L)	MW_1508 (bg)	-0.04102	-9	-48	No	14	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW_1504 (bg)	-6.046	-26	-48	No	14	0	n/a	n/a	0.01	NP
Calcium, total (mg/L)	MW_1508 (bg)	-1.861	-6	-48	No	14	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW_1504 (bg)	-5.395	-46	-48	No	14	0	n/a	n/a	0.01	NP
Chloride, total (mg/L)	MW_1508 (bg)	-19.98	-67	-48	Yes	14	0	n/a	n/a	0.01	NP
pH, field (SU)	MW_1504 (bg)	0.1603	56	48	Yes	14	0	n/a	n/a	0.01	NP
pH, field (SU)	MW_1508 (bg)	0.08144	37	48	No	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (m	MW_1504 (bg)	-42.26	-39	-48	No	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (m	MW_1508 (bg)	-29.53	-25	-48	No	14	0	n/a	n/a	0.01	NP

Constituent: Boron, total Analysis Run 12/23/2019 1:49 PM View: Interwell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Boron, total Analysis Run 12/23/2019 1:49 PM View: Interwell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Calcium, total Analysis Run 12/23/2019 1:50 PM View: Interwell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.24 . UG

Constituent: Calcium, total Analysis Run 12/23/2019 1:50 PM View: Interwell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Chloride, total Analysis Run 12/23/2019 1:50 PM View: Interwell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Chloride, total Analysis Run 12/23/2019 1:50 PM View: Interwell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: pH, field Analysis Run 12/23/2019 1:50 PM View: Interwell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP Sanitas[™] v.9.6.24 . UG

Sanitas™ v.9.6.24 . UG

Constituent: pH, field Analysis Run 12/23/2019 1:50 PM View: Interwell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/23/2019 1:50 PM View: Interwell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/23/2019 1:50 PM View: Interwell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Interwell Prediction Limit Summary

Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 1/10/2020, 11:05 AM

Constituent	Well	Upper Lim.	Lower Lim.	<u>Bg N</u>	<u>Bg Mean</u>	Std. Dev.	<u>%NDs</u>	<u>ND Adj.</u>	Transform	<u>Alpha</u>	Method
Boron, total (mg/L)	n/a	1.36	n/a	28	n/a	n/a	0	n/a	n/a	0.002247	NP Inter (normality)
Calcium, total (mg/L)	n/a	242.1	n/a	28	218.3	12.15	0	None	No	0.001504	Param Inter 1 of 2
Chloride, total (mg/L)	n/a	238	n/a	28	n/a	n/a	0	n/a	n/a	0.002247	NP Inter (normality)
pH, field (SU)	n/a	8.18	6.86	28	n/a	n/a	0	n/a	n/a	0.004494	NP Inter (normality)
Total Dissolved Solids [TDS] (m	n/a	1194	n/a	28	1002	98.35	0	None	No	0.001504	Param Inter 1 of 2

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 28 background values. Annual per-constituent alpha = 0.02225. Individual comparison alpha = 0.002247 (1 of 2). Assumes 5 future values.

Sanitas™ v.9.6.24 . UG

mg/L

Background Data Summary: Mean=218.3, Std. Dev.=12.15, n=28. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9444, critical = 0.896. Kappa = 1.958 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001504. Assumes 5 future values.

> Constituent: Calcium, total Analysis Run 1/10/2020 11:04 AM View: Interwell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.24 . UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 28 background values. Annual per-constituent alpha = 0.02225. Individual comparison alpha = 0.002247 (1 of 2). Assumes 5 future values.

Sanitas™ v.9.6.24 . UG

Prediction Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 28 background values. Annual perconstituent alpha = 0.04449. Individual comparison alpha = 0.004494 (1 of 2). Assumes 5 future values.

Background Data Summary: Mean=1002, Std. Dev.=98.35, n=28. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9768, critical = 0.896. Kappa = 1.958 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001504. Assumes 5 future values.

Constituent: Total Dissolved Solids [TDS] Analysis Run 1/10/2020 11:04 AM View: Interwell AIII Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Upper Tolerance Limits

Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 12/23/2019, 1:56 PM

Constituent	Well	Upper Lim.	Date	Observ.	Sig.	<u>Bg N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Antimony, total (mg/L)	n/a	0.00005034	n/a	n/a	n/a	26	15.38	sqrt(x)	0.05	Inter
Arsenic, total (mg/L)	n/a	0.001851	n/a	n/a	n/a	26	0	x^(1/3)	0.05	Inter
Barium, total (mg/L)	n/a	0.05567	n/a	n/a	n/a	26	0	No	0.05	Inter
Beryllium, total (mg/L)	n/a	0.00006	n/a	n/a	n/a	26	46.15	n/a	0.2635	NP Inter(normal
Cadmium, total (mg/L)	n/a	0.00009	n/a	n/a	n/a	26	3.846	n/a	0.2635	NP Inter(normal
Chromium, total (mg/L)	n/a	0.002125	n/a	n/a	n/a	26	0	No	0.05	Inter
Cobalt, total (mg/L)	n/a	0.003246	n/a	n/a	n/a	26	0	sqrt(x)	0.05	Inter
Combined Radium 226 + 228 (pCi/L)	n/a	2.155	n/a	n/a	n/a	25	0	sqrt(x)	0.05	Inter
Fluoride, total (mg/L)	n/a	0.25	n/a	n/a	n/a	28	0	n/a	0.2378	NP Inter(normal
Lead, total (mg/L)	n/a	0.003449	n/a	n/a	n/a	26	7.692	x^(1/3)	0.05	Inter
Lithium, total (mg/L)	n/a	0.0136	n/a	n/a	n/a	26	23.08	No	0.05	Inter
Mercury, total (mg/L)	n/a	0.000008	n/a	n/a	n/a	26	73.08	n/a	0.2635	NP Inter(normal
Molybdenum, total (mg/L)	n/a	0.001678	n/a	n/a	n/a	26	19.23	sqrt(x)	0.05	Inter
Selenium, total (mg/L)	n/a	0.0009	n/a	n/a	n/a	26	15.38	n/a	0.2635	NP Inter(normal
Thallium, total (mg/L)	n/a	0.00025	n/a	n/a	n/a	26	26.92	n/a	0.2635	NP Inter(normal

М	MITCHELL BAP GWPS											
		CCR-Rule	Background									
Constituent Name	MCL	Specified	Limit	GWPS								
Antimony, Total (mg/L)	0.006		0.00005	0.006								
Arsenic, Total (mg/L)	0.01		0.0019	0.01								
Barium, Total (mg/L)	2		0.056	2								
Beryllium, Total (mg/L)	0.004		0.00006	0.004								
Cadmium, Total (mg/L)	0.005		0.00009	0.005								
Chromium, Total (mg/L)	0.1		0.0021	0.1								
Cobalt, Total (mg/L)	n/a	0.006	0.0032	0.006								
Combined Radium, Total (pCi/L)	5		2.16	5								
Fluoride, Total (mg/L)	4		0.25	4								
Lead, Total (mg/L)	0.015		0.0034	0.015								
Lithium, Total (mg/L)	n/a	0.04	0.014	0.04								
Mercury, Total (mg/L)	0.002		0.000008	0.002								
Molybdenum, Total (mg/L)	n/a	0.1	0.0017	0.1								
Selenium, Total (mg/L)	0.05		0.0009	0.05								
Thallium, Total (mg/L)	0.002		0.00025	0.002								

*MCL = Maximum Contaminant Level

*GWPS = Groundwater Protection Standard

Confidence Interval Summary Table - All Results (No Significant)

Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 12/23/2019, 1:59 PM

Constituent	Wall	Linner Lim	LowerLim	Compliance	Sig	N	%NDe	Transform	Alpha	Method
Antimony total (mg/L)	MW 1505	0 0001	0.00003	0.006	No	13	7 692	No	0.01	NP (normality)
Antimony, total (mg/L)	MW 1506	0.00007	0.00003	0.006	No	13	0	No	0.01	NP (normality)
Antimony, total (mg/L)	MW 1507	0.00009522	0.00004786	0.006	No	13	0	No	0.01	Param.
Antimony, total (mg/L)		0.00009	0.00002	0.006	No	13	0	No	0.01	NP (normality)
Antimony, total (mg/L)		0.00003	0.00002	0.006	No	13	0	No	0.01	NP (normality)
Arsenic, total (mg/L)	MW_1505	0.001417	0.0003768	0.01	No	13	0	x^(1/3)	0.01	Param.
Arsenic, total (mg/L)	MW_1506	0.001077	0.0004996	0.01	No	13	0	No	0.01	Param.
Arsenic, total (mg/L)	MW_1507	0.002917	0.0007721	0.01	No	13	0	No	0.01	Param.
Arsenic, total (mg/L)	MW_1509	0.0005313	0.0003502	0.01	No	13	0	No	0.01	Param.
Arsenic, total (mg/L)	MW_1510	0.0005865	0.0003628	0.01	No	13	0	No	0.01	Param.
Barium, total (mg/L)	MW_1505	0.0633	0.0459	2	No	13	0	No	0.01	NP (normality)
Barium, total (mg/L)	MW_1506	0.06343	0.05312	2	No	13	0	No	0.01	Param.
Barium, total (mg/L)	MW_1507	0.08602	0.0597	2	No	13	0	No	0.01	Param.
Barium, total (mg/L)	MW_1509	0.06187	0.05222	2	No	13	0	No	0.01	Param.
Barium, total (mg/L)	MW_1510	0.04618	0.04041	2	No	13	0	No	0.01	Param.
Beryllium, total (mg/L)	MW_1505	0.000091	0.000007	0.004	No	13	38.46	No	0.01	NP (Cohens/xfrm)
Beryllium, total (mg/L)	MW_1506	0.0000782	0.00001269	0.004	No	13	23.08	No	0.01	Param.
Beryllium, total (mg/L)	MW_1507	0.0001273	0.00003965	0.004	No	13	23.08	No	0.01	Param.
Beryllium, total (mg/L)	MW_1509	0.00005	800000.0	0.004	No	13	69.23	No	0.01	NP (normality)
Beryllium, total (mg/L)	MW_1510	0.00005	8000000	0.004	No	13	46.15	No	0.01	NP (normality)
Cadmium, total (mg/L)	MW_1505	0.00005	0.00002	0.005	No	13	0	No	0.01	NP (normality)
Cadmium, total (mg/L)	MW_1506	0.00004	0.00001	0.005	No	13	0	No	0.01	NP (normality)
Cadmium, total (mg/L)	MW_1507	0.00007	0.00003	0.005	No	13	0	No	0.01	NP (normality)
Cadmium, total (mg/L)	MW_1509	0.00003	0.00008	0.005	No	13	0	No	0.01	NP (normality)
Cadmium, total (mg/L)	MW_1510	0.000025	0.000005	0.005	No	13	23.08	No	0.01	NP (normality)
Chromium, total (mg/L)	MW_1505	0.0065	0.0009857	0.1	No	12	0	x^(1/3)	0.01	Param.
Chromium, total (mg/L)	MW_1506	0.002726	0.0009805	0.1	No	13	0	sqrt(x)	0.01	Param.
Chromium, total (mg/L)	MVV_1507	0.01429	0.003916	0.1	No	13	0	No	0.01	Param.
Chromium, total (mg/L)	MVV_1509	0.001959	0.000684	0.1	NO	13	0	X^(1/3)	0.01	Param.
	MVV_1510	0.002498	0.0006514	0.1	NO	12	0	In(x)	0.01	Param.
	NIVV_1505	0.001088	0.000224	0.006	INO N.S.	13	0	sqri(x)	0.01	Param.
Cobalt, total (mg/L)	NNV 1507	0.0008524	0.0003422	0.006	No	13	0	No	0.01	Param.
Cobalt, total (mg/L)	MW 1500	0.002942	0.0007406	0.006	No	13	0	No	0.01	Param. Param
Cobalt, total (mg/L)	MW 1510	0.0003735	0.0001666	0.006	No	13	0	No	0.01	Param. Param
Combined Redium 226 + 228 (pCi/l.)	MW 1505	1.04	0.000145	0.000	No	13	0	No	0.01	Param. Param
Combined Radium 226 + 228 (pCi/L)	MW 1506	1.04	0.3131	5	No	13	0	No	0.01	Param
Combined Radium 226 + 228 (pCi/L)	MW 1507	1.295	0.4113	5	No	12	0	No	0.01	Param
Combined Radium 226 + 228 (pCi/L)	MW 1509	1 301	0.5042	5	No	12	0	NO sart(x)	0.01	Param
Combined Radium 226 + 228 (pCi/L)	MW 1510	1.04	0.3568	5	No	12	0	No	0.01	Param
Fluoride total (mg/l)	MW 1505	0.1	0.03	4	No	14	78.57	No	0.01	NP (NDs)
Fluoride, total (mg/L)	MW 1506	0.1	0.04	4	No	14	57 14	No	0.01	NP (normality)
Fluoride, total (mg/L)	MW 1507	0.07393	0.05684	4	No	14	7 143	x^(1/3)	0.01	Param
Fluoride, total (mg/L)	MW 1509	0.16	0.1	4	No	14	0	No	0.01	NP (normality)
Fluoride, total (mg/L)	MW 1510	0.1	0.05	4	No	14	21.43	No	0.01	NP (normality)
Lead, total (mg/L)		0.001021	0.0001018	0.015	No	13	7.692	x^(1/3)	0.01	Param.
Lead, total (mg/L)		0.0007056	0.0002338	0.015	No	13	0	No	0.01	Param.
Lead, total (mg/L)	MW_1507	0.00271	0.0004773	0.015	No	13	7.692	sqrt(x)	0.01	Param.
Lead, total (mg/L)	MW_1509	0.0001217	0.00002425	0.015	No	13	0	sqrt(x)	0.01	Param.
Lead, total (mg/L)	MW_1510	0.0002134	0.00007979	0.015	No	13	0	sqrt(x)	0.01	Param.
Lithium, total (mg/L)	MW_1505	0.01207	0.006602	0.04	No	13	7.692	No	0.01	Param.
Lithium, total (mg/L)	MW_1506	0.01553	0.009503	0.04	No	13	7.692	No	0.01	Param.
Lithium, total (mg/L)	MW_1507	0.01792	0.01087	0.04	No	13	7.692	No	0.01	Param.
Lithium, total (mg/L)	MW_1509	0.01739	0.009223	0.04	No	13	7.692	No	0.01	Param.
Lithium, total (mg/L)	MW_1510	0.01491	0.008266	0.04	No	13	0	No	0.01	Param.
Mercury, total (mg/L)	MW_1505	0.000006	0.000002	0.002	No	13	69.23	No	0.01	NP (normality)
Mercury, total (mg/L)	MW_1506	0.000003	0.000002	0.002	No	13	53.85	No	0.01	NP (normality)
Mercury, total (mg/L)	MW_1507	0.00001109	0.00003086	0.002	No	13	7.692	sqrt(x)	0.01	Param.
Mercury, total (mg/L)	MW_1509	0.0000025	0.000002	0.002	No	13	84.62	No	0.01	NP (NDs)
Mercury, total (mg/L)	MW_1510	0.0000025	0.000002	0.002	No	13	92.31	No	0.01	NP (NDs)
Molybdenum, total (mg/L)	MW_1505	0.00162	0.0007387	0.1	No	12	8.333	sqrt(x)	0.01	Param.
Molybdenum, total (mg/L)	MW_1506	0.00131	0.0005545	0.1	No	13	0	sqrt(x)	0.01	Param.
Molybdenum, total (mg/L)	MW_1507	0.004698	0.0008668	0.1	No	13	7.692	sqrt(x)	0.01	Param.
Molybdenum, total (mg/L)	MW_1509	0.001694	0.000527	0.1	No	13	23.08	No	0.01	Param.
Molybdenum, total (mg/L)	MW_1510	0.001	0.00028	0.1	No	12	25	No	0.01	NP (Cohens/xfrm)
Selenium, total (mg/L)	MW_1505	0.0007055	0.0003099	0.05	No	13	0	No	0.01	Param.
Selenium, total (mg/L)	MW_1506	0.0002	0.00005	0.05	No	13	15.38	No	0.01	NP (Cohens/xfrm)
Selenium, total (mg/L)	MW_1507	0.0004336	0.0001156	0.05	No	13	0	No	0.01	Param.

Confidence Interval Summary Table - All Results (No Significant) Page 2

Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 12/23/2019, 1:59 PM

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	N	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Selenium, total (mg/L)	MW_1509	0.0003	0.0001	0.05	No	13	0	No	0.01	NP (normality)
Selenium, total (mg/L)	MW_1510	0.0002	0.00008	0.05	No	13	0	No	0.01	NP (normality)
Thallium, total (mg/L)	MW_1505	0.00025	0.000065	0.002	No	12	25	No	0.01	NP (normality)
Thallium, total (mg/L)	MW_1506	0.00025	0.00005	0.002	No	13	23.08	No	0.01	NP (normality)
Thallium, total (mg/L)	MW_1507	0.00025	0.00005	0.002	No	13	23.08	No	0.01	NP (normality)
Thallium, total (mg/L)	MW_1509	0.00025	0.00003	0.002	No	13	23.08	No	0.01	NP (normality)
Thallium, total (mg/L)	MW_1510	0.00025	0.00001	0.002	No	13	30.77	No	0.01	NP (normality)

Sanitas™ v.9.6.24 . UG

Parametric Confidence Interval

Constituent: Antimony, total Analysis Run 12/23/2019 1:57 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Arsenic, total Analysis Run 12/23/2019 1:58 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Sanitas™ v.9.6.24 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Sanitas™ v.9.6.24 . UG

Non-Parametric Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. 0.0048 0.0036 0.0024 0.0012 0 1 </tr

Parametric Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Cadmium, total Analysis Run 12/23/2019 1:58 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Chromium, total Analysis Run 12/23/2019 1:58 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.24 . UG

Sanitas[™] v.9.6.24 . UG

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Sanitas[™] v.9.6.24 . UG

Parametric Confidence Interval

Constituent: Fluoride, total Analysis Run 12/23/2019 1:58 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Lead, total Analysis Run 12/23/2019 1:58 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Sanitas™ v.9.6.24 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Mercury, total Analysis Run 12/23/2019 1:58 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.24 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Parametric and Non-Parametric (NP) Confidence Interval

Constituent: Molybdenum, total Analysis Run 12/23/2019 1:58 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Selenium, total Analysis Run 12/23/2019 1:58 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.24 . UG

Constituent: Thallium, total Analysis Run 12/23/2019 1:58 PM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

STATISTICAL ANALYSIS SUMMARY BOTTOM ASH POND Mitchell Plant Moundsville, West Virginia

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

Geosyntec Consultants

engineers | scientists | innovators

941 Chatham Lane Suite 103 Columbus, Ohio 43221

August 24, 2020

CHA8500

TABLE OF CONTENTS

SECTION 1	Executi	ive Summary	1
SECTION 2	Bottom	Ash Pond Evaluation	2-1
2.1	Data V	alidation & QA/QC	2-1
2.2	Statistic	cal Analysis	2-1
	2.2.1	Establishment of GWPSs	2-1
	2.2.2	Evaluation of Potential Appendix IV SSLs	2-2
	2.2.3	Evaluation of Potential Appendix III SSIs	2-2
2.3	Conclu	sions	2-3
SECTION 3	Referen	nces	3-1

LIST OF TABLES

Table 1	Groundwater Data Summary
Table 2	Groundwater Protection Standards
Table 3	Appendix III Data Summary

LIST OF ATTACHMENTS

Attachment A	Certification by Qualified Professional Engineer
Attachment B	Statistical Analysis Output

LIST OF ACRONYMS AND ABBREVIATIONS

- AEP American Electric Power
- BAP Bottom Ash Pond
- CCR Coal Combustion Residuals
- CCV Continuing Calibration Verification
- CFR Code of Federal Regulations
- GWPS Groundwater Protection Standard
- LCL Lower Confidence Limit
- LFB Laboratory Fortified Blanks
- LPL Lower Prediction Limit
- LRB Laboratory Reagent Blanks
- MCL Maximum Contaminant Level
- NELAP National Environmental Laboratory Accreditation Program
- QA Quality Assurance
- QC Quality Control
- SSI Statistically Significant Increase
- SSL Statistically Significant Level
- SU Standard Units
- TDS Total Dissolved Solids
- UPL Upper Prediction Limit
- USEPA United States Environmental Protection Agency
- UTL Upper Tolerance Limit

SECTION 1

EXECUTIVE SUMMARY

In accordance with the United States Environmental Protection Agency's (USEPA's) regulations regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (40 CFR 257.90-257.98, "CCR rule"), groundwater monitoring has been conducted at the Bottom Ash Pond (BAP), an existing CCR unit at the Mitchell Power Plant located in Moundsville, West Virginia.

Based on detection monitoring conducted in 2017 and 2018, statistically significant increases (SSIs) over background were concluded for boron, calcium, chloride, and total dissolved solids (TDS), at the BAP. An alternative source was not identified following the detection monitoring events; thus, the BAP has been in assessment monitoring since 2018. During the most recent assessment monitoring event, completed in October 2019, Appendix III detections of boron, calcium, chloride, fluoride, sulfate, and TDS were observed above background levels and the unit remained in assessment monitoring. The statistical summary of the results of the May 2020 assessment sampling event are documented in this report.

Prior to conducting the statistical analyses, the groundwater data underwent several validation tests, including those for completeness, sample tracking accuracy, transcription errors, and consistent use of measurement units. No data quality issues were identified which would impact the usability of the data.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. Groundwater protection standards (GWPSs) were re-established for the Appendix IV parameters. Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether any were present at concentrations above the GWPSs. No statistically significant levels (SSLs) were identified; however, concentrations of Appendix III parameters remained above background. Thus, the unit will remain in assessment monitoring. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A.

SECTION 2

BOTTOM ASH POND EVALUATION

2.1 <u>Data Validation & QA/QC</u>

During the assessment monitoring program, two sets of samples were collected for analysis from each upgradient and downgradient well to meet the requirements of 40 CFR 257.95(b) (March 2020) and 257.95(d)(1) (May 2020). Samples from the May 2020 sample event were analyzed for all Appendix III and Appendix IV parameters, whereas samples from the March 2020 event the were analyzed for Appendix IV parameters only. A summary of data collected during these assessment monitoring events may be found in Table 1.

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program (NELAP). Quality assurance and quality control (QA/QC) samples completed by the analytical laboratory included the use of laboratory reagent blanks (LRBs), continuing calibration verification (CCV) samples, and laboratory fortified blanks (LFBs).

The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.6.25 statistics software. The export file was checked against the analytical data for transcription errors and completeness. No QA/QC issues were noted which would impact data usability.

2.2 <u>Statistical Analysis</u>

Statistical analyses for the BAP were conducted in accordance with the January 2017 *Statistical Analysis Plan* (AEP, 2017), except where noted below. Time series plots and results for all completed statistical tests are provided in Attachment B.

The data obtained in March and May 2020 were screened for potential outliers; however, no outliers were identified in either set of data (Attachment B).

2.2.1 Establishment of GWPSs

A GWPS was established for each Appendix IV parameter in accordance with 40 CFR 257.95(h) and the *Statistical Analysis Plan* (AEP, 2017). The established GWPS was determined to be the greater value of the background concentration and the maximum contaminant level (MCL) or risk-based level specified in 40 CFR 257.95(h)(2) for each Appendix IV parameter. To determine background concentrations, an upper tolerance limit (UTL) was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events. Generally, tolerance limits were calculated parametrically with 95% coverage and 95%

confidence. Non-parametric tolerance limits were calculated for antimony, beryllium, cadmium, fluoride, and thallium due to apparent non-normal distributions. Non-parametric tolerance limits were calculated for mercury because greater than 50% of the data was non-detect results. Tolerance limits and the final GWPSs are summarized in Table 2.

2.2.2 Evaluation of Potential Appendix IV SSLs

A confidence interval was constructed for each Appendix IV parameter at each compliance well. Confidence limits were generally calculated parametrically ($\alpha = 0.01$); however, non-parametric confidence limits were calculated in some cases (e.g., when the data did not appear to be normally distributed or when the non-detect frequency was too high). An SSL was concluded if the lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). Calculated confidence limits are shown in Attachment B.

No SSLs were identified at the Mitchell BAP.

2.2.3 Evaluation of Potential Appendix III SSIs

The Appendix III results were analyzed to assess whether concentrations of Appendix III parameters at the compliance wells exceeded background concentrations. Data collected during the May 2020 assessment monitoring events from each compliance well were compared to the prediction limits to assess whether the results are above background values. The results from these events and the prediction limits are summarized in Table 3. The following exceedances of the upper prediction limits (UPLs) were noted:

- Boron concentrations exceeded the interwell UPL of 1.36 mg/L at MW-1505 (7.36 mg/L), MW-1506 (4.07 mg/L), MW-1507 (7.72 mg/L), MW-1509 (10.6 mg/L), and MW-1510 (9.14 mg/L).
- Calcium concentrations exceeded the interwell UPL of 240 mg/L at MW-1505 (282 mg/L), MW-1506 (290 mg/L), MW-1507 (262 mg/L), and MW-1509 (262 mg/L).
- Chloride concentrations exceeded the interwell UPL of 238 mg/L at MW-1505 (252 mg/L), MW-1506 (379 mg/L), MW-1507 (310 mg/L), MW-1509 (331 mg/L), and MW-1510 (252 mg/L).
- Sulfate concentrations exceeded the intrawell UPL of 469 mg/L at MW-1505 (471 mg/L), and at MW-1510 (484 mg/L).
- TDS concentrations exceeded the interwell UPL of 1180 mg/L at MW-1505 (1460 mg/L), MW-1506 (1530 mg/L), MW-1507 (1330 mg/L), MW-1509 (1390 mg/L), and MW-1510 (1440 mg/L).

While the prediction limits were calculated for a one-of-two retesting procedure, SSIs were conservatively assumed if the May 2020 sample was above the UPL or below the LPL. Based on

this evaluation, concentrations of Appendix III constituents appear to be above background concentrations and the unit will remain in assessment monitoring.

2.3 <u>Conclusions</u>

A semi-annual assessment monitoring event was conducted in accordance with the CCR Rule. The laboratory and field data were reviewed prior to statistical analysis, with no QA/QC issues identified that impacted data usability. A review of outliers identified no potential outliers in the May 2020 data. GWPSs were re-established for the Appendix IV parameters. A confidence interval was constructed at each compliance well for each Appendix IV parameter; SSLs were concluded if the entire confidence interval exceeded the GWPSs. No SSLs were identified.

The Appendix III results were evaluated to assess whether concentrations of Appendix III parameters exceeded background levels. Boron, calcium, chloride, sulfate, and TDS results exceeded background levels at select downgradient wells.

Based on this evaluation, the Mitchell BAP CCR unit will remain in assessment monitoring.

SECTION 3

REFERENCES

American Electric Power (AEP). 2017. Statistical Analysis Plan – Mitchell Plant. January 2017.

Geosyntec Consultants (Geosyntec). 2018. Statistical Analysis Summary – Bottom Ash Pond, Mitchell Plant, Moundsville, West Virginia. January 15, 2018.

TABLES

Table 1 - Groundwater Data SummaryMitchell Plant - Bottom Ash Pond

Donomotor	TI:4	MW	-1504	MW-1505		MW	-1506	MW	-1507	MW	-1508	MW	-1509	MW	-1510
Parameter	Unit	3/17/2020	5/5/2020	3/17/2020	5/5/2020	3/17/2020	5/5/2020	3/18/2020	5/5/2020	3/18/2020	5/6/2020	3/18/2020	5/5/2020	3/18/2020	5/6/2020
Antimony	μg/L	0.1 U	0.1 U	0.1 U	0.03 J	0.1 U	0.02 J	0.1 U	0.03 J	0.1 U	0.1 U	0.1 U	0.03 J	0.1 U	0.1 U
Arsenic	μg/L	0.29	0.26	0.31	0.27	0.44	0.33	0.44	0.42	0.52	0.44	0.42	0.27	0.31	0.29
Barium	μg/L	48.3	43.8	42.8	48.4	53.0	52.2	53.0	53.1	36.2	35.4	45.8	43.7	38.0	36.7
Beryllium	μg/L	0.1 U	0.1 U												
Boron	mg/L	-	0.04 J	-	7.36	-	4.07	-	7.72	-	0.486	-	10.6	-	9.14
Cadmium	μg/L	0.03 J	0.03 J	0.02 J	0.03 J	0.01 J	0.01 J	0.03 J	0.03 J	0.03 J	0.03 J	0.05 U	0.05 U	0.05 U	0.05 U
Calcium	mg/L	-	230	-	282	-	290	-	262	-	198	-	262	-	228
Chloride	mg/L	-	96.2	-	252	-	379	-	310	-	148	-	331	-	252
Chromium	μg/L	0.238	0.238	0.624	0.291	4.24	0.592	2.69	1.30	0.820	0.654	0.518	0.633	2.10	0.886
Cobalt	μg/L	0.04 J	0.03 J	0.100	0.096	0.393	0.162	0.342	0.345	0.481	0.413	0.144	0.092	0.121	0.109
Combined Radium	pCi/L	0.442	0.758	0.715	0.791	2 U	0.478	0.381	0.836	0.636	0.593	0.551	1.20	0.864	0.737
Fluoride	mg/L	0.15	0.12	0.03 J	0.02 J	0.04 J	0.03 J	0.07	0.05 J	0.08	0.06	0.13	0.10	0.11	0.10
Lead	μg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.213	0.2 J	0.217	0.208	0.298	0.311	0.2 J	0.05 J	0.08 J	0.07 J
Lithium	mg/L	0.00441	0.00442	0.00501	0.00493	0.00825	0.00782	0.00794	0.00757	0.00484	0.00483	0.00934	0.00897	0.00808	0.00750
Mercury	μg/L	0.005 U	0.005 U												
Molybdenum	μg/L	2 U	2 U	2 U	2 U	1 J	0.7 J	0.8 J	0.7 J	0.8 J	0.7 J	2 U	0.6 J	2 U	2 U
Selenium	μg/L	7.3	3.8	0.06 J	0.06 J	0.09 J	0.2 U	0.06 J	0.08 J	0.1 J	0.1 J	0.07 J	0.1 J	0.2 J	0.2 J
Sulfate	mg/L	-	372	-	471	-	337	-	350	-	273	-	402	-	484
Thallium	μg/L	0.5 U	0.5 U												
Total Dissolved Solids	mg/L	-	1,020	-	1,460	-	1,530	-	1,330	-	947	-	1,390	-	1,440
pH	SU	7.1	7.5	7.2	7.5	7.3	7.5	7.2	7.4	7.2	7.2	7.3	7.4	7.4	7.4

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Non-detect value. For statistical analysis, parameters which were not detected were replaced with the reporting limit.

