Annual Groundwater Monitoring Report

Public Service Company of Oklahoma Northeastern 3&4 Power Station

Bottom Ash Pond CCR Management Unit

7300 E HWY 88 Oologah, Oklahoma

January 2020

Prepared by:
American Electric Power Service Corporation
1 Riverside Plaza
Columbus, Ohio 43215

Page Table of Contents I II. III. IV. Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and Direction and Discussion 5 V. VI. VII. Discussion About Transition Between Monitoring Requirements or Alternate Monitoring VIII. Other Information Required......6 IX.

A Projection of Key Activities for the Upcoming Year......7

Appendix I

X.

Appendix II

Appendix III

Appendix IV

Appendix V

I. Overview

This Annual Groundwater Monitoring Report (Report) has been prepared to report the status of activities for the preceding year for an existing CCR unit at Public Service Company of Oklahoma's (PSO's), a wholly-owned subsidiary of American Electric Power Company (AEP), Northeastern 3&4 Power Station. The Oklahoma Department of Environmental Quality (ODEQ) CCR rules require that the Annual Groundwater Monitoring Report be posted to the operating record for the preceding year no later than January 31, 2020.

In general, the following activities were completed:

- Groundwater samples were collected and analyzed for Appendix A and Appendix B constituents, as specified in OAC 255:517-9-6 Assessment Monitoring program and AEP's *Groundwater Sampling and Analysis Plan* (2016);
- Semi-annual groundwater data underwent various validation tests, including tests for completeness, valid values, transcription errors, and consistent units;
- Groundwater Monitoring Statistical Evaluation Reports to evaluate groundwater data were prepared in accordance with OAC 252:517-9-4 and certified. The statistical process was guided by USEPA's *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities*, *Unified Guidance* ("Unified Guidance", USEPA, 2009).
- Statistically significant Levels (SSLs) were determined for lithium in SP-10.
- A successful alternate source demonstration (ASD) was conducted for the lithium SSL.
- This CCR Unit remains in assessment monitoring.

The major components of this annual report, to the extent applicable at this time, are presented in sections that follow:

- A map, aerial photograph or a drawing showing the CCR management unit(s), all groundwater monitoring wells and monitoring well identification numbers;
- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a statement as to why that happened;
- All of the monitoring data collected, including the rate and direction of groundwater flow, plus a summary showing the number of samples collected per monitoring well, the dates the samples were collected and whether the sample was collected as part of detection monitoring or assessment monitoring programs is included in Appendix I;
- A summary of any transition between monitoring programs or an alternate monitoring frequency, for example the date and circumstances for transitioning from detection monitoring to assessment monitoring, in addition to identifying the constituents detected at a statistically significant increase over background concentrations (Appendix IV).

• Other information required to be included in the annual report such as alternate source demonstration or assessment of corrective measures, if applicable.

In addition, this report summarizes key actions completed, and where applicable, describes any problems encountered and actions taken to resolve those problems. The report includes a projection of key activities for the upcoming year.

II. Groundwater Monitoring Well Locations and Identification Numbers

The figure that follows depicts the PE-certified groundwater monitoring network, the monitoring well locations and their corresponding identification numbers.

Primary Bott	om Ash Pond Monitoring Wells
Up Gradient	Down Gradient
SP-4	SP-1
SP-5R	SP-2
	SP-10
	SP-11

III. Monitoring Wells Installed or Decommissioned

During 2nd half 2018, no monitoring wells were installed or decommissioned.

During 2019, no monitoring wells were installed or decommissioned.

IV. <u>Groundwater Quality Data and Static Water Elevation Data, With Flow Rate and Direction and Discussion</u>

Appendix I contains tables showing the applicable groundwater quality data obtained under OAC 252:517-9-4 through 252:517-9-6 relevant to this reporting period. Static water elevation data from each monitoring event also are shown in Appendix I. Groundwater velocity and groundwater flow direction were not determined since the wells are not screened within an interconnected aquifer as presented in the Alternate Source Demonstration (May 2019).

The sampling events conducted 5/30/18 and 6/20/19 satisfy the requirement of 252:517-9-6(b).

The semi-annual groundwater sampling events conducted 7/30/2018, 2/27/2019, and 8/28/2019 satisfy the requirement of 252:517-9-6(d).

Appendix V contains the Field sheets and laboratory reports for this reporting period.

V. Statistical Evaluation Completed in 2019

- January 2019: a SSL above the GWPS was determined for lithium in SP-10 for the 2nd half 2018 sampling event conducted July 30, 2018. Additionally, SSIs were determined for boron, chloride, fluoride, pH, total dissolved solids.
- July 2019: a SSL above the GWPS was determined for lithium in SP-10 for the 1st half 2019 groundwater sampling event conducted February 27, 2019. Additionally, SSIs were determined for boron, chloride, fluoride, sulfate, total dissolved solids.
- December 2019: a SSL above the GWPS was determined for lithium in SP-10 for the 2nd half 2019 groundwater sampling event conducted in August 26, 2019.
 Additionally, SSIs were determined for boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids.

Appendix II contains the Statistical Evaluation reports complete in 2019.

VI. Alternate Source Demonstrations Completed in 2019

An alternate source investigation was conducted for the SSL of lithium, which was submitted to ODEQ in May 2019. ODEQ reviewed the alternate source demonstration (ASD) and in correspondence dated July 8, 2019 found the ASD to be deficient.

In September 2019, NPS submitted an ASD response to ODEQ for further consideration.

On October 29, 2019 ODEQ approved the lithium ASD.

ASD demonstrations are found in Appendix III.

VII. <u>Discussion About Transition Between Monitoring Requirements or Alternate</u> <u>Monitoring Frequency</u>

The SSL caused the transition in groundwater assessment monitoring program to assessment of corrective measures with assessment monitoring (OAC 252:517-9-7).

On November 4, 2019, ODEQ issued correspondence stating that this CCR unit was no longer required to initiate the assessment of corrective measures because the ASD dated September 13, 2019 was approved (see ODEQ's October 29, 2019 correspondence.)

This CCR Unit remains in assessment monitoring.

The notifications relative to this reporting period are presented in Appendix IV.

VIII. Other Information Required

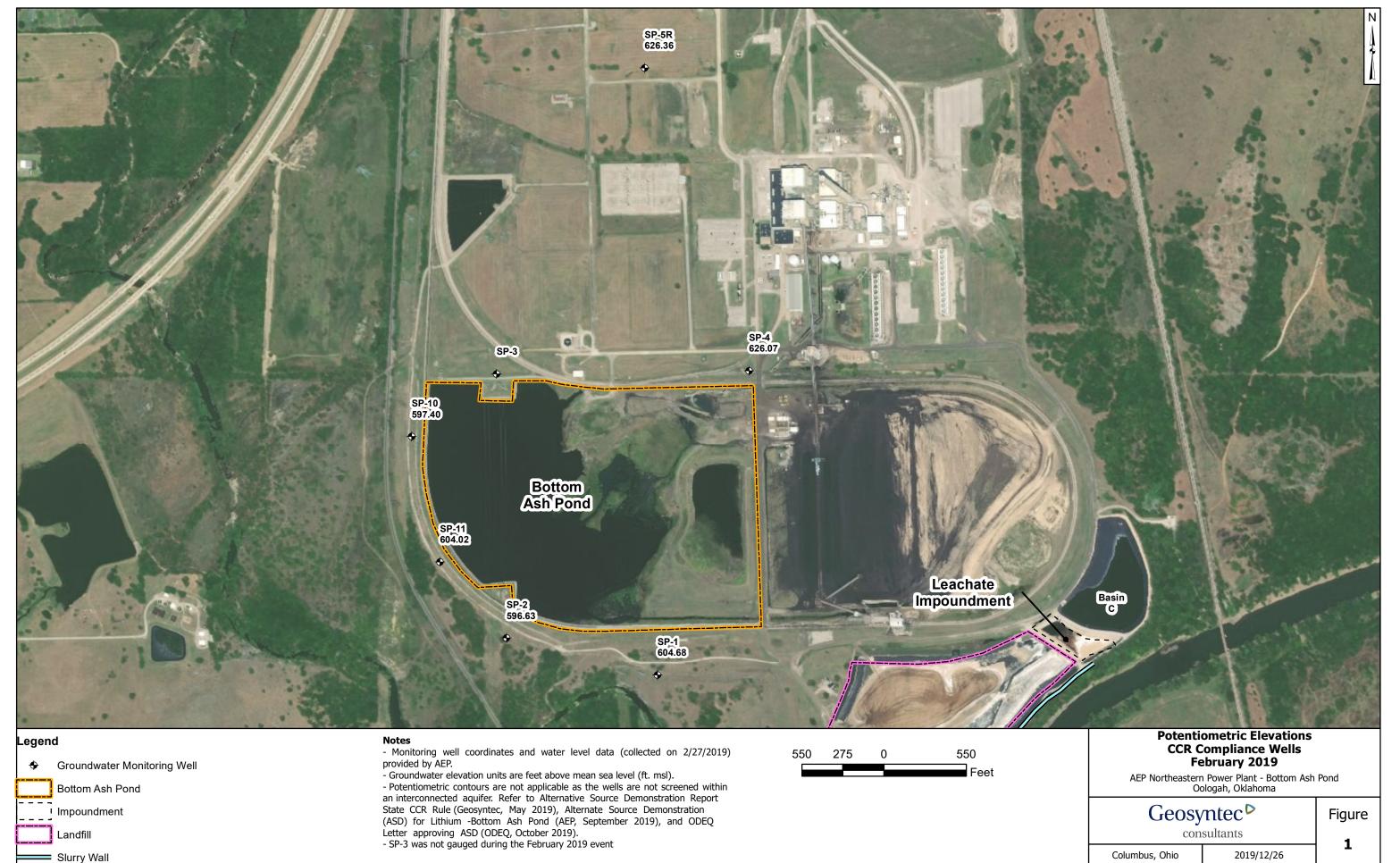
Financial Assurance – Corporate Financial Test was accepted by ODEQ in correspondence dated April, 5, 2019.

An Alternative Closure Requirements notification was approved by ODEQ in correspondence dated April 11, 2019.

NPS continues to work with ODEQ towards completing the permit for this CCR Unit.

IX. <u>Description of Any Problems Encountered in 2019 and Actions Taken</u>

No significant problems were encountered.

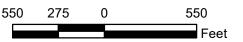

X. A Projection of Key Activities for the Upcoming Year

Key activities for 2020 include:

- As required by OAC 252:517-9-6 assessment monitoring of the groundwater for the CCR unit;
- Submit Financial Assurance;
- Evaluation of the assessment monitoring results from a statistical analysis viewpoint, looking for SSLs above GWPS;
- Responding to any new data received in light of CCR rule requirements;
- Continue to work toward obtaining a permit;
- Preparation of the next annual groundwater report.

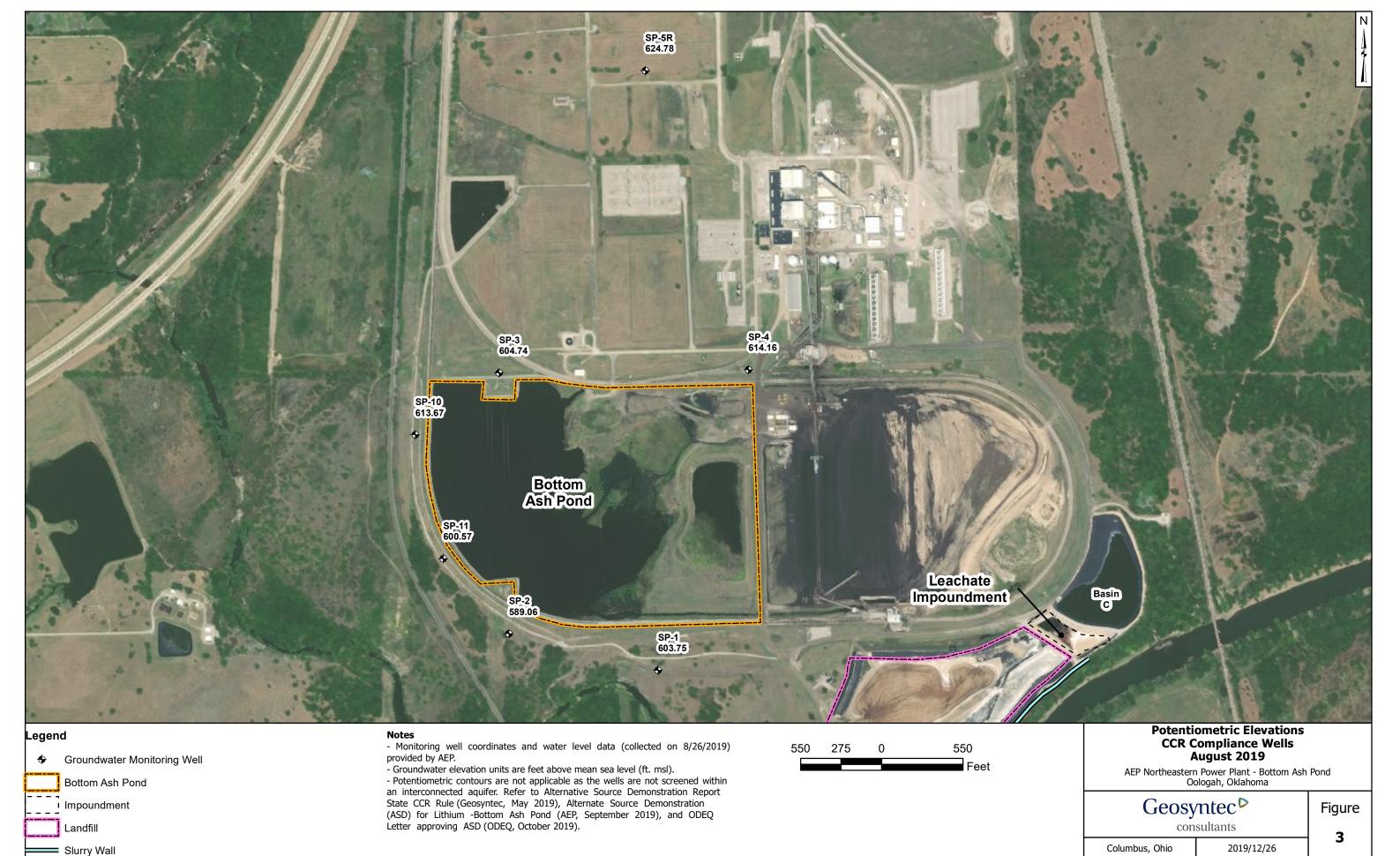
APPENDIX I

Tables follow, showing the groundwater monitoring data collected, the rate and direction of groundwater flow, and a summary showing the number of samples collected per monitoring well. The dates that the samples were collected also is shown.


_ Impoundment Landfill Slurry Wall

- provided by AEP.

 Groundwater elevation units are feet above mean sea level (ft. msl).


 Potentiometric contours are not applicable as the wells are not screened within an interconnected aquifer. Refer to Alternative Source Demonstration Report State CCR Rule (Geosyntec, May 2019), Alternate Source Demonstration (ASD) for Lithium -Bottom Ash Pond (AEP, September 2019), and ODEQ Letter approving ASD (ODEQ, October 2019).

 SP-3 was not gauged during the June 2019 event

AEP Northeastern Power Plant - Bottom Ash Pond Oologah, Oklahoma

Table 1 - Groundwater Data Summary: SP-1 Northeastern - BAP Appendix A Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
1/25/2017	Background	0.298	111	60	<1 U	7.5	514	66
3/13/2017	Background	0.186	117	548	4		480	30
4/27/2017	Background	0.202	108	83	1.02	7.6	496	60
5/18/2017	Background	0.284	131	104	1.3		574	60
6/16/2017	Background	0.242	115	50	0.6437 J	9.3	478	48
6/28/2017	Background	0.232	113	19	0.582 J	11.1	424	48
7/13/2017	Background	0.287	122	70	0.6283 J	9.8	504	56
8/4/2017	Background	0.299	125	20	0.542 J	8.7	394	52
8/17/2017	Background					7.9		
8/30/2017	Background	0.250	120	34	0.581 J	7.7	456	59
9/13/2017	Background	0.369	119	62	0.4042 J	8.2	536	54
9/20/2017	Background	0.331	129	22	<0.083 U	7.3	440	62
10/11/2017	Detection	0.350	152	136	1.4051	7.4	676	58
1/22/2018	Detection		119			6.9		
5/30/2018	Assessment				1.2525	7.3		
7/30/2018	Assessment	0.397	130	46	0.9863 J	7.0	1060	63
2/4/2019	Assessment	0.354	150					
2/27/2019	Assessment	0.200	122	42.7	0.8	7.3	532	87.1
6/20/2019	Assessment	0.198	126	25.2	0.77	7.1	452	61.4
8/26/2019	Assessment	0.124	120	9	0.525 J	9.0	438	48.0

Notes:

mg/L: milligrams per liter

SU: standard unit

Due to limited groundwater volume, pH values for several sampling events were collected the day prior to collection of analytical samples for other parameters.

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

^{- -:} Not analyzed

Table 1 - Groundwater Data Summary: SP-1 Northeastern - BAP Appendix B Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
1/25/2017	Background	<5 U	<5 U	211	<1 U	<1 U	<1 U	<5 U	3.48	<1 U	<5 U	0.006	<0.025 U	11.0	<5 U	<2 U
3/13/2017	Background	<5 U	<5 U	146	<1 U	<1 U	<1 U	<5 U	3.014	4	<5 U	0.007	<0.025 U	16.0	<5 U	<2 U
4/27/2017	Background	2.75 J	1.91 J	195	0.1 J	<0.07 U	0.84 J	2.42 J	4.71	1.02	0.94 J	0.00789	<0.005 U	19.92	4.85 J	<0.86 U
5/18/2017	Background	6.85	5.48	243	0.26 J	0.22 J	2.55	2.55 J	4.12	1.3	1.63 J	0.00853	0.023 J	16.77	6.51	<0.86 U
6/16/2017	Background	1.14 J	<1.05 U	183	0.04 J	<0.07 U	<0.23 U	0.77 J	2.096	0.6437 J	<0.68 U	0.00407	0.009 J	7.02	2.54 J	<0.86 U
6/28/2017	Background	<0.93 U	<1.05 U	187	<0.02 U	<0.07 U	<0.23 U	0.77 J	14.29	0.582 J	<0.68 U	0.00334	<0.005 U	6.42	2.77 J	<0.86 U
7/13/2017	Background	1.25 J	<1.05 U	217	0.09 J	<0.07 U	0.62 J	1.34 J	4.01	0.6283 J	1.24 J	0.00395	<0.005 U	8.14	5.21	0.89 J
8/4/2017	Background	<0.93 U	2.11 J	298	0.1 J	<0.07 U	0.78 J	1.33 J	3.41	0.542 J	0.94 J	0.00577	0.009 J	19.96	11.96	<0.86 U
8/30/2017	Background	2.09 J	1.34 J	218	0.14 J	<0.07 U	0.55 J	1.75 J	4.15	0.581 J	<0.68 U	0.00468	<0.005 U	12.08	3.51 J	<0.86 U
9/13/2017	Background	<0.93 U	<1.05 U	210	0.09 J	0.08 J	0.31 J	1.07 J	2.584	0.4042 J	<0.68 U	0.00548	<0.005 U	14.65	4.13 J	<0.86 U
9/20/2017	Background	<0.93 U	<1.05 U	168	0.05 J	0.11 J	<0.23 U	1.15 J	4.53	<0.083 U	<0.68 U	0.00318	<0.005 U	5.32	<0.99 U	<0.86 U
5/30/2018	Assessment	<0.93 U	<1.05 U	190	<0.02 U	<0.07 U	<0.23 U	0.53 J	3.64	1.2525	<0.68 U	0.00785	<0.005 U	16.39	4.23 J	2.00
7/30/2018	Assessment	0.69	0.93	174	0.06 J	0.08 J	1.83	0.676	3.056	0.9863 J	0.354	0.00615	<0.005 U	17.1	5.8	0.09 J
2/27/2019	Assessment	0.6 J	0.7 J	168	<0.2 U	<0.1 U	2.72	<0.2 U	3.056	0.800	0.2 J	0.00641	<0.005 U	10 J	2.8	<1 U
6/20/2019	Assessment	0.93	1.44	242	0.2 J	0.1 J	0.7 J	5.54	2.745	0.770	0.650	0.03 J	0.01 J	12.1	9.9	<0.5 U
8/26/2019	Assessment	0.43	0.73	160	0.08 J	0.0900	1.49	0.481	2.75	0.525 J	0.835	0.00285	<0.005 U	5.86	3.4	0.1 J

Notes:

μg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Due to limited groundwater volume, radium samples for several sampling events were collected the day prior to collection of analytical samples for other parameters.

Table 1 - Groundwater Data Summary: SP-2 Northeastern - BAP Appendix A Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
1/25/2015	D 1 1	mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
1/25/2017	Background	0.274	108	607	3	6.4	1786	21
3/13/2017	Background	0.251	82.6	37	1		1340	70
4/27/2017	Background	0.152	62.0	527	2.82	6.5	1242	27
5/18/2017	Background	0.336	117	1240	3.00		2214	15
6/16/2017	Background	0.303	108	888	2.96	8.3	1912	61
6/28/2017	Background	0.292	98.5	883	2.8408	7.4	1872	58
7/13/2017	Background	0.339	111	863	3.581	7.9	1846	58
8/4/2017	Background	0.280	147	1064	2.788	7.2	2132	57
8/17/2017	Background					7.6		
8/30/2017	Background	0.275	86.8	1001	4.0998	7.5	2192	47
9/13/2017	Background	0.311	91.8	930	3.196	7.0	1956	43
9/20/2017	Background	0.300	129	856	1.726	6.9	1778	37
10/11/2017	Detection	0.307	91.9	970	3.5881	7.3	2076	41
1/22/2018	Detection			975	= =	7.0	1910	= =
5/30/2018	Assessment				3.4972	7.5		
7/30/2018	Assessment	0.276	117	268	2.6556	7.5	1006	30
2/27/2019	Assessment	0.116	94.0	351	2.68	7.6	932	26.1
6/20/2019	Assessment	0.109	58.2	357	2.69	6.8	1044	28.5
8/26/2019	Assessment	0.173	211	1072	2.685	8.5	2246	14.0

Notes:

mg/L: milligrams per liter

SU: standard unit

Due to limited groundwater volume, pH values for several sampling events were collected the day prior to collection of analytical samples for other parameters.

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

^{- -:} Not analyzed

Table 1 - Groundwater Data Summary: SP-2 Northeastern - BAP Appendix B Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
1/25/2017	Background	<5 U	11	1460	<1 U	<1 U	3	<5 U	6.89	3	<5 U	0.098	<0.025 U	19	<5 U	<2 U
3/13/2017	Background	<5 U	5	1130	<1 U	<1 U	1	<5 U	9.96	1	<5 U	0.073	<0.025 U	23	<5 U	<2 U
4/27/2017	Background	2.09 J	2.08 J	760	0.04 J	<0.07 U	0.24 J	0.87 J	8.98	2.82	<0.68 U	0.05305	<0.005 U	24.67	2.04 J	<0.86 U
5/18/2017	Background	8.71	9.02	3130	0.26 J	0.18 J	2.87	2.77 J	26.48	3.00	2.02 J	0.11100	0.006 J	11.63	6.16	<0.86 U
6/16/2017	Background	11.34	5.50	1710	0.18 J	<0.07 U	2.04	2.51 J	22.16	2.96	<0.68 U	0.103	0.005 J	29.57	37.83	<0.86 U
6/28/2017	Background	5.15	1.4 J	1560	0.06 J	<0.07 U	1.29	1.82 J		2.8408	<0.68 U	0.09272	<0.005 U	29.62	22.41	<0.86 U
7/13/2017	Background	4.74 J	2.51 J	1540	0.07 J	<0.07 U	0.59 J	1.23 J		3.581	1.41 J	0.0961	<0.005 U	33.32	23.23	<0.86 U
8/4/2017	Background	3.51 J	2.54 J	1010	0.09 J	0.07 J	1.07	1.08 J	16.34	2.788	<0.68 U	0.09164	0.014 J	39.4	23.36	<0.86 U
8/30/2017	Background	2.95 J	1.25 J	1120	0.12 J	<0.07 U	<0.23 U	0.8 J	14.48	4.0998	<0.68 U	0.0931	<0.005 U	33.86	11.86	<0.86 U
9/13/2017	Background	2.67 J	1.83 J	992	0.11 J	<0.07 U	<0.23 U	0.87 J	14.89	3.196	<0.68 U	0.09207	0.006 J	37.61	9.87	<0.86 U
9/20/2017	Background	2.64 J	3.05 J	1150	0.2 J	0.09 J	3.46	2.55 J		1.726	0.91 J	0.09111	<0.005 U	39.39	9.87	<0.86 U
5/30/2018	Assessment	1.3 J	<1.05 U	869	<0.02 U	<0.07 U	<0.23 U	0.55 J	7.85	3.4972	<0.68 U	0.04039	<0.005 U	26.46	2.16 J	<0.86 U
7/30/2018	Assessment	1.21	1.42	656	0.05 J	0.08 J	<40 U	0.400	9.61	2.6556	0.245	0.0346	<0.005 U	26.1	2.9	0.06 J
2/27/2019	Assessment	1.39	1.29	841	<0.2 U	<0.1 U	4.30	<0.2 U	5.76	2.68	0.3 J	0.0329	<0.005 U	25.8	3.7	<1 U
6/20/2019	Assessment	1.34	1.43	868	0.1 J	0.09 J	0.9 J	0.434	7.94	2.69	0.4 J	0.062	<0.005 U	25.0	2.9	<0.5 U
8/26/2019	Assessment	1.22	1.53	1220	0.07 J	0.0500	0.701	0.568	8.72	2.685	0.334	0.0582	<0.005 U	22.3	3.7	0.1 J

Notes:

μg/L: micrograms per liter

SU: standard unit

pCi/L: picocuries per liter

Due to limited groundwater volume, radium samples for several sampling events were collected the day prior to collection of analytical samples for other parameters.

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

^{- -:} Not analyzed

Table 1 - Groundwater Data Summary: SP-4 Northeastern - BAP Appendix A Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
1/25/2017	Background	0.406	57.7	401	3	7.7	1122	37
3/15/2017	Background	0.399	67.0	52	4		1128	38
4/27/2017	Background	0.442	58.8	459	3.20	7.0	1128	41
5/18/2017	Background	0.411	296	232	2.10		846	50
6/16/2017	Background	0.395	118	475	3.34	8.3	1164	36
6/28/2017	Background	0.388	110	471	3.2489	8.1	1388	37
7/13/2017	Background	0.420	648	489	3.863	8.1	1128	36
8/4/2017	Background	0.412	1920	469	3.078	7.7	1150	50
8/17/2017	Background	0.493	793	460	3.049	7.8	1132	75
8/30/2017	Background	0.392	612	576	4.086	7.6	1400	74
9/13/2017	Background	0.387	810	450	3.199	7.7	1236	88
9/20/2017	Background	0.477	630	440	1.747	7.2	1208	90
10/11/2017	Detection	0.425	206	431	3.7702	7.4	1200	78
5/30/2018	Assessment				4.169	7.4		
7/30/2018	Assessment	0.399	164	521	<0.083 U	7.6	1180	70
2/27/2019	Assessment	0.370	85.6	470	3.26	7.4	1122	61.5
6/20/2019	Assessment	0.325	56.4	450	3.24	7.1	1128	58
8/26/2019	Assessment	0.365	182	458	2.99	8.8	1170	61

Notes:

mg/L: milligrams per liter

SU: standard unit

Due to limited groundwater volume, pH values for several sampling events were collected the day prior to collection of analytical samples for other parameters.