J: Estimated value. Parameter was detected in concentrations below the reporting limit.

-: Not sampled

Table 2: Groundwater Protection StandardsMitchell Plant - Bottom Ash Pond

Constituent Name	MCL	CCR Rule-Specified	Background Limit	GWPS
Antimony, Total (mg/L)	0.006		0.00010	0.006
Arsenic, Total (mg/L)	0.01		0.00193	0.01
Barium, Total (mg/L)	2		0.055	2
Beryllium, Total (mg/L)	0.004		0.0001	0.004
Cadmium, Total (mg/L)	0.005		0.00009	0.005
Chromium, Total (mg/L)	0.1		0.0023	0.1
Cobalt, Total (mg/L)	n/a	0.006	0.0030	0.006
Combined Radium, Total (pCi/L)	5		1.97	5
Fluoride, Total (mg/L)	4		0.25	4
Lead, Total (mg/L)	0.015		0.0029	0.015
Lithium, Total (mg/L)	n/a	0.04	0.02116	0.04
Mercury, Total (mg/L)	0.002		0.000008	0.002
Molybdenum, Total (mg/L)	n/a	0.1	0.0018	0.1
Selenium, Total (mg/L)	0.05		0.005	0.05
Thallium, Total (mg/L)	0.002		0.0005	0.002

Notes:

MCL = Maximum Contaminant Level

RSL = Regional Screening Level

GWPS = Groundwater Protection Standard

Calculated UTL (Upper Tolerance Limit) represents site-specific background values.

The higher of the calculated UTL or MCL/Rule-Specified Level is used as the GWPS.

Table 3: Appendix III Data Summary Mitchell Plant - Bottom Ash Pond

Amalata	I Init	Description	MW-1504	MW-1505	MW-1506	MW-1507	MW-1509	MW-1510			
Analyte	Unit	Description	5/5/2020	5/5/2020	5/5/2020	5/5/2020	5/5/2020	5/6/2020			
Poron	ma/I	Interwell Background Value (UPL)	1.36								
DOIOII	IIIg/L	Analytical Result	0.04	7.36	4.07	7.72	10.6	9.14			
Calaium	ma/I	Interwell Background Value (UPL)	240								
Calcium	iiig/L	Analytical Result	230	282	290	262	262	228			
Chlorida	ma/I	Interwell Background Value (UPL)	238								
Cilionde	iiig/L	Analytical Result	96.2	252	379	310	331	252			
Elucarida mag/I		Intrawell Background Value (UPL)			0.2	298					
Fluoride	iiig/L	Analytical Result	0.12	0.02	0.03	0.05	0.10	0.10			
		Interwell Background Value (UPL)	8.2								
pН	SU	Interwell Background Value (LPL)			6	.9					
		Analytical Result	7.5	7.5	7.5	7.4	7.4	7.4			
Sulfata	ma/I	Intrawell Background Value (UPL)	469								
Suilate	mg/L	Analytical Result	372	471	337	350	402	484			
Total Dissolved Solids	ma/I	Interwell Background Value (UPL)			1,1	80					
Total Dissolved Sollas	nig/L	Analytical Result	1,020	1,460	1,530	1,330	1,390	1,440			

Notes:

UPL: Upper prediction limit

LPL: Lower prediction limit

Bold values exceed the background value.

Background values are shaded gray.

ATTACHMENT A Certification by Qualified Professional Engineer

Certification by Qualified Professional Engineer

I certify that the selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Mitchell Bottom Ash Pond CCR management area and that the requirements of 40 CFR 257.93(f) have been met.

DAVID ANTHONY MILLER

Printed Name of Licensed Professional Engineer

David & nthony Milles

Signature

22663

WEST VIRGINIA

License Number

Licensing State

08.24.2020

Date

ATTACHMENT B Statistical Analysis Output

GROUNDWATER STATS CONSULTING

June 16, 2020

Geosyntec Consultants Attn: Ms. Allison Kreinberg 941 Chatham Lane, #103 Columbus, OH 43221

RE: Mitchell Bottom Ash Pond (BAP) Assessment Statistics - May 2020 Sample Event

Dear Ms. Kreinberg,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the groundwater Assessment Monitoring statistics for the May 2020 sample event for American Electric Power Company's Mitchell Bottom Ash Pond. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the USEPA Unified Guidance (2009).

Sampling at each of the wells below began at Mitchell Bottom Ash Pond for the CCR program in 2016. The monitoring well network, as provided by Geosyntec Consultants, consists of the following: upgradient wells MW-1504 and MW-1508; and downgradient wells MW-1505, MW-1506, MW-1507, MW-1509, and MW-1510.

Data were sent electronically, and the statistical analysis was conducted according to the Statistical Analysis Plan and screening evaluation prepared by GSC and approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC.

The CCR program consists of the following Assessment Monitoring constituents:

 Appendix IV (Assessment Monitoring) – antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Time series graphs and box plots for these parameters are provided for all wells and constituents; and are used to evaluate concentrations over the entire record as well as view variation within and across wells (Figures A and B).

All data were screened during previous analyses for outliers using Tukey's outlier test and visual screening. When values are identified as outliers, they are flagged in the database with "o" and are deselected prior to construction of statistical limits. A list of all flagged outliers follows this letter (Figure C). Additionally, flagged data are displayed in a lighter font and as a disconnected symbol on the time series reports, as well as in a lighter font on the accompanying data pages.

Evaluation of Appendix IV Parameters

Interwell tolerance limits were used to calculate the site-specific background limits from pooled upgradient well data with for the Appendix IV constituents discussed above (Figure D). Parametric tolerance limits are calculated, with a target of 95% confidence and 95% coverage, when data follow a normal or transformed-normal distribution such as for arsenic, barium, chromium, cobalt, combined radium 226 + 228, lead, lithium, molybdenum, and selenium. When data contained greater than 50% nondetects or did not follow a normal or transformed-normal distribution, non-parametric tolerance limits were used. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. These limits were compared to the Maximum Contaminant Levels (MCLs) and the CCR-Rule specified levels in the Groundwater Protection Standards (GWPS) table following this letter to determine the highest limit for use as the GWPS in the Confidence Interval comparisons (Figure E).

Confidence intervals were then constructed on downgradient wells for each of the Appendix IV parameters using the highest limit of either the MCL, CCR-Rule specified, or background as discussed above (Figure F). Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard. No confidence interval exceedances were noted for any of the Appendix IV parameters. A summary of the confidence interval results follows this letter.

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Mitchell Bottom Ash Pond. If you have any questions or comments, please feel free to contact me.

For Groundwater Stats Consulting,

Easton Rayner Groundwater Analyst

Kristina Rayner

Kristina L. Rayner Groundwater Statistician

Sanitas[™] v.9.6.25 . UG Hollow symbols indicate censored values

Time Series

Constituent: Antimony, total Analysis Run 6/11/2020 8:54 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.25 . UG

Constituent: Arsenic, total Analysis Run 6/11/2020 8:54 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.25 . UG

Constituent: Barium, total Analysis Run 6/11/2020 8:54 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Beryllium, total Analysis Run 6/11/2020 8:54 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP Sanitas[™] v.9.6.25 . UG Hollow symbols indicate censored values

Time Series

Constituent: Cadmium, total Analysis Run 6/11/2020 8:55 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.25 . UG

Constituent: Chromium, total Analysis Run 6/11/2020 8:55 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.25 . UG

Constituent: Cobalt, total Analysis Run 6/11/2020 8:55 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP Sanitas[™] v.9.6.25 . UG

Constituent: Combined Radium 226 + 228 Analysis Run 6/11/2020 8:55 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP Sanitas™ v.9.6.25 . UG Hollow symbols indicate censored values

Constituent: Fluoride, total Analysis Run 6/11/2020 8:55 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.25 . UG Hollow symbols indicate censored values.

Time Series

Constituent: Lead, total Analysis Run 6/11/2020 8:55 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.25 . UG Hollow symbols indicate censored values

Constituent: Lithium, total Analysis Run 6/11/2020 8:55 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Hollow symbols indicate censored values.

Sanitas™ v.9.6.25 . UG

Constituent: Mercury, total Analysis Run 6/11/2020 8:55 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.25 . UG Hollow symbols indicate censored values

Constituent: Molybdenum, total Analysis Run 6/11/2020 8:55 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.25 . UG Hollow symbols indicate censored values.

Constituent: Selenium, total Analysis Run 6/11/2020 8:55 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.25 . UG Hollow symbols indicate censored values.

Constituent: Thallium, total Analysis Run 6/11/2020 8:55 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Box & Whiskers Plot

Constituent: Antimony, total Analysis Run 6/11/2020 8:55 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Box & Whiskers Plot

Constituent: Arsenic, total Analysis Run 6/11/2020 8:56 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.25 . UG

Constituent: Barium, total Analysis Run 6/11/2020 8:56 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.25 . UG

Box & Whiskers Plot

Constituent: Beryllium, total Analysis Run 6/11/2020 8:56 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP
Box & Whiskers Plot

Constituent: Cadmium, total Analysis Run 6/11/2020 8:56 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Box & Whiskers Plot

Box & Whiskers Plot

Constituent: Chromium, total Analysis Run 6/11/2020 8:56 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.25 . UG

0.005

0.004 0.003 mg/L 0.002 0.001 Ē+ + -0 -1. 134 1803 N. M. ISOS N. M. ISOR N. M. ISOg 1. MAN 1570 n In Isag (ba)

> Constituent: Cobalt, total Analysis Run 6/11/2020 8:56 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.25 . UG

Box & Whiskers Plot

Constituent: Combined Radium 226 + 228 Analysis Run 6/11/2020 8:56 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.25 . UG

Box & Whiskers Plot

Constituent: Fluoride, total Analysis Run 6/11/2020 8:56 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Box & Whiskers Plot

Constituent: Lead, total Analysis Run 6/11/2020 8:56 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.25 . UG

Constituent: Lithium, total Analysis Run 6/11/2020 8:56 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.25 . UG

Box & Whiskers Plot

Constituent: Mercury, total Analysis Run 6/11/2020 8:56 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP Sanitas[™] v.9.6.25 . UG

Box & Whiskers Plot

Constituent: Molybdenum, total Analysis Run 6/11/2020 8:56 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Selenium, total Analysis Run 6/11/2020 8:56 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.25 . UG

Constituent: Thallium, total Analysis Run 6/11/2020 8:56 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Outliers

6/14/2016 0.0332 (o) 6/14/2016 0.0332 (o)

9/26/2016					0.00735 (o)	
2/8/2017		16.587 (o)	12.465 (o)	6.828 (o)		
4/12/2018	0.0274 (o)					0.0033 (o)

Tolerance Limit Summary Table

Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 6/16/2020, 1:55 AM

Constituent	Well	Upper Lim.	Date	Observ.	Sig.	<u>Bg N</u>	<u>%NDs</u>	Transform	Alpha	Method
Antimony, total (mg/L)	n/a	0.0001	n/a	n/a	n/a	30	26.67	n/a	0.2146	NP Inter(normal
Arsenic, total (mg/L)	n/a	0.001931	n/a	n/a	n/a	30	0	ln(x)	0.05	Inter
Barium, total (mg/L)	n/a	0.055	n/a	n/a	n/a	30	0	No	0.05	Inter
Beryllium, total (mg/L)	n/a	0.0001	n/a	n/a	n/a	30	53.33	n/a	0.2146	NP Inter(normal
Cadmium, total (mg/L)	n/a	0.00009	n/a	n/a	n/a	30	3.333	n/a	0.2146	NP Inter(normal
Chromium, total (mg/L)	n/a	0.002286	n/a	n/a	n/a	30	0	sqrt(x)	0.05	Inter
Cobalt, total (mg/L)	n/a	0.002988	n/a	n/a	n/a	30	0	sqrt(x)	0.05	Inter
Combined Radium 226 + 228 (pCi/L)	n/a	1.973	n/a	n/a	n/a	29	0	sqrt(x)	0.05	Inter
Fluoride, total (mg/L)	n/a	0.25	n/a	n/a	n/a	32	0	n/a	0.1937	NP Inter(normal
Lead, total (mg/L)	n/a	0.002896	n/a	n/a	n/a	30	13.33	x^(1/3)	0.05	Inter
Lithium, total (mg/L)	n/a	0.02116	n/a	n/a	n/a	30	20	ln(x)	0.05	Inter
Mercury, total (mg/L)	n/a	0.000008	n/a	n/a	n/a	30	76.67	n/a	0.2146	NP Inter(NDs)
Molybdenum, total (mg/L)	n/a	0.001756	n/a	n/a	n/a	30	23.33	ln(x)	0.05	Inter
Selenium, total (mg/L)	n/a	0.005006	n/a	n/a	n/a	30	13.33	ln(x)	0.05	Inter
Thallium, total (mg/L)	n/a	0.0005	n/a	n/a	n/a	30	36.67	n/a	0.2146	NP Inter(normal

M	TCHELL BAP G	iWPS		
		CCR-Rule	Background	
Constituent Name	MCL	Specified	Limit	GWPS
Antimony, Total (mg/L)	0.006		0.0001	0.006
Arsenic, Total (mg/L)	0.01		0.001931	0.01
Barium, Total (mg/L)	2		0.055	2
Beryllium, Total (mg/L)	0.004		0.0001	0.004
Cadmium, Total (mg/L)	0.005		0.00009	0.005
Chromium, Total (mg/L)	0.1		0.002286	0.1
Cobalt, Total (mg/L)	n/a	0.006	0.002988	0.006
Combined Radium, Total (pCi/L)	5		1.973	5
Fluoride, Total (mg/L)	4		0.25	4
Lead, Total (mg/L)	0.015		0.002896	0.015
Lithium, Total (mg/L)	n/a	0.04	0.02116	0.04
Mercury, Total (mg/L)	0.002		0.000008	0.002
Molybdenum, Total (mg/L)	n/a	0.1	0.001756	0.1
Selenium, Total (mg/L)	0.05		0.005006	0.05
Thallium, Total (mg/L)	0.002		0.0005	0.002

*MCL = Maximum Contaminant Level

*GWPS = Groundwater Protection Standard

Confidence Interval - All Results (No Significant)

Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 6/16/2020, 2:13 AM

				o "	<u>.</u>		0/ND	- ,		
Constituent	vveii	Upper Lim.	Lower Lim.	Compliance	<u>Sig.</u>	N	<u>%NDS</u>	Iransform	Alpha	Method
Antimony, total (mg/L)	MW_1505	0.00006	0.00003	0.006	No	15	13.33	No	0.01	NP (normality)
Antimony, total (mg/L)	MW_1506	0.00006	0.00003	0.006	No	15	6.667	No	0.01	NP (normality)
Antimony, total (mg/L)	MW_1507	0.00008883	0.00004583	0.006	No	15	6.667	No	0.01	Param.
Antimony, total (mg/L)	MW_1509	0.00005	0.00002	0.006	No	15	6.667	No	0.01	NP (normality)
Antimony, total (mg/L)	MW_1510	0.00005	0.00002	0.006	No	15	13.33	No	0.01	NP (normality)
Arsenic, total (mg/L)	MW 1505	0.001088	0.0003622	0.01	No	15	0	ln(x)	0.01	Param.
Arsenic, total (mg/L)	MW 1506	0.0009971	0.0004722	0.01	No	15	0	No	0.01	Param.
Arsenic total (mg/L)	MW/ 1507	0.002382	0.0006497	0.01	No	15	0	sart(x)	0.01	Param
	NIW_1507	0.002502	0.0000457	0.01	NI-	15	0	Sqrt(X)	0.01	Daram.
Arsenic, total (mg/L)	MWV_1509	0.00051	0.000346	0.01	INO	15	0	NO	0.01	Param.
Arsenic, total (mg/L)	MW_1510	0.0005545	0.0003482	0.01	No	15	0	No	0.01	Param.
Barium, total (mg/L)	MW_1505	0.0577	0.0459	2	No	15	0	No	0.01	NP (normality)
Barium, total (mg/L)	MW_1506	0.062	0.0527	2	No	15	0	No	0.01	NP (normality)
Barium, total (mg/L)	MW_1507	0.08132	0.05811	2	No	15	0	sqrt(x)	0.01	Param.
Barium, total (mg/L)	MW_1509	0.06043	0.05038	2	No	15	0	No	0.01	Param.
Barium, total (mg/L)	MW_1510	0.04532	0.03968	2	No	15	0	No	0.01	Param.
Bervllium, total (mg/L)	MW 1505	0.00015	0.00001	0.004	No	15	46.67	No	0.01	NP (normality)
Beryllium total (mg/l)	MW 1506	0.0001	0.00001	0.004	No	15	33 33	No	0.01	NP (normality)
Bonyllium, total (mg/L)	MW 1507	0.0001207	0.000001	0.004	No	15	22.22	No	0.01	Derem
Beryllium, total (mg/L)	WW 1507	0.0001307	0.00006062	0.004	NO	15	33.33	NO	0.01	
Beryllium, total (mg/L)	MW_1509	0.0001	0.00001	0.004	NO	15	73.33	NO	0.01	NP (normality)
Beryllium, total (mg/L)	MW_1510	0.0001	0.00001	0.004	No	15	53.33	No	0.01	NP (normality)
Cadmium, total (mg/L)	MW_1505	0.00005	0.00002	0.005	No	15	0	No	0.01	NP (normality)
Cadmium, total (mg/L)	MW_1506	0.00003	0.00001	0.005	No	15	0	No	0.01	NP (normality)
Cadmium, total (mg/L)	MW_1507	0.00007	0.00003	0.005	No	15	0	No	0.01	NP (normality)
Cadmium, total (mg/L)	MW 1509	0.000025	0.00001	0.005	No	15	13.33	No	0.01	NP (normality)
Cadmium, total (mg/L)		0.000025	0.000005	0.005	No	15	33.33	No	0.01	NP (normality)
Chromium total (mg/l)	MW 1505	0 004527	0.0007618	0.1	No	14	0	ln(x)	0.01	Param
Chromium, total (mg/L)	MW 1506	0.00356	0.00007	0.1	No	15	0	In(x)	0.01	Daram.
	10100_1500	0.00230	0.00097	0.1	NU	15	0		0.01	Faranı.
Chromium, total (mg/L)	WW_1507	0.01285	0.003459	0.1	NO	15	0	NO	0.01	Param.
Chromium, total (mg/L)	MW_1509	0.001602	0.000668	0.1	No	15	0	ln(x)	0.01	Param.
Chromium, total (mg/L)	MW_1510	0.00228	0.0007276	0.1	No	14	0	ln(x)	0.01	Param.
Cobalt, total (mg/L)	MW_1505	0.0008655	0.0001921	0.003	No	15	0	x^(1/3)	0.01	Param.
Cobalt, total (mg/L)	MW_1506	0.0007849	0.0003244	0.003	No	15	0	No	0.01	Param.
Cobalt, total (mg/L)	MW 1507	0.002391	0.0005695	0.003	No	15	0	sqrt(x)	0.01	Param.
Cobalt, total (mg/L)	MW 1509	0.0003447	0.0001567	0.003	No	15	0	No	0.01	Param.
Cobalt total (mg/L)	MW 1510	0.0002558	0.000138	0.003	No	15	0	No	0.01	Param
Combined Redium 226 + 228 (nCi/l.)	MW_1516	0.0052550	0.000130	0.000 F	No	15	0	No	0.01	Daram
Combined Radium 226 + 228 (pCi/L)	10100_1505	0.9956	0.5509	5	NO	15	0	NO	0.01	Parani.
Combined Radium 226 + 228 (pCI/L)	MVV_1506	1.175	0.3661	5	NO	15	0	NO	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW_1507	1.5	0.6779	5	No	14	0	No	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW_1509	1.309	0.5448	5	No	15	0	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	MW_1510	0.9987	0.4276	5	No	14	0	No	0.01	Param.
Fluoride, total (mg/L)	MW_1505	0.06	0.03	4	No	16	68.75	No	0.01	NP (normality)
Fluoride, total (mg/L)	MW_1506	0.07	0.04	4	No	16	50	No	0.01	NP (normality)
Fluoride, total (mg/L)	MW 1507	0.07	0.06	4	No	16	6.25	No	0.01	NP (normality)
Fluoride_total (mg/L)	 MW_1509	0.15	0.1	4	No	16	0	No	0.01	NP (normality)
Fluoride, total (mg/L)	MW 1510	0.1	0.05		No	16	18 75	No	0.01	NP (normality)
	NNV_1510	0.1	0.05	4	NU	10	10.75	NO	0.01	NF (normality)
Lead, total (mg/L)	NIVV_1505	0.00102	0.000091	0.015	INO	15	20	NO	0.01	NP (Conens/xirm)
Lead, total (mg/L)	MVV_1506	0.0005977	0.0002256	0.015	NO	15	0	sqrt(x)	0.01	Param.
Lead, total (mg/L)	MW_1507	0.002285	0.0004213	0.015	No	15	6.667	sqrt(x)	0.01	Param.
Lead, total (mg/L)	MW_1509	0.0001239	0.00003055	0.015	No	15	0	sqrt(x)	0.01	Param.
Lead, total (mg/L)	MW_1510	0.0001785	0.00007751	0.015	No	15	0	ln(x)	0.01	Param.
Lithium, total (mg/L)	MW_1505	0.01128	0.006223	0.021	No	15	6.667	No	0.01	Param.
Lithium, total (mg/L)	MW_1506	0.01468	0.009161	0.021	No	15	6.667	No	0.01	Param.
Lithium, total (mg/L)	MW 1507	0.01688	0.01014	0.021	No	15	6.667	No	0.01	Param.
Lithium, total (mg/L)		0.01634	0.009168	0.021	No	15	6.667	No	0.01	Param.
Lithium total (mg/L)	MW 1510	0.01402	0.008135	0.021	No	15	0	No	0.01	Param
Moreury, total (mg/L)	MW 1505	0.000006	0.000000	0.021	No	15	73.33	No	0.01	ND (normality)
Mercury, total (mg/L)	NIV 1505	0.000006	0.000002	0.002	NO	15	13.33	NO	0.01	NP (normality)
Mercury, total (mg/L)	MVV_1506	0.000005	0.000002	0.002	NO	15	60	NO	0.01	NP (normality)
mercury, total (mg/L)	MW_1507	0.00001	0.000003	0.002	No	15	20	No	0.01	NP (Cohens/xfrm)
Mercury, total (mg/L)	MW_1509	0.000005	0.000002	0.002	No	15	86.67	No	0.01	NP (NDs)
Mercury, total (mg/L)	MW_1510	0.000005	0.000002	0.002	No	15	93.33	No	0.01	NP (NDs)
Molybdenum, total (mg/L)	MW_1505	0.002074	0.0009128	0.0018	No	14	21.43	No	0.01	Param.
Molybdenum, total (mg/L)	MW_1506	0.001235	0.0005945	0.0018	No	15	0	sqrt(x)	0.01	Param.
Molybdenum, total (ma/L)	MW 1507	0.004103	0.0008945	0.0018	No	15	6.667	sqrt(x)	0.01	Param.
Molvbdenum, total (mg/L)	MW 1509	0.002	0.00048	0.0018	No	15	26.67	No	0.01	NP (Cohens/xfrm)
Molybdenum total (mg/L)	MW 1510	0.002	0.00033	0.0010	No	14	26.07	No	0.01	
	NNN 4505	0.002	0.00033	0.0010	NU-	45	0.11	No	0.01	Dere
Selenium, total (mg/L)	10100_1505	0.0006461	0.0002499	0.05	INO	15	U	140	0.01	Param.
Selenium, total (mg/L)	MW_1506	0.0001	0.00007	0.05	No	15	20	No	0.01	NP (normality)
Selenium, total (mg/L)	MW_1507	0.0003551	0.0000984	0.05	No	15	0	sqrt(x)	0.01	Param.

Confidence Interval - All Results (No Significant)

Mitchell BAP Client: Geosyntec Data: Mitchell BAP Printed 6/16/2020, 2:13 AM

Constituent	Well	Upper Lim.	Lower Lim.	<u>Compliance</u>	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Transform	<u>Alpha</u>	Method
Selenium, total (mg/L)	MW_1509	0.0003	0.00009	0.05	No	15	0	No	0.01	NP (normality)
Selenium, total (mg/L)	MW_1510	0.0002	0.00008	0.05	No	15	0	No	0.01	NP (normality)
Thallium, total (mg/L)	MW_1505	0.0005	0.000067	0.002	No	15	33.33	No	0.01	NP (normality)
Thallium, total (mg/L)	MW_1506	0.0005	0.00005	0.002	No	15	33.33	No	0.01	NP (normality)
Thallium, total (mg/L)	MW_1507	0.0005	0.000051	0.002	No	15	33.33	No	0.01	NP (normality)
Thallium, total (mg/L)	MW_1509	0.0005	0.00003	0.002	No	15	33.33	No	0.01	NP (normality)
Thallium, total (mg/L)	MW_1510	0.0005	0.00001	0.002	No	15	40	No	0.01	NP (normality)

Sanitas™ v.9.6.25 . UG

Parametric Confidence Interval

Parametric and Non-Parametric (NP) Confidence Interval

Constituent: Antimony, total Analysis Run 6/16/2020 2:10 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic, total Analysis Run 6/16/2020 2:10 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.25 . UG

Sanitas[™] v.9.6.25 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Barium, total Analysis Run 6/16/2020 2:10 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP Constituent: Beryllium, total Analysis Run 6/16/2020 2:10 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.25 . UG

Non-Parametric Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01.

Constituent: Cadmium, total Analysis Run 6/16/2020 2:10 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Chromium, total Analysis Run 6/16/2020 2:10 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.25 . UG

Sanitas™ v.9.6.25 . UG

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Sanitas™ v.9.6.25 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Constituent: Fluoride, total Analysis Run 6/16/2020 2:10 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Lead, total Analysis Run 6/16/2020 2:10 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.25 . UG

Sanitas™ v.9.6.25 . UG

Constituent: Lithium, total Analysis Run 6/16/2020 2:10 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP Constituent: Mercury, total Analysis Run 6/16/2020 2:10 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas[™] v.9.6.25 . UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Molybdenum, total Analysis Run 6/16/2020 2:11 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Constituent: Selenium, total Analysis Run 6/16/2020 2:11 AM View: AIV Mitchell BAP Client: Geosyntec Data: Mitchell BAP

Sanitas™ v.9.6.25 . UG

APPENDIX 3 – Alternative Source Demonstrations

Alternative source demonstrations relative to Appendix IV SSLs above the groundwater protection standard were not necessary because no SSLs above the groundwater protection standards were identified in 2020. Alternative source demonstrations are not applicable at this time.

APPENDIX 4 - Notices for Monitoring Program Transitions

No transition between monitoring requirements occurred in 2020; the CCR unit remained in assessment monitoring over the entire year. Notices for monitoring program transitions are not applicable at this time.

No monitoring wells installed or decommissioned in 2020. Well installation/decommissioning logs are not applicable at this time.