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

^{- -:} Not analyzed

Table 1 - Groundwater Data Summary: SP-4 Northeastern - BAP Appendix B Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
1/25/2017	Background	<5 U	<5 U	398	<1 U	<1 U	<1 U	<5 U	4	3	<5 U	0.072	<0.025 U	<5 U	<5 U	<2 U
3/15/2017	Background	<5 U	<5 U	477	<1 U	<1 U	<1 U	<5 U	3.57	4	<5 U	0.073	<0.025 U	<5 U	<5 U	<2 U
4/27/2017	Background	1.36 J	1.72 J	578	0.03 J	0.1 J	0.64 J	1.01 J	2.566	3.20	<0.68 U	0.06973	<0.005 U	1.5 J	<0.99 U	1.21 J
5/18/2017	Background	2.04 J	5.50	762	0.56 J	0.57 J	10.73	5.49	6.37	2.10	3.65 J	0.07998	0.015 J	1.02 J	<0.99 U	<0.86 U
6/16/2017	Background	1.74 J	4.59 J	633	0.34 J	<0.07 U	4.04	4.63 J	4.18	3.34	1.39 J	0.07422	<0.005 U	0.65 J	1.67 J	<0.86 U
6/28/2017	Background	<0.93 U	2.01 J	576	0.24 J	<0.07 U	2.98	5.29	9.64	3.2489	0.96 J	0.07041	<0.005 U	0.46 J	<0.99 U	<0.86 U
7/13/2017	Background	2.66 J	10.65	1340	1.28	1.37	22.48	10.64	5.79	3.863	8.47	0.09243	0.01 J	<0.29 U	<0.99 U	<0.86 U
8/4/2017	Background	3.87 J	44.98	4590	4.97	6.55	84.15	40.69	4.04	3.078	36.63	0.1360	0.058	5.03	4.99 J	<0.86 U
8/17/2017	Background	<0.93 U	19.31	2310	2.12	2.05	41.82	17.86	6.71	3.049	10.7	0.1110	0.030	4.23 J	1.04 J	<0.86 U
8/30/2017	Background	2.45 J	9.13	1490	1.26	1.66	25.81	12.06	8.09	4.086	7.11	0.0962	0.021 J	4.61 J	1.86 J	<0.86 U
9/13/2017	Background	<0.93 U	16.34	1910	1.71	2.47	30.83	17.71	5.92	3.199	8.92	0.1040	0.029	6.21	1.65 J	<0.86 U
9/20/2017	Background	2.3 J	13.95	1930	1.77	1.90	34.55	16.32		1.747	9.60	0.1010	0.014 J	7.02	<0.99 U	<0.86 U
5/30/2018	Assessment	5.14	<1.05 U	268	<0.02 U	<0.07 U	<0.23 U	0.49 J	3.186	4.169	<0.68 U	0.06851	<0.005 U	3.7 J	<0.99 U	1.62 J
7/30/2018	Assessment	0.37	1.14	303	0.078	0.07	0.562	0.497	4.85	<0.083 U	0.356	0.0627	0.006 J	3.63	0.7	0.05 J
2/27/2019	Assessment	0.3 J	1 J	276	<0.2 U	<0.1 U	5.71	<0.2 U	3.144	3.26	<0.2 U	0.0602	<0.005 U	<4 U	0.6 J	<1 U
6/20/2019	Assessment	0.3 J	0.83	337	<0.1 U	0.07 J	1.06	0.388	3.751	3.24	1.07	0.0680	0.007 J	2 J	0.4 J	<0.5 U
8/26/2019	Assessment	0.25	1.64	359	0.101	0.05	1.01	1.07	3.24	2.99	0.596	0.0554	<0.005 U	2 J	0.6	<0.1 U

Notes:

μg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Due to limited groundwater volume, radium samples for several sampling events were collected the day prior to collection of analytical samples for other parameters.

Table 1 - Groundwater Data Summary: SP-5 Northeastern - BAP Appendix A Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
1/25/2017	Background	0.233	52.4	500	3	8.0	1354	10
3/15/2017	Background	0.236	61.7	62	4		1420	10
4/27/2017	Background	0.245	53.8	674	3.06	7.5	1436	9
5/18/2017	Background	0.319	79.1	1834	4.00		3008	8
6/16/2017	Background	0.231	57.1	607	3.00	8.3	1368	7
6/28/2017	Background	0.224	53.0	636	2.835	8.2	1156	8
7/13/2017	Background	0.261	53.8	640	3.156	8.2	1388	7
8/4/2017	Background	0.256	61.3	638	2.889	7.9	1372	8
8/17/2017	Background	0.293	52.0	661	3.258	8.2	1378	6
8/30/2017	Background	0.252	57.3	652	3.5698	7.7	1424	7
9/13/2017	Background	0.232	55.6	644	2.797	8.4	1452	6
9/20/2017	Background	0.257	53.7	729	1.535	7.4	1312	6
10/11/2017	Detection	0.610	71.0	630	3.7844	7.5	1368	5
5/30/2018	Assessment				4.1115	7.6		
7/30/2018	Assessment	0.246	131	793	4.3905	8.0	1480	4
2/27/2019	Assessment	0.233	72.8	739	3.08	7.7	1530	1.6
6/20/2019	Assessment	0.202	48.5	675	3.06	7.3	1428	0.9 J
8/26/2019	Assessment	0.220	128	697	2.789	8.8	1450	3.00

Notes:

mg/L: milligrams per liter

SU: standard unit

- -: Not analyzed

Due to limited groundwater volume, pH values for several sampling events were collected the day prior to collection of analytical samples for other parameters.

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

Table 1 - Groundwater Data Summary: SP-5 Northeastern - BAP Appendix B Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
1/25/2017	Background	<5 U	12	1650	<1 U	<1 U	<1 U	<5 U	10.09	3	<5 U	0.114	<0.025 U	<5 U	<5 U	<2 U
3/15/2017	Background	<5 U	13	1590	<1 U	<1 U	1.00	<5 U	9.65	4	<5 U	0.112	<0.025 U	<5 U	<5 U	<2 U
4/27/2017	Background	<0.93 U	17.03	1610	0.03 J	<0.07 U	0.33 J	0.88 J	10.27	3.06	<0.68 U	0.112	0.016 J	1.16 J	<0.99 U	<0.86 U
5/18/2017	Background	<0.93 U	29.42	2270	0.23 J	<0.07 U	3.41	2.32 J	15.3	4.00	2.36 J	0.163	<0.005 U	<0.29 U	<0.99 U	<0.86 U
6/16/2017	Background	2.02 J	13.70	2050	0.11 J	<0.07 U	1.42	1.44 J	10.27	3.00	<0.68 U	0.109	0.016 J	<0.29 U	<0.99 U	<0.86 U
6/28/2017	Background	<0.93 U	12.65	1790	0.02 J	<0.07 U	0.3 J	1.01 J	15.84	2.835	0.76 J	0.100	<0.005 U	<0.29 U	<0.99 U	<0.86 U
7/13/2017	Background	<0.93 U	17.24	1880	0.06 J	<0.07 U	0.5 J	1.1 J	12.21	3.156	0.9 J	0.111	<0.005 U	<0.29 U	1.14 J	<0.86 U
8/4/2017	Background	<0.93 U	21.60	1800	0.09 J	<0.07 U	1.69	1.32 J	11.6	2.889	1.44 J	0.119	0.015 J	1.27 J	<0.99 U	<0.86 U
8/17/2017	Background	1.63 J	19.11	1890	0.04 J	<0.07 U	<0.23 U	1 J	10.95	3.258	<0.68 U	0.106	<0.005 U	<0.29 U	<0.99 U	<0.86 U
8/30/2017	Background	<0.93 U	19.47	1930	0.11 J	<0.07 U	1.16	1.2 J	12.47	3.5698	<0.68 U	0.112	0.009 J	<0.29 U	<0.99 U	<0.86 U
9/13/2017	Background	<0.93 U	20.36	1930	0.1 J	0.16 J	0.62 J	1 J	10.62	2.797	<0.68 U	0.110	<0.005 U	<0.29 U	<0.99 U	<0.86 U
9/20/2017	Background	<0.93 U	20.77	1880	0.05 J	<0.07 U	<0.23 U	0.97 J	10.5	1.535	1.06 J	0.111	<0.005 U	<0.29 U	<0.99 U	<0.86 U
5/30/2018	Assessment	1.21 J	28.86	1760	<0.02 U	<0.07 U	<0.23 U	0.88 J	9.15	4.1115	<0.68 U	0.102	<0.005 U	<0.29 U	<0.99 U	<0.86 U
7/30/2018	Assessment	0.05 J	47.3	2140	0.052	0.02 J	0.082	0.482	11.28	4.3905	0.415	0.0946	<0.005 U	1.17	0.1	0.02 J
2/27/2019	Assessment	<0.2 U	25.7	2130	<0.2 U	<0.1 U	2 J	0.3 J	6.702	3.08	0.7 J	0.102	<0.005 U	<4 U	<0.3 U	<1 U
6/20/2019	Assessment	<0.1 U	59.9	2410	<0.1 U	<0.05 U	0.8 J	0.598	12.977	3.06	0.701	0.111	0.008 J	<2 U	<0.2 U	<0.5 U
8/26/2019	Assessment	0.06 J	49.3	2340	0.06 J	0.02 J	0.335	0.485	11.56	2.789	0.545	0.0928	<0.005 U	1 J	0.1 J	<0.1 U

Notes:

μg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Due to limited groundwater volume, radium samples for several sampling events were collected the day prior to collection of analytical samples for other parameters.

Table 1 - Groundwater Data Summary: SP-10 Northeastern - BAP Appendix III Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	pН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
7/13/2017	Background	0.965	53.0	1844	6.502	6.7	3416	294
8/4/2017	Background	1.08	83.1	1616	<0.083 U	7.6	5142	761
8/17/2017	Background	1.09	91.4	1700	<0.083 U	7.8	5678	915
8/30/2017	Background	1.09	81.8	1932	10.2663	7.6	5264	834
9/13/2017	Background	1.10	76.9	1592	7.028	8.3	5168	738
9/20/2017	Background	1.08	64.6	1946	<0.083 U	7.1	4424	544
9/27/2017	Background	1.07	65.7	1784	5.00	7.8	4516	419
10/4/2017	Background	1.10	52.3	1553	5.11	7.4	3660	286
10/11/2017	Detection	1.03	58.4	1934	7.3938	7.0	4060	188
1/22/2018	Detection	1.08		1630	5.71	7.0	3236	63.1
5/30/2018	Assessment				7.333	7.8		
7/30/2018	Assessment	1.17	227	2283	8.9991	7.6	3632	75.0
2/4/2019	Assessment	1.17	144					
2/27/2019	Assessment	1.16	92.6	1740	5.59	7.8	3504	6.9
6/20/2019	Assessment	0.916	50.3	1780	6.4	7.8	3512	30.3
8/26/2019	Assessment	1.03	216	1939	4.874	8.9	3446	29.0

Notes:

mg/L: milligrams per liter

SU: standard unit

Due to limited groundwater volume, pH values for several sampling events were collected the day prior to collection of analytical samples for other parameters.

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

^{- -:} Not analyzed

Table 1 - Groundwater Data Summary: SP-10 Northeastern - BAP Appendix B Constituents

Collection Date	Monitoring	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	Program	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
7/13/2017	Background	4.62 J	<1.05 U	1900	<0.02 U	<0.07 U	110	5.96	17.23	6.502	<0.68 U	0.278	0.006 J	934	5.67	<0.86 U
8/4/2017	Background	2.51 J	2.43 J	330	0.03 J	<0.07 U	2.44	4.74 J	1.153	<0.083 U	<0.68 U	0.284	0.029	129	8.82	<0.86 U
8/17/2017	Background	<0.93 U	<1.05 U	282	<0.02 U	<0.07 U	<0.23 U	<0.14 U	0.995	<0.083 U	<0.68 U	0.317	0.027	45.43	<0.99 U	<0.86 U
8/30/2017	Background	<0.93 U	5.66	279	0.06 J	<0.07 U	1.09	4.27 J	0.763	10.2663	<0.68 U	0.306	0.019 J	30.35	2.56 J	<0.86 U
9/13/2017	Background	<0.93 U	9.42	266	0.07 J	<0.07 U	0.46 J	2.41 J	0.774	7.028	<0.68 U	0.315	0.013 J	16.28	3.11 J	<0.86 U
9/20/2017	Background	1.16 J	13.92	399	0.03 J	<0.07 U	0.72 J	2.19 J	1.062	<0.083 U	<0.68 U	0.292	0.016 J	13.58	2.38 J	<0.86 U
9/27/2017	Background	1.57 J	15.31	928	0.04 J	<0.07 U	2.07	3.71 J	1.723	5.00	<0.68 U	0.329	0.013 J	35.93	3.84 J	<0.86 U
10/4/2017	Background	1.27 J	4.3 J	664	0.03 J	<0.07 U	0.36 J	4.02 J	3.226	5.11	0.87 J	0.279	0.015 J	29.19	<0.99 U	<0.86 U
5/30/2018	Assessment	<0.93 U	8.90	2550	<0.02 U	<0.07 U	<0.23 U	0.83 J	6.06	7.333	<0.68 U	0.245	<0.005 U	2.94 J	2.26 J	<0.86 U
7/30/2018	Assessment	0.34	7.61	2330	0.043	0.02 J	0.06 J	2.16	7.89	8.9991	0.102	0.242	0.006 J	18.50	0.09 J	0.04 J
2/27/2019	Assessment	2 J	3.48	5810	<0.4 U	<0.2 U	1 J	<0.4 U	15.35	5.59	<0.4 U	0.275	<0.005 U	<8 U	<0.6 U	<2 U
6/20/2019	Assessment	0.65	3.66	3880	<0.1 U	<0.05 U	8.76	0.743	26.4	6.40	0.3 J	0.290	0.01 J	9 J	<0.2 U	<0.5 U
8/26/2019	Assessment	0.61	3.00	3060	0.08 J	0.03 J	1.61	1.06	8.11	4.874	0.449	0.241	<0.005 U	8.22	0.4	<0.1 U

Notes:

μg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Due to limited groundwater volume, radium samples for several sampling events were collected the day prior to collection of analytical samples for other parameters.

Table 1 - Groundwater Data Summary: SP-11 Northeastern - BAP Appendix A Constituents

Collection Date	Monitoring Program	Boron	Calcium	Chloride	Fluoride	рН	Total Dissolved Solids	Sulfate
		mg/L	mg/L	mg/L	mg/L	SU	mg/L	mg/L
7/13/2017	Background	0.839	742	568	2.386	7.4	2880	798
8/4/2017	Background	0.543	272	567	3.355	7.9	3076	870
8/17/2017	Background	0.453	171	789	4.52	6.9	3308	741
8/30/2017	Background	0.428	161	683	4.1325	7.6	2732	541
9/13/2017	Background	0.447	190	628	3.359	7.2	2420	515
9/20/2017	Background	0.469	1220	690	2.016	7.2	2336	329
9/27/2017	Background	0.447	1170	759	3.00	7.2	2428	332
10/4/2017	Background	0.531	1110	744	2.90	7.5	2288	305
10/11/2017	Detection	0.446	479	824	4.4661	7.0	2322	223
1/22/2018	Detection			470	2.96	6.9	1544	222
5/30/2018	Assessment				3.574	7.5		
7/30/2018	Assessment	0.280	124	234	3.7832	7.7	996	79
2/27/2019	Assessment	0.375	49.6	241	3.44	7.7	1168	95.1
6/20/2019	Assessment	0.550	65.6	137	1.67	6.8	1000	203
8/26/2019	Assessment	0.304	139	129	2.225	8.9	970	122

Notes:

mg/L: milligrams per liter

SU: standard unit

- J: Estimated value. Parameter was detected at concentration below the reporting limit
- -: Not analyzed

Due to limited groundwater volume, pH values for several sampling events were collected the day prior to collection of analytical samples for other parameters.

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

Table 1 - Groundwater Data Summary: SP-11 Northeastern - BAP Appendix B Constituents

Collection Date	Monitoring Program	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Combined Radium	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	pCi/L	mg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
7/13/2017	Background	9.43	3.99 J	194	0.22 J	1.40	18.52	9.76		2.386	5.16	0.04698	0.009 J	61.27	5.95	<0.86 U
8/4/2017	Background	4.7 J	1.82 J	98.74	0.07 J	0.44 J	5.25	6.52	25.367	3.355	2.01 J	0.0877	0.023 J	66.41	6.26	<0.86 U
8/17/2017	Background	<0.93 U	<1.05 U	83.42	<0.02 U	<0.07 U	<0.23 U	<0.14 U	0.947	4.52	<0.68 U	0.08931	0.007 J	51.50	<0.99 U	<0.86 U
8/30/2017	Background	4.29 J	1.2 J	93.07	0.07 J	0.34 J	2.76	3.85 J	0.438	4.1325	1.23 J	0.08933	0.008 J	44.33	2.49 J	<0.86 U
9/13/2017	Background	2.4 J	3.66 J	108	0.08 J	0.09 J	2.57	3.21 J	2.685	3.359	<0.68 U	0.105	0.009 J	36.16	1.55 J	<0.86 U
9/20/2017	Background	7.73	12.14	240	0.39 J	2.70	31.3	14.62	4.20	2.016	8.16	0.13	0.027	46.9	5.46	<0.86 U
9/27/2017	Background	6.89	7.50	269	0.39 J	3.01	32.71	14.37		3.00	8.58	0.129	0.048	48.61	7.47	<0.86 U
10/4/2017	Background	4.44 J	8.47	347	0.35 J	2.49	29.49	11.99	2.817	2.90	7.05	0.146	0.047	42.14	3.27 J	<0.86 U
5/30/2018	Assessment	<0.93 U	5.30	160	<0.02 U	<0.07 U	0.34 J	1.61 J	1.334	3.574	<0.68 U	0.04956	<0.005 U	3.27 J	1.43 J	<0.86 U
7/30/2018	Assessment	0.35	4.22	539	0.029	0.04	0.379	5.12	0.95	3.7832	0.404	0.037	0.005 J	8.85	0.7	0.03 J
2/27/2019	Assessment	<0.2 U	8.83	529	<0.2 U	<0.1 U	0.7 J	0.72	1.81	3.44	0.2 J	0.058	<0.005 U	6 J	<0.3 U	<1 U
6/20/2019	Assessment	0.3 J	4.18	169	<0.1 U	0.06 J	6.71	0.948	0.81	1.67	0.719	0.047	0.01 J	<2 U	0.3 J	<0.5 U
8/26/2019	Assessment	0.37	6.30	492	0.04 J	0.13	1.47	2.73	1.623	2.225	0.764	0.0337	<0.005 U	5.7	0.8	<0.1 U

Notes:

μg/L: micrograms per liter

SU: standard unit

<: Non-detect value. Parameters which were not detected are shown as less than the reporting limit for the January and March 2017 events and less than the method detection limit (MDL) for all subsequent events followed by a 'U' flag.

J: Estimated value. Parameter was detected at concentration below the reporting limit

- -: Not analyzed

pCi/L: picocuries per liter

Due to limited groundwater volume, radium samples for several sampling events were collected the day prior to collection of analytical samples for other parameters.

APPENDIX II

Where applicable, show in this appendix the results from statistical analyses, and a description of the statistical analysis method chosen. These statistical analyses are to be conducted separately for each constituent in each monitoring well.

STATISTICAL ANALYSIS SUMMARY BOTTOM ASH POND Northeastern Power Station Oologah, Oklahoma

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

engineers | scientists | innovators

941 Chatham Lane Suite 103 Columbus, Ohio 43221

January 8, 2019

CHA8473

TABLE OF CONTENTS

SECTION 1	l Execu	tive Summary	
		n Ash Pond Evaluation	
2.1	Data V	Validation & QA/QC	2-1
2.2	Statist	ical Analysis	2-1
	2.2.1	Establishment of GWPSs	2-1
	2.2.2	Evaluation of Potential Appendix IV SSLs	2-2
2.3	Concl	usions	2-2
SECTION 3	3 Refere	ences	3-1

LIST OF TABLES

Table 1	Groundwater Data Summary
Table 2	Groundwater Protection Standards

LIST OF ATTACHMENTS

Attachment A Certification by Qualified Professional Engineer
Attachment B Statistical Analysis Output

LIST OF ACRONYMS AND ABBREVIATIONS

AEP American Electric Power

ASD Alternative Source Demonstration

BAP Bottom Ash Pond

CCR Coal Combustion Residuals

CCV Continuing Calibration Verification

GWPS Groundwater Protection Standard

LCL Lower Confidence Limit

LFB Laboratory Fortified Blanks

LPL Lower Prediction Limit

LRB Laboratory Reagent Blanks

MCL Maximum Contaminant Level

NELAP National Environmental Laboratory Accreditation Program

OAC Oklahoma Administrative Code

ODEQ Oklahoma Department of Environmental Quality

QA Quality Assurance

QC Quality Control

RSL Regional Screening Level

SSI Statistically Significant Increase

SSL Statistically Significant Level

TDS Total Dissolved Solids

UPL Upper Prediction Limit

USEPA United States Environmental Protection Agency

UTL Upper Tolerance Limit

SECTION 1

EXECUTIVE SUMMARY

In accordance with the Oklahoma Department of Environmental Quality (ODEQ) and Oklahoma administrative code (OAC) regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (OAC 252:517), groundwater monitoring has been conducted at the Bottom Ash Pond (BAP), an existing CCR unit at the Northeastern Power Station located in Oologah, Oklahoma.

Based on detection monitoring conducted in 2017 and 2018, statistically significant increases (SSIs) over background were concluded for boron, chloride, fluoride, total dissolved solids (TDS), and sulfate at the BAP. pH values below the lower prediction limit (LPL) resulted in SSIs below background as well. An alternate source was not identified at the time, so two assessment monitoring events were conducted at the BAP in 2018, in accordance with OAC 252:517-9-6.

Groundwater data underwent several validation tests, including those for completeness, sample tracking accuracy, transcription errors, and consistent use of measurement units. No data quality issues were identified which would impact the usability of the data.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. Groundwater protection standards (GWPSs) were established for the Appendix IV parameters. Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether Appendix IV parameters were present at a statistically significant level (SSL) above the GWPS. An SSL was identified for lithium. Thus, either the unit will move to an assessment of corrective measures or an alternative source demonstration (ASD) will be conducted to evaluate if the unit can remain in assessment monitoring. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A.

SECTION 2

BOTTOM ASH POND EVALUATION

2.1 Data Validation & QA/QC

During the assessment monitoring program, two sets of samples were collected for analysis from each upgradient and downgradient well to meet the requirements of OAC 252:517-9-6(b) and 252:517-9-6(d)(1). Samples from the initial sampling event were analyzed for the Appendix IV parameters, and samples from the second event were analyzed for both the Appendix III and Appendix IV parameters. A summary of data collected during assessment monitoring may be found in Table 1.

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program (NELAP). Quality assurance and quality control (QA/QC) samples completed by the analytical laboratory included the use of laboratory reagent blanks (LRBs), continuing calibration verification (CCV) samples, and laboratory fortified blanks (LFBs).

The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.5 statistics software. The export file was checked against the analytical data for transcription errors and completeness. No QA/QC issues were noted which would impact data usability.

2.2 Statistical Analysis

Statistical analyses for the BAP were conducted in accordance with the January 2017 *Statistical Analysis Plan* (AEP, 2017), except where noted below. Time series plots and results for all completed statistical tests are provided in Attachment B.

The data obtained to meet the requirements of OAC 252:517-9-6(b) and 252:517-9-6(d)(1) were screened for potential outliers. The reported cadmium value of 0.00655 milligrams per liter (mg/L) for the August 4, 2017 sampling event at SP-4 was identified as an outlier and removed from the database without replacement. Outliers for Appendix III parameters identified from the background and detection monitoring events conducted through January 2018 were summarized in a previous report (Geosyntec, 2018).

2.2.1 Establishment of GWPSs

A GWPS was established for each Appendix IV parameter in accordance with OAC 252:517-9-6(h) and the *Statistical Analysis Plan* (AEP, 2017). The established GWPS was determined to be the greater value of the background concentration and the maximum contaminant level (MCL) or

regional screening level (RSL) for each Appendix IV parameter. To determine background concentrations, an upper tolerance limit (UTL) was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events. Tolerance limits were calculated parametrically with 95% coverage and 95% confidence for arsenic, cobalt, combined radium, fluoride, and lithium. Non-parametric tolerance limits were calculated for antimony, barium, cadmium, mercury, molybdenum, and selenium due to apparent non-normal distributions; for thallium due to a high non-detect frequency; and for beryllium, chromium, and lead due to both apparent non-normal distributions and high non-detect frequencies. Tolerance limits and the final GWPSs are summarized in Table 2.

2.2.2 Evaluation of Potential Appendix IV SSLs

A confidence interval was constructed for each Appendix IV parameter at each compliance well. Confidence limits were generally calculated parametrically ($\alpha = 0.01$); however, non-parametric confidence limits were calculated in some cases (e.g., when the data did not appear to be normally distributed or when the non-detect frequency was too high). An SSL was concluded if the lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). Calculated confidence limits are shown in Attachment B.

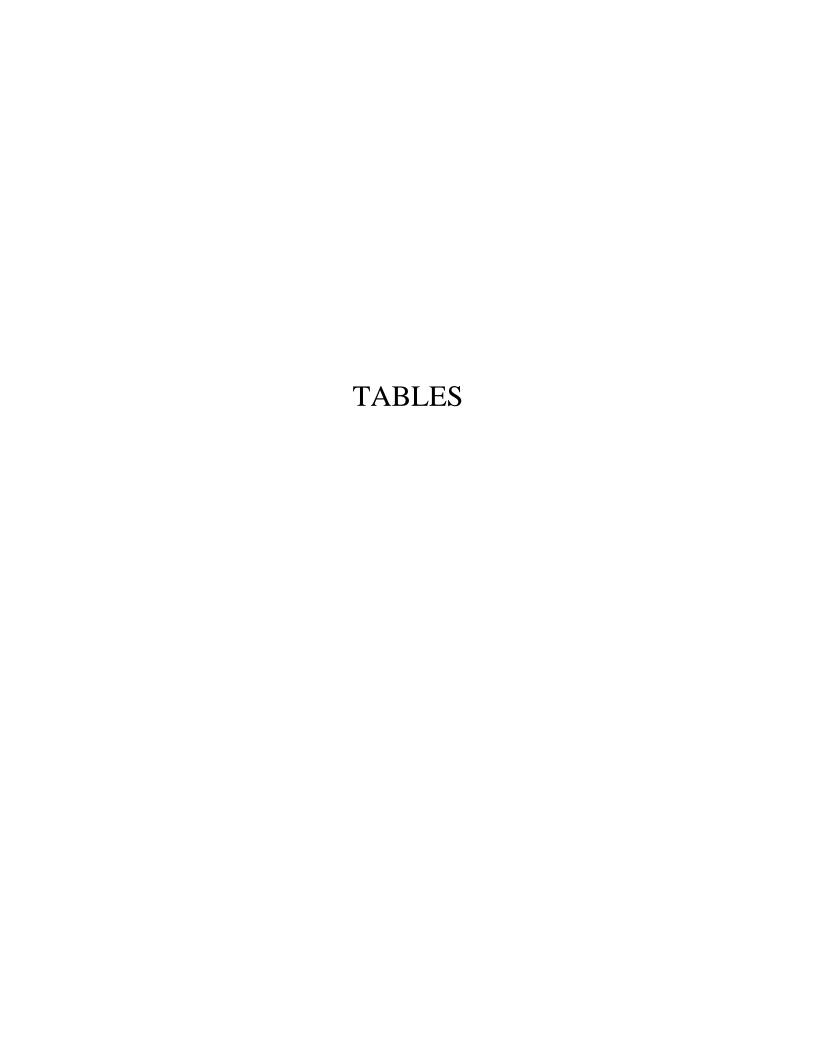
The following SSL was identified at the Northeastern BAP:

• An LCL for lithium exceeded the GWPS of 0.15 mg/L at SP-10 (0.242 mg/L).

As a result, the Northeastern BAP will either move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring.

2.3 Conclusions

Two assessment monitoring events were conducted in 2018 in accordance with OAC 252:517-9. The laboratory and field data were reviewed prior to statistical analysis, with no QA/QC issues identified that impacted data usability. A review of outliers identified no potential outliers in the 2018 data. GWPSs were established for the Appendix IV parameters. A confidence interval was constructed at each compliance well for each Appendix IV parameter; SSLs were concluded if the entire confidence interval exceeded the GWPS. An SSL was identified for lithium.


Based on this evaluation, the Northeastern BAP CCR unit will either move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring.

SECTION 3

REFERENCES

American Electric Power (AEP). 2017. Statistical Analysis Plan – Northeastern Plant. January 2017.

Geosyntec Consultants (Geosyntec). 2018. Statistical Analysis Summary – Stations 3 and 4 Bottom Ash Pond, Northeastern Power Station, Oologah, Oklahoma. January 15, 2018.