EPA ADDITIONAL INFORMATION REQUEST Attachment C

2020 Field Data Sheets Documenting Dry Monitoring Well Status at Mitchell Plant's Landfill

Field Static Water Level Form Mitchell Landfill **Mitchell Power Generation Plant American Electric Power**

Soli Borian	Manitorino	Monitoring Well Tag	Data Mali	Coord	inates ⁽¹⁾	Top of Riser Elevation	Casing Diameter	Depth to Top of Screen	Screen Length	Measured Total Denth ⁽⁴⁾	1-3	1.20
ID	Well ID	Number	Installed	Northing	Easting	(ft amsl)	(inches)	(ft amsl)	(ft amsl)	(feet)	Water Level TOC	Elevation
	MW1101H	0491-0003-2011	10/7/2011	484883 9	1609657.8	1220 71	2	290	50	342.9	-	1
SB-01	MW1101R	0491-0006-2011	10/28/2011	484877 8	1609656.4	1221 23	2	187	25	214.5	196.35	
	MW1101F	0402-0006-2011	12/20/2011	484864 5	1609651.4	1220.86	2	162	7	171.1	145.45	
	MW1101B	0402-0005-2011	12/19/2011	484870 8	1609653.B	1220.73	2	89	18	109.2	-	1
	MW1102R	0402-0002-2011	12/14/2011	485101.7	1611103.3	1228.36	2	196	8	205 8	184.90	772
SB-07	MW1102F	0491-0004-2011	10/25/2011	485106.1	1611110,1	1228 67	2	147	30	180	156.30	
	MW1102B	0402-0003-2011	12/15/2011	485097.4	1611096.9	1228 84	2	72	17	90.9		
	MW1103H	0491-0002-2011	9/27/2011	487005.3	1610094	1239 82	2	307	40	349.4		-
S8-18	MW1103R	0402 0004 2011	12/16/2011	486998 5	1610097.2	1240.01	2	191	7	200.3	196.50	
	MW1103F	0491-0005-2011	10/26/2011	4870112	1610102.2	1239.19	2	149	30	181.6	157.20	
SB-23	MW1104R	0402-0008-2011	12/22/2011	486345 1	1609471.2	1230 66	2	187	25	213.8	190.45	
	MW1104F	0402 0007-2011	12/21/2011	486352.3	1609469.3	1230.3	2	152	20	174.1	169.90	
SB-0 9	PZ1101H ^{OI}	0402-0001-2011	9/19/2011	485990 9	1610339.5	1143.59	1	212	35	247 5	-	-
B-1501	MW1501R		8/5/2015	484663.0	1609913 5	1161.78	4	135.4	14 6	153 5	152.42	
	MW1501F		8/6/2015	484662.0	1609917.5	1161.83	4	91.4	14.6	109.7	102.80	
8-1502	MW1502R		8/6/2015	484648.8	16102181	1047 41	4	23.4	9.6	36.0	31.10	
8-1503	MW1503R		8/15/2015	464596 7	1610487 6	1111.96	4	89.4	9.6	101 9	92.50	1.000
	MW1503F		8/15/2015	484591.4	1610488 5	1111.93	4	48 4	14 6	66.3	64.64	

(1) Survey coordinates are US State Plane 1983 West Virginia Nonh.

(2) amst = average mean sea level. Vertical Datum is NAVD 1988, GEOID 03

Bedrack Unit Legend:

H = Hundred Sandslone

(3) Piezometer Abandoned in June 2013 due to encroaching landfill construction. One inch diameter piezometer (4) Measured from the top of riser

8 = Burton Sandstone/Shatlow Bedrock

R = Rush Run Sandstone F = Fish Creek Sandstone

		AEP	dhio.				
		A	Unit of America	an Electric Powel	r -		
	1 1	FIELDI	NFORMA	<u>LION FORM</u>	[
Site:	tchell	L.F.	AE	P Project Number:	42380	25602	
Date: /	31.20		Wes	ther Observations:	overca	ST-Flurries	30'5
WELL ID: 19	W 1102	F				Water Volume	Factors
Casing Diameter:	Z	(inches) Water	Reight in Well-	23.7	(64)	Diameter	Gallons/Foo
Tetal Denth	181.0			4.12	(1000)	1.5 inches	0.092
I car Debru:	10010	(feet) Water	Volume in Well:	1.03	(gallons)	2 inches 3 inches	0.17
Depth to Water:	136,5	(feet)	Purge Volume:	2	gal (calculated) gal. (removed)	4 inches	0.65
Depth to Top of Screen:	147.0	(feet)	Durne Value	(d)(1)			
Measured using:	GeoTe.	L ET SW	L Alefer	ie (orawdown)(Bath	(WELL SC	reen tengin)(gai/it) =	
Purged using:	Dedicated Ba	uler/Polypro Rope	Grundfos pump	poly tubing	Other	Dedicated B	ladder
Sampled using:	Dedicated Br	ailer/Polypro Rope	Grundfos pump	vpoly tubing	Other	Dedicated B	sladde
		TC:	ald Magnus				
Temperature	pH	Conductivity	Turbidity	Volume	Water Le	vel During Purging	Time
(degrees C)	(s.u.)	(umhos/cm)	(NTU)	(gallons)	ļ,	(feet)	1 (20)
11.8	Q. Z	770	1,2	- 013		59,5	1327
11.8	8.2	770	0.00	1.5	1.	58.4	1335
					ļ		
	+{						
<u>.</u>			ļ		- A		<u> </u>
	11		1		<u>.</u>		<u> </u>
	1	Fleid Measu	rements at	lime of Sam	pling		
Temperature	pH	Conductivity	Turbidity	Volume	Water Lev	el During Sampling	Time
(degrees C)	1 (8.TL) 1 8, 2 1			(gailons)		(test)	1 1220
1111	013		0.00	2,0		5718	133'
		Inst	rument Ca	libration			
Turbidity	Meter Type	Hannah HI 93	203	1.0 NTU std =		5.42 NTU std =	
				10.0 NTD std =		51.8 NTU std =	
0H/Conductivity	Meter Tune	VSI-DIPLIS		4.01 etd ==		499 NIU 500 =	
PLVCodductivity	mere rype_	401 1001100	_			- 1413 umbos/cm =	r.
				10.1 std =		- XATA MURAA CITI	
						-	
Physical Properties		AL LA					
Color:			-	Anal	lysis Required	÷	
Turhidity:			-	San	nnle time/date	1337 /1-31	.20
		V/	-	6.00	ante muerente		
Comments:							
W - 1 - 11							
Deviations	from FSAP:						
	-		·····			i	
	2, 11.7	L			<,2		
sampler. <u> </u>	-0V NG.	<u> </u>	-	Signature	102	r vor	
Parameter Metho	<u>d #</u>						
Temperature SM 2550-	B 2000/2010						
251 SM4500-J Conductivity SM2510R	-2011 -2011						

8.1

Q

				an Electric Powe	r r		
A	/ / ./	<u>FIELU II</u>	NF UKIVIA	LION FURI	L		
Site: Mit	e hell	L.F.	AE	Project Number:	423807	25602	
Date: /-3/-	20		Wea	ther Observations:	overcas	A/Flurties ?	30'5
WELL ID: MI	W-150	2R				Water Volume	Factors
Casing Diameter:	4	inches) Water	Height in Well:	4.9	(feet)	Diameter 1 inches	Gallons/Fo
Total Denth:	3410	(feet) Water V	ohme in Well:	3.2	(milanc)	1.5 inches	0.092
Denth to Water	31.1	1 (6_1)	Durge Volume	7	(galmbj	3 inches	0.17
Depth to Tan of Serrers	73.4		Turge Voidille.	2	gal. (removed)	4 100015	0.00
Depth to 1 op of Screen:	20.7	(tect) Minimu	m Purge Volun	1e (drawdown)(gal	/fi.) + (well sc	reen length)(gal/ft.) =	
Measured using:	Beo lec	h ZI SUL	neter	····	• • • • • • • • • • • • • • • • • •	i II.	
Purged using:	Dedicated Ba	iler/Polypro Rope	Grundfos pump	/poly tubing	Other	Dedicated BI	adder
Sampled using:	Dedicated Ba	iler/Polypro Rope	Grundfos pump	poly tubing	Other	Dedicated B	Sladdu
		Fie	eld Measur	ements			
Temperature (degrees C)	pH (su)	Conductivity	Turbidity	Volume (millons)	Water Le	vel During Purging	Time
13.5	73	46D	2.18	0:5		3/.35	1224
13.5	7.4	660	2.40	1.0	3	1:60	1228
13:5	7.4	660	2.10	1.5	3	1.80	/232
	· · · · ·						+
3			-		ļ		
	<u> </u>	Field Measur	ements at	Time of Sam	pling	· · · · · · · · · · · · · · · · · · ·	1
Temperature	pH	Conductivity	Turbidity	Volume	Water Lev	vel During Sampling	Time
(degrees C)	(<u>s.n.</u>)	(umhos/cm)	(NTU)	(gallons)		(feet)	1/23
(2			<u> </u>			£ .70	1/23
		Inst	rument Ca	libration			
Turbidity	Meter Type	Hanna 14: 9370.3		1.0 NTU std =		5.42 NTU std =	
		(: = >1		10.0 N 1D 50 =		_ 51.8 NTU std =	
pH/Conductivity	Meter Type_	YSI-Pro Plus	-	4.01 std =	a		
				7.0 std = 10.1 std =	* *	1413 umhos/cm =	
Physical Properties							
Odor:		1/A	14	Ana	lysis Required	k	
Color: Turbidity:	<u></u>		•	Sa	mple time/date	1235 /1-2	1.20
C		\$	-				
comments:							
Deviations 1	from FSAP:_	4					
				·			
Sampler. Ko	n var	<u> </u>	-	Signature	: <u>`</u> {@	han har	
Parameter Method Temperature SM 2550 F	#				*		
	- 2000/2010						

8.

Q's

£

Field Static Water Level Form Mitchell Landfill **Mitchell Power Generation Plant** American Electric Power

Sail Baring	Manitosian	Manhada - W. W.T.		Coord	inates ⁽¹⁾	Top of Riser Elevation	Casing Diameter	Depth to Top of Screen	Screen Length	Measured Total		
ID	Well ID	Number	Date Well Installed	Northing	Easting	(ít amsl)	(inches)	(ft amsl)	(ft amsi)	(feet)	Water Level TOC	Elevation
	MW1101H	0491-0003-2011	10/7/2011	484883.9	1609657.8	1220 71	2	290	50	342.9	DRY	N/A
S8-01	MW1101R	0491-0006-2011	10/28/2011	484877 8	1609656 4	1221 23	2	187	25	214 5	195.60	1025.43
	MW1101F	0402-0006-2011	12/20/2011	484664,5	1609651.4	1220,66	2	162	7	171.1	165.10	1055.76
	MW1101B	0402-0005-2011	12/19/2011	484870.8	1609653 8	1220.73	2	89	18	109.2	-	-
	MW1102R	0402-0002-2011	12/14/2011	4851017	1611103,3	1228.36	2	196	8	205 8	182.95	1045.41
SB-07	MW1102F	0491-0004-2011	10/25/2011	485106.1	1611110.1	1228.67	2	147	30	180	155.85	1072.82
	MW1102B	0402-0003-2011	12/15/2011	485097.4	1611096.9	1228 84	2	72	17	90.9	-	
	MW1103H	0491-0002-2011	9/27/2011	487005.3	1610094	1239 82	2	307	40	349.4	DRY	NIA
SB-18	MW1103R	0402-0004-2011	12/16/2011	486998 5	1610097.2	1240.01	2	191	7	200 3	195.66	1044.35
	MW1103F	0491-0005-2011	10/26/2011	48701 t 2	1610102.2	1239.19	2	149	30	181.6	156.70	1082-49
SB-23	MW1104R	0402-0008-2011	12/22/2011	486345.1	1609471.2	1230 66	2	187	25	213.8	186.40	1044.26
	MW1104F	0402-0007-2011	12/21/2011	486352.3	1609469.3	1230.3	2	152	20	174.1	168.84	1061.46
SB-09	PZ1101H ^{OJ}	0402-0001-2011	9/19/2011	485990 9	1610339.5	1143.59	1	212	35	247 5	-	
8-1501	MW1501R		8/5/2015	484663.0	16099135	1161.78	4	135 4	14 6	153 5	152.41	1009.37
	MW1501F		8/6/2015	484652.0	1609917.5	1161.83	4	91.4	14.6	109.7	102.30	1059.53
B-1502	MW1502R		8/6/2015	484648.8	1610218 1	1047.41	4	23.4	96	36.0	31.01	1016.40
B-1503	MW1503R		8/15/2015	484596 7	1610487 6	1111.96	4	89 4	9.6	101.9	92.22	1019.74
	MW1503F		8/15/2015	484591.4	1610488.5	1111.93	4	48 4	14.6	66 3	63.15	1048.78

(1) Survey coordinates are US State Plane 1983 West Virginia North

(2) amsi = average mean sea level. Vertical Datum is NAVD 1988, GEOID 03.

(3) Piszometer Abandoned in June 2013 due to encroaching landfill construction. One inch diameter piezometer. (4) Measured from the top of riser.

Bedrock Unit Legend:

H = Hundred Sandstone 1

R = Rush Run Sandstone

F = Fish Creek Sandstone

B = Burton Sandstone/Shallow Bedrock

Civil & Environmental Consultants, Inc. (110-416.7608)

		AER	ohio.					
			A unit of Americ	an Electric Powe	ər			
		FIEL	D INFORMA	TION FORM	1			
Site: 17.	tchell	LAnd Fill	A	EP Project Number	423802	5602		
Date: <u>5-</u> Ç	.2020	-	We	ather Observations:	overa	CAST 40'S		
WELL ID: M	W HOI I	k				Water Volume	Factors	
Casing Diameter:	2	(inches) V	Vater Height in Well:	NA	(feet)	Diameter	Gallons/Foot	
Total Depth:	342.90	(feet) W:	ater Volume in Well-	ALLA	(1.5 inches	0.092	
Depth to Water	DRV	- (E1)	Dune Malu	- Ingr	(Esnorz)	2 mches 3 inches	0.17	
Douth to Tax of Community	790 0	_(rec)	ruge volume:	Ø	_gzl.(calculated) _gzl. (removed)	4 inches	0.56	
Debru to 1 ob of Screen:	270,0	_(feet) ~/ Mi	nimum Purge Volun	ne (drawdown)(gal.	/fL) + (well ser	reen length)(gal/ft.) =		
Measured using:	<u>600 </u>	ech ET SU	12 meter					
Purged using:	Dedicated E	lailer/Polypro Rope	Grundfos pump	poly tubing	Other	Deficated Blade	her Purans	
Sampled using:	Dedicated F	lailer/Polypro Rope	Grundfos pump	p/poly tubing	Other	Dedicated Blue	der Pump	
	·····		Field Measur	emente				
Temperature	pH	Conductivity	Turbidity	Volume	Water Lev	el During Pureing	Time	
(degrees C)	(s.u.)	(umhos/cm)	(UTM)	(gallons)		(feet)		
					N	74	1500	
	+					2		
							<u> </u>	
	+							
i.					2			
	1	TT: 1134			l			
Temperatura	1	Field Mea	surements at	Time of Sam	pling			
(degrees C)	(S.u.)	(umhos/cm)	ONTID	(milone)	Water Leve	I During Sampling	Time	
				(Eations)		(1001)	1500	
		<u> </u>	nstrument Cal	libration				
Lurbidity	Meter Type	Hanna Ho 9	3703	1.0 NTU std =		5.42 NIU std =		
		1:00	,	10.0 MID Std =		499 NTU std =		
H/Conductivity	Meter Type	181 - Pro Pl	MS	4.01 std =				
				7.0 std =		1413 umhos/cm ==		
Physical Dramatics				40.1 800				
Odor:		NIA		Anal	veig Raminal.			
Color:		NIA		പല	and confinent.		2	~
Turbidity:		N/A		San	ple time/date:	No Sample /	5-6-2020	
comments:	Insu	fficient h	voter to S	Auple		· · · · · · · · · · · · · · · · · · ·		
Deviations	from FSAP:			-			•	
iampler:	RONG IS	h		B 10 (A	$< \lambda$			
Parameter Mathe	1#	- 4		Signature:	00	with		
Temperature SM 2550-1	<u>4 #</u> 3 2000/2010							
oH SM4500-H	H B2011							
onductivity SM2510B-	2011							

Ő

0

Q!

0

ALEP OHIO° A unit of American Electric Power

FIELD INFORMATION FORM

Site: 17.	tchell	LAnd Fill	A	IP Project Number		56 8 2	
Date: 5-6	.2020		We	ather Observations	5:		
WELL ID: ~	W-1101	R				Water Volum	Factors
	2					Diameter	Gallons/Foot
Casing Diameter:		(inches) Wate	r Height in Well:	19.7	(fret)	1 inches	0,04
Total Depth:	214.5	(feet) Water	Volume in Well:	3.4	(gallons)	1.5 inches 2 inches	0.092
Denth to Water	195 60	- -				3 inches	0.38
Depin to water:	127 0	(feet)	Purge Volume:	[.3	gal.(calculated) gal. (removed)	4 inches	0.66
Depth to Top of Screen:	101.0	(feet) 7 / Mimin	num Purge Volun	se (drawdown)(ga	l/fi.) + (well scr	reen length)(gal/ft.) =	:
Measured using:	<u> </u>	ich ET SWL	Meter				
Purged using:	Dedicated B	ailer/Polypro Rope	Grundfos pump	/poly tubing	Other	Deficated Blade	ter Pray
Sampled using:	Dedicated B	ailer/Polypro Rope	Grundfos pum	/poly tubing	Other	Dedicated Blue	Ider Pray
		F	ield Measur	emente			
Temperature	pH	Conductivity	Turbidity	Volume	Water Leu	el During Purging	Time
(degrees C)	(s.u.)	(umhos/cm)	(UTV)	(galions)		(feet)	
11.5	8.71	1070	6.93	0,4	/	96.10	1433
11.5	8.01	1070	5.64	0.8	1	96.70	1437
			5.00			91.20	<u> / 4 4 / _ </u>
					1		<u>}</u>
							1
]
							+
<u>k</u>		147					
			ľ				
		Field Measu	rements at '	Time of Sam	pling		
Temperature	pH	Conductivity	Turbidity	Volume	Water Leve	el During Sampling	Time
(degrees C)		(umhos/cm)	INTU	(gallons)		(feet)	11me
	7109	1080	7.21	1.5	/	98.12	1444
			•				
		Inst	trument Ca	libration			
Turbidity	Meter Type	Hanna Ho 937	<u>6</u> 3	1.0 NTU std =		5.42 NIU atd =	
				10.0 NTD std =		51.8 NTU std =	
pH/Conductivity	Meter Type	VSi - Pro Plus	s	4.01 etd:	-1	499 NTU std =	
			- .	7.0 std =	=	1413 umhos/cm =	
				10.1 std =	C		
Physical Properties							
Odor:		NIA		Ana	Ivsis Remuted		
Color:	1	N/A			-3	. /	
Turbidity:	/	V/A	_	Sa	mple time/date:	1444/5-6	-2020
Comments:						/	
Deviations 1	rom FSAP:						
	-	•					
	1.1 -			· · · ·		1 /	
Sampler. KON	Var		-	Signature	: 160	Jul -	
Parameter Method	#						
pH SM4500-H	2000/2010 B2011						
Conductivity SM2510B-2	2011						

		AEP	ohio.				
		-	A unit of Americ	an Electric Powe	9r		
		FIELL	INFURIMA	TION FORM	1		
Site: 17.	tchell	LAnd Fill	LA A	EP Project Number	4238025	602	
Date: 5-6	.2020		We	ather Observations	over	cast 40°	1
WELL ID: M	NW 1101	F			Г	Water Volum	e Factors
Casing Diameter:	_2	(inches) Wa	ter Height in Well:	NLA	(fpet)	Diameter	Gallons/Foo
Total Depth:	171.10	(fcct) Wate	r Volume in Well-	NA		1.5 inches	0.092
Depth to Water:	165.10	(feet)	Purge Volume:			3 inches	0.17
Depth to Top of Screen:	162.0	(6-1)	t tuge voituite.	ø	_gal.(calculated) [_ _gal. (removed)	4 inches	0.66
Manager land	102.0 1.T	(neer) Mimi	imum Purge Volun	ne (drawdown)(gal	/fL) + (well scre	en length)(gal/ft.) =	
Measured using:	60010	ch et swi	L Meter	·····			
Purged using:	Dedicated B	ailer/Polypro Rope	Grundfos pump	poly tubing	Other 1	Jedicated Blade	der Poray
Sampled using:	Dedicated B	ailer/Polypro Rope	Grundfos pump	/poly tubing	Other 2	redicated Blue	Ider Pur
		1	Field Measur	ements			
Temperature	pH	Conductivity	Turbidity	Volume	Water Leve	During Purging	Time
(degrees C)	(s.u.)	(umhos/cm)	(NTU)	(gallons)		(feet)	
	-			6	/	V/A	1510
			-				
		· · · · · · · · · · · · · · · · · · ·					
\$.		E					+
	11	Field Meas	urements at '	Time of Sam	nling		1
Temperature	pH	Conductivity	Turbidity	Volume	Water Level	During Sampling	1
(degrees C)	(5.11)	(umhos/cm)	(NTU)	(gallons)		(feet)	Time
				Ø	· · · · · · · · · · · · · · · · · · ·	V/A	1510
		Ins	strument Cal	libration			
Turbidity	Meter Type	Hanna HI 93	703	1.0 NTU std =		5.42 NTU atd =	
		1		10.0 NTD std =		51.8 NTU std = 499 NTU std =	
H/Conductivity	Meter Type_	181 - Pro Plu	S	4.01 std ==			
				7.0 std = 10.1 std =		1413 umhos/cm ==	
hysical Properties							·····
Odor:		NA		Anal	ysis Required:		
Turbidity:	/	JIA		San	ple time/date:	No Samale/	5.6.20
omments:	Insi	Afficient 4	ater to	Samples	•		
Deviations	from FSAP:						
	-	•					
R	of Vala-				2	1-0-	
arameter Method	#	<u> </u>		Signature:	<u></u>	MA	
emperature SM 2550-B	2000/2010						
H SM4500-H onductivity SM2510B-	I B2011 2011						•

 \bigcirc_{i}

Q

		AEP	ohio.				
		A	unit of Americ	an Electric Powe	nr F		
in M	1.1.1	FIELD	INFORMA	TION FORM	1		
Site: <u>///</u>	tchell	LAnd Fill	A	EP Project Number:	4238025	602	
Date: <u>5-6</u>	.2020	-	We	ather Observations;	over	108T 40'	2
WELLID: M	1W - 11	02R				Water Volume	Factors
Casing Diameter:	2	(inches) Water	r Height in Well:	NA	(feet)	Diameter 1 inches	Gallons/Foot 0.04
Total Depth:	205.08	(feet) Water	Volume in Well:	N/4	(gallons)	1.5 inches 2 inches	0.092
Depth to Water:	182.95	_(feet)	Purge Volume:		gal (calculated)	3 inches 4 inches	0.38
Depth to Top of Screen:	196.6	(fest)		Ø	gal. (removed)		
Measured using:	GeoT	ech ET SWL	um Purge Volun Meter	1e (drawdown)(gal.	/ft.) + (well scr	een length)(gal/ft.) =	·
Purged using:	Dedicated B	ailer/Polypro Rope	Grundfos pump	poly tubing	Other	Dedicated Blade	Ler Purano
Sampled using:	Dedicated B	lailer/Polypro Rope	Grundfos pump	poly tubing	Other	Dedicated Blue	der Pring
		Fi	eld Measur	ements			
(degrees C)	pH (s.u.)	Conductivity (umhos/cm)	Turbidity (NTU)	Volume (gallons)	Water Lev	el During Purging (feet)	Time
				ø	~	//4	1620
						η.	<u> </u>
	1						
2					1		<u> </u>
	1	Field Measu	rements at '	Time of Sam	nling		1
Temperature	pH	Conductivity	Turbidity	Volume	Water Leve	I During Sampling	
(degrees C)	(5.11.)	(umhos/cm)	(NTU)	(gallons)	 	(feet)	Time
							11620
		Inst	rument Ca	libration]
Turbidity	Meter Type	Hanna H1 9370	4 3	1.0 NTU std =		5.42 NTU std =	
		10' 2 21		10.0 MID 500 =		51.8 NTU std = 499 NTU std =	
pH/Conductivity	Meter Type	VSI - Pro Plus		4.01 std == 7.0 std == 10.1 std =		1413 umbos/cm ==	
Physical Properties							
Odor: Colar:		NA	-	Anal	ysis Required:		
Turbidity:		NIA	- ,	San	aple time/date:	No Sample /5	-6-2020
Comments:	-Fre	inflicing 10	aster to ?	Sample			
Deviations	from FSAP:						•
Sampler:	Kon (lah	-	Signature:	· Ka	Jul	
Parameter Method	1 #						

 Parameter
 Method #

 Temperature
 SM 2550-B 2000/2010

 pH
 SM4500-H B2011

 Conductivity
 SM2510B-2011

 \bigcirc

Ç

C

		AEP	ohio.				
		A	Unit of Americ	an Electric Powe			
		FIELD.	INFORMA	TION FORM	Ĩ		
Site: 17.	tchell	LAnd Fill	A	EP Project Number:	423802	5602	
Date: 5.6.	2020		We	ather Observations:	over	CO-87 4015	
TITLE X TO							
WELLID: N	<u>1W - 1102</u>	.]-				Water Volume	Factors
Casing Diameter:	2	(inches) Wate	r Height in Well:	24-15	(feet)	Diameter	Gillons/Foot
Tatal Davily	100 0			,//	(umi)	1.5 inches	0.092
Total Debru:	180.0	(feet) Water	Volume in Well:	4.1	(gallons)	2 inches	0.17
Depth to Water:	155.85	(feet)	Purge Volume:	4	gal. (calculated)	3 inches 4 inches	0.38
Depth to Top of Screen:	147.0	(feet)			"Enr (removen)		
Measured using:	GeoTe	ch ET SWL	Meter	ne (drawdown)(gal.	/ft.) + (well sci	reen length)(gal/fL) =	
Purged using:	Dedicated B	ailer/Polypro Rope	Grundfos pumj	/poly tubing	Other	Deficated Blade	Ler Prays
Sampled using:	Dedicated B	ailer/Polypro Rope	Grundfos pum	p/poly tubing	Other	Dedicated Blud	der Pray
		F	ield Measur	ements			
Temperature	pH	Conductivity	Turbidity	Volume	Water Lev	el During Purging	Time
(degrees C)	(s.u.)	(umhos/cm)	(NTU)	(gallons)		(feet)	
12.0	8.72	780	1.26			56-26	1854
h.0	8.75	770	0.05		/	56-14	11.00
							1
8		1945. 1945			2		1
		Field Mean			21		
Temperature	DH I	Conductivity	Tudidity	Time of Sam	pling	17	
(degrees C)	(S.U.)	(umhos/cm)	(NTU)	(gallons)	water Levi	(feet)	Time
12+0	875	780	4.93	4	/	58.51	1602
			•				
		<u> </u>	rument Ca	libration			
r ar blairy	Meter Type_	Hanna HJ 9371	63	1.0 NTU std =		5.42 NTU std =	
		1		10.0 N10 50 =		51.8 NIU std =	
pH/Conductivity	Meter Type	VSI - Pro Plus	<u>s</u>	4.01 std =			
				7.0 std =		1413 umhos/cm ==	
Diversional Deservation		··· ·· ··· ·· ··· ··· ··· ···		10.1 844-			
Odor:		N/A		Å1	min Damiand.		
Color:	1	V/A	-	Aday	Arra tredinited:	/	
Turbidity:	/	JA		Sam	ple time/date:	1602/5-6	-2020
Comments:							
Deviations	from FSAP:_				_		
	-						
Sampler. 2	Por VIL	<pre></pre>			\sim	10	
Parameter Method	#		-	aignature:	152	en v v	
Internoo							

.