Table 1 – Groundwater Data Summary Northeastern – Bottom Ash Pond

Not the astern – Dottom Asir I ond													
Parameter	Unit	SP-1		SP-2		SP-4		SP-5		SP-10		SP-11	
		5/30/2018	7/30/2018	5/30/2018	7/30/2018	5/30/2018	7/30/2018	5/30/2018	7/30/2018	5/30/2018	7/30/2018	5/30/2018	7/30/2018
Antimony	mg/L	0.005 U	0.000690	0.00130 J	0.00121	0.00514	0.000370	0.00121 J	0.0000500 J	0.005 U	0.000340	0.005 U	0.000350
Arsenic	mg/L	0.005 U	0.000930	0.005 U	0.00142	0.005 U	0.00114	0.0289	0.0473	0.00890	0.00761	0.00530	0.00422
Barium	mg/L	0.190	0.174	0.869	0.656	0.268	0.303	1.76	2.14	2.55	2.33	0.160	0.539
Beryllium	mg/L	0.001 U	0.0000600 J	0.001 U	0.0000500 J	0.001 U	0.0000780	0.001 U	0.0000520	0.001 U	0.0000430	0.001 U	0.0000290
Boron	mg/L	1	0.397	-	0.276	-	0.399	-	0.246	-	1.17	1	0.280
Cadmium	mg/L	0.001 U	0.0000800 J	0.001 U	0.0000800 J	0.001 U	0.0000700	0.001 U	0.0000200 J	0.001 U	0.0000200 J	0.001 U	0.0000400
Calcium	mg/L	-	130	-	117	-	164	-	131	-	227	-	124
Chloride	mg/L	1	46.0	-	268	-	521	-	793	-	2280	1	234
Chromium	mg/L	0.001 U	0.00183	0.001 U	0.04 U	0.001 U	0.000562	0.001 U	0.0000820	0.001 U	0.0000600 J	0.000340 J	0.000379
Cobalt	mg/L	0.000530 J	0.000676	0.000550 J	0.000400	0.000490 J	0.000497	0.000880 J	0.000482	0.000830 J	0.00216	0.00161 J	0.00512
Combined Radium	pCi/L	3.64	3.06	7.85	9.61	3.19	4.85	9.15	11.3	6.06	7.89	1.33	0.950
Fluoride	mg/L	1.25	0.986 J	3.50	2.66	4.17	1 U	4.11	4.39	7.33	9.00	3.57	3.78
Lead	mg/L	0.005 U	0.000354	0.005 U	0.000245	0.005 U	0.000356	0.005 U	0.000415	0.005 U	0.000102	0.005 U	0.000404
Lithium	mg/L	0.00785	0.00615	0.0404	0.0346	0.0685	0.0627	0.102	0.0946	0.245	0.242	0.0496	0.0370
Mercury	mg/L	0.000025 U	0.000025 U	0.000025 U	0.000025 U	0.000025 U	0.00000600 J	0.000025 U	0.000025 U	0.000025 U	0.00000600 J	0.000025 U	0.00000500 J
Molybdenum	mg/L	0.0164	0.0171	0.0265	0.0261	0.00370 J	0.00363	0.005 U	0.00117	0.00294 J	0.0185	0.00327 J	0.00885
Selenium	mg/L	0.00423 J	0.00580	0.00216 J	0.00290	0.005 U	0.000700	0.005 U	0.000100	0.00226 J	0.0000900 J	0.00143 J	0.000700
Total Dissolved Solids	mg/L	-	1060	-	1010	-	1180	-	1480	-	3630	-	996
Sulfate	mg/L	-	63.0	-	30.0	-	70.0	-	4.00	-	75.0	-	79.0
Thallium	mg/L	0.00200	0.0000900 J	0.002 U	0.0000600 J	0.00162 J	0.0000500 J	0.002 U	0.0000200 J	0.002 U	0.0000400 J	0.002 U	0.0000300 J
pН	SU	7.27	7.04	7.45	7.45	7.39	7.55	7.58	8.02	7.84	7.62	7.49	7.74

mg/L: milligrams per liter pCi/L: picocuries per liter

SU: standard unit

U: Parameter was not present in concentrations above the method detection limit and is reported as the reporting limit

J: Estimated value. Parameter was detected in concentrations below the reporting limit

-: Not sampled

Table 2: Groundwater Protection Standards
Northeastern Plant - Bottom Ash Pond

Constituent Name	MCL	RSL	Background Limit
Antimony, Total (mg/L)	0.006		0.0051
Arsenic, Total (mg/L)	0.01		0.049
Barium, Total (mg/L)	2		4.59
Beryllium, Total (mg/L)	0.004		0.005
Cadmium, Total (mg/L)	0.005		0.0025
Chromium, Total (mg/L)	0.1		0.084
Cobalt, Total (mg/L)	n/a	0.006	0.046
Combined Radium, Total (pCi/L)	5		16.85
Fluoride, Total (mg/L)	4		5
Lead, Total (mg/L)	n/a	0.015	0.037
Lithium, Total (mg/L)	n/a	0.04	0.15
Mercury, Total (mg/L)	0.002		0.000058
Molybdenum, Total (mg/L)	n/a	0.1	0.007
Selenium, Total (mg/L)	0.05		0.005
Thallium, Total (mg/L)	0.002		0.002

Notes:

Grey cell indicates calculated UTL is higher than MCL.

MCL = Maximum Contaminant Level

RSL = Regional Screening Level

Calculated UTL (Upper Tolerance Limit) represents site-specific background values.

The higher of the calculated UTL or MCL/RSL is used as the GWPS.

ATTACHMENT A Certification by Qualified Professional Engineer

Certification by Qualified Professional Engineer

I certify that the selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Northeastern Bottom Ash Pond CCR management area and that the requirements of OAC 252:517-9-4(g) have been met.

DAVID ANTHONY MILLER

Printed Name of Licensed Professional Engineer

David Lothony Miller Signature

26057

License Number

OKLAHOMA

Licensing State

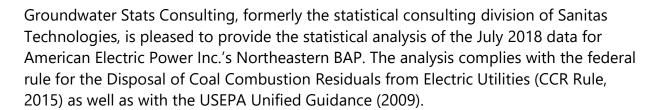
DAVID ANTHONY GINERA MILLER EER 26057

01.08.19

Date

ATTACHMENT B Statistical Analysis Output

GROUNDWATER STATS CONSULTING


December 13, 2018

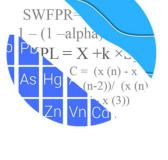
Geosyntec Consultants Attn: Ms. Allison Kreinberg 941 Chatham Lane, #103 Columbus, OH 43221

Re: Northeastern BAP

Assessment Monitoring Event – July 2018

Dear Ms. Kreinberg,

Sampling began at the site for the CCR program in 2016. The monitoring well network, as provided by Geosyntec Consultants, consists of the following:


o Upgradient wells: SP-4 and SP-5; and

o **Downgradient wells:** SP-1, SP2, SP-10, and SP-11.

Data were sent electronically, and the statistical analysis was conducted according to the Statistical Analysis Plan and screening evaluation prepared by GSC and approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC.

The CCR program consists of the following constituents:

 Appendix III (Detection Monitoring) - boron, calcium, chloride, fluoride, pH, sulfate, and TDS;

 Appendix IV (Assessment Monitoring) – antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium.

Time series plots for Appendix III and IV parameters are provided for all wells and constituents; and are used to evaluate concentrations over the entire record. Values previously flagged during the screening as outliers may be seen in a lighter font and disconnected symbol on the time series graphs.

Evaluation of Appendix III Parameters

Interwell prediction limits combined with a 1-of-2 verification strategy were constructed for boron, chloride, pH, sulfate and TDS; and intrawell prediction limits combined with a 1-of-2 verification strategy were constructed for calcium. The statistical method selected for each parameter was determined based on the results of the screening analysis performed in January 2018.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified and further research would be required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered a false positive result and, therefore, no further action is necessary.

Calcium was found to exceed its intrawell prediction limit in downgradient well SP-10, and also exceeded for this event in upgradient well SP-5. Additionally, the reported concentration levels in well SP-10 are comparable to historical levels in both upgradient wells. Upgradient well SP-4 exhibited increasing concentration levels for a period of time, which is an indication that groundwater is changing naturally unrelated to the site for this constituent. Downgradient water quality will continue to be monitored for similar patterns which may occur at downgradient wells as future samples are collected.

Boron, chloride, fluoride and TDS were found to exceed their respective interwell prediction limits for well SP-10; however, concentration levels are stable over time for these constituents at this well. As mentioned above, further research would be required to determine whether the concentrations at this well relative to those reported upgradient are due to natural variation. That study is beyond the scope of this analysis. The Prediction Limit Summary tables following this letter.

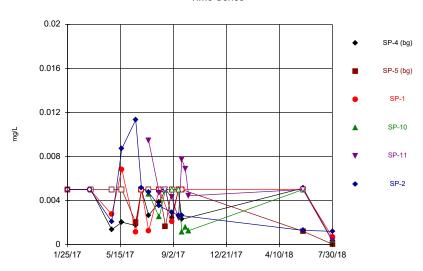
When a statistically significant increase is identified, the data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing or stable. Upgradient wells are included in the trend analyses to identify whether similar patters exist upgradient of the site which is an indication of natural variability in groundwater unrelated to practices at the site.

No statistically significant increasing or decreasing trends were found for any of the downgradient well/parameter pairs with prediction limit exceedances. A statistically significant increasing trend was noted for chloride in upgradient well SP-5. A Trend Test summary table follows this letter.

Evaluation of Appendix IV Parameters

Parametric tolerance limits were used to calculate background limits from pooled upgradient well data for Appendix IV parameters with a target of 95% confidence and 95% coverage to determine the Alternate Contaminant Level (ACL). The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. These limits were compared to the Maximum Contaminant Levels (MCLs) and Regional Screening Levels (RSLs) in the Groundwater Protection Standard (GWPS) table following this letter to determine the highest limit for use as the GWPS in the Confidence Interval comparisons.

Confidence intervals were then constructed on downgradient wells for each of the Appendix IV parameters using the highest limit of either the MCL, RSL, or ACL as discussed above. Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard. No confidence intervals exceedances were found except for lithium in well SP-10. A summary of the confidence interval results follows this letter.


Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Northeastern BAP. If you have any questions or comments, please feel free to contact me.

For Groundwater Stats Consulting,

ustina Rayner

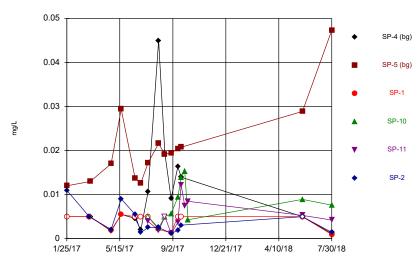
Kristina L. Rayner

Groundwater Statistician

Constituent: Antimony Analysis Run 12/2/2018 8:41 AM View: Descriptive

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Time Series

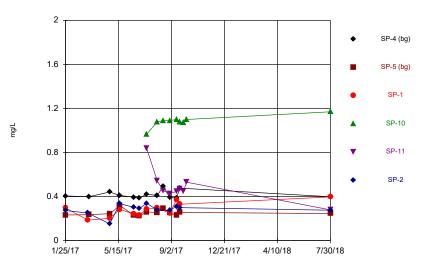

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

SP-4 (bg) SP-5 (bg) SP-10 SP-11 SP-11 SP-2

Constituent: Barium Analysis Run 12/2/2018 8:41 AM View: Descriptive

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Time Series

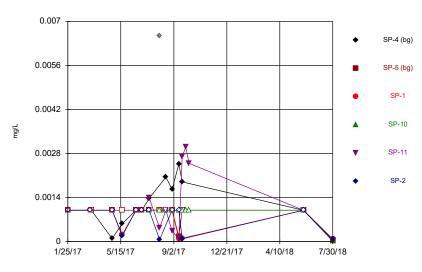

Constituent: Arsenic Analysis Run 12/2/2018 8:41 AM View: Descriptive

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

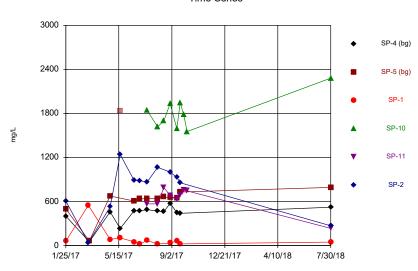
Time Series 0.005 SP-4 (bg) 0.004 SP-5 (bg) 0.003 SP-10 mg/L 0.002 SP-11 SP-2 0.001 1/25/17 5/15/17 9/2/17 12/21/17 4/10/18 7/30/18

Constituent: Beryllium Analysis Run 12/2/2018 8:41 AM View: Descriptive
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

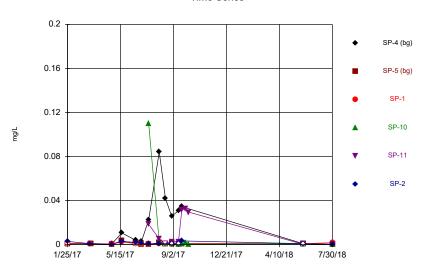

Constituent: Boron Analysis Run 12/2/2018 8:41 AM View: Descriptive
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series 2000 SP-4 (bg) 1600 SP-5 (bg) SP-1 1200 SP-10 mg/L 800 SP-11 SP-2 400 5/15/17 1/25/17 9/2/17 12/21/17 4/10/18 7/30/18


Constituent: Calcium Analysis Run 12/2/2018 8:41 AM View: Descriptive Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Time Series

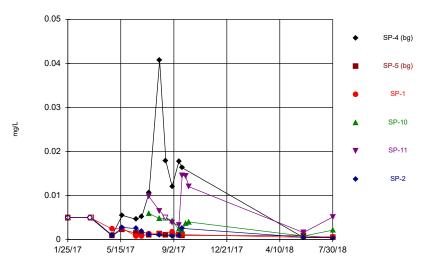

Constituent: Cadmium Analysis Run 12/2/2018 8:41 AM View: Descriptive Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Chloride Analysis Run 12/2/2018 8:41 AM View: Descriptive

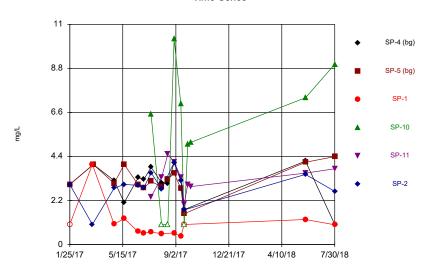
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Chromium Analysis Run 12/2/2018 8:41 AM View: Descriptive
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

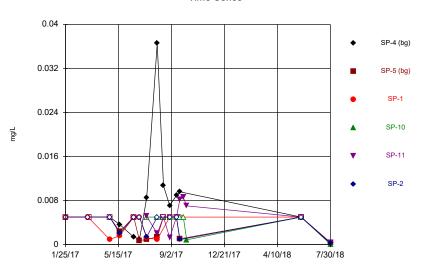

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series 30 SP-4 (bg) 24 SP-5 (bg) SP-1 SP-10 12 SP-11 SP-2 1/25/17 5/15/17 9/2/17 12/21/17 4/10/18 7/30/18

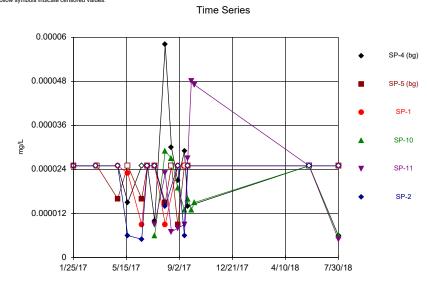
Constituent: Combined Radium 226 + 228 Analysis Run 12/2/2018 8:41 AM View: Descriptive


Northeastern BAP Client: Geosyntec Data: Northeastern BAP

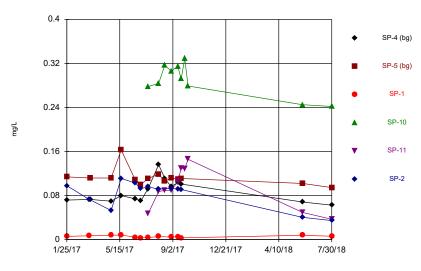
Time Series


Constituent: Cobalt Analysis Run 12/2/2018 8:41 AM View: Descriptive Northeastern BAP Client: Geosyntec Data: Northeastern BAP

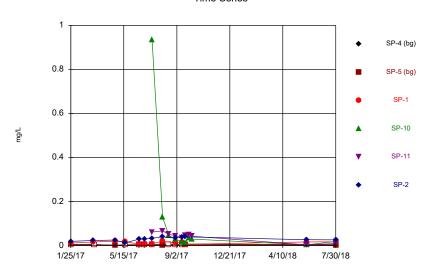
Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Fluoride Analysis Run 12/2/2018 8:41 AM View: Descriptive

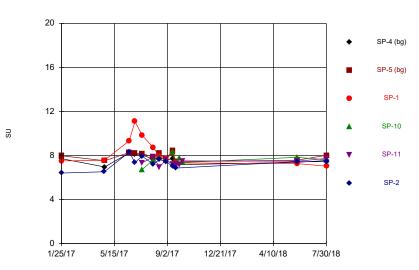
Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Constituent: Lead Analysis Run 12/2/2018 8:41 AM View: Descriptive
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Mercury Analysis Run 12/2/2018 8:41 AM View: Descriptive Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Time Series

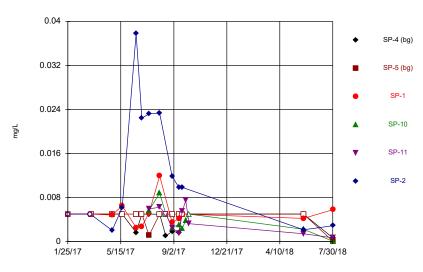


Constituent: Lithium Analysis Run 12/2/2018 8:41 AM View: Descriptive
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

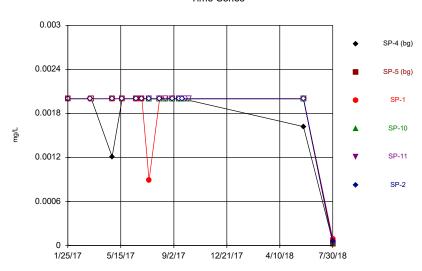
Constituent: Molybdenum Analysis Run 12/2/2018 8:41 AM View: Descriptive
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: pH, field Analysis Run 12/2/2018 8:41 AM View: Descriptive Northeastern BAP Client: Geosyntec Data: Northeastern BAP

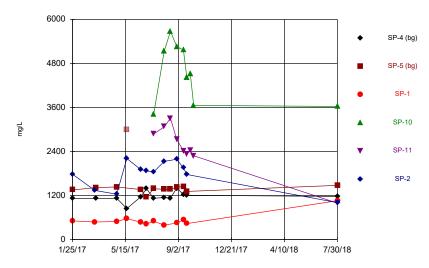

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series 1000 SP-4 (bg) 800 SP-5 (bg) SP-1 600 SP-10 400 SP-2 200 4/10/18 1/25/17 5/15/17 9/2/17 12/21/17 7/30/18

Constituent: Sulfate Analysis Run 12/2/2018 8:41 AM View: Descriptive


Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Time Series


Constituent: Selenium Analysis Run 12/2/2018 8:41 AM View: Descriptive
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

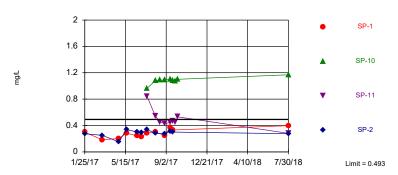
Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Thallium Analysis Run 12/2/2018 8:41 AM View: Descriptive

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/2/2018 8:41 AM View: Descriptive Northeastern BAP Client: Geosyntec Data: Northeastern BAP

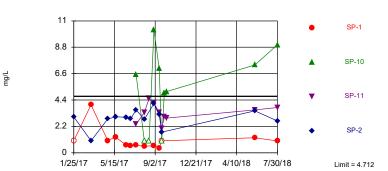
Interwell Prediction Limit Summary Table - Significant Results Northeastern BAP Client: Geosyntec Data: Northeastern BAP Printed 12/2/2018, 8:32 AM Printed 12/2/2018, 8:32 AM


			Northeas	stern BAP	Client: Geo	osyntec Da	ita: Northea	stern BAP	Printed 12/2	/2018, 8	3:32 AN	1		
Constituent		Well	Upper Lim.	Lower Lir	n.Date	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	%NDs	ND Ac	lj <u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)		SP-10	0.493	n/a	7/30/2018	1.17	Yes 26	n/a	n/a	0	n/a	n/a	0.00258	NP Inter (normality)
Chloride (mg/L)		SP-10	768.8	n/a	7/30/2018	2280	Yes 25	291209	156656	0	None	x^2	0.00188	Param Inter 1 of 2
Fluoride (mg/L)		SP-10	4.712	n/a	7/30/2018	9	Yes 28	3.167	0.8157	3.571	None	No	0.00188	Param Inter 1 of 2
pH, field (SU)		SP-1	8.528	7.09	7/30/2018	7.04	Yes 24	7.809	0.3732	0	None	No	0.0009398	Param Inter 1 of 2
Total Dissalved Calida	ITD01 (ma/l)	CD 40	4565	2/0	7/20/2049	2620	Vac 25	1270	151	•	None	No	0.00400	Dorom Inter 4 of 2

Interwell Prediction Limit Summary Table - All Results Northeastern BAP Client: Geosyntec Data: Northeastern BAP Printed 12/2/2018, 8:32 AM

		Northea	stern BAP	Client: Geo	osyntec Da	ata: Northea	stern BAP	Printed 12/2	2/2018,	8:32 AN	И		
Constituent	Well	Upper Lim.	Lower Lin	m.Date	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	%NDs	ND A	dj <u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)	SP-1	0.493	n/a	7/30/2018	0.397	No 26	n/a	n/a	0	n/a	n/a	0.00258	NP Inter (normality)
Boron (mg/L)	SP-10	0.493	n/a	7/30/2018	1.17	Yes 26	n/a	n/a	0	n/a	n/a	0.00258	NP Inter (normality)
Boron (mg/L)	SP-11	0.493	n/a	7/30/2018	0.28	No 26	n/a	n/a	0	n/a	n/a	0.00258	NP Inter (normality)
Boron (mg/L)	SP-2	0.493	n/a	7/30/2018	0.276	No 26	n/a	n/a	0	n/a	n/a	0.00258	NP Inter (normality)
Chloride (mg/L)	SP-1	768.8	n/a	7/30/2018	46	No 25	291209	156656	0	None	x^2	0.00188	Param Inter 1 of 2
Chloride (mg/L)	SP-10	768.8	n/a	7/30/2018	2280	Yes 25	291209	156656	0	None	x^2	0.00188	Param Inter 1 of 2
Chloride (mg/L)	SP-11	768.8	n/a	7/30/2018	234	No 25	291209	156656	0	None	x^2	0.00188	Param Inter 1 of 2
Chloride (mg/L)	SP-2	768.8	n/a	7/30/2018	268	No 25	291209	156656	0	None	x^2	0.00188	Param Inter 1 of 2
Fluoride (mg/L)	SP-1	4.712	n/a	7/30/2018	0.986	No 28	3.167	0.8157	3.571	None	No	0.00188	Param Inter 1 of 2
Fluoride (mg/L)	SP-10	4.712	n/a	7/30/2018	9	Yes 28	3.167	0.8157	3.571	None	No	0.00188	Param Inter 1 of 2
Fluoride (mg/L)	SP-11	4.712	n/a	7/30/2018	3.78	No 28	3.167	0.8157	3.571	None	No	0.00188	Param Inter 1 of 2
Fluoride (mg/L)	SP-2	4.712	n/a	7/30/2018	2.66	No 28	3.167	0.8157	3.571	None	No	0.00188	Param Inter 1 of 2
pH, field (SU)	SP-1	8.528	7.09	7/30/2018	7.04	Yes 24	7.809	0.3732	0	None	No	0.0009398	Param Inter 1 of 2
pH, field (SU)	SP-10	8.528	7.09	7/30/2018	7.62	No 24	7.809	0.3732	0	None	No	0.0009398	Param Inter 1 of 2
pH, field (SU)	SP-11	8.528	7.09	7/30/2018	7.74	No 24	7.809	0.3732	0	None	No	0.0009398	Param Inter 1 of 2
pH, field (SU)	SP-2	8.528	7.09	7/30/2018	7.45	No 24	7.809	0.3732	0	None	No	0.0009398	Param Inter 1 of 2
Sulfate (mg/L)	SP-1	90	n/a	7/30/2018	63	No 26	n/a	n/a	0	n/a	n/a	0.00258	NP Inter (normality)
Sulfate (mg/L)	SP-10	90	n/a	7/30/2018	75	No 26	n/a	n/a	0	n/a	n/a	0.00258	NP Inter (normality)
Sulfate (mg/L)	SP-11	90	n/a	7/30/2018	79	No 26	n/a	n/a	0	n/a	n/a	0.00258	NP Inter (normality)
Sulfate (mg/L)	SP-2	90	n/a	7/30/2018	30	No 26	n/a	n/a	0	n/a	n/a	0.00258	NP Inter (normality)
Total Dissolved Solids [TDS] (mg/L)	SP-1	1565	n/a	7/30/2018	1060	No 25	1270	154	0	None	No	0.00188	Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	SP-10	1565	n/a	7/30/2018	3630	Yes 25	1270	154	0	None	No	0.00188	Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	SP-11	1565	n/a	7/30/2018	996	No 25	1270	154	0	None	No	0.00188	Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	SP-2	1565	n/a	7/30/2018	1010	No 25	1270	154	0	None	No	0.00188	Param Inter 1 of 2

600


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 26 background values. Annual per-constituent alpha = 0.02045. Individual comparison alpha = 0.00258 (1 of 2). Comparing 4 points to limit.

> Constituent: Boron Analysis Run 12/2/2018 8:31 AM View: PL's - Interwell Northeastern BAP Client: Geosyntec Data: Northeastern BAP

> > Interwell Parametric

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Exceeds Limit: SP-10

Background Data Summary: Mean=3.167, Std. Dev.=0.8157, n=28, 3.571% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9102, critical = 0.896. Kappa = 1.894 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.00188. Comparing 4 points to limit.

Prediction Limit Exceeds Limit: SP-10 Interwell Parametric 3000 2400 1800 1200

Background Data Summary (based on square transformation): Mean=291209, Std. Dev.=156656, n=25. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.959, critical = 0.888. Kappa = 1.914 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.00188. Comparing 4 points to limit.

1/25/17 5/15/17 9/2/17 12/21/17 4/10/18 7/30/18

SP-1

SP-10

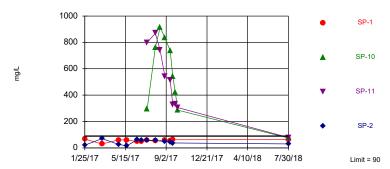
SP-11

SP-2

Limit = 768.8

Limit = 7.09

Constituent: Chloride Analysis Run 12/2/2018 8:31 AM View: PL's - Interwell

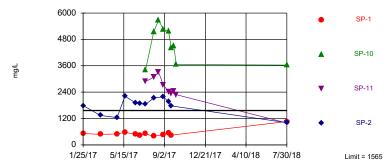

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Exceeds Limits: SP-1 Interwell Parametric 20 SP-1 16 SP-10 12 SU SP-11 Limit = 8.528 1/25/17 5/15/17 9/2/17 12/21/17 4/10/18 7/30/18

Background Data Summary: Mean=7.809, Std. Dev.=0.3732, n=24. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9695, critical = 0.884. Kappa = 1.927 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0009398. Comparing 4 points to limit.

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Within Limit Prediction Limit
Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 26 background values. Annual per-constituent alpha = 0.00258 (1 of 2). Comparing 4 points to limit.

Constituent: Sulfate Analysis Run 12/2/2018 8:31 AM View: PL's - Interwell

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

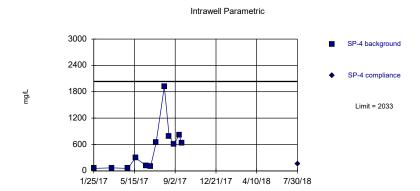
Background Data Summary: Mean=1270, Std. Dev.=154, n=25. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8924, critical = 0.888. Kappa = 1.914 (ce7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.00188. Comparing 4 points to limit.