 Temperature
 SM 2550-B 2000/2010

 pH
 SM4500-H B2011

 Conductivity
 SM2510B-2011

 \bigcirc

Ő

C

				DHIO° unit of America	an Electric Pow	'er		
		E	TELD I	NFORMA'	FION FOR	M		
Site: M.	tchell	Land F	11	- A 12	D D	- 1/22 (1)		
Date: 5-0	6.2020			- Wes	ther Observation	r: <u>4138029</u>	602	
THEY & TO		-	1	11 42	ater observation	s. <u>over or</u>	GN 40	
WELL ID: M	W-1103	<u>н</u>					Water Volume	: Factors
Casing Diameter:	2	(inches)	Water	Height in Well:	NA	(feet)	Diameter 1 inches	Gallons/Foot 0.04
Total Depth:	349.4	(fact)	Water V	Volume in Well:	NA	(gallons)	1.5 inches 2 inches	0.092 0.17
Depth to Water:	DRY	(feet)	•	Purge Volume:		gal.(calculated)	3 inches 4 inches	0.38
Depth to Top of Screen:	307.0	(feet)		-		gal. (removed)		
Measured using:	GeoTo	ich ET	Minim SWL	um Purge Volum Mefer	e (drawdown)(ga	l/fi.) + (well scr	een length)(gal/ft.) =	
Purged using:	Dedicated B	ailer/Polypro	Rope	Grundfos pump	/poly tubing	Other	Deficated Blade	ter Praws
Sampled using:	Dedicated B	ailer/Polypro	Rope	Grundfos pump	poly tubing	Other	Dedicated Blue	Ider Picer
								- I when
Transa trans			Fie	eld Measur	ements			
(degrees C)	pH (s.u.)	Condu (umho	ctivity s/cm)	Turbidity (NTU)	Volume (gallons)	Water Lev	el During Purging	Time
~	-			-	ø		NA	1716
							<u>r</u>	
<u>.</u>			240					
		Field	Measur	ements of 7	lime of Sam			
Temperature	PH	Conduc	tivity	Turbidity	Volume	Water Leve	During Sampling	
(degrees C)	(5.11.)	(umho:	s/cm)	(NTU)	(gallons)		(feet)	Time
			*	-	ø	1	NIA	1716
[Inch	rumant Cal	ibration			
Turbidity	Meter Type	16 una h	4 9270		10 NTTL -11-		C 43 2007 1 . 1	
			10/4	<i>Y</i>	10.0 NTD std =	-	51.8 NTU std =	
DH/Conductivity	Mator Time	Vci-2	- 21.0				499 NTU std =	
Pro Conductivity	Miciel Type	y 81 - P1	orms		4.01 std : 7.0 std :	2 	1413 umbos/cm =	
					10.1 std	e		
Physical Properties								
Odor:		N/A			Anz	lysis Required:		
Turbidity:	/	JÍA			Sa	mple time/date:	No Sample /	5-6-2020
Comments:	Ins	ufficie	nd Wo	ter to 8	saysle		/	
Deviations	from FSAP:_		•					
	-							
Sampler:	Ron Vo	b			Signature	: R	n MD	~~~~~
Parameter Method	#						<u> </u>	
Temperature SM 2550-B pH SM4500-F	2000/2010							
Conductivity SM2510B-	2011							

 \bigcirc ()

Ő

			AEP (dhio.				
			A	unit of Americ	an Electric Pow	er		
		분	TELD I	INFORMA	<u>FION FOR</u>	M		
Site: 17.	tchell	LAnd F.	<u> </u>	A	P Project Numbe	r: 4/23802	5602	
Date: 5-6	.2020	-		We	ather Observation	S: Over co	LST 40'S	
WELLID: N	W-110	3R				1	Water Volume	- Factors
Casing Diameter:	_2_	(inches)	Water	Height in Well:	NA	(fest)	Diameter 1 inches	Gallons/Foot
Total Depth:	260.30	(feet)	Water	Volume in Well:	N/A	_(galions)	1.5 inches 2 inches	0.092 0.17
Depth to Water:	195.66	(feet)	-	Purge Volume:	ø	gal.(calculated)	3 inches 4 inches	0.38
Depth to Top of Screen:	191.6	(feet)			/	gzl. (removed)		
Measured using:	GeoTe	ich ET	Mimim SWL	um Purge Volun Mefer	ie (drawdown)(ga	l/ft.) + (well scr	een length)(gal/ft.) =	
Purged using:	Dedicated B	ailer/Polypro	Rope	Grundfos pump	poly tubing	Other	Deficated Blade	ter Poras
Sampled using:	Dedicated B	ailer/Polypro	Rope	Grundfos pump	poly tubing	Other	Dedicated Blue	Ider Pring
			Fi	eld Measur	ements			
Temperature (degreen C)	pH	Condu	ctivity	Turbidity	Volume	Water Lev	el During Purging	Time
	(S.U.)		s/cm)		(gallons)	1	(feet)	1720
								1120
							······································	
							· · · ·	
			5					
		Field	Measu	ements at '	lime of San	pling		
Temperature (damage ())	pH	Conduc	tivity	Turbidity	Volume	Water Leve	l During Sampling	Time
	(s.p_)	(umbos	s/cm)		(gallons)		(feet)	11006
	· · · · · · · · · · · · · · · · · · ·	<u> </u>		d				
			Inst	rument Ca	libration			
Turbidity	Meter Type	Hanna h	H 9370	3	1.0 NTU std =		5.42 NTU std =	
		1. 2	~/		10.0 N 10 50 =	·	51.8 NTU std = 499 NTU std =	
pH/Conductivity	Meter Type	V81 - M	o phis	•	4.01 std =			
					10.1 std =		1413 umbos/cm ==	
Physical Properties								
Odor:		N/A		-	Апа	lysis Required:		
Turbidity:	/	JA		•	Sa	mple time/date:	No Sampole / 5-	6-2020
Comments:	<u> </u>	vsuffic	int	water.	to sampl	د		
Deviations 1	from FSAP:_							
							10	
Sampler. Rob	Nah				Signature	: Ru	NA	
Parameter Method	#							
pH SM4500-H Conductivity SM2510B-2	B2011 2011							

 \bigcirc

୍(

			OHIO° unit of America INFORMA	an Electric Pow	er Vī		
Eller M.	411	1.1011			<u>.</u>		
Sile: 7.11	iche II	LAna F.II	AE	P Project Numbe	r: 4/238023	602	
Date: 3-6-	2020		Wes	ther Observation	s: over	cast 400	
WELL D: M	W-1103	SF			1	Water Volume	Factors
0 I DI .	7			. 1.0		Diameter	Gallons/Foot
Casing Diameter:		(inches) Water	r Height in Well:	24.9	_(fest)	1 inches	0.04
Total Denth	181-60	(fact) Mater	V-line i- Maile	12		1.5 inches	0.092
a out to optic	101.00	(ieci) Waler	volume in well:	7.4	_(gallons)	2 inches	0.17
Depth to Water:	156.70	(ftet)	Purge Volume:	3.5	mil (minuted)	3 inches	0.38
-	<u></u>	()	t ange t branne.		gal(calculated)	4 mones	0.66
Depth to Top of Screen:	149.0	(feet)	•	······································	Barr (removed)		
Measured using:	GeoTe	ch ET SWL	um Purge Volum Meter	e (drawdown)(ga	l/ft.) + (well scr	een length)(gal/ft.) =	
Purged using:	Dedicated B:	ailer/Polypro Rope	Grundfos pump	/poly tubing	Other	Deficated Bladd	er Pours
Sampled using:	Dedicated Ba	ailer/Polypro Rope	Grundfos pump	/poly tubing	Other	Dedicated Bluch	ter Pring
r							
		Fi	eld Measur	ements			
Temperature	pH	Conductivity	Turbidity	Volume	Water Lev	el During Purging	Time
(degrees C)	(S.U.)	(umhos/cm)	(UTM)	(gallons)		(feet)	
11-9	8.72	1940	138	0.7	1	58.10	1638
//.8	8.84	1950	56	1.4	10	59.90	1642
<u> </u>	8.88	1950	19.02	2.1	1	60.80	1648
<i>ll· l</i>	8.85	1950	35.25	2.8	1	61-40	1652
	╉────┦						
	· · · · · · · · · · · · · · · · · · ·						
	++						
	++						
	++						
12	1	~	1				
	1 1		· · · · · ·				
		Field Measu	rements at "	lime of San	Inling		
Temperature	PH	Conductivity	Turbidity	Voluma	Water Learn	I During Compling	
(degrees C)	(5.11.)	(umbos/cm)	ONTED	(gallons)	Water Leve	(feet)	Time
11.6	880	19100	16.73	3.5	1 7	62.90	1634
					-L()		1437
			·				
T	14.	. Illist	rument Ca	Ibration			
rennany	Meter Type_	Hanna HI 9370	33	1.0 NTU std =		5.42 NIU std =	
				10.0 NTD std =	•	51.8 NTU std =	
pH/Conductivity	Meter Tune	Vsi- Pro Plue	5	4.01 1	_	499 NTU std =	
	THE THE	10101040		4.01 std =		1417 methods in the	
				1.0 std - 101 et -		1413 mm05/cm =	

Physical Properties Odor: Color:

л Turbidity: λĽ

Analysis Required:

5.6.2020 Sample time/date: 1654

Comments:

Ì

Deviations from FSAP:

Sampler:

C

P<u>arameter Method #</u> Temperature SM 2550-B 2000/2010 pH SM4500-H B2011 Conductivity SM2510B-2011

Signature: Г

		AEP	OHIO°	an Ficcisis Down			
		FIFLD	INFORMA	TION FOR	917 /T		
and M	411	1 1 sil	ATTOM MA	TION FORM	<u>a</u>		
Site: ///	rchell	LAnd F.II	A	EP Project Number	423802	5602	
Date: 3	e - 20 20	5	We	ather Observations	over	cast 40"	
WELL ID: /	4W 110	HR				Water Volume	Factors
Casing Diameter.	2	(inches) Wate	r Height in Well-	NIA	(fact)	Diameter	Gallons/Foot
Total Depth:	213.80	(first) Water	Volume in Wall		_(((=))	1.5 inches	0,04
Depth to Water	181.40		Provide In Well:	/A	_{gallons}	2 inches 3 inches	0.17
	106.70	(ltel)	Purge Volume:		_gal.(calculated) _gal. (removed)	4 inches	0.66
Depth to Top of Screen:	181-0	(fæt) 7 , Mimir	num Purge Volun	ne (drawdown)(eal	/ft) + (well see	ceen leanth)(col/A) -	
Measured using:	_ Geo le	ich ET SWL	. Meter				
Purged using:	Dedicated Ba	ailer/Polypro Rope	Grundfos pum	p/poly tubing	Other	Deficated Blade	ter Porano
Sampled using:	Dedicated B	ailer/Polypro Rope	Grundfos pum	p/poly tubing	Other	Dedicated Blad	Ider Pira
Terreture	1	F	ield Measur	ements			
(degrees C)	pH (s.u.)	Conductivity (umhos/cm)	Turbidity (NTU)	Volume (gallons)	Water Lev	(feet)	Time
				ø		N/A	1300
	+					6 ¹²	
						· · · · · · · · · · · · · · · · · · ·	
		2					
		Field Measu	rements at '	Time of Sam	pling		
(degrees C)	pH (sn)	Conductivity	Turbidity	Volume	Water Levi	L During Sampling	Time
		(animos cini)	(110)	(gauons)	1		
		Inst	trument Ca	libration			
wrbidity	Meter Type_	Hanna HI 937	<u>4</u> 3	1.0 NTU std =		5.42 NTU std =	
Rice a basis st		10: 2 21		10.0 1110 500		499 NTU std =	
En Conductivity	Meter Type_	VSI - Fro Plus	<u>s</u>	4.01 std =		1412 mmhan/am an	
				10.1 std =		1413 unitos/cm ==	
hysical Properties		M					
Odor: Color:		N/A		Anal	ysis Required:		
Turbidity:	/	J/A	-	Sar	ople time/date:	Nto Souster	5-6-2
omments:	Insu	feriend to	211.82		-		
Deviations	from FSAD.		-ury				
Provinciality (18)	.vuredari_						
	> .11-	1		•	~		
impler:	JON Va	<u>n</u>	_	Signature		out	
emperature SM 2550-B	<u>#</u> 2000/2010						
H SM4500-H	B2011						•
nunctivity SIVIZSIOD-	2011						

 \bigcirc

୍ର୍

C

0				OHIO° A unit of America	an Electric Powe TION FORM	er 1						
	Site: 17.	tchell 6.2020	LAnd Fill	Al	EP Project Number: ather Observations:	4238025	602					
	WELL ID: N	IW 110	47-1				Water Volume	Factors				
	Casing Diameter:	2	(inches) Wate	r Height in Well:	NIA	(feet)	Diameter 1 inches	Gallons/Foot				
	Total Depth:	174.10	(feet) Water	Volume in Well:	NA	(gallons)	1.5 inches 2 inches	0.092				
	Depth to Water:	168.84	(feet)	Purge Volume:	el	gal.(calculated)	3 inches 4 inches	0.38				
	Depth to Top of Screen:	152-0	(feet)			gal. (removed)						
	Measured using:	GeoTe	ich ET SWL	um Purge Volun Mefer	ne (drawdown)(gal.	/fL) + (well scr	een length)(gal/ft.) =					
	Purged using:	Dedicated B	ailer/Polypro Rope	Grundfos pumj	poly tubing	Other	Derlicated Bladd	ar Purano				
	Sampled using:	Dedicated B	ailer/Polypro Rope	Grundfos pum	poly tubing	Other	Dedicated Blude	ter Pray				
		1	Fi	ield Measur	ements							
	(degrees C)	pH (s.u.)	Conductivity (umhos/cm)	Turbidity (NTU)	Volume (gallons)	Water Lev	el During Purging (feet)	Time				
			~		ø		N/A	1310				
\bigcap												
~												
-												
	3		0			- 25						
		Field Measurements at Time of Sampling										
	Temperature (degrees C)	pH (s.n.)	Conductivity (umhos/cm)	Turbidity (NTU)	Volume (gallons)	Water Leve	l During Sampling (feet)	Time				
			Inst	rument Ca	libration							
	Turbidity	Meter Type	Hanna Ho 937	<i>63</i>	1.0 NTU std =		5.42 NTU std =					
	pH/Conductivity	Meter Type	Vsi- Pro Plus	5	4 01 mlm		499 NTU std =					
			10. 110 100	2	4.01 std = 7.0 std = 10.1 std = 10.1		1413 umhos/cm =					
	Physical Properties				10.1 600 =							
	Odor: Color:		N/A	-	Analy	vsis Required:						
	Turbidity:	/	J/A	-	Sam	ple time/date:	No SAuple/S	-6-2020				
	Comments:	Fasu	Ficient to	Auple_								
-	Deviations 1	from FSAP:_	•					•				
CL	R					-0-	-\					
	Parameter Method	#	~	-	Signature:	· Re	ut					
	Temperature SM 2550-B pH SM4500-H	2000/2010 B2011										

T	
pН	SM4500-H B201
Conductivity	SM2510B-2011

		AIE	i ohio.				
		Alectron	A unit of Americ	an Electric Pow	er		
		FIEI	LD INFORMA	TION FORM	<u>vī</u>		
Site: M.	tchell	LAnd Fill	AI	P Project Number	: 423802	5602	
Date: 5-6	.2020	-	We	ather Observations	s over	ast 405	
WELL ID: M	W 150	IR				Water Volume	Factors
Casing Diameter:	4	(inches)	Water Height in Well:	NA	(faet)	Diameter	Gallons/Foot
Total Depth-	152.5	- · · ·		da	(((221))	1.5 inches	0.04
	100.0	_(net) W	ater volume in Well:	NA	(gallons)	2 inches 3 inches	0.17
Depth to Water:	152.41	(fret)	Purge Volume:		_gal (calculated)	4 inches	0.66
Depth to Top of Screen:	135.40	(feet)			Est (rentration		
Measured using:	<u> </u>	ich ET SU	UL Meter	ie (drawdown)(gal	i/ft.) + (well so	reen length)(gal/ft.) =	-
Purged using:	Dedicated B	ailer/Polypro Rope	e Grundfos pump	/poly tubing	Other	Deficated Blade	her Pora
Sampled using:	Dedicated B	ailer/Polypro Rope	e Grundfos pump	poly tubing	Other	Dedicated Blud	der Pur
			Field Measur	ements			
Temperature	pH	Conductivity	y Turbidity	Volume	Water Le	vel During Purging	Time
(degrees C)	(s.u.)	(umhos/cm)	(UTV)	(gallons)		(feet)	1 1 5 3 5
						N/A	1520
	1						
	+						
							<u> </u>
÷		(e)					
		Field Me	Suramonts of	Time of Som	l		1
Temperature	Ha	Conductivity	Turbidity	Volume	Water Low	I Dunian Samulian	1
(degrees C)	(s.u.)	(umhos/cm)	(NTU)	(gallons)	Watel Lev	(feet)	Time
							1 -
]	Instrument Ca	libration			
furbidity	Meter Type	Hanna Ho 9	3703	1.0 NTU std =	•	5.42 NTU std =	
	-			10.0 NTD std =		51.8 NTU std =	
H/Conductivity	Meter Time	Vci-2-2	lue	4.011		499 NTU std =	
	motor Type	901 1101	MS	4.01 Std = 7 0 std =	= 	1413 umbos/cm =	
				10.1 std =	**************************************		
bysical Properties							
Odor:		N/A		Ana	lysis Required:	·····	
Turbidity:		V/A		C.	mala fimeldate:	No. So al /s	-(-).
omments:	Tasu	fficient In			mpre inne date.	10 20000 10	-6 20
Deviations	from FSAP.	Land U		- 1000			
\cdot	AL E				~~~~	$\sim ()$	
ampler. <u>Ko</u>	N VON			Signature	:E	all	
arameter Method	#						
H SM4500-F	1 B2011						
Conductivity SM2510B-	2011						

 \bigcirc_{i}

Q

		I		OHIO°	an Flooiria Dou	100		
]	FIELD I	INFORMA'	TION FOR	/ər Mī		
Site: M.	tchall	1 and 6						
Date: 5-6	-202-0	~Anu P	• 17	- At	Project Numbe	r: <u>423802</u> 3	602	
WELL ID. 14		-	7	11 44		s. <u>overc</u>	asi 403	
WELLID: M	<u>W-150</u>]				Water Volume	Factors
Casing Diameter:		_(inches)	Water	Height in Well:	NA	_(fest)	l inches	0.04
Total Depth:	109.7	(feet)	Water V	Volume in Well:	NLA	_(gallons)	1.5 inches 2 inches	0.092
Depth to Water:	102-30	_(feet)	:	Purge Volume:	ø	gal.(calculated)	3 inches 4 inches	0.38
Depth to Top of Screen:	91.4	(feet)		-		gal. (removed)		
Measured using:	_ Geo T	ich ET	Mimim <u>SWL</u>	um Purge Volum Meter	e (drawdown)(ga	l/ft.) + (well scr	een length)(gal/ft.) =	
Purged using:	Dedicated E	lailer/Polypro	o Rope	Grundfos pump	poly tubing	Other	Deficated Blade	Ler Prays
Sampled using:	Dedicated H	ailer/Polypo	o Rope	Grundfos pump	/poly tubing	Other	Dedicated Blud	der Pump
			Fi	eld Measure	mente			
Temperature	pH	Conda	ctivity	Turbidity	Volume	Water Lev	el During Purging	Time
(degrees C)	(s.u.)	(սոփ	<u>os/cm)</u>	(UTM)	(gallons)		(feet)	
					<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 A	1530
				ŀ				
Tarmemburg	1	Field	Measur	ements at]	lime of San	pling		
(degrees C)	рн (s.ц.)	Condu (umho	s/cm)	Turbidity ONTED	Volume	Water Leve	I During Sampling	Time
					(ganoos)	1		
Turbidity	Mahar		Inst	rument Cal	ibration			
A di biony	Meter Type	Hanna	47 9379	3	1.0 NTU std = 10.0 NTD std =		5.42 NTU std =	
nH/Conductivity	Martin The	Jei 2	2/ -		1010 1120 002		499 NTU std =	
рысонциститу	Meter Type	181 ° P	ro rus	-	4.01 std =	a	1417	
					10.1 std -		1413 umnos/cm =	
Physical Properties								
Odor:		NIA			Ana	lysis Required:		
Color: Turbidity:		N/A J/A			C.	mole time/date:	No kane M. /	5-6-2021
Comments:	Insu	Reconst	water	to Rome	»(e		10 pr-40-7	<u> </u>
Deviations	from FSAP:							
2	-		•					
Sampler.	N-11-L	~				12.	10	
Parameter Method	#			•	Signature			
Temperature SM 2550-B	2000/2010							
pri SM4500-H Conductivity SM2510B-3	1 B2011 2011							-

 \mathbb{Q}^{+}

Q

C

AFP A unit of American Electric Power

FIELD INFORMATION FORM

Site: 17.	tchell	LAnd Fill	AE	P Project Number	= : 4/23 802.4	5602	
Date: 5-6	-2020		Wea	ther Observations	: light F	Rain 4015	
WELL ID: M	W-1502	B				Water Volum	Feetom
						Diameter	Gallon/Feet
Casing Diameter:		(inches) Water	Height in Well:	5.0	(feet)	1 inches	0.04
Tatal Death	700			<u> </u>		1.5 inches	0.092
YOUR DEPUT	26.0	(feet) Water	Volume in Well:	3.3	(gallons)	2 inches	0.17
Depth to Water:	31.01	(feet)	Purge Volume:	2.5	_gal.(calculated)	3 inches 4 inches	0.38
Depth to Top of Screen:	23.40	(feet)	-		_gal. (removed)		
Measured using:	_ Geo Te	ich ET SWL	um Purge Volum Meter	e (drawdown)(gal	/ft.) + (well see	reen length)(gal/ft.) =	
Purged using:	Dedicated Ba	ailer/Polypro Rope	Grundfos pump	/poly tubing	Other	Deficated Blade	ter Poras
Sampled using:	Dedicated Ba	ailer/Polypro Rope	Grundfos pump	/poly tubing	Other	Dedicated Blud	Ider Prin
		Fi	eld Measur	ements			
Temperature	pH	Conductivity	Turbidity	Volume	Water Lev	el During Purging	Time
(degrees C)	(s.u.)	(umhos/cm)	<u>(UTV)</u>	(gallons)		(feet)	
12.4	7.96	644	40.7	. 6		31.71	1333
12.4	7-88	642	8.26	1.2		32.12	1237
12.9	7-84	639	9.33	2.6	2	2.32	1341
	{}						
			I				1
	<u> </u>						
	<u> </u>						
	<u>├</u> ┟	240					
	I	Field Measure			1		
Temperature		Flein Measur	ements at]	ime of Sam	pling		
(dames ()	рн	Conductivity	Turbidity	Volume	Water Leve	al During Sampling	Time
(degrees C)		(unnos/cm)	(NTU)	(gallons)		(feet)	111116
12.3	1.17	639	23.76	2.5	3	2.70	1344
		Trist	rument Cal	ibration			
Furbidity	Meter Type	16 4 Ma 128 9271	2	10 1000		6433	
-	150		£	100 NTD		5.92 N1U std =	
		1		10.0 1410 541 -		51.8 N1U std =	
H/Conductivity	Meter Type	VSi- Pro Plus		4.01 et l ~		499 110 50 =	
•		101 110 1000	-	9.01 Std			
				101 std ⇔	·	1413 umbos/cm ==	
				10.1 803-	· · · · · · · · · · · · · · · · · · ·		
hysical Properties							
Odor:		N/A		Anal	ysis Required:		
Color:	/	V/A				. /	
Turbidity:	/	I (A		San	aple time/date:	1344/5-6	-2020
comments:							
Deviations f	rom FSAP:						
÷ ÷	1-			·····	~~~		
ampler. Ko	N Var	~		Signature:	- Ko	alter	

.

ParameterMethod #TemperatureSM 2550-B 2000/2010pHSM4500-H B2011ConductivitySM2510B-2011

 \mathbf{O}

ATTE OHIO° A unit of American Electric Power

FIELD INFORMATION FORM

Site: 17.	tchell	LAnd Fill	AE	P Project Number	- : <u>423802-</u>	5602	
Date: 5-6	-2020		Wea	ther Observations	overc	ast 40's	
WELL ID: M	W-150	3R				Water Volume	Factors
Casing Diameter:	4	(inches) W	ater Height in Well:	NA	(fact)	Diameter	Gillons/Foot
Total Depth:	161.90	(feet) Wa	ter Volume in Well-	NA	(millione)	1.5 inches	0.092
Depth to Water:	92.22	(feet)	Purge Volume	có d	_ (gamma)	3 inches	0.38
Depth to Top of Screen:	89.40	(feet)		/	_gzi. (removed)	4 0005	0.66
Measured using:	GeoTe	eh ET SW	uimum Purge Volum L Mefer	e (drawdown)(gal	/ft.) + (well scr	een length)(gal/ft.) =	
Purged using:	Dedicated B	ailer/Polypro Rope	Grundfos pump	poly tubing	Other	Deficated Blade	Lor Porano
Sampled using:	Dedicated B	ailer/Polypro Rope	Grundfos pump	poly tubing	Other	Dedicated Blud	der Pump
			Field Measure	ements			
Temperature (degrees C)	pH (s.u.)	Conductivity (umhos/cm)	Turbidity (NTU)	Volume (gallons)	Water Lev	el During Purging (feet)	Time
				Ø		N/A	1535
					<u> </u>		
<u>n</u>					N.	·····	
	1	Field Meas	Iromonta at 7	in a f Com	- 22		
Temperature	pH	Conductivity	Turbidity	Volume	pung Water Levi	I During Samulia	
(degrees C)	(S.n_)	(umhos/cm)	(NTU)	(gallons)	Water Leve	(feet)	Time
		Τn	strument Cal	ibration			
Turbidity	Meter Type	Hanna Hol 93	763	1.0 NTII std =		5 42 NTU etd -	
				10.0 NTD std =	/	51.8 NTU std =	
pH/Conductivity	Meter Type	Vsi- Pro Pl.		<i>4</i> 01 mJ -		499 NTU std =	
-	-,,,,,	,	12	4.01 std = 7.0 std =		1413 umhos/cm =	
				10.1 std =			
Physical Properties							
Color:		<u>N/A</u>		Anal	ysis Required:		
Turbidity:	A	JIA	1924	San	ople time/date:	No Sample /	5-6-2020
Comments:	Insus	Ficient to	Suppl				
Deviations f	rom FSAP:_						
Sampler: Ro	N Val-	-		Simol	· Pri	ΥſΣ	
Parameter Method	#			o ignature:			
Temperature SM 2550-B	2000/2010 B2011						

Conductivity SM2510B-2011

 $\mathcal{O}_{(-1)}$

0!

		AEP	OHIO°							
		FIFLD	A UNIT OF AMERIC	an Electric Powe	ЭГ Л					
the second		<u>FILL</u>	MIORINA	IION FURI	1					
Site: Ali	tchell	LAnd F.II	AL AL	AEP Project Number: 423 80 2 56 5 2						
Date: 0-6	.2020	-	We	ather Observations	over	AST 40'S				
WELL ID: M	W - 15	03 F					Water Volume Factors			
Casing Diameter:	4	(inches) Wat	er Height in Well:	NA	(feet)	Diameter	Gallons/Foot			
Total Depth:	66.30	(feet) Water	1.5 inches 2 inches	0.092						
Depth to Water:	63.15	(ftet)	gal.(calculated)	3 inches 4 inches	0.38					
Depth to Top of Screen:	48.4	(first)		/	gal. (removed)		·			
Measured using:	GeoTo	reh ET SWL	mum Purge Volun	ie (drawdown)(gal	/ft.) + (well scr	een length)(gal./fL) ≕				
Purged using:	Dedicated B	ailer/Polypro Rope	Grundfos pump	poly tubing	Other	Deficated Bladder Pran				
Sampled using:	Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other Dedicated Blu									
		F	ield Measur	ements			1			
Temperature (degrees C)	pH	Conductivity	Turbidity	Volume	Water Lev	el During Purging	Time			
	(5.U.)	(umhos/cm)	(NTU)	(gallons)	1	(feet)	1540			
				<u>y</u>			1370			
						······································				
		195								
		Field Measu	rements at	lime of Sam	pling					
(degrees C)	pH (s.n.)	Conductivity (umhos/cm)	Turbidity (NTLD	Volume (gallons)	Water Leve	al During Sampling	Time			
				(galuus)						
r										
Turhidity	Mater Tuma	. Ins	trument Ca	libration						
	103	1.0 NTU std = 10.0 NTD std =		51.8 NTU std =						
pH/Conductivity Meter Type VSi - Pro Plus			c	4.01 +1-			499 NTU std =			
			2	4.01 std =		1413 umhos/cm =				
				10.1 std =						
Physical Properties Odor:		ALLA		l	unia Dountee de					
Color:		N/A	-	erreihten.						
Turbidity:	/			San	ople time/date:					
Comments:	-thSud	Elivert to p	where -							
Deviations	from FSAP:	······								
	-			•						
Sampler. Ko	N Vat		_	Signature:	Kow	the second				
Parameter Method	#									
pH SM4500-H Conductivity SM2510B-3	B2011 2011									

 $\begin{pmatrix} 0 \\ (& 1 \end{pmatrix}$

Q!