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/2/2018 8:31 AM View: PL's - Interwell

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Intrawell Prediction Limit Summary Table - Significant Results

Northeastern BAP Client: Geosyntec Data: Northeastern BAP Printed 12/2/2018, 8:36 AM


Constituent	Well	Upper Lim.	Lower L	im.Date	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	%NE	Os <u>ND AdjT</u>	<u>Fransform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	SP-5	79.1	n/a	7/30/2018	131	Yes 12	n/a	n/a	0	n/a n	n/a	0.01077	NP (normality) 1 of 2
Calcium (mg/L)	SP-10	108.8	n/a	7/30/2018	227	Yes 8	71.1	14.43	0	None N	No	0.00188	Param 1 of 2

Intrawell Prediction Limit Summary Table - All Results Northeastern BAP Client: Geosyntec Data: Northeastern BAP Printed 12/2/2018, 8:36 AM

		Northeas	stern BAP	Client: Geo	syntec Da	ita: Northea	stern BAP	Printed 12/2	/2018,	8:36 AM		
Constituent	Well	Upper Lim.	Lower Lin	n.Date	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	%NDs	s ND AdjTransform	<u>Alpha</u>	Method
Calcium (mg/L)	SP-4	2033	n/a	7/30/2018	164	No 12	19.81	11.32	0	None sqrt(x)	0.00188	Param 1 of 2
Calcium (mg/L)	SP-5	79.1	n/a	7/30/2018	131	Yes 12	n/a	n/a	0	n/a n/a	0.01077	NP (normality) 1 of 2
Calcium (mg/L)	SP-1	135.8	n/a	7/30/2018	130	No 11	119.1	7.286	0	None No	0.00188	Param 1 of 2
Calcium (mg/L)	SP-10	108.8	n/a	7/30/2018	227	Yes 8	71.1	14.43	0	None No	0.00188	Param 1 of 2
Calcium (mg/L)	SP-11	1894	n/a	7/30/2018	124	No 8	629.5	483.3	0	None No	0.00188	Param 1 of 2
Calcium (mg/L)	SP-2	157.3	n/a	7/30/2018	117	No 11	103.8	23.28	0	None No	0.00188	Param 1 of 2

Within Limit

Salitias V.S.O. 11 Salitias software utilized by Groundwater Stats Consulting. Od

Prediction Limit

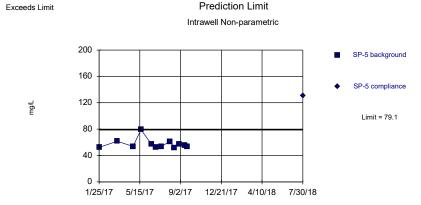
Background Data Summary (based on square root transformation): Mean=19.81, Std. Dev.=11.32, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8858, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 12/2/2018 8:35 AM View: PL's - Intrawell
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Within Limit Prediction Limit Intrawell Parametric

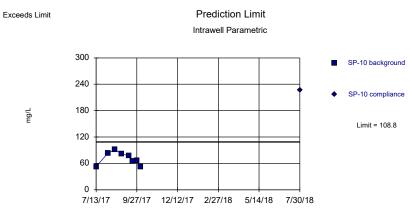
SP-1 background


SP-1 compliance

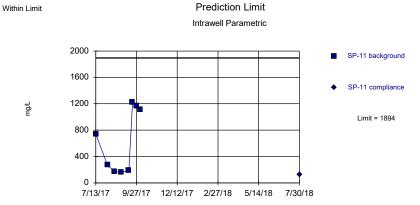
SP-1 compliance

Limit = 135.8

Background Data Summary: Mean=119.1, Std. Dev.=7.286, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9766, critical = 0.792. Kappa = 2.3 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

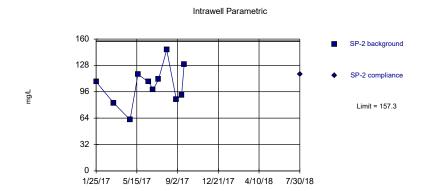
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).


Constituent: Calcium Analysis Run 12/2/2018 8:35 AM View: PL's - Intrawell
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Background Data Summary: Mean=71.1, Std. Dev.=14.43, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9303, critical = 0.749. Kappa = 2.616 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=629.5, Std. Dev.=483.3, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8, critical = 0.749. Kappa = 2.616 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 12/2/2018 8:35 AM View: PL's - Intrawell
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

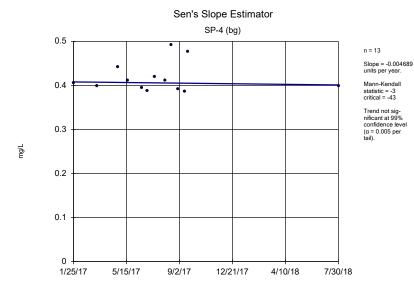
Within Limit

Prediction Limit

Background Data Summary: Mean=103.8, Std. Dev.=23.28, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9891, critical = 0.792. Kappa = 2.3 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188

Constituent: Calcium Analysis Run 12/2/2018 8:35 AM View: PL's - Intrawell
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Trend Test Summary Table - Significant Results

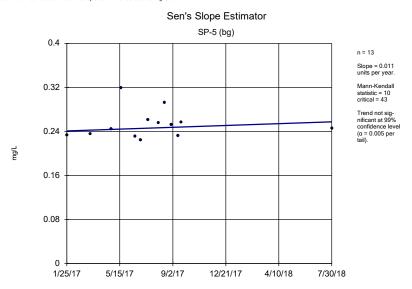

Northeastern BAP Client: Geosyntec Data: Northeastern BAP Printed 12/2/2018, 9:10 AM

 Constituent
 Well
 Slope
 Calc.
 Critical
 Sig.
 N
 %NDs
 Normality
 Xform
 Alpha
 Method

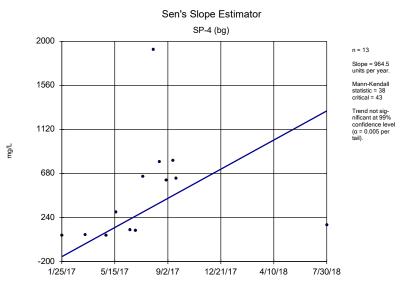
 Chloride (mg/L)
 SP-5 (bg)
 207.8
 42
 38
 Yes
 12
 0
 n/a
 n/a
 0.01
 NP

Trend Test Summary Table - All Results

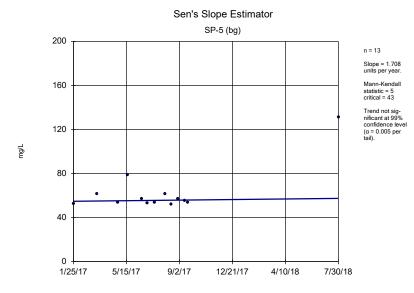
	Northeastern BA	AP Client: Geosynte	c Data: N	ortheastern B	AP P	rinted 12	/2/2018, 9	9:10 AM			
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	SP-4 (bg)	-0.004689	-3	-43	No	13	0	n/a	n/a	0.01	NP
Boron (mg/L)	SP-5 (bg)	0.011	10	43	No	13	0	n/a	n/a	0.01	NP
Boron (mg/L)	SP-10	0.1046	17	25	No	9	0	n/a	n/a	0.01	NP
Calcium (mg/L)	SP-4 (bg)	964.5	38	43	No	13	0	n/a	n/a	0.01	NP
Calcium (mg/L)	SP-5 (bg)	1.708	5	43	No	13	0	n/a	n/a	0.01	NP
Calcium (mg/L)	SP-10	-37.41	-4	-25	No	9	0	n/a	n/a	0.01	NP
Chloride (mg/L)	SP-4 (bg)	80.24	24	43	No	13	0	n/a	n/a	0.01	NP
Chloride (mg/L)	SP-5 (bg)	207.8	42	38	Yes	12	0	n/a	n/a	0.01	NP
Chloride (mg/L)	SP-10	384.9	4	25	No	9	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	SP-4 (bg)	-0.4498	-7	-48	No	14	7.143	n/a	n/a	0.01	NP
Fluoride (mg/L)	SP-5 (bg)	0.1065	5	48	No	14	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	SP-10	3.405	14	30	No	10	30	n/a	n/a	0.01	NP
pH, field (SU)	SP-4 (bg)	-0.4904	-26	-38	No	12	0	n/a	n/a	0.01	NP
pH, field (SU)	SP-5 (bg)	-0.2231	-10	-38	No	12	0	n/a	n/a	0.01	NP
pH, field (SU)	SP-1	-1.344	-28	-38	No	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (m	SP-4 (bg)	75.32	37	43	No	13	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (m	SP-5 (bg)	51.25	18	38	No	12	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (m	SP-10	-1970	-12	-25	No	9	0	n/a	n/a	0.01	NP


Constituent: Boron Analysis Run 12/2/2018 9:08 AM View: Trend Tests

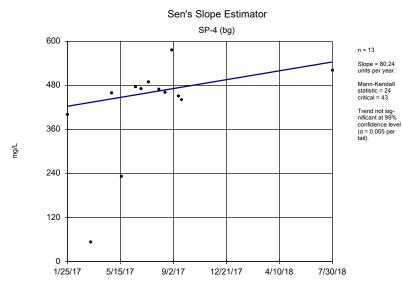
Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Constituent: Boron Analysis Run 12/2/2018 9:08 AM View: Trend Tests

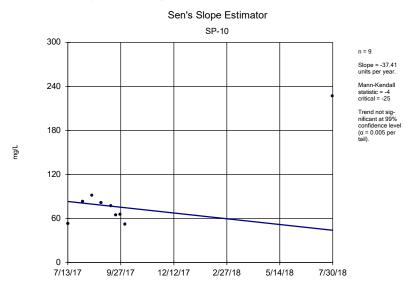
Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Constituent: Boron Analysis Run 12/2/2018 9:08 AM View: Trend Tests

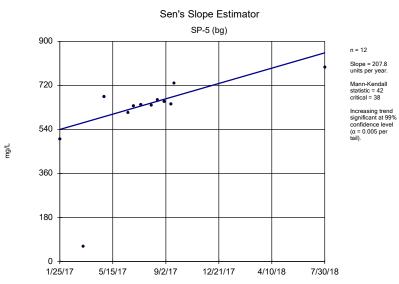
Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Constituent: Calcium Analysis Run 12/2/2018 9:08 AM View: Trend Tests

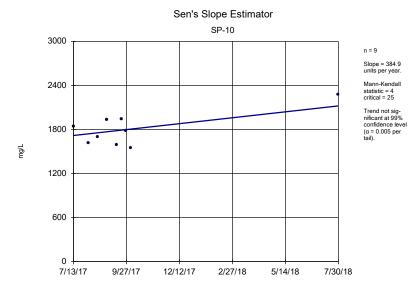
Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Constituent: Calcium Analysis Run 12/2/2018 9:08 AM View: Trend Tests

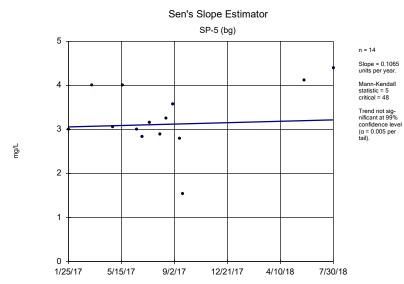
Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Constituent: Chloride Analysis Run 12/2/2018 9:08 AM View: Trend Tests

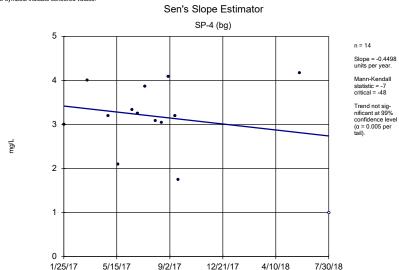
Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Constituent: Calcium Analysis Run 12/2/2018 9:08 AM View: Trend Tests

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

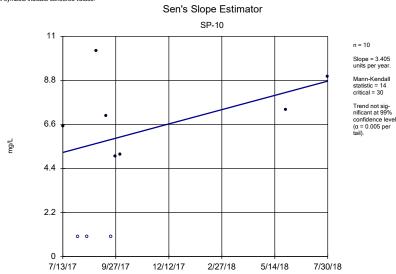

Constituent: Chloride Analysis Run 12/2/2018 9:08 AM View: Trend Tests

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

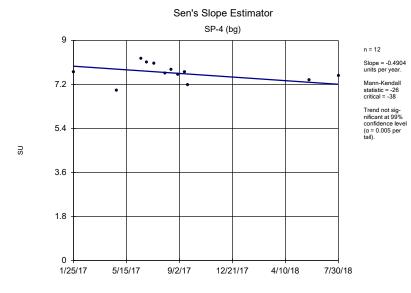

Constituent: Chloride Analysis Run 12/2/2018 9:08 AM View: Trend Tests

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

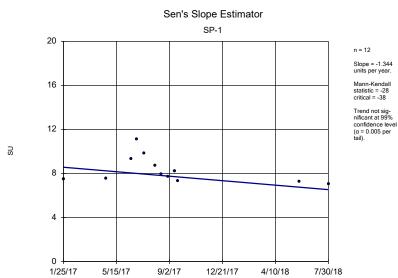
Constituent: Fluoride Analysis Run 12/2/2018 9:08 AM View: Trend Tests


Northeastern BAP Client: Geosyntec Data: Northeastern BAP

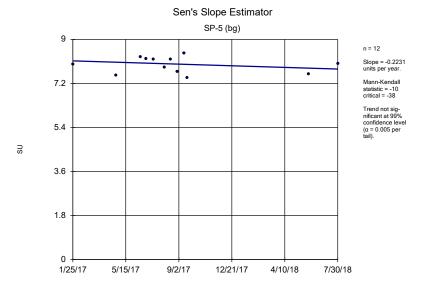
Constituent: Fluoride Analysis Run 12/2/2018 9:08 AM View: Trend Tests


Northeastern BAP Client: Geosyntec Data: Northeastern BAP

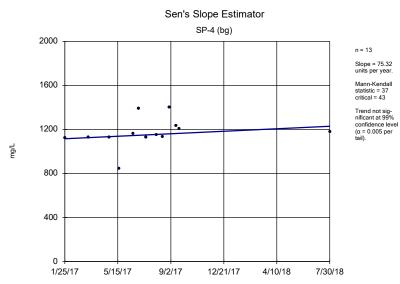
Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Fluoride Analysis Run 12/2/2018 9:08 AM View: Trend Tests

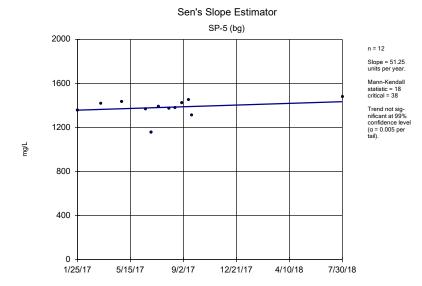
Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Constituent: pH, field Analysis Run 12/2/2018 9:08 AM View: Trend Tests