O

0					MIO° Init of America	an Electric Powe	r						
(· · ·	FIELD INFURIVIATION FORM												
	Site: 17. tchell Land Fill AEP Project Number: 4/238025602												
	Date: 5-6-2020 Weather Observations: Overcost 40's												
	WELL ID: Leachate Water Values Easter												
	Caring Diamatan			1 517-1 - 1				Diameter	Gillons/Foot				
	Terri Deste		(mches)	water.	Height in Well:		(fect)	1 inches 1.5 inches	0.04				
	Total Depth:		(feet)	Water V	olume in Well:		(gallons)	2 inches 3 inches	0.17				
	Depth to Water:	· · · · · · · · · · · · · · · · · · ·	(feet)		Purge Volume:	N/A	gal.(calculated)	4 inches	0.66				
	Depth to Top of Screen:(feet)												
	Measured using:	Measured using: <u>GeoTech ET SWL Meter</u>											
	Purged using:	Dedicated B	ailer/Polypro	Rope	Grundfos pump/poly tubing Other			Dip Sample					
	Sampled using:	Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Othe					Other	Dip Samp	<u>le</u>				
				Fie	ld Measur	ements							
	Temperature	pH Conductivity			Turbidity	Volume	Water Level During Purging		Time				
	(degrees C)	(5.11.)	(umho	s/cm)	<u>(NTU)</u>	(gallons)		(feet)					
								<u> </u>					
\bigcirc													
T.													
1. S. C.													
	٥												
				2.5									
	Temperature	DH I	Field	Measur	Turbidity	lime of Sam	pling						
	(degrees C)	(5.11)	(បាយរាប	s/cm)	(NTU)	(gallons)	Water Leve	(feet)	Time				
	15.1	9.04	759	10	5127	NA	101	s gpm	1745				
	[- Instrument Colling Res											
	Turbidity	Meter Type	Hanna H	+1 9370	3	1.0 NTU std =		5.42 NTU std =					
					10.0 NTD std =	51.8 NTU std =	51.8 NTU std =						
	pH/Conductivity		499 NIU std =										
						7.0 std ==		1413 umbos/cm =					
	Physical Properties					10.1 dta		······					
	Odor: N/A				Analysis Required:								
	Color: Turbidity:		N/A J/A			Sam	nle time/data	1745 /5-6-	202.0				
	Comments:						pre interente.	1113 / 3 0					
(Deviations 1	rom FSAP:											
C.E.	Sampler t	Roop VIT	1			· · ·	< 21	. [4]					
	Parameter Method	#	<u> </u>			Signature:	nov	N					
	Temperature SM 2550-B	<u>~</u> 2000/2010											
	pri SM4500-H Conductivity SM2510B-2	B2011 2011							-				
Field Static Water Level Form Mitchell Landfill Mitchell Power Generation Plant American Electric Power

Soil Boring	Monitorina	Monitoring Well Tag	Fiste Welt	Coordinates ¹¹⁾		Top of Riser Elevation	Casing Diameter	Depth to Top of Screen	Screen Length	Measured Total Depth ⁽⁴⁾	Measured Total Depth ⁴⁹	
ID	Well ID	Number	Installed	Northing	Easting	(ft amsi)	(#101385)	(ft amsl)	(ft amsl)	(feet)	Water Level TOC	Elevation
	MWINDH	0431-0003-2011	0822014	484983 9	VEEPES7 B	1220 71	2	290	50	3429	DRY	
SB-01	MW1 101R	0491-0006-2011	10/28/2011	484877-8	1609656 4	1221 23	2	,187	25	214.5	195.60	1025.63
	MW1101F	0402-0006-2011	12/20/2011	494864.5	1609651,4	1220.86	2	162	7	171.1	164.80	1056.06
	MW1101B	0402-0005-2011	12/19/2011	484870 8	1609653 8	1220 73	2	89	18	109.2	-	-
	MW1102R	0402-0002-2013	12/14/2011	4851017	1511103.3	1228.36	2	196	8	205 8	181.57	1046.79
SB-07	MW1102F	0491-0004-2011	10/25/2011	4851061	1611110.1	1228.57	2	147	30	180	156.10	1072.57
	MW1102B	0402-0003-2011	12/15/2011	485097.4	1611096.9	1228 84	2	72	17	90,9	-	-
	M/N1103H	0491-0002-2011	.9/27/2011	487005 3	1610094	1239.82	2	307	40	349.4	DRY	/
SB-18	MWIIDER	0402 0004 2011	12/16/2011	-486598 5	1610097 2	1240.DI	2	191	7	200.3	195,90	1044.11
	M'W1103F	0491-0005-2011	10/26/2011	4870112	1610102.2	1739 19	2	149	30	181.5	156.80	1082.39
SB-23	MWI1DAR	0402 0008 2011	12/22/2011	486345 1	1605471 2	1230.66	2	187	25	2133	181.52	1049.14
	MW1104F	0402-0007-2011	12/21/2011	486352.3	1609469.3	1230.3	2	152	20	174.1	168.54	1061.76
SB-09	PZ11D1H ³³	0402-0001-2011	9/19/2011	485990.9	16.10339.5	1143 59	1	212	35	247 5	/	/
B-1501	MW1501R		8/5/2015	484663 D	1609913.5	1161 78	4	135.4	14.5	153.5	152.40	1009.38
	MW1501F		8/6/2015	484662.0	1609917.5	1161.83	4	91.4	14.6	109.7	102.00	659.83
8-1502	MW1502R		B/6/2015	484648 8	1610218 1	1047 41	4	234	96	36.0	DRY	/
B-1503	MW1503R		B/15/2015	4845957	15104876	1111.96	4	894	96	101.9	92.44	1019.52
	MW1503F		8/15/2015	484591.4	1610488.5	1111.93	4	48.4	14.6	66 3	63.95	1047.98

(1) Survey coordinates are US State Plane 1983 West Virginia North.

(2) amsi = average mean sea level. Vertical Datum is NAVD 1988, GEO(D 03.

(3) Piezometer Abandoned in June 2013 due to encroaching landfil construction. One inch diameter piezometer

(4) Measured from the top of riser.

Bedrock Unit Legend:

H = Hundred Sandstone

R = Rush Run Sandstone

F = Fish Creek Sandstone

8 = Burton Sandstone/Shallow Bedrock

\bigcirc ;	Site: 17. Date: 7-1	tchell 15-20	FIELD Land Fill	OHIO° A unit of Americ INFORMA At We	an Electric Powe TION FORM IP Project Number: ather Observations:	r [
			-	11 6	anici Observations:		
	WELL ID: N	W 1102	F			Water Volu	me Factors
	Casing Diameter:	_2	(inches) Wate	r Height in Well:	23,9	(feet) Diameter	Gallons/Foot 0.04
	Total Depth:	180.0	(feet) Water	Volume in Well:	4.1	(rallions) 2 inches	0.092
	Depth to Water:	156.10	(feet)	Purge Volume:	7	gal (calculated) 4 inches	0.38
	Depth to Top of Screen:	147.0	(feet)			gzl. (removed)	
	Measured using:	GeoTo	reh ET SWL	um Purge Volum Mefer	ie (drawdown)(gal <i>l</i>	'fi.) + (well screen length)(gal/ft.) =
	Purged using:	Dedicated B	ailer/Polypro Rope	Grundfos pump	vpoly tubing	Other Dedicated Bla	dder Pray
	Sampled using:	Dedicated B	ailer/Polypro Rope	Grundfos pump	/poly tubing	Other Dedicated ish	udder Pring
			Tri	ald Massur	amanta		
	Temperature	лH	Conductivity	Turbidity	Value	11/1	
	(degrees C)	(s.u.)	(umhos/cm)	(NTU)	(gallons)	(feet)	Time
	12.9	9.0	880	0.8	1	156,32	1314
6	12-8	3.8	870	1.2	2	156.51	1318
(12.7	3.6	850	1.4	3	156.73	1322
C .	12.7	2.4	810	1.8	4	156.99	1326
<u> </u>	12.7	8.4	200	1.8	<u>></u>	157.21	
					Y	12/1/4	1334
	i i i i i i i i i i i i i i i i i i i					0	
				-			
			Field Measu	rements at '	Fime of Samp	oling	
	Temperature	pH	Conductivity	Turbidity	Volume	Water Level During Sampling	
	(degrees C)	(5.n.)	(umhos/cm)	(NTU)	(gallons)	(feet)	Time
		1_8:7_1	800	114	7	158.12	1336
	Turbidity	Makes Trees	. 10st	rument Cal	ubration		
	a contraction of the second se	meter Type	Hanna HT 73/1	52	1.0 NTU std =	5.42 NTU std	*** ·····
	TIO		12: 2 21		10:0 1110 500 -	499 NTU std	=
	ph/Conductivity	Meter Type	VSI - Fro Plus		4.01 std =		
					7.0 std =	1413 umbos/cm	
	Physical Proparties						
	Odor:		N/A		A	- Density de	
	Color:	1	N/A	-	Analy	sas Requireo:	
	Turbidity:	/	V/A	-	Sam	ple time/date: 1336 / 7-	15-2020
	Comments:					,	
-(Deviations	from FSAP:_					
		-					
in the		Nal -			·	$\bigcirc \downarrow \uparrow \downarrow$	
	Sampler: Kon	1 van		-	Signature:	KOUND	
	Parameter Method	#					
	pH SM4500-H	B2011					
	Conductivity SM2510B-	2011					

Field Static Water Level Form Mitchell Landfill Mitchell Power Generation Plant American Electric Power

Soil Boring	Monitoring	Monitoring Well Tag	Date Well	Coord	inates ⁽¹⁾	Top of Riser Elevation	Casing Diameter (inches)	Depth to Top of Screen	Screen Length	Measured Total Depth ⁴¹	9.1-	2020
lD	Well ID	Number	Installed	Northing	Easting	(ít amsl)		((t amsl)	(ft ams!)	(feet)	Water Level TOC	Elevation
	MWINIH	.0493-0003-2911	10/2/2011	484983.9	1609657.8	1220 74	2	290	50	3429	DRY	NIA
S8-01	MW1 101R	0491-0006-2011	10/28/2011	484877 8	1609656 4	1221 23	2	187	25	214.5	195.6	1025.63
	MW1101F	0402-0606-2011	12/20/2011	484864.5	1609651,4	1220.86	2	162	7	171.1	164.6	1056.zL
	MW11018	0402-0005-2011	12/19/2011	484870.8	1609653.8	1220.73	2	.E9	18	109 2	-	-
	MW1102R	0402-0002-2011	12/14/2011	4851017	1511103.3	1228.35	2	196	8	205 8	180,71	1047.65
SB-07	MW1102F	0491-0004-2011	10/25/2011	4851061	1611110.1	1228.67	2	147	30	180	156.2	1072.47
 	MW11028	0402-0003-2011	12/15/2011	485097 4	161 1096.9	1228 84	2	72	17	90.9	-	
	MW1103H	0491-0002-2011	:9/27/2011	487005 3	1610094	1239.82	2	307	40	349.4	DRY	N/A
SB-18	MWJHDBR	0402-0204-2011	12/16/2011	488998 5	161009712	1240.01	2	191	7	200.3	178.7	1061.3
	MW1103F	0491-0005-2011	10/26/2011	4870112	1610102.2	1239.19	2	149	30	181,6	156,65	1082.54
SB-23	MWI1DAR	0462 0008-2011	12/22/2011	486345 1	1609471 2	1230.65	2	187	25	213.8	178,7	1051.96
	MW1104F	0402-0007-2011	12/21/2011	486352.3	1603469.3	1230.3	2	152	20	174.1	168.38	1061.92
SB-09	PZJIDIH	0402-0801-2011	-9/19/2011	485990.9	1610339.5	1143.59	1	212	35	247 5	-	~
B-1501	MW1501R		8/5/2015	484663.0	1609913.5	1 161 78	4	135.4	14.6	153 5	152.4	1009.38
	MW1501F		8/6/2015	484662.0	1609917.5	1161.83	4	91.4	14.6	109.7	101.8	1040,3
B-1502	MW1502R		8/6/2015	484648 8	1610248 1	1047 41	4	234	96	36.0	32.5	1614.91
B-1503	MW1503R		8/15/2015	4845967	1610487 6	1111.96	4	89 4	96	101-9	92.6	1019.36
	MW1503F		8/15/2015	484591.4	1610488.5	1111.93	4	48.4	14 6	66 3	64.5	1047.43

(1) Survey coordinates are US State Plane 1983 West Virginia North.

(2) amsi = average mean sea level. Vertical Datum is NAVD 1988, GEOID 03.

(3) Plazometer Abandoned in June 2013 due to encroaching landfä construction. One inch diameter plezometer (4) Measured from the lop of naer. Bedrock Unit Legend:

H = Hundred Sandstone

R = Rush Run Sandstone

F = Fish Creek Sandstone

8 = Burton Sandstone/Shallow Bedrock

		AEP	ohio.				
		A	unit of Americ	an Electric Pow	9r		
		FIELD.	INFORMA	TION FORM	<u>1</u>		
Site: 17.	tchell	LAnd Fill	A	EP Project Number	423802	5602	. 5
Date: <u>9</u> -	1 - 2620	2	We	ather Observations	ove	rcast	30
WELL ID: M	11150	2R				Water Volum	e Factors
Casing Diameter:	4	(inches) Wate	TRight in Well-	3.5	15 - 0	Diameter	Gallons/Foot
Tatal Death	36.0			7.31	_(1221)	I mehrs 1.5 inches	0.04
A GIAL DEPILL	77 5	(net) Water	Volume in Well:		(galions)	2 inches 3 inches	0.17
Depth to Water:	3412	(feet)	Purge Volume:	4.5	gal.(calculated)	4 inches	0.66
Depth to Top of Screen:	23.40	(fest)	num Dunne Malur		Ear. (removed)		
Measured using:	GeoTe	ch ET SWL	Meter	ie (drawdown)(gal	/it.) + (well ser	zen length)(gal/ft.) =	
Purged using:	Dedicated B:	ailer/Polypro Rope	Grundfos pump	/poly tubing	Other	Deficated Blad	der Poranjo
Sampled using:	Dedicated Ba	ailer/Polypro Rope	Grundfos pump	poly tubing	Other	Dedicated Blue	Ider Pray
		Fi	eld Measur	ements			
(degrees C)	pH (s.u.)	Conductivity (umhos/cm)	Turbidity (NTID	Volume (millions)	Water Lev	el During Purging	Time
15.5	7.0	871	3,4	0,625	3	(ieet) 3;1	1/330
13.4	11.1	870	5.7	1.25	3	31.5	1334
13-1	116	0 10	1.2	1.8	39	1,2,	1338
							+
	2						
	+						
							+
5	{						
			·				
	1	Field Measu	rements at '	Time of Sam	pling		
(degrees C)	pH (sn)	Conductivity	Turbidity	Volume	Water Leve	I During Sampling	Time
15.3	17,2-1	870	7.5	Z / S	34	(teet) 	1242
			•	_	/		
		Inst	rument Cal	libration			
Turbidity	Meter Type	Hanna Ho 937	23	1.0 NTU std =		5.42 NTU std =	
				10.0 NTD std =		51.8 NTU std =	
pH/Conductivity	Meter Type_	VSi - Pro Plus	5	4.01 std =	L.	499 NIU 800 =	
				7.0 std =		1413 umhos/cm =	
Patrick Patrick Patrick				= 10.1 std	: ••••••••••••••••••••••••••••••••••••		
Odor:		ALLA		h			
Color:		J/A	-	Alla	Aara Kedniten.	//>	
Turbidity:	^	1/1	-	Sar	aple time/date:	No Sauple	
Comments:	<u>P</u>	H stabili	zed C	7.2			
Deviations	from FSAP:						
	,, (]	· · · · · · · · · · · · · · · · · · ·				177	
Sampler: Kon	1. Van	· · · · · · · · · · · · · · · · · · ·		Signature	+KON	WH	
Parameter Method	#			-			
remperature SM 2550-B pH SM4500-H	2000/2010						
Conductivity SM2510B-	2011						

The second

0 (```

Ő

Field Static Water Level Form Mitchell Landfill Mitchell Power Generation Plant American Electric Power

Soll Paring	Manitorias	Manitoring Well Tax	Data Miril	Coordinates ⁽¹⁾		Top of Riser Elevation	Casing Diameter	Depth to Top of Screen	Screen Length	Measured Total Depth ⁽⁹	10-20	-20
ID	Well ID	Number	Date Well Installed	Northing	Easting	(ít amsl)	(inches)	(ft amsl)	(ít amsi)	(feet)	Water Level TOC	Elevation
	MW1101H	0431-0003-2011	10/7/2011	484683.9	1609057/8	122074	2	250	50	3429	292.90	927.81
S8-01	MW1101R	0491-0006-2011	10/28/2011	484877 8	1609656 4	1221 23	2	137	25	214.5	195.79	102544
	MW1 1D1F	0402-0006-2011	12/20/2011	484864.5	1609651.4	1220.86	2	162	7	171.1	164.31	1056-65
	MW1101B	0402-0005-2011	12/19/2011	484870.8	1609653.8	1220.73	2	89	18	109.2		
	MW11028	DAD2-2002-2011	12/14/2011	4851017	1511103.3	1228.36	2	196	8	205 8	179.96	1048.40
SB-07	MW1:102F	0491-0004-2011	10/25/2011	4851061	1611110.1	1228.67	2	147	30	180	156.51	1072.16
	MW11028	0402-0003-2011	12/15/2011	485097.4	161 1096.9	1228 84	2	72	17	90.9		-
	MW1103H	0491-0002-2011	:9/27/2011	487005 3	1610094	1239-82	2	307	40	349.4	295.20	944.62
SB-18	MWINDER	0402 0004 201 1	12/15/2011	-486998 5	1610097.2	1240.01	2	191	7	200.3	195.26	1044.75
	MW1103F	0491-0005-2011	10/26/2011	4870112	1610102.2	1239 19	2	149	30	181.6	156.79	1082.40
\$8-73	MW1104R	0402 0008-2011	12/22/2011	4860451	1609471.2	1230.65	2	137	25	213.8	178.77	1051.89
	MW1104F	0402 0007-2011	12/21/2011	466352.3	1609469.3	1230,3	2	152	20	174.1	168.23	1062.07
S8-09	PZILDIH	0402-0001-2011	9/19/2011	485990.9	1610339.5	1143.59	1	212	35	247.5		
B-1501	MW1501R		8/5/2015	494663 D	1609913.5	1 16 1 78	4	135.4	14.6	153 5	152.48	1009.30
5 1001	MW1501F		B/5/2015	484662.0	1609917.5	1161.83	4	91.4	14.6	109.7	101.65	1060.18
B-1502	MWI 502R		.8/6/2015	484648.8	1610248 1	\$D47.41	4	23.4	96	36.0	33.53	1013.88
8-1503	MW15EIR		B/15/2015	484596 7	15104875	1111.96	4	894	96	101.9	94.60	1017.36
	MW1503F		8/15/2015	484591.4	1510488.5	1111.93	4	48.4	14 6	66 3	64.17	1047.76

Bedrock Unit Legend:

(1) Survey coordinates are US State Plane 1983 West Virginia North.

(2) amsl = average mean sea level. Vertical Datum is NAVD 1988, GEO(D 03.

(3) Prezonaetar Abandoned in June 2013 due to encroaching land#2 construction. One inch diameter prezonaeter

(4) Measured from the top of riser.

H = Hundred Sandstone

R = Hush Run Sandstone

F = Fish Creek Sandstone

8 = Burton Sandstone/Shallow Bedrock

0 (*)			AITE (A	OHIO° unit of Americ INFORMA	can Electric Powe TION FORM	r I	
	Site: 17.	tchell	LAnd Fill	A	EP Project Number:	4238025602	
	Date: 10-2	1.20	-	Wr	ather Observations:	Sunny	70'5
	WELL ID: M	W-lloi	Ч			Wat	er Volume Factors
	Casing Diameter:	_2	(inches) Wate	r Height in Well	N/A	(fret) Dian	teter Gallons/Foot
	Total Depth:	342.9	(feet) Water	Volume in Well:	N/A	(gallons) 2 in	thes 0.17
	Depth to Water:	292.90	_(fret)	Purge Volume:	ø	gal (calculated) 3 in	bes 0.38 bes 0.66
	Depth to Top of Screen:	290.0	(fest)	_		gar (removed)	
	Measured using:	GeoTo	zeh ET SWL	Meter	ne (drawdown)(gal.	/ft.) + (well screen length)	(gal/fL) =
	Purged using:	Dedicated B	ailer/Polypro Rope	Grundfos pum	p/poly tubing	Other Deficate	d Bladder Purup
	Sampled using:	Dedicated B	ailer/Polypro Rope	Grundfos pum	p/poly tubing	Other Dedicat	ed isludder Prinp
			Fi	ield Measu	rements		
	Temperature (degrees C)	pH (su)	Conductivity	Turbidity	Volume	Water Level During I	urging Time
		(0.0.)			(gauons)	(itest)	1440
\bigcirc							
\bigcirc :							
1		1					
12							
						1	
	Temperatura	1	Field Measu	rements at	Time of Sam	pling	
	(degrees C)	(5.11_)	(umbos/cm)	(NTU)	Volume (gallons)	Water Level During S (feet)	ampling Time
	[Ť		¥4¥		
	Turbidity	Meter Type	14 4 Mg 46 927	A3	LONTILed =	5 42 31	
		· · ·		2	10.0 NTD std =	51.8 N	TU std =
	pH/Conductivity	Meter Type	Vsi - Pro Plus	s	4.01 std =	499 N	TU std =
		-			7.0 std =	1413 um	hos/cm =
	Physical Properties				10.1 Etd ==		
	Odor.		NIA	_	Anal	ysis Required:	
	Color: Turbidity:		NIA		San	aple time/date: No S	maple / 10-21-2020
	Comments:	Insuff	Ricient Water	to Same	ple		
(Deviations	from FSAP:					·
	\sim . (1/1 -					
J 20	Sampler: Kon Va	L/Chris	Parkhurst-	-	Signature:	Kult	<
	Parameter Method Temperature SM 2550-	<u>d #</u> B 2000/2010					
	pH SM4500-1	H B2011					
	Conductivity SM2510B	-2011					

\bigcirc			AEP	OHIO° A unit of America	n Electric Powe	r		
(1			FIELD	INFORMAT	ION FORM	Ĩ		
	Site: 17.	tchell,	LAnd Fill	AE	P Project Number:	423807 5	607	
	Date: 10-21	-2020		Wea	ther Observations:	Su	nny 70°	5
	WELL ID: M	WILDLI	R			Г	Water Volume	Factors
	Caring Diameter	7			10 7		Diameter	Gallons/Fool
	Casing Diameter.		mches) Wal	er Height in Well:	8 ./	_(feet)	1 inches 1.5 inches	0.04
	Total Depth:	214.5	(feet) Water	r Volume in Well:	3.2	(galloos)	2 inches 3 inches	0.17
	Depth to Water:	195.8	(fect)	Purge Volume:	<u>Z</u>	gal.(calculated)	4 inches	0.66
	Depth to Top of Screen:	187.0	(feet)	-		Ear (removed)		
	Measured using:	GeoTe	eh ET SWL	- Meter	e (drawdown)(gal.	/fL) + (well sere	en length)(gal./ft.) =	
	Purged using:	Dedicated Ba	iler/Polypro Rope	Grundfos pump	poly tubing	Other]	Dedicated Blade	Les Porys
	Sampled using:	Dedicated Ba	iler/Polypro Rope	Grundfos pump	poly tubing	Other	Dedicated Blud	der Pump
			F	ield Measur	ements			
	Temperature (dammer C)	pH	Conductivity	Turbidity	Volume	Water Lev	el During Purging	Time
		9.19	(umans/cm)	(NIU)	(gallons)	1	(feet)	1 Holl
	12-8	9.21	1/20	7.8	1.0	1	17.9	1408
Ci	12.8	9.12	1120	9.6	1.5	19	19.2	1412
Ň.					······			
-								
	÷		÷.			2.		
		I	Field Measu	i	lime of Sam	l		
	Temperature	PH	Conductivity	Turbidity	Volume	Water Leve	During Sampling	
	(degrees C)	(5.11.)	(umhos/cm)	(NTU)	(gallons)		(feet)	Time
	12.7	9.06	1110	12.94	2.0	2	02.6	1427
			Tno	trament Col	ibration]
	Turbidity	Meter Type	16 m. no Ht 93-	763	1.0 NTI[std=		5 47 NTTI etd =	
					10.0 NTD std =		51.8 NTU std =	
	pH/Conductivity	Meter Tyrue	Vsi- Pro Plu	<	4.01 etcl ~	_	499 NTU std =	
			10. 10.10	2	7.0 std =	: 	1413 umhos/cm =	
					10.1 std =			
	Physical Properties		(12) ·					
	Odor: Color:		N/A		Anal	lysis Required:		
	Turbidity:		1/1		Sar	nple time/date:	1415 C 10-	21-2020
	Comments:							
\sim	Deviations	from FSAP:						
		-					<u> </u>	
C.	Sampler Pratila	- Ichar	Padelanet		Simoh	. 2	.1.2	
	Parameter Method	1#	JULINIW AL		orgramme	. Tal	UT >	
	Temperature SM 2550-	B 2000/2010						
	pH SM4500-I Conductivity SM2510B	H B2011 -2011						-
	• • • • • • •							

			ALEP	OHIO° A unit of Amer. INFORMA	ican Electric Pow	er A		
	Site: 17.	tchell	land Fill			<u>,</u>		
	Date: /0 - 2	1.2020	-Anno 1 - 11	¥	LEP Project Number	: <u>423802.</u>	5602	5
	THEFT I TO			Ŷ	catter Observations	<u>S</u>	uny 70	
	WELL ID: N	1W 110	LE				Water Volum	e Factors
	Casing Diameter:	_2_	_(inches) Wate	r Height in Wel	E/A	(feet)	Diameter 1 inches	Gallons/Fool
	Total Depth:	171.10	(feet) Water	Volume in Well	E N/A	(gallons)	15 inches 7 inches	0.092
	Depth to Water:	164.3	(feet) :	Purge Volume	: Ø	Pal (calculated)	3 inches	0.17
	Depth to Top of Screen:	162.0	_ (feet)	-		_gal. (removed)	4 Inches	0.66
	Measured using:	_ Geo T	ech ET SWL	Meter	me (drawdown)(gal.	/ft.) + (well ser	een leogth)(gal/ft.) =	
	Purged using:	Dedicated I	Bailer/Polypro Rope	Grundfos pur	p/poly tubing	Other	Delicated Blad	Inc Pice
	Sampled using:	Dedicated I	Bailer/Polypro Rope	Grundfos pur	p/poly tubing	Other	Dedicated Blud	der Pray
			TR	eld Measu	PAraméa			
	Temperature	pH	Conductivity	Turbidity	Volume	Water Tau	d During D	
	(degrees C)	(s.u.)	(umhos/cm)		(gallons)	Wald Lev	(feet)	Time
-								1435
\bigcirc (<u> </u>	
				+				
×								
	1							
	Temperature		Field Measur	ements at	Time of Samp	oling		
	(degrees C)	р <u>н</u> (s.n_)	Conductivity (umbos/cm)	Turbidity	Volume	Water Level	During Sampling	Time
					(gallons)		(feet)	Time
		·····						
			Inst	ument Ca	libration			
	Lurbidity	Meter Type	Hanna Ho 9370	3	1.0 NTU std =		5.42 NTU atd =	
			1		10.0 NTD std =		51.8 NTU std =	
	pH/Conductivity	Meter Type_	VSI - Pro Plus		4.01 std =		499 110 500 =	
					7.0 std =		1413 umhos/cm =	
	Physical Properties				10.1 804-			
	Odor:		NIA		Analy	nie Danniem.I.		
	Color: Turbidity:		V/A		- Clory	na veduzen:		1
	Comments.	Tee			Samp	le time/date:	No Struple,	10-21-2020
/		Insu	Hicrent Wa	les to s	sample_			
0	Deviations fi	rom FSAP:						•
in the	PILI	101-	\mathcal{O}		· · · · · · · · · · · · · · · · · · ·			
	Dampler. IvonVal	n/Chri	s tarkhuist		<pre>Signature:</pre>	Vac	- Jul	
	Temperature SM 2550-B	<u>#</u> 2000/2010			-			
	pH SM4500-H Conductivity SM2510B-20	B2011 D11						

о (';			Alee	OHIO° A unit of Amer	ican Electric Pow	'er		
	Site: 17	itchell	Land Eill		MION FOR	<u>M</u>		
	Date: 10 -	21.2020	~ Artur F · []	⁴	AEP Project Numbe	r: <u>423802.56</u>	<u>. 02</u>	5
	WELL TO	Alu Uso	-	1	Callier Observation	5: <u></u>	ny 10	
		<u>1W 1102</u>	<u>. K</u>				Water Volume	Factors
	Casing Diameter:		_(inches) Wal	er Height in Wel	E_N/A	_(feet)	Diameter 1 inches	Gallons/Foot 0,04
	Total Depth:	205.08	_(feet) Wate	r Volume in Wel	1: N/A	(gallons)	1.5 inches 2 inches	0.092
	Depth to Water:	179.94	_(feet)	Purge Volum	:Ø	gal (calculated)	3 inches 4 inches	0.38
	Depth to Top of Screa	196.le	_ (feet)			_gal. (removed)		1
	Measured using:	_ Geo T	ech ET SWL	mum Purge Volu - Meter	une (drawdown)(gal	/ft.) + (well screen	n length)(gal/fL) =	
	Purged using:	Dedicated I	ailer/Polypro Rope	Grundfos pun		01	1: 11000	
	Sampled using:	Dedicated I	Bailer/Polymo Rope	Grandfor pur	approx to the	Other De	ulicated Blade	lar trans
			pro xcopo	Cituatios pub	who have a second s	Other <u>De</u>	dicated Blud	der Prinp
	Temperature	DH	F	ield Measu	rements			
	(degrees C)	(5.11.)	(umhos/cm)	(NTU)	Volume (gallons)	Water Level)	During Purging	Time
								1530
						2		
(
	:							
	Temperature	PH	Conductivity	Turbidity	Time of Sam	pling		
	(degrees C)	(5.11.)	(umhos/cm)	(NTU)	(gallons)	Water Level D (fe	uring Sampling zt)	Time
				<u> </u>				
			Inst	rument Ca	libration			
	Turbidity	Meter Type	Hanne Ht 9370	4 3	1.0 NTU std =		5.42 NIU std =	
	pH/Conductivity	Meter Time	Vei- 2- 21.	_	10.0 NID std =		51.8 NTU std = 499 NTU std =	
		ment rype	yai Fro TULS		4.01 std = 7.0 std =	14	413 Imhos/cm ==	
	Physical Beamartine				10.1 std =		···· .	
	Odor:		V/A		Ánali	min Damata di		
	Color: Turbidity:		J/A I/A		-	an vedatet:	151	/
	Comments:	Jasul	Coint 10+	· F L o	Sam	ple time/date:	10 SAmple /	10-21-2020
(Deviations	from ESAD.	neteni wa	Les TO 20	mple			
		-	-					
	Sampler, Roat Vo	h /oL	P 11 -		· ·	$\langle \cdot \rangle$	f	
	Parameter Method	#	is larkhurs	<u>, 1</u>	Signature:_	tou	ht	
	Temperature SM 2550-B pH SM4500-H	2000/2010 B2011						
	Conductivity SM2510B-2	2011						•

О (' ;			Altr. FIELD	OHIO ° A unit of Amer INFORM	rican Electric Pow	'Br		
	Site: 11	Fr.h. 11	1.1011	all oldi	ATTON FURT	<u>VI</u>		
	Date: ///	1.2020	LAna F. 11		AEP Project Number	423802	5602	
		1-2020		Ą	Veather Observations	<u> </u>	uny 70	• 5
	WELLID:	MW 110	2F				Water Volum	te Factore
	Casing Diameter:	_2_	_(inches) Wate	= Height in We	1: 23.49	(feel)	Diameter	Gallons/Foot
	Total Depth:	180.0	_(feet) Water	Volume in We	4.0	(mile)	1.5 inches	0.092
	Depth to Water:	156.5	(feet)	Purge Volum		[Earmit2]	2 inches 3 inches	0.17
	Depth to Top of Screen:	147.0	(fret)			_gal (calculated) _gal (removed)	4 inchrs	0.65
	Measured using:	6es7	ech ET SWL	num Purge Volu Mefer	une (drawdown)(gal	/fL) + (well sc	reen leugth)(gal/fL) =	
	Purged using:	Dedicated]	Bailer/Polypro Rope	Grundfos pur	p/poly tubing	Other	alt lala	1 2
	Sampled using:	Dedicated I	Bailer/Polypro Rope	Grundfos pur	p/poly tubing	Other	Dedicated Islad	der Frans Ider Pring
			Fi	eld Measu	rements			
	(degrees C)	pH (nu)	Conductivity	Turbidity	Volume	Water Lev	el During Purging	Time
	12.9	8.98			(gallons)		(feet)	Time
~	12.8	9.01	800	1.33	0.5	1:	7.0'	1506
00	12.8	9.01	800	1.27	1.5		7.8'	1510
						/~	0.1	1314
1								
-								
						0.		
		1	17: 1.1 P.M.	[
	Temperature	DH I	Conductivity	ements at	Time of Samp	oling		
	(degrees C)	(S.L.)	(umhos/cm)	A Dirbidity	Volume	Water Leve	During Sampling	Time
	12.9	8.99 1	800	2.08	2.0	11.	(feet)	
								/325
			Inst	ument Ca	libration			
	Lurbidity	Meter Type_	Hanna H1 9370	3	1.0 NTU std =		5.42 NTU etd =	
					10.0 NTD std =		51.8 NTU std =	
	pH/Conductivity	Meter Type	VSi - Pro Plus		4.01 strl =		499 NTU std =	
					7.0 std =		1413 umhos/cm =	
	Physical Departure				10.1 std =			
	Odor.		ALLA]
	Color:		J/A		Analy	is Required:		
	Turbidity:		1/1		Samp	le time/data:	156 /10-21	2020
	Comments:				•		1.0.21	
0	Deviations fr	om FSAP:						
1. E	·	1					~	
	Sampler: Kon Vah	/Chris	Parkhust		Simul	$\geq (.$	Ê	
	Parameter Method #				a guante:	1031		
	Temperature SM 2550-B 2 pH SM4500 TT	2000/2010						
	Conductivity SM2510B-20)11						-

0		展開	A unit of Ame	nican Electric Pou	Y8r	
	n: 14	6/1/	LELD INFORM	ATION FOR	M	
	Date: ///	TChell LAnd F.	1/	AEP Project Numbe	at: 4238025602	
	Date: <u>/0 · 2</u>	[-2020	7	Weather Observation	5: Sunny 70	· 5
	WELL D: M	1W 1103H			Water Volum	La Fosto-
	Casing Diameter:	(inches)	Water Height in We		Diameter	Gallons/Foot
	Total Depth:	349.4 (feet)	Water Volume in We		(itel) I inches	0.04
	Depth to Water:	307.7 (feet)	L Purve Volum	n A	[gallons] 2 inches 3 inches	0.17 0.38
	Depth to Top of Screen:	307.0 (fet)		<i>\$</i>	_gal.(calculaizd)4 inches _gal. (removed)	0.56
	Measured using:	BeoTech ET	Minimum Purge Vol SWL Meter	ume (drawdown)(gal	l/fL) + (well screen length)(gal/fL) =	
	Purged using:	Dedicated Bailer/Polypro R	lope Grundfos pu	mp/poly tubing	Other Deline of RI-1	G _ L
	Sampled using:	Dedicated Bailer/Polypro R	ope Grundfos pu	up/poly tubing	Other Dedicated Islad	11 - Days
			10.11.15		Unit Startarts Blue	iaer (Varp
	Temperature	pH Conducti	Field Measu	rements		
	(degrees C)	(s.u.) (umhos/c	m) (NTU)	(gallons)	Water Level During Purging (feet)	Time
\sim						1650
\bigcirc		<u> </u>				
E.						
		· · · ·				
				1		
			·			
		Field M	easurements at	Time of Sam	nling	
	(degrees C)	pH Conductiv	ity Turbidity	Volume	Water Level During Sampling	·
				(gallons)	(feet)	Time
	Turbidity		Instrument Ca	libration		
	Dately	WEEER I YPE Hanna Ho	43703	1.0 NTU std =	5.42 NTU std =	
	pH/Conductivity	Meter Time V/ci - 2_	2/10	10'0 IATO 201 =	51.8 NTU std = 499 NTU std =	
		AJEC 101 FIO	THIS	4.01 std = 7.0 std =	1413 umbac/cm	
	Physical Deserve			10.1 std =		
	Odor.	NIA				·
	Color: Turbidity:	N/A		Analy	sis Required:	/
	Comments:	Insufficient	water for s	Sam	ple time/date: No Shapple /	10-21-2020
- (Deviations fro	om FSAP:				
		/				•
	Sampler. REAL VA	6 Chris Pat	i huiter	•	2 A	
	Parameter Method #	- Junio 1012	10101	Signature:	Carlie	
	Temperature SM 2550-B 2 pH SM4500 TTP	000/2010				
	Conductivity SM2510B-20	2011 11				•

О ('-')			Ala: FIELD	OHIO ° A unit of Ameri INFORMA	ican Electric Pow	Br AT		
	Site:	tch.11	Indail			<u>*1</u>		
	Date: /0 -	21.2020	- Afra PII	/	EP Project Number	4238023	602	. 5
	THEY Y YO			W	cather Observations	<u> Su</u>	uny 70	
	WELLID: /	NW 110	3R				Water Volum	e Factors
	Casing Diameter:	_2_	_(inches) Wat	er Height in Well		(feet)	Diameter Linches	Gillons/Foot
	Total Depth:	200.30	(feet) Wate	Volume in Well	N/A	(sallers)	1.5 inches	0.092
	Depth to Water:	195.2	(afect)	Purge Volume	: D	eral (coloribated)	3 inches	0.17
	Depth to Top of Scree	191.0	_(feet)	-		_gal (removed)	4 Inches	0.66
	Measured using:	GeoT	ech ET SWL	num Purge Volu	me (drawdown)(gal	/ft.) + (well scri	een length)(gal/ft.) =	
	Purged using:	Dedicated]	Bailer/Polypro Rope	Grundfos pur	p/poly tubing	Other	Delicated Blad	dur Pre
	Sampled using:	Dedicated I	Bailer/Polypro Rope	Grundfos pur	p/poly tubing	Other	Dedicated Blue	Ider Pring
			F	ield Measu	romanta			
	Temperature	pH	Conductivity	Turbidity	Volume	Water Leve	I Devine Device	1 100
	(degrees C)	(s.u.)	(umhos/cm)	(עדע)	(gallons)	Traid Leve	(feet)	Time
\sim					1			1655
\bigcirc								
ř,								
			· · · · ·			12		
			Field Measu	rements at '	Time of Same	aling		
	Temperature	pH	Conductivity	Turbidity	Volume	Water Level	During Sampling	r
	(degrees C)	(S.n.)	(umhos/cm)	(NTU)	(gallons)		(feet)	Time
			Inst	rament Co	libration			
	Turbidity	Meter Type	Hanna Ht 937	3	1.0 NTU std =		6 41 2 1 1 1	
					10.0 NTD std =		51.8 NTU std =	
	pH/Conductivity	Meter Type_	VSi - Pro Plus		4 01 std ==		499 NTU std =	
				~	7.0 std =		1413 umbos/cm ==	
	Physical Despection				10.1 std =			
	Odor.		ALLA					
	Color:		V/A		Analy	sis Required:		
	I urbidity:		<u>][A</u>	•	Sam	ple time/date:	No SAmple /	10-21-2020
	Comments:	Tosu	Afficient la	ato to	Sample			
0	Deviations	from FSAP:						
in the	·						• •	
	Sampler. Kow Vo	h/Chri	8 Parkhurst		Signature	C Res	JAL	
	Parameter Method	#					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	pH SM4500-H Conductivity SM2510B-	2000/2010 B2011 2011						

			ALEP.	OHIO ° A unit of Ameri	ican Electric Pow	er		
	Site: 17	fr.h. 11	1.1511	ITTE OTGUT	110N FURD	<u>YI</u>		
	Date: /2.1	1.2020	LAna F. 11	A	EP Project Number	423802.50	602	
				W	eather Observations	<u>Su</u>	nny 70'	5
	WELL ID:	MW 110	3F			Г	Water Volum	Factors
	Casing Diameter:	_2_	_(inches) Wat	er Height in Well	: 24.9	(5a)	Diameter	Gillons/Fool
	Total Depth:	181.6	_(feet) Wate	Volume in Well	4.2		1.5 inches	0.04
	Depth to Water:	156.7	(fest)	Purge Volume	2.5		3 inches	0.17 0.38
	Depth to Top of Screen	: 149.0	(feet)			_gal. (removed)	4 101015	0.66
	Measured using:	_ Geo T	ech ET SWL	mum Purge Volu	me (drawdown)(gal	/ft.) + (well scree	in length)(gal/ft.) =	
	Purged using:	Dedicated E	Bailer/Polypro Rope	Grundfos pum	p/poly tubing	Other ()	alter led Blok	l P
	Sampled using:	Dedicated B	Bailer/Polypro Rope	Grundfos pum	p/poly tubing	Other ()	edicated Blad	dec Picks
			10				and the second	un jomp
	Temperature	nH	Canduativity	ield Measur	ements			
	(degrees C)	(s.u.)	(umhos/cm)	Inteldity	(Fallows)	Water Level	During Purging	Time
	13.0	8.93	2000	8.71	(galicits)			
\sim	13.0	8.94	2000	9.8	1,2			1612
() (12.0	8.93	2000	9.6	1.8	15	9.9	166
\sim			·					1620
1								
-								
		+						
			E-LI M	1				
	Temperature	T Ha	Canduation in the	rements at	Time of Sam	pling		
	(degrees C)	(5.11.)	(uphos/cm)	Turbidity	Volume	Water Level I	Juring Sampling	77
	13.5	8.81	1990	1 46,631	(gallons)	(1	eet)	lume
					LIS	16,	3.0	1635
			Trad		147			
	Turbidity	Meter Type	11151	rument Cal	ubration			
		THE TYPE	HANNE HT 75/0	25	I.0 NTU std =		5.42 NTU atd =	
			1:00		10.0 MID 20 =		51.8 NTU std =	
	PH/Conductivity	Meter Type_	VSI - Pro Plus		4.01 stri =		499 N1U std = .	
					7.0 std =	1	413 umbos/cm =	
					10.1 std =			
	Physical Properties		1.22					
	Odor:		NA		Analy	sis Required		
	Color: Turbiding		J/A	•			/	
	A sublidity.	~ ^	1/1	•	Samp	ole time/date:	1622/10-21	-2020
	Comments:							
1	25 1							
	Deviations	rom FSAP:						
	•	-						
	Sampler Real VIA	6 Int-	Pdela		<		$\downarrow \land$	
	- i von Va	m/unn.	starknurst		Signature:	Bee	21/	
	Temperature SM 2550 D	#						
	pH SM4500-H	2000/2010 B2011						
	Conductivity SM2510B-2	2011						•

			Aler Field	OHIO° A unit of Amer	ican Electric Pow	'êr Vî					
	Site: 17	tchell	Land Fill			<u>, , , , , , , , , , , , , , , , , , , </u>					
	Date: 10 - 2	1.2020	>	4	AEP Project Numbe	r: <u>4238023</u>	602	2.4			
	WITT T TO			'n	eather Observation	s: <u>Su</u>	uny 70				
	WELL ID:	MW N	64 K			[Water Volum	e Factors			
	Casing Diameter:	_2	_(inches) Wal	er Height in Wel	E N/A	(feet)	Diameter	Gillons/Fool			
	Total Depth:	213.8	(feet) Wate	Volume in Wel	: N/A	(21)	1.5 inches	0.092			
	Depth to Water:	178.77	(feet)	Purve Volume	· (7	" (Batthicz)	2 inches 3 inches	0.17			
	Depth to Top of Screen	: 187.0	(fet)		·····	_gal.(calculated) [_gal. (removed)	4 inches	0.66			
	Minimum Purge Volume (drawdown)(gal/fL) + (well screen length)(gal/fL) =										
	Purged using:	Purged using: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other Dedicated Bailer/Polypro Rope									
	Sampled using:	Sampled using: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other Dedicated isla									
	Field Measurements										
	Temperature pH Conductivity Turbidity Volume Water Level During Purging										
		(S.U.)	(umhos/cm)	(עדא)	(galions)		(feet)	Time			
\bigcirc					-		2	1545			
0 !											
<											
-											
	:										
			17.111.	1							
	Temperature	Ha	L'Ield Measu	rements at	Time of Sam	pling					
	(degrees C)	(s.u.)	(umhos/cm)	(NTU)	Volume (gallons)	Water Level	During Sampling	Time			
			Inst	rument Co	liber time						
	Turbidity	Meter Type	Hanna HI 9370	3	1.0 NTII etd =		6 43 3 7777				
			,		10.0 NTD std =		51.8 NTU std =				
	pH/Conductivity	Meter Type_	VSi - Pro Plus		4.01 std =		499 NTU std =				
					7.0 std =		1413 umhos/cm =				
	Physical Properties				10.1 6td =						
	Odor:		NIA	_	Analy	tis Remined.					
	Color: Turbidity:	/			-	an wedniter	10.1	/			
	Comments:	Tosuf	Licient Wa	a trs.	Samj	ple time/date:	No SAmple/	10-21-2020			
- (Deviations f	rom FSAP:									
								-			
	Sampler. Row Val	, Ich-	18 Padahist		·····		f (
	Parameter Method	<u> </u>	- La anal		Signature:	- Kan	M.S.				
	Temperature SM 2550-B pH SM4500-H Conductivity SM2510B-2	2000/2010 B2011 011									

		- (AITP	OHIO° Nunit of Ameri INFORMA	ican Electric Pow	er VI				
	Site: M.	tchell	LAnd Fill	A	EP Project Number	- 413807 51 × 1				
	Date: 10-21	-2020	~	W	eather Observations	Sunny -	70 ^{°S}			
	WELLID: N	W-IIC	04 F			Water V	olume Factors			
	Casing Diameter:		(inches) Wate	r Height in Well	NA	(fret) Diameter	Gallons/Foot			
	Total Depth:	174.10	(feet) Water	Volume in Well	N/A	(stillage)	0.04			
	Depth to Water:	168.23	_(ftet)	Purge Volume	æ	Pal (calculated)	0.17			
	Depth to Top of Screen:	152.0	(feet)		Ţ	_gzl. (removed)	0.66			
	Measured using:	<u> </u>	reh ET SWL	um Purge Volus Meter	ne (drawdown)(gal	/ft.) + (well screen length)(gal.	/fL) =			
	Purged using:	Purged using: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other Delicated Bailer/Polypro Rope								
	Sampled using:	Dedicated B	ailer/Polypro Rope	Grundfos pum	p/poly tubing	Other Dedicated i	Rudder Prince			
	Field Magnusses and									
	Temperature	pH	Conductivity	Turbidity	Volume	Water T and During D				
	(degrees C)	<u>(s.u.)</u>	(umhos/cm)	(NTU)	(gallons)	(feet)	ng Time			
							1455			
00										
×										
	:									
				-						
	Temperatura		Field Measur	ements at	lime of Sam	oling				
	(degrees C)	(5.1L)	Conductivity (umbos/cm)	Turbidity	Volume	Water Level During Sampli	ug Time			
		- 1			(gallons)	(feet)	lime			
			•							
	Turbidity		Instr	ument Cal	ibration					
		vieter Type	Hanna H1 9370	3	1.0 NTU std =	5.42 NTU std	=			
	DH/Conductivity	7. m. 1	10: 2 21		10.0 N1D std = -	51.8 NTU std				
	Pro Conductivity I	Acter Type	181 - Pro Plus		4.01 std =	499 NTU std =				
	L				7.0 std = 10.1 std =	1413 umhos/cn	a =			
	Physical Properties									
	Odor:		J/A		Analy	sis Required:				
	Turbidity:		1		C	latimetate the c	1			
	Comments:	Insul	Recient wate	2 2 2 2	aw He	Month March	_/10-21-2020			
\sim	Deviations fro	m FSAP:								
		,	•				-			
	Sampler. Row Val	, Ich.	is Partshuter	-						
	Parameter Method #		- CA RACORD		Signature:	ton 14				
	Temperature SM 2550-B 20 pH SM4500 U PC	00/2010								
	Conductivity SM2510B-201	1					•			

о (';			AFP	OHIO ° A unit of Amer INFORM	ican Electric Pow	ier Vī					
	Site: 11	Fch.11	Ind cill			<u></u>					
	Date: 10.2	1.7070	~Ana Pill		AEP Project Numbe	r: 423802	5602				
		1.2020		И	leather Observation	s: <u>S</u>	inny 70	. 2			
	WELL ID: A	1W15	OR				Water Volu	- Frid			
	Casing Diameter:	4	_(inches) Wat	er Height in Wel		(feet)	Diameter	Gallans/Fool			
	Total Depth:	153.5	(feet) Wate	Volume in Wel	I: N/A	(gallons)	15 inches	0.04			
	Depth to Water:	152.4	(feet)	Purge Volume	= <i>b</i>	gal (calculated)	3 inches	0.17			
	Depth to Top of Screen:	135.40	(feet)			_gal. (removed)		0.86			
	Minimum Purge Volume (drawdown)(gal/fL) + (well screen length)(gal/fL) =										
	Purged using:	Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other Delica led Richard									
	Sampled using:	Dedicated I	Dedicated Blue	Ider Prices							
	Evold Br										
	Temperature	pH	Conductivity	Turbidity	rements						
	(degrees C)	<u>(s.u.)</u>	(umhos/cm)	(NTU)	(gallons)	Water Lev	el During Purging	Time			
		+		-		ļ		1450			
O C		1									
-		+									
× -		· · ·									
			· · · · · · · · · · · · · · · · · · ·								
	Terret		Field Measu	rements at	Time of Sam	pling					
	(degrees C)	pH (sn)	Conductivity	Turbidity	Volume	Water Level	During Sampling				
	~		(00005/60)		(gallons)		(feet)	Time			
						L					
			Inst	rument Ca	libration						
	Turbldity	Meter Type	Hanna Ho 9370	3	1.0 NTU std =		547 NILLetd =				
					10.0 NTD std =		51.8 NTU std =				
	PH/Conductivity	Meter Type_	VSi - Pro Plus		4.01 std =		499 NTU std =				
					7.0 std =		1413 umbos/cm =				
	Physical Properties		······································		10.1 std =						
	Odor:		N/A		1 ·	-!- m + -					
	Color.		J/A		Analy	an Kedmieg:		/			
	Comments:	Tas	Pii L II	+ /	Samp	ple time/date:	No SAuple /	10-21-2020			
(in cient w	20 70	sample						
0	Deviations fr	om FSAP;	•			· · · · · · · · · · · · · · · · · · ·		•			
in k	P IIC	lot-									
	Sampler. Kon Val	2. / Chr	is Tarkheis		Signature:	tou	Wed				
	Temperature SM 2550-R 2	000/2010			-						
	pH SM4500-H I Conductivity SM2510B-20	32011 11						•			

			AIEP	OHIO° A unit of Amer	ican Electric Pow	'er				
	ni th	1-1-11		MEORIAN	ATION FOR	<u>vi</u>				
	Site: <u>//</u>	itchell	LAnd F.11		AEP Project Numbe	r: 4/23802	5602			
	Date: _/0 - 2	21.2020	<u> </u>	W	eather Observation	s:S.	unny 70	2		
	WELL ID: /	MW 150	DIF							
	Casing Diameter	4					Diameter	e Factors		
			(mches) Wate	r Height in Wel	Ľ <u>N/A</u>	_(feet)	1 inches	0,04		
	Total Depth:	109.7	O(fest) Water	Volume in Wel	1: <u>N/A</u>	(gallons)	1.5 inches 2 inches	0.092		
	Depth to Water:	101.65	_(feet)	Purge Volume	: <i>ф</i>	P2] (calculated)	3 inches	0.38		
	Depth to Top of Screen	1 91.4	(feet)			_gal (renoved)	4 mints	0.66		
	Measured using:	GeoT	ech ET SWL	um Purge Volu Mefer	me (drawdown)(gal	/ft.) + (well so	reen length)(gal/ft.) =	-		
	Purged using:	Dedicated]	Bailer/Polypro Rope	Grundfos pun	p/poly tubing	Other	Derticated Blade	Ler Prano		
	Sampled using: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other Dedicated Bludder Prin									
			Fi	eld Measu	rements					
	Temperature (devrces C)	pH	Conductivity	Turbidity	Volume	Water Lev	el During Purging	Time		
	([]	(umbos/cm)		(gallons)	1	(feet)			
\bigcirc (1445		
0:										
C.										
- 0										
			•							
	Temperatura	1	Field Measur	ements at	Time of Sam	pling				
	(degrees C)	рн (s.n.)	Conductivity (umhos/cm)	Turbidity (NTTD)	Volume	Water Leve	During Sampling	Time		
					(Fartona)		(feet)	TITIC		
			•							
	Turbidity	Meter Tune	. Inst	ument Ca	libration					
			Hanne HT 73/0	5	1.0 NTU std = 10.0 NTD std =		5.42 NIU atd =			
	pH/Conductivity	Meter Type	Vsi- Pro Plus				499 NTU std =			
			1		4.01 std = 7.0 std =		1413 umbos/cm =			
	Physical Despective				10.1 std =					
	Odor:		NIA							
	Color: Turbiding	/	U/A		Attaly	sis Required:		/		
	Automaty.				Samj	ple time/date:	No Striple	10-21-2020		
	Comments:									
\bigcap	Deviations i	from FSAP:	•							
i. E	R.I.C	101 -	DIL				$\Omega(\cdot)$			
	Dampler: NON VOL	1 Uhrs	+ tarkhuist		Signature:	- AQU	VY			
	Temperature SM 2550-B	<u>#</u> 2000/2010								
	pH SM4500-H Conductivity SM2510B-2	B2011 011						•		

O (' ')			Alae	OHIO ° A unit of Amen	ican Electric Pow	18r Arr				
	Site: X1.	Feb. 11	1.1011		INTON FOR	11				
	Data: / / /	ichell	LAnd Fill	#	EP Project Number	: 4238025602				
	Date. 10-2	1.2020	-	W	eather Observations	Sunny	70'5			
	WELL ID: M	1W 1502	LR			Water	Value Parts			
	Casing Diameter:	4	(inches) Wal	ter Height in Well	1 2.85	(feet) Limba	T Gallons/Fool			
	Total Depth:	36.0	(feet) Wate	r Volume in Well	19	1.5 inch	ts 0.092			
	Depth to Water:	33.15	(ftet)	Purge Volume	: 3	_ [gallons] 2 inches 3 inches Fal (calculated) 4 inches	0.17 5 0.38			
	Depth to Top of Screen:	2.3.40	(f=t)			_gal. (removed)	0.56			
	Measured using:	GeoTe	ech ET SWL	mum Purge Volu - <u>Mefer</u>	me (drawdown)(gal	/fi.) + (well screen length)(ga	ll/fL) =			
	Purged using: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other Dedicated Bladder Pira									
	Sampled using: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other <u>Dedicated Bailer/Polypro Rope</u> Grundfos pump/poly tubing Other <u>Dedicated Bailer/Polypro Rope</u>									
			T	ield Measur	Amonto					
	Temperature	pH	Conductivity	Turbidity	Volume	Weber Town I D. 1. m.				
	(degrees C)	(s.u.)	(umhos/cm)	(NTU)	(gallons)	(feet)	sing Time			
	14.3	8.41	870	4.92	,33	23.51	12119			
0	14.1	8.11	870	13.2	.66	33.69	1248			
() (14.7	8.02	860	26.71	.99	33.74	120 4			
	15:0	7.96	860	33.78	1.32	33.84	12.50			
i.e.	13.0	7.92	860	20.87	1.65	32.92				
	15.0	7.91.	860	14.9	1.98	24.10	1304			
	13.0	7.91	860	12.2	2.3/	2/1 1/				
	13.1	7.91	870	9.8	2.64	24.1	1312			
						07.11	1316			
		<u> </u>	-							
		11		ľ						
	Termerature		Field Measu	rements at	Time of Sam	pling				
	(degrees ()	рн	Conductivity	Turbidity	Volume	Water Level During Same	ling			
		(<u>s.n.</u>)	(umhos/cm)	(NTU)	(gallons)	(feet)	Time			
	12:5	1.70	870	9.77	3.0	34.11	1342			
				•						
		-	Inst	rument Cal	libration]			
	Lurbidity	Meter Type	Hanna Ho 937	63	1.0 NTU std =	5 47 NTTT	- 14			
				-	10.0 NTD std =	51 8 NTU				
	pH/Conductivity	Matan Tra-	10° 2-21	-		499 NTU	std =			
	,	Meter Type	you - pro ruls	2	4.01 std =					
					7.0 std =	1413 umhos/	'cm =			
					10.1 std =					
	Physical Properties		. 00							
	Odor:		V/A	_	Analy	ais Remined.				
	Color:	1	1/A		,					
	Turoicity:	<i>N</i>	[A	-	Sam	ple time/date: 1318/10	-21-2020			
	Comments:									
	Deviations fr	om FSAP:					·			
1.		1, -								
	Sampler Knarlah	1ch-	Pdd =			SIA				
	- WW VUL	1UNTIS	rorkhurst	-	Signature:	toutto	•			
	Farameter Method #	000/000			-					
	pH SM4500-H 1 Conductivity SM2510P 20	2000/2010 B2011								

Site: Mitchell Land F.ill AEP Project Number: <u>4/33 (9/2.56 o.2.</u> Date: _0.21-2.02.0 Weather Observations: Summy 70' ³ WEILI ID: MW-1503 R Water Height in Well: 7.3 (net) Water Volume Factors Casing Diameter: <u>4</u> (moder) Water Height in Well: 7.3 (net) Water Volume Factors Depth to Water: <u>94.40</u> (tea) Purge Volume: <u>pail(alcabulate)</u> <u>15 kndm 0.062</u> Depth to Top of Screen: <u>87.4</u> (tea) Minimum Purge Volume (drawdow)(gdl/ft.) + (well screen length)(gdl/ft.) =
Date: _10:21-2020 Wether Observations:
WELL ID: MW-1503 R_ Casing Diameter:
Casing Diameter:
Total Depth: Jol - 9 (fee) Water Volume in Well: . (abs 0.042 Depth to Water: 94.60 (fee) Purge Volume: gal(salculated) 2 inchas 0.032 Depth to Top of Screen: ST. 4 (fee) Minimum Purge Volume (drawdown)(gal/ft.) + (well screen length)(gal/ft.) =
Depth to Water: 94.60 (ted) Purge Volume: 921(calculated) 3 incher 0.17 Depth to Top of Streen: 88.4 (ted) Purge Volume: 921(calculated) 3 incher 0.38 Measured using: Geo Tech ET SWL Minimum Purge Volume (drawdown)(gal/fi.) + (well screen length)(gal/fi.) =
Depth to Top of Screen: <u>88.4</u> (feet) <u>Measured using:</u> <u>Get Tech ET SWL Meder</u> <u>Purged using:</u> <u>Dedicated Bailer/Polypro Rope</u> <u>Grundfös pump/poly tubing</u> <u>Other Dedicated Bladder Porcep</u> <u>Sampled using:</u> <u>Dedicated Bailer/Polypro Rope</u> <u>Grundfös pump/poly tubing</u> <u>Other Dedicated Bladder Porcep</u> <u>Sampled using:</u> <u>Dedicated Bailer/Polypro Rope</u> <u>Grundfös pump/poly tubing</u> <u>Other Dedicated Bladder Porcep</u> <u>Sampled using:</u> <u>Dedicated Bailer/Polypro Rope</u> <u>Grundfös pump/poly tubing</u> <u>Other Dedicated Bladder Porcep</u> <u>Sampled using:</u> <u>Dedicated Bailer/Polypro Rope <u>Grundfös pump/poly tubing</u> <u>Other Dedicated Bladder Porcep</u> <u>Sampled using:</u> <u>Dedicated Bailer/Polypro Rope <u>Grundfös pump/poly tubing</u> <u>Other Dedicated Bladder Porcep</u> <u>Sampled using:</u> <u>Dedicated Bailer/Polypro Rope <u>Grundfös pump/poly tubing</u> <u>Other Dedicated Bladder Porcep</u> <u>Field Measurements</u> <u>(feet) <u>1215 </u> <u>Inter (feet) Inter (feet) <u>Inter (feet) Inter (feet) I</u></u></u></u></u></u>
Measured using: Geo Tech ET SWL Meter Purged using: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other <u>Delicated Bladdur Pray</u> Sampled using: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other <u>Delicated Bladdur Pray</u> Sampled using: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other <u>Delicated Bladdur Pray</u> Sampled using: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other <u>Delicated Bladdur Pray</u> Image: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other <u>Delicated Bladdur Pray</u> Sampled using: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other <u>Delicated Bladdur Pray</u> Image: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other <u>Delicated Bladdur Pray</u> Image: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other <u>Delicated Bladdur Pray</u> Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: </td
Purged using: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other <u>Dedicated Bladdur Poup</u> Sampled using: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other <u>Dedicated Bladdur Poup</u> Sampled using: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other <u>Dedicated Bladdur Poup</u> Field Measurements Image: Conductivity Turbidity Volume Water Level During Purging Time (degrees C) (s.u.) (umbos/cm) (NTU) (gallons) (feet) 1215 Image: Im
Sampled using: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other <u>Dedicated iZluddar</u> <u>Pvin-p</u> <u>Field Measurements</u> <u>Temperature</u> <u>pH</u> <u>Conductivity</u> <u>Turbidity</u> <u>Volume</u> <u>Water Level During Purging</u> <u>Time</u> (degrees C) (s.u.) (umhos/cm) (NTU) (gallons) (feet) 1215
Field Measurements Temperature (degrees C) pH (s.u) Conductivity (umhos/cm) Turbidity (NTU) Volume (gallons) Water Level During Purging (feet) Time
Temperature (degrees C) pH (s.u) Conductivity (umhos/cm) Turbidity (NTU) Volume (gallons) Water Level During Purging (feet) Time
Image: second
Image: Section of the section of th
Image: second
Field Measurements of The So
Temperature pH Conductivity Turbidity Volume Water Loval During
(degrees C) (s.u.) (umhos/cm) (NTU) (gallons) (feet) Time
Instrument Calibration
Turbidity Meter Type Hanne H1 93763 1.0 NTU std = 5.42 NTU std =
10.0 NTD std = 51.8 NTU std =
$PH/Conductivity \qquad Meter Type VSI ~ Pro Plus 4.01 std =$
7.0 std = 1413 umbos/cm = 10.1 std = 1413 umbos/cm =
Physical Properties
Color: A//A Analysis Required:
Turbidity: N/A Sample time/date: No SAWDL / (0-23-2020
Comments: Frisufficiant water to Spuply
Deviations from FSAP:
Sampler: Kon Vak / Chros Parkhursi Simplime Day 1
Parameter Method #
Pemperature SM 2550-B 2000/2010 pH SM4500-H B2011 Conductivity SM2510B-2011

О ('-)		FIELD	OHIO ° A unit of Amer INFORM	ican Electric Pow	er Л					
	Site: Mitch	ell Land Fill			<u>,</u>					
	Date: 10-21-20	20	¹	AEP Project Number	: 423802560	2	5			
	WELL TD.		n	cauler Observations	Sun	ny 70				
	TTELLID. MW	503 F 1				Water Volum	e Factors			
	Casing Diameter:	(inches) Wat	er Height in Wel	E_N/A	_(feet)	Diameter I inches	Gallons/Fool			
	Total Depth: 66	2-30 (feet) Water	Volume in Wel	I: N/A	(eallors)	1.5 inches	0.092			
	Depth to Water:	+.17 (feet) =	Purge Volume	: A		3 inches	0.17			
	Depth to Top of Screen: 48	1.4 (feet)	-		_gal (removed)	4 mches	0.66			
	Minimum Purge Volume (drawdown)(gal/fL) + (well screen length)(gal/fL) =									
	Purged using: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other Delicated Bladder Pires									
	Sampled using: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing Other Dedicated Bludder Pices									
	Field Mansuraments									
	Temperature pH Conductivity Turbidity Volume Weter Level Daily Decision									
	(degrees C) (s	.u.) (umhos/cm)	(UTM)	(gallons)	(fee	ung rurging t)	Time			
<u> </u>							1220			
\bigcirc										
K.										
	:									
	Temperature	Field Measur	ements at	Time of Sam	oling					
	(degrees C) (5.1	L) (umhos/cm)	(NTU)	Volume (gallons)	Water Level Dur	ing Sampling	Time			
					(Jacel	/				
		Tnet	mmant Cia	121						
	Turbidity Meter	Type Hanna Ho 9370	B	1.0 NTII da =		1				
				10.0 NTD std =		$\frac{42 \text{ NTU std}}{8 \text{ NTU std}} = \frac{1}{2}$				
	pH/Conductivity Meter	Type VSi - Pro Plus		4.01 std =	4	99 NTU std =				
				7.0 std =	141	3 umbos/cm =				
	Physical Properties			10.1 802						
	Odor:	NIA		Analy	is Required:					
	Turbidity:	NIA		Same	le time/data:	Surala 1	1. 212000			
	Comments:	sufficient wate	2 to S	auple		Sample/	10-20-2020			
\sim	Deviations from FS	AP:								
. L		/				\				
	Sampler: Kon Vah	Chris Parkhurs		Signature	R. UE	\rightarrow				
	Parameter Method #				THUX.					
	pH SM4500-H B2011 Conductivity SM2510B-2011	10								

0);	Site: <u>Mifc</u> Date: 10-21	hell 1	AEP O AU FIELD R and Fill	nit of America NFORMA AE Wea	an Electric Power FION FORM P Project Number: ther Observations:	423802. Sur	5602. my 703	
	WELL ID: 1	Pac hast	0			Г	Water Volume Factors	
	Casing Diameter:	NA	(inches) Water I	Height in Well:	NA	(fmt)	Diameter 1 inches	Galloos/Foot 0.04
	Total Depth:	NA	(feet) Water V	olume in Well:	NTA	(gallons)	2 inches	0.17
	Depth to Weters	AT/A	1	Durne Valumer	orla	-1 (1	3 inches	0.38
	Deput to water:		(net)	rurge volume:	/A	gal (calculated)	4 Incurs	U.co
	Depth to Top of Screen:	A	(feet)	. D	()	(6.) (<i>C</i>))		
	Measured using:	GeoTe	Mimimu	m Purge Volum	ie (drawdown)(gal)	TL) + (Well scre	en lengin)(gai/m.) =	
	Purged using: Dedicated Bailer/Polypro Rope Grundfos pump/poly tubing OtherN/A							
	Sampled using:	Dedicated B	ailer/Polypro Rope	Grundfos pump	vpoly tubing	Other	Dipper 1	Pole
			Fie	ld Measur	ements			
	Temperature	pH	Conductivity	Turbidity	Volume	Water Leve	el During Purging	Time
	(degrees C)	(s.u.)	(umhos/cm)	(NTU)	(gallons)		(feet)	1
							G	
\sim								
C		÷						
								+
	1 2	1	1 N N			1 ~		1

8		9 V								
			-							
Field Measurements at Time of Sampling										
Temperature	pH	Conductivity	Turbidity	Volume	Water Level During Sampling	Time				
(degrees C)	(S.N.)	(umhos/cm)	(NTU)	(galions)	(feet)	11000				
19.8	9.08	1930	- 1	N/A	100 9000	1135				

	Instrumer	t Calibration	
Turbidity Meter Type		1.0 NTU std =	5.42 NTU std =
		10.0 NTD std =	51.8 NTU std =
	· · · · ·		499 NTU std =
pH/Conductivity Meter Type	H- 100	4.01 std ⇒	
		7.0 std =	1413 umhos/cm =
		10.1 std =	
Physical Properties	р. С. С. С		
Odor: N/A		Analysis Req	nized:
Color: N/A			
Turbidity:		Sample time	date: 1/35 /10-21-2020
Comments:			
Deviations from FSAP:			
	<u> </u>		
Sampler: Kon Voh / Chris	Parkhvist	Signature:	Su los
P <u>arameter Method #</u>			
Temperature SM 2550-B 2000/2010			
pH SM4500-H B2011			
Conductivity SM2510B-2011			

EPA ADDITIONAL INFORMATION REQUEST Attachment D

2017 Annual Groundwater Report for Mitchell Plant's Landfill

Annual Groundwater Monitoring Report

Kentucky Power Company Mitchell Plant Landfill Moundsville, WV

January 2018

Prepared by: American Electric Power Service Corporation 1 Riverside Plaza Columbus, Ohio 43215

An AEP Company

BOUNDLESS ENERGY

Table of Contents

I.	Overview	1
II.	Groundwater Monitoring Well Locations and Identification Numbers	2
III.	Monitoring Wells Installed or Decommissioned	4
IV. Dire	Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and ection and Discussion	4
V. Mor	Discussion About Transition Between Monitoring Requirements or Alternate nitoring Frequency	4
VI.	Other Information Required	4
VII	. Description of Any Problems Encountered in 2017 and Actions Taken	4
VII	I. A Projection of Key Activities for the Upcoming Year	5

Appendix I Appendix II

I. <u>Overview</u>

This Annual Groundwater Monitoring Report (Report) has been prepared to report the status of activities for the preceding year for the Landfill at Kentucky Power Company's, a wholly-owned subsidiary of American Electric Power Company (AEP), Mitchell Power Plant. The USEPA's CCR rules require that the Annual Groundwater Monitoring Report be posted to the operating record for the preceding year no later than January 31, 2018.

In general, the following activities were completed:

- Monitoring wells were installed and developed to establish a certified groundwater monitoring system around each CCR unit, in accordance with the requirements of 40 CFR 257.91 pursuant AEP's *Groundwater Monitoring Network Evaluation (2016)*;
- Groundwater samples were collected and analyzed for Appendix III and Appendix IV constituents, as specified in 40 CFR 257.94 *et seq.* and AEP's *Groundwater Sampling and Analysis Plan (2016)*;
- Groundwater data underwent various validation tests, including tests for completeness, valid values, transcription errors, and consistent units;
- Background groundwater values for each Appendix III and Appendix IV constituent were collected;
- Detection Monitoring sampling was initiated;
- A statistical process in accordance with 40 CFR 257.93 to evaluate groundwater data was prepared, certified, and posted to AEP's CCR website in April 2017 [AEP's *Statistical Analysis Plan* (AEP 2017)]. The statistical process was guided by USEPA's *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance* ("Unified Guidance", USEPA, 2009). Data evaluation is underway.

The major components of this annual report, to the extent applicable at this time, are presented in sections that follow:

- A map, aerial photograph or a drawing showing the CCR management unit(s), all groundwater monitoring wells and monitoring well identification numbers;
- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a statement as to why that happened;
- All of the monitoring data collected, including the rate and direction of groundwater flow, plus a summary showing the number of samples collected per monitoring well, the dates the samples were collected and whether the sample was collected as part of detection monitoring or assessment monitoring programs (Attached as **Appendix I**);

- A summary of any transition between monitoring programs or an alternate monitoring frequency, for example the date and circumstances for transitioning from detection monitoring to assessment monitoring, in addition to identifying the constituents detected at a statistically significant increase over background concentrations (Attached as **Appendix II**, where applicable); and
- Other information required to be included in the annual report such as alternate source demonstration or assessment of corrective measures, if applicable.

In addition, this report summarizes key actions completed, and where applicable, describes any problems encountered and actions taken to resolve those problems. The report includes a projection of key activities for the upcoming year.

II. Groundwater Monitoring Well Locations and Identification Numbers

The figure that follows depicts the PE-certified groundwater monitoring network, the monitoring well locations and their corresponding identification.

CCR Landfill (Approximate Limits of Waste)

Monitoring well coordinates provided by AEP.
 Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP.

Mitchell Power Generation Plant Marshall County, West Virginia

Geosyntec[▷] consultants

Columbus, Ohio

2018/01/26

Figure

1a

Geosyntec^D consultants

Columbus, Ohio

2018/01/26

1b

III. Monitoring Wells Installed or Decommissioned

There were no monitoring wells installed or decommissioned in 2017. The network design, as summarized in the *Groundwater Monitoring Network Design Report* (2016) and as posted at the CCR web site for Mitchell Plant, did not change. That design report, viewable on the AEP CCR web site, discusses the facility location, the hydrogeological setting, the hydrostratigraphic units, the uppermost aquifer, downgradient monitoring well locations and the upgradient monitoring well locations.

IV. <u>Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and</u> <u>Direction and Discussion</u>

Appendix I contains tables showing the groundwater quality data collected during the establishment of background quality. Static water elevation data from each monitoring event also are shown in Appendix I, along with the groundwater velocity calculations, groundwater flow direction and potentiometric maps developed after each sampling event.

V. <u>Discussion About Transition Between Monitoring Requirements or Alternate</u> <u>Monitoring Frequency</u>

As of this first annual groundwater report date there has been no transition between detection monitoring and assessment monitoring. Detection monitoring will continue in 2018. The sampling frequency of twice per year will be maintained for the Appendix III parameters (boron, calcium, chloride, pH, sulfate and total dissolved solids).

Regarding defining an alternate monitoring frequency, the groundwater velocity and monitoring well production is high enough at this facility that no modification of the twice-per-year detection monitoring effort is needed.

VI. Other Information Required

At the appropriate time the geochemical analyses, coupled with the statistical analyses of the groundwater quality data, will determine whether an alternate source or alternate sources are affecting groundwater chemistry. In those cases where an alternative source(s) demonstration is made, those analyses and supporting information will be presented as well.

VII. Description of Any Problems Encountered in 2017 and Actions Taken

No significant problems were encountered. The low flow sampling effort went smoothly and the schedule was met to support this first annual groundwater report preparation. There were, however, dry wells encountered during sampling, but this did not affect the monitoring network at the landfill and the minimum requirement of 1 upgradient and 3 downgradient wells was still met.

VIII. <u>A Projection of Key Activities for the Upcoming Year</u>

Key activities for 2018 include:

- Detection monitoring on a twice per year schedule
- Evaluation of the first detection monitoring results from a statistical analysis viewpoint, looking for any statistically significant increases, or decreases when pH is considered.
- Responding to any new data received in light of what the CCR rule requires
- Preparation of the second annual groundwater report

Tables follow, showing the groundwater monitoring data collected and the rate and direction of groundwater flow. The dates that the samples were collected also is shown.

Groundwater Data Tables

						MW-1101F	ק			MW-1102F										
Parameter	Unit	6/15/2016	8/3/2016	9/28/2016	11/15/2016	2/14/2017	4/12/2017	5/24/2017	7/26/2017	10/10/2017	6/15/2016	8/3/2016	10/3/2016	11/15/2016	2/14/2017	4/12/2017	5/24/2017	7/26/2017	10/10/2017	
			Background Detection									Background								
Antimony	μg/L	0.210	0.140	0.180	-	-	-	-	-	-	0.710	0.690	0.640	0.630	0.620	0.560	0.600	0.540	NS	
Arsenic	μg/L	1.64	1.46	1.79	-	-	-	-	-	-	9.37	8.16	8.45	8.49	8.66	7.68	8.76	7.58	NS	
Barium	μg/L	159	155	142	-	-	-	-	-	-	214	212	194	212	197	191	229	205	NS	
Beryllium	μg/L	0.0230	0.0330	0.0290	-	-	-	-	-	-	<0.005 U	<0.005 U	0.00500 J	0.00500 J	0.00600 J	0.00500 J	0.0100 J	<0.004 U	NS	
Boron	mg/L	0.0420	0.380	0.0540	-	-	-	-	-	-	0.109	0.280	0.160	0.117	0.109	0.109	0.118	0.202	0.278	
Cadmium	μg/L	0.0800	0.0800	0.120	-	-	-	-	-	-	0.0400	0.0200 J	0.0100 J	0.00800 J	0.00600 J	0.0100 J	0.0200	0.0100 J	NS	
Calcium	mg/L	88.3	91.0	88.6	-	-	-	-	-	-	4.34	5.48	5.45	4.87	5.04	4.67	5.31	5.41	4.79	
Chloride	mg/L	3.87	3.30	3.73	-	-	-	-	-	-	12.4	11.9	11.8	11.7	11.3	11.3	13.7	11.4	12.4	
Chromium	μg/L	0.600	0.600	0.800	-	-	-	-	-	-	0.400	0.400	0.500	0.435	0.411	0.399	0.807	0.323	NS	
Cobalt	μg/L	0.294	0.244	0.231	-	-	-	-	-	-	0.0960	0.0900	0.286	0.0740	0.0490	0.0790	0.203	0.0720	NS	
Combined Radium	pCi/L	0.304	1.49	1.56	-	-	-	-	-	-	0.352	0.881	0.972	1.86	1.02	0.183	0.325	0.942	NS	
Fluoride	mg/L	0.220	0.210	0.260	-	-	-	-	-	-	0.560	0.580	0.600	0.560	0.530	0.530	0.560	0.570	0.570	
Lead	μg/L	0.525	0.673	0.511	-	-	-	-	-	-	0.335	0.183	0.298	0.141	0.131	0.135	0.335	0.121	NS	
Lithium	mg/L	0.0120	0.0170	0.0160	-	-	-	-	-	-	0.00300	0.00600	0.00200	0.00300	0.00400	0.00500	<0.0002 U	0.00700	NS	
Mercury	μg/L	<0.002 U	<0.002 U	<0.002 U	-	-	-	-	-	-	<0.002 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U	NS	
Molybdenum	μg/L	3.87	4.04	3.39	-	-	-	-	-	-	28.1	25.8	23.9	22.9	21.4	19.3	20.0	34.7	NS	
Selenium	μg/L	0.200	0.200	0.300	-	-	-	-	-	-	0.300	0.300	0.300	0.300	0.300	0.300	0.400	0.300	NS	
Total Dissolved Solids	mg/L	395	425	466	-	-	-	-	-	-	523	535	519	551	521	530	521	519	526	
Sulfate	mg/L	64.3	62.1	58.1	-	-	-	-	-	_	37.2	35.9	29.5	27.4	29.9	30.6	31.8	31.5	32.3	
Thallium	μg/L	0.0200 J	<0.01 U	0.0200 J	-	-	-	-	-	-	<0.01 U	0.0100 J	<0.01 U	<0.01 U	0.0200 J	0.0100 J	0.0100 J	0.0300 J	NS	
pH	SU	7.37	7.41	8.66	-	-	-	-	-	-	8.02	8.19	8.10	8.14	8.20	8.29	8.28	8.26	8.37	

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL).

J: Estimated value. Parameter was detected in concentrations below the reporting limit.

NS: Not Sampled

-: Insufficient water to sample

						MW-1103F	7			MW-1104F											
Parameter	Unit	6/15/2016	8/2/2016	10/3/2016	11/16/2016	2/15/2017	4/11/2017	5/23/2017	7/26/2017	10/11/2017	6/15/2016	8/3/2016	9/28/2016	11/15/2016	2/14/2017	4/12/2017	5/24/2017	7/26/2017	10/10/2017		
			Background Detection										Background								
Antimony	μg/L	0.160	0.140	0.0400 J	0.100	0.0300 J	0.0700	0.0300 J	0.0200 J	NS	-	-	-	-	-	-	-	-	-		
Arsenic	μg/L	8.03	7.01	5.80	7.71	7.67	8.46	7.85	6.81	NS	-	-	-	-	-	-	-	-	-		
Barium	μg/L	639	704	558	723	631	618	688	562	NS	-	-	-	-	-	-	-	-	-		
Beryllium	μg/L	0.0290	0.0260	0.0100 J	0.0100 J	0.00900 J	0.00600 J	0.00600 J	<0.004 U	NS	-	-	-	-	-	-	-	-	-		
Boron	mg/L	0.355	0.402	0.321	0.323	0.303	0.304	0.346	0.343	0.328	-	-	-	-	-	-	-	-	-		
Cadmium	μg/L	0.0200	0.0100 J	0.0300	0.00900 J	0.00800 J	0.00600 J	0.00700 J	0.00700 J	NS	-	-	-	-	-	-	-	-	-		
Calcium	mg/L	3.01	2.99	3.12	2.97	2.82	2.57	2.88	2.76	3.09	-	-	-	-	-	-	-	-	-		
Chloride	mg/L	243	247	242	240	240	234	237	240	247	-	-	-	-	-	-	-	-	-		
Chromium	μg/L	1.00	0.900	0.400	0.471	0.336	0.262	0.260	0.112	NS	-	-	-	-	-	-	-	-	-		
Cobalt	μg/L	0.351	0.299	0.180	0.159	0.147	0.102	0.149	0.136	NS	-	-	-	-	-	-	-	-	-		
Combined Radium	pCi/L	1.10	0.899	1.03	1.57	1.42	2.18	1.21	1.80	NS	-	-	-	-	-	-	-	-	-		
Fluoride	mg/L	3.11	3.20	3.34	2.96	3.07	3.05	3.23	3.24	3.17	-	-	-	-	-	-	-	-	-		
Lead	μg/L	0.674	0.479	0.313	0.218	0.213	0.0880	0.194	0.103	NS	-	-	-	-	-	-	-	-	-		
Lithium	mg/L	0.0120	0.0160	0.0160	0.0150	0.0160	0.0150	0.00600	0.0150	NS	-	-	-	-	-	-	-	-	-		
Mercury	μg/L	<0.002 U	<0.002 U	<0.004 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U	NS	-	-	-	-	-	-	-	-	-		
Molybdenum	μg/L	10.1	2.61	2.66	2.57	2.81	3.19	2.80	5.46	NS	-	-	-	-	-	-	-	-	-		
Selenium	μg/L	0.200	0.200	0.100 J	0.100	0.0900 J	0.100	0.0600 J	0.0700 J	NS	-	-	-	-	-	-	-	-	-		
Total Dissolved Solids	mg/L	1390	1420	1380	1370	1400	1400	1370	1370	1390	-	-	-	-	-	-	-	-	-		
Sulfate	mg/L	0.500	0.300	<0.04 U	0.200	0.200	0.400	0.400	0.300	0.500	-	-	-	-	-	-	-	-	-		
Thallium	μg/L	0.0100 J	<0.01 U	0.0100 J	<0.01 U	0.0300 J	<0.01 U	<0.01 U	0.0200 J	NS	-	-	-	-	-	-	-	-	-		
pH	SU	8.29	8.30	8.37	8.39	8.48	8.58	8.54	8.54	8.60	-	-	-	-	-	-	-	-	-		

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL).

J: Estimated value. Parameter was detected in concentrations below the reporting limit.

NS: Not Sampled

-: Insufficient water to sample

						MW-1501F	<u>7</u>			MW-1503F									
Parameter	Unit	6/15/2016	8/3/2016	9/28/2016	11/15/2016	2/14/2017	4/12/2017	5/24/2017	7/26/2017	10/10/2017	6/15/2016	8/3/2016	9/28/2016	11/15/2016	2/14/2017	4/12/2017	5/24/2017	7/26/2017	10/10/2017
			Background Detectio								Background								
Antimony	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Barium	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Boron	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Calcium	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Combined Radium	pCi/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lithium	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Molybdenum	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Selenium	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Dissolved Solids	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sulfate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Thallium	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
pН	SU	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL).

J: Estimated value. Parameter was detected in concentrations below the reporting limit.

NS: Not Sampled

-: Insufficient water to sample

						MW-1101F	ł			MW-1102R										
Parameter	Unit	6/15/2016	8/3/2016	9/28/2016	11/16/2016	2/14/2017	4/12/2017	5/24/2017	7/25/2017	10/11/2017	6/15/2016	8/3/2016	10/3/2016	11/16/2016	2/15/2017	4/11/2017	5/23/2017	7/26/2017	10/11/2017	
			Background De									Background								
Antimony	μg/L	0.820	1.10	0.920	0.670	0.690	0.840	0.660	0.620	NS	2.01	1.71	1.73	-	-	-	-	-	-	
Arsenic	μg/L	8.11	10.8	11.1	14.2	15.3	12.4	15.7	14.5	NS	2.64	3.57	3.37	-	-	-	-	-	-	
Barium	μg/L	185	149	149	125	102	117	102	91.3	NS	292	356	441	-	-	-	-	-	-	
Beryllium	μg/L	0.0310	0.0230	0.0100 J	0.0100 J	0.0100 J	0.0200 J	0.0100 J	0.0100 J	NS	0.0200 J	0.128	0.307	-	-	-	-	-	-	
Boron	mg/L	0.287	0.518	0.382	1.80	0.501	0.360	0.380	0.415	0.394	0.339	0.467	0.332	-	-	-	-	-	-	
Cadmium	μg/L	0.0300	0.0300	0.0200	0.0200 J	0.0200 J	0.0200 J	0.0100 J	0.0100 J	NS	0.350	0.140	0.170	-	-	-	-	-	-	
Calcium	mg/L	6.91	5.00	6.12	19.4	2.23	4.02	1.91	1.76	1.87	3.49	4.05	5.33	-	-	-	-	-	-	
Chloride	mg/L	8.41	10.3	13.3	15.2	15.4	14.4	15.1	15.8	16.9	219	217	213	-	-	-	-	-	-	
Chromium	μg/L	1.10	1.00	0.700	0.595	0.512	0.824	0.526	0.377	NS	0.500	3.00	3.90	-	-	-	-	-	-	
Cobalt	μg/L	0.650	0.363	0.301	0.143	0.160	0.333	0.299	0.126	NS	0.799	1.75	3.01	-	-	-	-	-	-	
Combined Radium	pCi/L	0.493	0.478	0.565	1.81	1.66	0.190	0.759	0.977	NS	0.710	1.22	2.83	-	-	-	-	-	-	
Fluoride	mg/L	1.20	1.56	1.83	2.29	2.40	2.17	2.41	2.61	2.59	2.97	2.98	2.96	-	-	-	-	-	-	
Lead	μg/L	1.22	0.674	0.550	0.292	0.327	0.634	0.298	0.235	NS	0.558	2.82	7.24	-	-	-	-	-	-	
Lithium	mg/L	0.00200	0.0120	0.00900	0.0260	0.0120	0.0100	<0.0002 U	0.00900	NS	0.0150	0.0210	0.0280	-	-	-	-	-	-	
Mercury	μg/L	0.00300 J	<0.002 U	<0.002 U	<0.002 U	<0.002 U	0.00200 J	<0.002 U	<0.002 U	NS	<0.002 U	0.00700 J	0.00700	-	-	-	-	-	-	
Molybdenum	μg/L	31.8	32.9	26.2	20.6	34.0	16.7	14.8	18.3	NS	68.7	66.0	51.4	-	-	-	-	-	-	
Selenium	μg/L	0.500	0.500	0.500	0.400	0.400	0.500	0.300	0.300	NS	0.900	1.20	1.90	-	-	-	-	-	-	
Total Dissolved Solids	mg/L	741	750	43.0	801	806	798	793	788	784	1470	1450	1530	-	-	-	-	-	-	
Sulfate	mg/L	76.4	76.4	43.5	32.2	32.0	39.2	28.6	28.7	29.1	47.8	44.9	35.1	-	-	-	-	-	-	
Thallium	μg/L	0.0500 J	0.0200 J	0.0100 J	<0.01 U	0.0200 J	<0.01 U	<0.01 U	0.0200 J	NS	0.0100 J	0.0300 J	0.0300 J	-	-	-	-	-	-	
pH	SU	8.17	8.40	8.50	8.56	8.57	8.74	8.68	8.65	8.72	8.21	8.29	8.30	-	-	-	-	-	-	

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL).

J: Estimated value. Parameter was detected in concentrations below the reporting limit.

NS: Not Sampled

-: Insufficient water to sample
Table 1: Groundwater Data SummaryMitchell Plant - Landfill

						MW-1103	R								MW-1104	R			
Parameter	Unit	6/20/2016	8/9/2016	9/27/2016	11/9/2016	2/15/2017	4/12/2017	5/23/2017	7/25/2017	10/11/2017	6/21/2016	8/9/2016	9/27/2016	11/9/2016	2/15/2017	4/12/2017	5/23/2017	7/25/2017	10/11/2017
					Back	ground				Detection				Back	ground				Detection
Antimony	μg/L	-	-	-	-	-	-	-	-	-	0.660	-	-	-	-	-	-	-	-
Arsenic	μg/L	-	-	-	-	-	-	-	-	-	4.35	-	-	-	-	-	-	-	-
Barium	μg/L	-	-	-	-	-	-	-	-	-	182	-	-	-	-	-	-	-	-
Beryllium	μg/L	-	-	-	-	-	-	-	-	-	0.570	-	-	-	-	-	-	-	-
Boron	mg/L	-	-	-	-	-	-	-	-	-	0.431	-	-	-	-	-	-	-	-
Cadmium	μg/L	-	-	-	-	-	-	-	-	-	0.180	-	-	-	-	-	-	-	-
Calcium	mg/L	-	-	-	-	-	-	-	-	-	39.4	-	-	-	-	-	-	-	-
Chloride	mg/L	-	-	-	-	-	-	-	-	-	485	-	-	-	-	-	-	-	-
Chromium	μg/L	-	-	-	-	-	-	-	-	-	3.40	-	-	-	-	-	-	-	-
Cobalt	μg/L	-	-	-	-	-	-	-	-	-	4.36	-	-	-	-	-	-	-	-
Combined Radium	pCi/L	-	-	-	-	-	-	-	-	-	0.153	-	-	-	-	-	-	-	-
Fluoride	mg/L	-	-	-	-	-	-	-	-	-	1.18	-	-	-	-	-	-	-	-
Lead	μg/L	-	-	-	-	-	-	-	-	-	9.41	-	-	-	-	-	-	-	-
Lithium	mg/L	-	-	-	-	-	-	-	-	-	0.0140	-	-	-	-	-	-	-	-
Mercury	μg/L	-	-	-	-	-	-	-	-	-	<0.09 U	-	-	-	-	-	-	-	-
Molybdenum	μg/L	-	-	-	-	-	-	-	-	-	42.3	-	-	-	-	-	-	-	-
Selenium	μg/L	-	-	-	-	-	-	-	-	-	2.30	-	-	-	-	-	-	-	-
Total Dissolved Solids	mg/L	-	-	-	-	-	-	-	-	-	2390	-	-	-	-	-	-	-	-
Sulfate	mg/L	-	-	-	-	-	-	-	-	_	162	-	-	-	-	-	-	-	_
Thallium	μg/L	-	-	-	-	-	-	-	-	-	0.133	-	-	-	-	-	-	-	_
pН	SU	-	-	-	-	-	-	-	-	-	7.87	-	-	-	-	-	-	-	-

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL).

J: Estimated value. Parameter was detected in concentrations below the reporting limit.

NS: Not Sampled

-: Insufficient water to sample

For statistical analysis, parameters which were not detected were replaced with the reporting limit.

Table 1: Groundwater Data SummaryMitchell Plant - Landfill

						MW-1501	R								MW-1502	R			
Parameter	Unit	6/20/2016	8/9/2016	9/27/2016	11/9/2016	2/15/2017	4/12/2017	5/23/2017	7/25/2017	10/11/2017	6/20/2016	8/9/2016	9/27/2016	11/9/2016	2/15/2017	4/12/2017	5/23/2017	7/25/2017	10/11/2017
					Back	ground				Detection				Back	ground				Detection
Antimony	μg/L	-	-	-	-	-	-	-	-	-	0.220	0.200	0.160	0.200	0.130	0.130	0.150	0.210	NS
Arsenic	μg/L	-	-	-	-	-	-	-	-	-	0.280	0.260	0.270	0.840	0.240	0.690	0.530	0.300	NS
Barium	μg/L	-	-	-	-	-	-	-	-	-	30.6	34.1	38.2	44.2	27.7	29.2	32.2	19.0	NS
Beryllium	μg/L	-	-	-	-	-	-	-	-	-	<0.005 U	<0.005 U	<0.005 U	0.0620	0.00600 J	0.0530	0.0330	0.00800 J	NS
Boron	mg/L	-	-	-	-	-	-	-	-	-	0.268	0.160	0.376	0.214	0.0690	0.0750	0.100	0.158	0.132
Cadmium	μg/L	-	-	-	-	-	-	-	-	-	0.00500 J	0.00600 J	0.00400 J	0.00900 J	<0.004 U	0.00800 J	<0.005 U	<0.005 U	NS
Calcium	mg/L	-	-	-	-	-	-	-	-	-	71.5	95.4	103	87.3	90.0	72.2	73.9	61.7	91.0
Chloride	mg/L	-	-	-	-	-	-	-	-	-	33.4	34.0	39.7	25.4	167	79.5	52.4	18.8	24.5
Chromium	μg/L	-	-	-	-	-	-	-	-	-	0.300	0.300	0.400	1.44	1.90	1.20	0.918	0.196	NS
Cobalt	μg/L	-	-	-	-	-	-	-	-	-	0.0820	0.0680	0.0760	0.507	0.0690	0.426	0.238	0.0820	NS
Combined Radium	pCi/L	-	-	-	-	-	-	-	-	-	0.143	1.03	0.429	2.50	2.61	0.613	0.647	0.632	NS
Fluoride	mg/L	-	-	-	-	-	-	-	-	-	0.180	0.170	0.100 J	0.100 J	0.160	0.160	0.170	0.200	0.100 J
Lead	μg/L	-	-	-	-	-	-	-	-	-	0.0640	0.0890	0.0640	0.764	0.0610	0.630	0.364	0.0880	NS
Lithium	mg/L	-	-	-	-	-	-	-	-	-	0.00200	0.0100	0.0120	0.00600	0.00900	0.0150	0.00200	0.00900	NS
Mercury	μg/L	-	-	-	-	-	-	-	-	-	<0.09 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U	0.00200 J	<0.002 U	<0.002 U	NS
Molybdenum	μg/L	-	-	-	-	-	-	-	-	-	3.48	8.71	8.40	3.19	1.84	1.91	2.46	2.47	NS
Selenium	μg/L	-	-	-	-	-	-	-	-	-	8.20	7.40	8.80	5.30	4.30	4.80	4.70	3.20	NS
Total Dissolved Solids	mg/L	-	-	-	-	-	-	-	-	-	474	547	560	551	564	507	466	358	535
Sulfate	mg/L	-	-	-	-	-	-	-	-	-	155	187	183	186	90.1	102	118	88.6	159
Thallium	μg/L	-	-	-	-	-	-	-	-	-	0.0100 J	<0.01 U	<0.01 U	0.0300 J	0.0300 J	0.0200 J	0.0100 J	0.0300 J	NS
pН	SU	-	-	-	-	-	-	-	-	-	7.28	7.28	7.38	7.43	7.50	7.59	7.55	7.32	7.33

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL).

J: Estimated value. Parameter was detected in concentrations below the reporting limit.

NS: Not Sampled

-: Insufficient water to sample

For statistical analysis, parameters which were not detected were replaced with the reporting limit.

Table 1: Groundwater Data Summary Mitchell Plant - Landfill

						MW-1503	R			
Parameter	Unit	6/20/2016	8/9/2016	9/27/2016	11/9/2016	2/15/2017	4/12/2017	5/23/2017	7/25/2017	10/11/2017
					Backg	ground				Detection
Antimony	μg/L	-	-	-	-	-	-	-	-	-
Arsenic	μg/L	-	-	-	-	-	-	-	-	-
Barium	μg/L	-	-	-	-	-	-	-	-	-
Beryllium	μg/L	-	-	-	-	-	-	-	-	-
Boron	mg/L	-	-	-	-	-	-	-	-	-
Cadmium	μg/L	-	-	-	-	-	-	-	-	-
Calcium	mg/L	-	-	-	-	-	-	-	-	-
Chloride	mg/L	-	-	-	-	-	-	-	-	-
Chromium	μg/L	-	-	-	-	-	-	-	-	-
Cobalt	μg/L	-	-	-	-	-	-	-	-	-
Combined Radium	pCi/L	-	-	-	-	-	-	-	-	-
Fluoride	mg/L	-	-	-	-	-	-	-	-	-
Lead	μg/L	-	-	-	-	-	-	-	-	-
Lithium	mg/L	-	-	-	-	-	-	-	-	-
Mercury	μg/L	-	-	-	-	-	-	-	-	-
Molybdenum	μg/L	-	-	-	-	-	-	-	-	-
Selenium	μg/L	-	-	-	-	-	-	-	-	-
Total Dissolved Solids	mg/L	-	-	-	-	-	-	-	-	-
Sulfate	mg/L	-	-	-	-	-	-	-	-	-
Thallium	μg/L	-	-	-	-	-	-	-	-	-
pH	SU	-	-	-	-	-	-	-	-	-

Notes:

µg/L: micrograms per liter

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit U: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL). J: Estimated value. Parameter was detected in concentrations below the reporting limit.

NS: Not Sampled

-: Insufficient water to sample

For statistical analysis, parameters which were not detected were replaced with the reporting limit.

Table 2: Historical Groundwater Data Summary Mitchell Plant - Landfill

Donomotor	LInit								MW-1101F	1						
Parameter	Unit	2/23/2012	4/24/2012	6/1/2012	8/23/2012	10/23/2012	12/21/2012	2/20/2013	6/18/2013	9/25/2013	12/19/2013	6/26/2014	10/2/2014	6/15/2015	9/17/2015	5/25/2016
Chloride	mg/L	54	18	16	13	57	25	4.7	5.1	5.6	6.4	5	5	4.5	4.5	4.01
Fluoride	mg/L	0.7	0.25	0.19	0.28	1.1	0.71	0.23	0.083	0.23	0.32	-	-	-	-	0.23
pН	SU	8.26	8.03	8.04	7.92	8.49	7.48	7.89	7.35	7.64	-	7.64	7.99	7.49	8.34	7.68
Sulfate	mg/L	160	99	96	82	180	110	67	65	71	69	66.9	68.4	66.5	66.7	65.1
Total Dissolved Solids	mg/L	780	560	500	480	830	1100	350	360	320	410	391	419	405	421	398

Notes:

mg/L: milligrams per liter

SU: standard unit

U: Component was not present in concentrations above method detection limit and is reported as the reporting limit

*: Component was not present in concentrations above method detection limit and is reported as the method detection limit

J: Component was detected in concentrations below the reporting limit

-: Not sampled

Geosyntec Consultants, Inc.

Table 2: Historical Groundwater Data Summary Mitchell Plant - Landfill

Donomoton	Linit]	MW-1102F								
Parameter	Unit	2/29/2012	4/24/2012	6/27/2012	8/24/2012	10/26/2012	2/21/2013	6/18/2013	9/25/2013	12/19/2013	6/26/2014	9/26/2014	12/9/2014	6/17/2015	8/7/2015	9/18/2015	11/2/2015	5/25/2016
Chloride	mg/L	6.6	7.1	6.9	6.5	7	7.7	8	8.5	7.6	9	9.6	10.1	11	10.9	11	10.3	12
Fluoride	mg/L	0.48	0.43	0.43	0.4	0.61	0.55	0.35	0.48	0.47	-	-	-	-	-	-	-	-
pН	SU	7.76	7.9	7.71	7.72	8.57	7.72	7.59	7.76	-	7.85	8.23	8.15	8.22	8.15	7.61	7.8	8.36
Sulfate	mg/L	40	48	42	38	37	44	42	44	38	37.6	39.4	38.8	38.2	37.5	37.7	32.7	37
Total Dissolved Solids	mg/L	420	410	410	440	440	380	420	400	470	518	537	506	519	530	519	518	540

Notes:

mg/L: milligrams per liter

SU: standard unit

U: Component was not present in concentrations above method detection limit and is reported as the reporting limit

*: Component was not present in concentrations above method detection limit and is reported as the method detection limit

J: Component was detected in concentrations below the reporting limit

Table 2: Historical Groundwater Data Summary Mitchell Plant - Landfill

Donomotor	Unit							MW-1	103F						
Parameter	Unit	2/20/2012	4/25/2012	6/27/2012	8/22/2012	10/24/2012	12/22/2012	2/19/2013	6/19/2013	9/25/2013	12/19/2013	6/26/2014	9/25/2014	9/18/2015	6/1/2016
Chloride	mg/L	230	240	220	240	220	230	250	240	240	250	221	-	243	247
Fluoride	mg/L	2.5	2.7	2.7	3.3	3.1	3.1	2.9	2.9	3	2.8	-	-	-	-
pН	SU	8.39	8.8	8.32	8.17	8.93	7.82	8.25	8.11	8.15	-	8.35	8.42	8.3	8.31
Sulfate	mg/L	11	8.6	7.4	8.3	4.7	6.9	9.1	8.3	8.7	8.5	4.2	2.3	2.6	2.1
Total Dissolved Solids	mg/L	1500	690	1300	1300	1500	1900	1300	1100	1000	1200	1510	1540	1440	1380

Notes:

mg/L: milligrams per liter

SU: standard unit

U: Component was not present in concentrations above method detection limit and is reported as the reporting limit

*: Component was not present in concentrations above method detection limit and is reported as the method detection limit

J: Component was detected in concentrations below the reporting limit

Table 2: Historical Groundwater Data Summary Mitchell Plant - Landfill

Deremator	IInit								MW-1	101R							
Parameter	Unit	2/24/2012	4/25/2012	6/27/2012	8/23/2012	10/25/2012	12/22/2012	2/21/2013	6/20/2013	9/25/2013	12/20/2013	6/26/2014	10/2/2014	6/16/2015	9/18/2015	11/4/2015	6/1/2016
Chloride	mg/L	17	18	17	17	16	16	17	17	17	16	16.2	-	17.6	17.3	17.1	10.9
Fluoride	mg/L	2.5	3	2.8	2.7	3	2.9	2.8	2.8	2.6	2.6	-	-	-	-	-	-
pН	SU	9.15	7.78	8.61	8.6	8.89	7.94	8.72	-	8.36	-	8.28	8.46	8.42	8.47	7.78	8.09
Sulfate	mg/L	27	30	32	32	26	29	30	32	31	26	28.2	30.5	34	37.3	36	67.3
Total Dissolved Solids	mg/L	720	880	880	970	830	1600	3500	710	770	760	902	878	910	876	846	672

Notes:

mg/L: milligrams per liter

SU: standard unit

U: Component was not present in concentrations above method detection limit and is reported as the reporting limit

*: Component was not present in concentrations above method detection limit and is reported as the method detection limit

J: Component was detected in concentrations below the reporting limit

Table 2: Historical Groundwater Data Summary Mitchell Plant - Landfill

Donomotor	Linit								MW-1	102R							
Parameter	Unit	2/23/2012	4/23/2012	6/23/2012	8/22/2012	10/25/2012	12/19/2012	2/21/2013	6/20/2013	9/25/2013	12/20/2013	6/26/2014	9/26/2014	6/12/2015	9/18/2015	11/2/2015	5/25/2016
Chloride	mg/L	63	-	190	220	190	210	210	230	190	190	192	-	211	208	165	214
Fluoride	mg/L	1.4	-	1.7	2.5	2.6	3	3.4	3	2.3	3	-	-	-	-	-	-
pН	SU	8.88	8.46	8.17	7.41	7.98	8.6	7.85	-	8.45	-	7.97	8.36	7.9	8.14	8.45	8.3
Sulfate	mg/L	72	-	55	43	28	28	25	27	27	28	18.2	19.1	38.7	36.8	22.7	39
Total Dissolved Solids	mg/L	-	-	1500	1300	1300	1300	1300	1300	1000	1100	1430	1490	1420	1440	1420	1450

Notes:

mg/L: milligrams per liter

SU: standard unit

U: Component was not present in concentrations above method detection limit and is reported as the reporting limit

*: Component was not present in concentrations above method detection limit and is reported as the method detection limit

J: Component was detected in concentrations below the reporting limit

Table 2: Historical Groundwater Data Summary Mitchell Plant - Landfill

Doromator	Unit				MW-	1104R			
Parameter	Unit	2/23/2012	4/24/2012	6/19/2012	8/20/2012	10/22/2012	12/20/2012	2/19/2013	6/1/2016
Chloride	mg/L	-	-	-	-	-	-	-	467
Fluoride	mg/L	-	-	-	-	-	-	-	-
pН	SU	9.54	8.9	8.86	8.68	7.57	7.69	7.62	7.96
Sulfate	mg/L	-	-	-	-	-	-	-	136
Total Dissolved Solids	mg/L	-	-	-	-	-	-	-	2530

Notes:

mg/L: milligrams per liter

SU: standard unit

U: Component was not present in concentrations above method detection limit and is reported as the reporting limit *: Component was not present in concentrations above method detection limit and is reported as the method detection limit J: Component was detected in concentrations below the reporting limit

-: Not sampled

Geosyntec Consultants, Inc.

Groundwater Flow Direction Maps

500

500

eet

Legend

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- ---- Groundwater Elevation Contour (Inferred)

Notes

- Monitoring well coordinates and water level data (collected on June 13, 2016) provided by AEP.
 Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP.
 Groundwater elevation units are feet above mean sea level.

Potentiometric	Surface Map - Fish (June 2016	Creek							
Mitchell Marshal	Mitchell Power Generation Plant Marshall County, West Virginia								
Geosy	ntec⊳	Figure							
cons	sultants	4							
Columbus, Ohio	2017/11/06	L							

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- ---- Groundwater Elevation Contour (Inferred)

Notes

Notes
Monitoring well coordinates and water level data (collected on August 1, 2016) provided by AEP.
Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP.
Groundwater elevation units are feet above mean sea level (NAVD 88).

Potentiometric /	: Surface Map - Fish August 2016	Creek
Mitchell Marsha		
Geosy	/ntec [▷]	Figure
con	2	
Columbus, Ohio	2	

eet

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- ---- Groundwater Elevation Contour (Inferred)

Notes

- Monitoring well coordinates and water level data (collected on September 26, 2016) provided by AEP.

Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP.
Groundwater elevation units are feet above mean sea level (NAVD 88).

Potentiometric Surface Map - Fish Creek September 2016

Mitchell Power Generation Plant Marshall County, West Virginia

Geosyntec[▷] consultants

Columbus, Ohio

2017/11/06

3

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- ---- Groundwater Elevation Contour (Inferred)

Notes

Notes
Monitoring well coordinates and water level data (collected on November 8, 2016) provided by AEP.
Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP.
Groundwater elevation units are feet above mean sea level (NAVD 88).

Potentiometric No	Surface Map - Fish (vember 2016	Creek
Mitchell Marsha	Power Generation Plant Il County, West Virginia	
Geosy	ntec⊳	Figure
con	sultants	
Columbus, Ohio	2017/11/06	4

Feet

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- ---- Groundwater Elevation Contours (Inferred)

Notes

P:\Projects\AEP\Groundwater Statistical Evaluation - CHA8423\Groundwater Mapping\GIS Files\MXD\Mitchell\Landfill-FC\AEP-Mitchell_Landfill-FC_GW_Feb2017.mxd. ARevezzo. 11/6/2017. Project/Phase/Task.

- Monitoring well coordinates and water level data (collected on February 7, 2017) provided by AEP.

Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP.
Groundwater elevation units are feet above mean sea level (NAVD 88).

Potentiometric Surface Map - Fish Creek February 2017

Mitchell Power Generation Plant Marshall County, West Virginia

Geosyntec[▷] consultants

Columbus, Ohio

2017/11/06

5

500

500

Feet

Legend

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- ---- Groundwater Elevation Contour (Inferred)

Notes

Monitoring well coordinates and water level data (collected on April 4, 2017) provided by AEP.
-Site features based on information available in the Groundwater Monitoring Network Evaluation (AMEC, 2016) provided by AEP.
- Groundwater elevation units are feet above mean sea level (NAVD 88).

Potentiometric Contours - Fish Creek Aquifer April 2017		
Mitchell Power Generation Plant Marshall County, West Virginia		
Geosyntec⊳		Figure
consultants		
Columbus, Ohio	2017/12/29	0

500

500

eet

Legend

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- ---- Groundwater Elevation Contour (Inferred)

Notes

- Moritoring well coordinates and water level data (collected on May 16, 2017) provided by AEP.
 Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP.
 Groundwater elevation units are feet above mean sea level (NAVD 88).

Potentiometric Contours - Fish Creek Aquifer May 2017		
Mitchell Power Generation Plant Marshall County, West Virginia		
Geosyntec [▷] Figure		Figure
consultants		
Columbus, Ohio	2017/11/06	

500

500

Feet

Legend

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- ---- Groundwater Elevation Contour (Inferred)

Notes

Notes
Monitoring well coordinates and water level data (collected on July 18, 2017) provided by AEP.
Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP.
Groundwater elevation units are feet above mean sea level (NAVD 88).
* MW1101F not gauged during July 2017 event; contours inferred from previous monitoring events

monitoring events.

Potentiometric Contours - Fish Creek Aquifer July 2017		
Mitchell Power Generation Plant Marshall County, West Virginia		
Geosyntec Figure		Figure
consultants 8		
Columbus, Ohio	2017/11/06	5

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- ---- Groundwater Elevation Contours (Inferred)

Notes

- Monitoring well coordinates and water level data (collected on October 9, 2017) provided by AEP.
-Site features based on information available in the Groundwater Monitoring Network Evaluation (AMEC, 2016) provided by AEP.
- Groundwater elevation units are feet above mean sea level (NAVD 88).

250 500 500 0 Feet

Potentiometric Surface Map - Fish Creek October 2017		
Mitchell Marshal	Power Generation Plant I County, West Virginia	
Geosy	ntec⊳	Figure
consultants		•
Columbus, Ohio	2018/01/29	9

500

500

eet

Legend

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- ---- Groundwater Elevation Contour (Inferred)

Notes

Monitoring well coordinates and water level data (collected on June 13, 2016) provided by AEP.
-Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP.
- Groundwater elevation units are feet above mean sea level.

Potentiometric Surface Map - Rush Run June 2016		
Mitchell Marsha	Power Generation Plant Il County, West Virginia	
Geosyntec⊳		Figure
consultants		-
Columbus, Ohio	2017/11/07	L.

500

500

eet

Legend

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- ---- Groundwater Elevation Contour (Inferred)

Notes

- Monitoring well coordinates and water level data (collected on August 1, 2016) provided by AEP.

-Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP. - Groundwater elevation units are feet above mean sea level (NAVD 88).

Potentiometric Surface Map - Rush Run August 2016		
Mitchell Power Generation Plant Marshall County, West Virginia		
Geosyntec⊳		Figure
consultants		2
Columbus, Ohio	2017/11/06	2

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- ---- Groundwater Elevation Contour (Inferred)

Notes

- Monitoring well coordinates and water level data (collected on September 26, 2016) provided by AEP.

-Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP. - Groundwater elevation units are feet above mean sea level (NAVD 88).

Potentiometric Surface Map - Rush Run September 2016

Mitchell Power Generation Plant Marshall County, West Virginia

Geosyntec▷ consultants

Columbus, Ohio

2017/11/07

Figure

3

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- ---- Groundwater Elevation Contour (Inferred)

Notes

Notes
Monitoring well coordinates and water level data (collected on November 8, 2016) provided by AEP.
Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP.
Groundwater elevation units are feet above mean sea level (NAVD 88).

Potentiometric Surface Map - Rush Run November 2016		
Mitchell Power Generation Plant Marshall County, West Virginia		
Geosyntec [▶]		Figure
consultants		
Columbus, Ohio	2017/11/07	4

Feet

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- ---- Groundwater Elevation Contour (Inferred)

Notes

- Monitoring well coordinates and water level data (collected on February 7, 2017) provided by AEP.

-Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP. - Groundwater elevation units are feet above mean sea level (NAVD 88).

Potentiometric Surface Map - Rush Run February 2017		
Mitchell Power Generation Plant Marshall County, West Virginia		
Geosyntec [▷] Fig		Figure
consultants		F
Clumbus, Ohio	2017/11/07	5

eet

eet

Legend

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- ---- Groundwater Elevation Contour (Inferred)

Notes

- Monitoring well coordinates and water level data (collected on April 4, 2017) provided by AEP.

-Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP. - Groundwater elevation units are feet above mean sea level (NAVD 88).

Potentiometric Surface Map - Rush Run April 2017		
Mitchell Power Generation Plant Marshall County, West Virginia		
Geosyntec [▷] Figure		Figure
consultants		c
Clumbus, Ohio	2017/11/07	O

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- ---- Groundwater Elevation Contour (Inferred)

Notes

Notes
Monitoring well coordinates and water level data (collected on May 16, 2017) provided by AEP.
Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP.
Groundwater elevation units are feet above mean sea level (NAVD 88).

Potentiometric Surface Map - Rush Run May 2017		
Mitchell Power Generation Plant Marshall County, West Virginia		
Geosyntec ^D Figure		
consultants		
Clumbus, Ohio	2017/11/07	

eet

500

500

eet

Legend

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- ---- Groundwater Elevation Contour (Inferred)

Notes

- Monitoring well coordinates and water level data (collected on July 18, 2017) provided by AEP.

-Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP. - Groundwater elevation units are feet above mean sea level (NAVD 88).

Potentiometric Surface Map - Rush Run July 2017		
Mitchell Power Generation Plant Marshall County, West Virginia		
Geosyntec⊳		Figure
consultants		o
Clumbus, Ohio	2017/11/07	0

- Groundwater Monitoring Well
- ----> Groundwater Flow Direction
- Groundwater Elevation Contour
- ---- Groundwater Elevation Contour (Inferred)

- Monitoring well coordinates and water level data (collected on October 9, 2017) provided by AEP.
-Site features based on information available in the Groundwater Monitoring Network Evaluation (CEC, 2016) provided by AEP.
- Groundwater elevation units are feet above mean sea level (NAVD 88).

Potentiometric Surface Map - Rush Run October 2017		
l Power Generation Plant all County, West Virginia	Mitchell I Marshal	
Geosyntec [▷] Figur		Figure
consultants		0
2018/01/29	Clumbus, Ohio 2018/01/29	

Groundwater Flow Velocity Calculations

Table 1: Residence Time Calculation Summary - LandfillMitchell Landfill

			2016-06		2016-08		2016-09		2016-11	
CCR Management Unit	Monitoring Well Pair	Well Diameter (inches)	Vertical Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Vertical Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Vertical Groundwater Velocity (ft/year)	Groundwater Residence Time (days)	Vertical Groundwater Velocity (ft/year)	Groundwater Residence Time (days)
Landfill	MW1101F/R ^[1]	2.0	8.2	7	6.3	10	3.9	15	2.2	28
	MW1102F/R ^[1]	2.0	1.6	37	1.7	35	1.8	33	1.9	32
	MW1103F/R ^[2]	2.0	1.8	34	1.9	33	1.8	33	1.8	33
	MW1104F/R ^[2]	2.0	1.6	38	2.0	31	1.9	31	1.9	31
	MW1501F/R ^[3]	4.0	2.0	62	2.0	62	2.0	62	2.0	61
	MW1502R ^[3]	4.0	NC	NC	NC	NC	NC	NC	NC	NC
	MW1503F/R ^[3]	4.0	1.6	76	1.6	76	1.6	76	1.6	76

			2017-02		2017-04		2017-05		2017-07		2017-10	
CCR Management Unit	Monitoring Well Pair	Well Diameter (inches)	Vertical Groundwater Velocity (ft/year)	Groundwater Residence Time (days)								
Landfill	MW1101F/R ^[1]	2.0	2.2	28	2.2	28	2.2	28	NC	NC	NC	NC
	MW1102F/R ^[1]	2.0	1.9	33	1.9	33	1.9	33	NC	NC	NC	NC
	MW1103F/R ^[2]	2.0	1.8	33	1.8	33	1.8	34	1.8	33	1.8	33
	MW1104F/R ^[2]	2.0	1.9	32	1.9	32	1.9	32	1.9	32	1.9	32
	MW1501F/R ^[3]	4.0	2.0	62	2.0	61	2.0	61	2.0	61	2.0	61
	MW1502R ^[3]	4.0	NC	NC								
	MW1503F/R ^[3]	4.0	1.6	74	1.7	73	1.7	73	1.7	73	1.7	73

Notes:

[1] - Sidegradient Well

[2] - Background Well

[3] - Downgradient Well

Not applicable at this time.