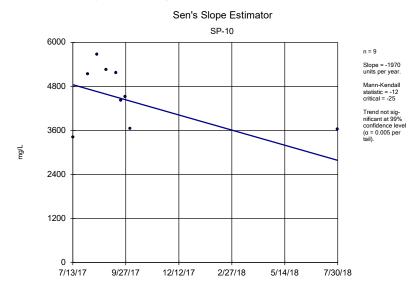
Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Constituent: pH, field Analysis Run 12/2/2018 9:08 AM View: Trend Tests

Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Constituent: pH, field Analysis Run 12/2/2018 9:08 AM View: Trend Tests

Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Constituent: Total Dissolved Solids [TDS] Analysis Run 12/2/2018 9:08 AM View: Trend Tests

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/2/2018 9:08 AM View: Trend Tests

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/2/2018 9:08 AM View: Trend Tests

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Upper Tolerance Limits

Northeastern BAP Client: Geosyntec Data: Northeastern BAP Printed 12/2/2018, 8:45 AM

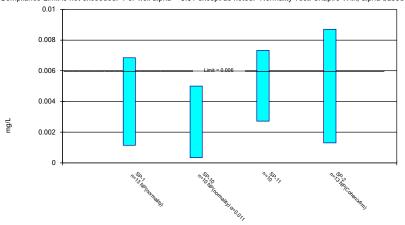
Constituent	Upper Lim.	Bg N	Bg Mean	Std. Dev.	<u>%NDs</u>	ND Adj.	<u>Transform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	0.00514	28	n/a	n/a	53.57	n/a	n/a	0.2378	NP Inter(normality)
Arsenic (mg/L)	0.04878	28	0.1163	0.04651	10.71	None	sqrt(x)	0.05	Inter
Barium (mg/L)	4.59	28	n/a	n/a	0	n/a	n/a	0.2378	NP Inter(normality)
Beryllium (mg/L)	0.00497	28	n/a	n/a	21.43	n/a	n/a	0.2378	NP Inter(Cohens/xform)
Cadmium (mg/L)	0.00247	27	n/a	n/a	62.96	n/a	n/a	0.2503	NP Inter(normality)
Chromium (mg/L)	0.08415	28	n/a	n/a	25	n/a	n/a	0.2378	NP Inter(Cohens/xform)
Cobalt (mg/L)	0.0464	28	-5.915	1.265	14.29	None	ln(x)	0.05	Inter
Combined Radium 226 + 228 (pCi/L)	16.85	27	8.487	3.696	0	None	No	0.05	Inter
Fluoride (mg/L)	5.002	28	3.167	0.8157	3.571	None	No	0.05	Inter
Lead (mg/L)	0.03663	28	n/a	n/a	42.86	n/a	n/a	0.2378	NP Inter(Cohens/xform)
Lithium (mg/L)	0.1502	28	0.09953	0.02253	0	None	No	0.05	Inter
Mercury (mg/L)	0.000058	28	n/a	n/a	57.14	n/a	n/a	0.2378	NP Inter(normality)
Molybdenum (mg/L)	0.00702	28	n/a	n/a	50	n/a	n/a	0.2378	NP Inter(normality)
Selenium (mg/L)	0.005	28	n/a	n/a	71.43	n/a	n/a	0.2378	NP Inter(normality)
Thallium (mg/L)	0.002	28	n/a	n/a	85.71	n/a	n/a	0.2378	NP Inter(NDs)

Confidence Intervals - Significant Results

Northeastern BAP Client: Geosyntec Data: Northeastern BAP Printed 12/2/2018, 9:07 AM

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	Transform	<u>Alpha</u>	Method
Lithium (mg/L)	SP-10	0.3149	0.2625	0.15	Yes	10	0	No	0.01	Param.

Confidence Intervals - All Results

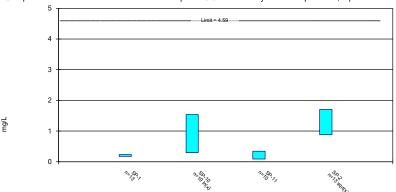

	N	ortheastern BAP	Client: Geosynt	tec Data: No	ortheas	tern BAP	Printed	12/2/2018, 9:07 AM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	SP-1	0.00685	0.00114	0.006	No	13	53.85	No	0.01	NP (normality)
Antimony (mg/L)	SP-10	0.005	0.00034	0.006	No	10	40	No	0.011	NP (normality)
Antimony (mg/L)	SP-11	0.007325	0.002721	0.006	No	10	20	No	0.01	Param.
Antimony (mg/L)	SP-2	0.00871	0.0013	0.006	No	13	15.38	No	0.01	NP (Cohens/xfrm)
Arsenic (mg/L)	SP-1	0.00548	0.00134	0.049	No	13	61.54	No	0.01	NP (normality)
Arsenic (mg/L)	SP-10	0.01153	0.002668	0.049	No	10	20	No	0.01	Param.
Arsenic (mg/L)	SP-11	0.008248	0.002412	0.049	No	10	10	No	0.01	Param.
Arsenic (mg/L)	SP-2	0.005753	0.001816	0.049	No	13	7.692	sqrt(x)	0.01	Param.
Barium (mg/L)	SP-1	0.2314	0.1748	4.59	No	13	0	No	0.01	Param.
Barium (mg/L)	SP-10	1.535	0.2955	4.59	No	10	0	ln(x)	0.01	Param.
Barium (mg/L)	SP-11	0.3417	0.08478	4.59	No	10	0	No	0.01	Param.
Barium (mg/L)	SP-2	1.703	0.8814	4.59	No	13	0	sqrt(x)	0.01	Param.
Beryllium (mg/L)	SP-1	0.001	0.00005	0.005	No	13	30.77	No	0.01	NP (normality)
Beryllium (mg/L)	SP-10	0.001	0.00003	0.005	No	10	30	No	0.011	NP (normality)
Beryllium (mg/L)	SP-11	0.001	0.000029	0.005	No	10	20	No	0.011	NP (Cohens/xfrm)
Beryllium (mg/L)	SP-2	0.001	0.00005	0.005	No	13	23.08	No	0.01	NP (Cohens/xfrm)
Cadmium (mg/L)	SP-1	0.001	0.00011	0.005	No	13	69.23	No	0.01	NP (normality)
Cadmium (mg/L)	SP-10	0.001	0.00002	0.005	No	10	90	No	0.011	NP (NDs)
Cadmium (mg/L)	SP-11	0.002245	0.0002566	0.005	No	10	20	No	0.01	Param.
Cadmium (mg/L)	SP-2	0.001	0.00008	0.005	No	13	69.23	No	0.01	NP (normality)
Chromium (mg/L)	SP-1	0.00183	0.00055	0.1	No	13	46.15	No	0.01	NP (Cohens/xfrm)
Chromium (mg/L)	SP-10	0.00244	0.00006	0.1	No	10	20	No	0.011	NP (Cohens/xfrm)
Chromium (mg/L)	SP-11	0.02229	0.0009677	0.1	No	10	10	x^(1/3)	0.01	Param.
Chromium (mg/L)	SP-2	0.00217	0.0002485	0.1	No	13	23.08	No	0.01	Param.
Cobalt (mg/L)	SP-1	0.00255	0.000676	0.046	No	13	15.38	No	0.01	NP (Cohens/xfrm)
Cobalt (mg/L)	SP-10	0.004942	0.002116	0.046	No	10	10	No	0.01	Param.
Cobalt (mg/L)	SP-11	0.01184	0.003374	0.046	No	10	10	No	0.01	Param.
Cobalt (mg/L)	SP-2	0.00277	0.00055	0.046	No	13	15.38	No	0.01	NP (Cohens/xfrm)
Combined Radium 226 + 228 (pCi/L)	SP-1	4.71	2.584	16.85	No	13	0	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	SP-10	5.997	0.8426	16.85	No	10	0	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	SP-11	5.201	0.7041	16.85	No	10	0	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	SP-2	19.54	7.986	16.85	No	10	0	No	0.01	Param.
Fluoride (mg/L)	SP-1	1.3	0.542	5	No	13	15.38	No	0.01	NP (Cohens/xfrm)
Fluoride (mg/L)	SP-10	8.541	0.5886	5	No	10	30	No	0.01	Param.
Fluoride (mg/L)	SP-11	3.982	2.622	5	No	10	0	No	0.01	Param.
Fluoride (mg/L)	SP-2	3.444	2.275	5	No	13	0	No	0.01	Param.
Lead (mg/L)	SP-1	0.005	0.00094	0.037	No	13	61.54	No	0.01	NP (normality)
Lead (mg/L)	SP-10	0.005	0.00094	0.037	No	10	80	No	0.011	NP (NDs)
Lead (mg/L)	SP-10	0.003	0.002258	0.037	No	10	30	No	0.011	Param.
Lead (mg/L)	SP-2	0.007201	0.002238	0.037	No	13	69.23	No	0.01	NP (normality)
Lithium (mg/L)	SP-1	0.007009	0.004358	0.15	No	13	0	No	0.01	Param.
Lithium (mg/L)	SP-10	0.3149	0.2625	0.15	Yes	10	0	No	0.01	Param.
Lithium (mg/L)	SP-10 SP-11	0.3149	0.2625	0.15	No	10	0	No	0.01	Param.
Lithium (mg/L)	SP-2	0.09956	0.06878	0.15	No	13	0	x^2	0.01	Param.
, ,	SP-1	0.000025	0.00078	0.002		13	76.92		0.01	NP (NDs)
Mercury (mg/L)	SP-10		0.000023		No			No No		, ,
Mercury (mg/L)	SP-10 SP-11	0.00002413		0.002	No	10	10	No	0.01	Param.
Mercury (mg/L)		0.00003373	0.000007232	0.002	No	10	10	sqrt(x)	0.01	Param.
Mercury (mg/L)	SP-2	0.000025	0.000006	0.002	No No	13	69.23	No No	0.01	NP (normality)
Molybdenum (mg/L)	SP-1	0.01696	0.009316	0.1	No	13	0	No In(v)	0.01	Param.
Molybdenum (mg/L)	SP-10	0.1314	0.008821	0.1	No	10	0	ln(x)	0.01	Param.
Molybdenum (mg/L)	SP-11	0.05916	0.02273	0.1	No	10	0	No	0.01	Param.
Molybdenum (mg/L)	SP-2	0.03483	0.02266	0.1	No	13	0	No	0.01	Param.
Selenium (mg/L)	SP-1	0.00651	0.00277	0.05	No	13	23.08	No No	0.01	NP (Cohens/xfrm)
Selenium (mg/L)	SP-10	0.006779	0.001766	0.05	No	10	20	No	0.01	Param.
Selenium (mg/L)	SP-11	0.006069	0.001847	0.05	No	10	10	No	0.01	Param.

Confidence Intervals - All Results

	N	ortheastern BAP	Client: Geosynt	tec Data: No	rtheast	tern BAP	Printed	12/2/2018, 9:07 AM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	Transform	<u>Alpha</u>	Method
Selenium (mg/L)	SP-2	0.02336	0.00216	0.05	No	13	15.38	No	0.01	NP (Cohens/xfrm)
Thallium (mg/L)	SP-1	0.002	0.00089	0.002	No	13	76.92	No	0.01	NP (NDs)
Thallium (mg/L)	SP-10	0.002	0.00004	0.002	No	10	90	No	0.011	NP (NDs)
Thallium (mg/L)	SP-11	0.002	0.00003	0.002	No	10	90	No	0.011	NP (NDs)
Thallium (mg/L)	SP-2	0.002	0.00006	0.002	No	13	92.31	No	0.01	NP (NDs)

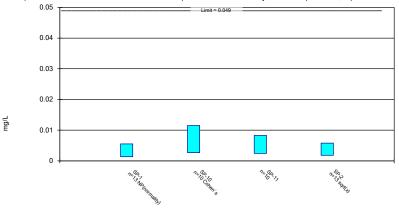
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Antimony Analysis Run 12/2/2018 9:02 AM View: Confidence Intervals - App IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

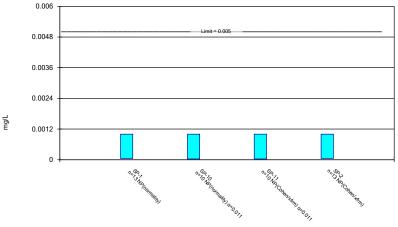
Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG


Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

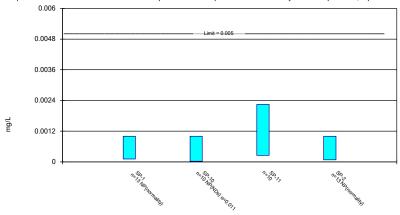
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Arsenic Analysis Run 12/2/2018 9:02 AM View: Confidence Intervals - App IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

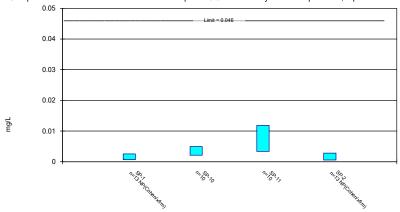
Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG


Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Cadmium Analysis Run 12/2/2018 9:02 AM View: Confidence Intervals - App IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

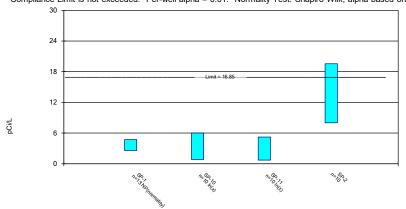


Constituent: Cobalt Analysis Run 12/2/2018 9:02 AM View: Confidence Intervals - App IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

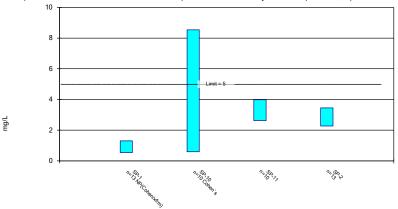
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Chromium Analysis Run 12/2/2018 9:02 AM View: Confidence Intervals - App IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

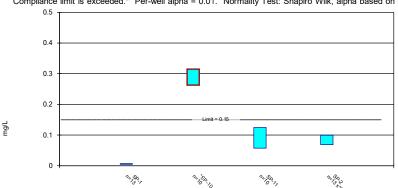
Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

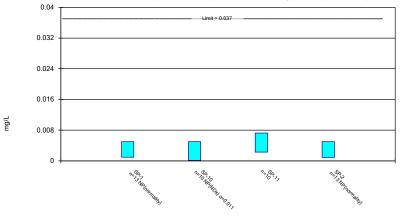
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Fluoride Analysis Run 12/2/2018 9:02 AM View: Confidence Intervals - App IV Northeastern BAP Client: Geosyntec Data: Northeastern BAP

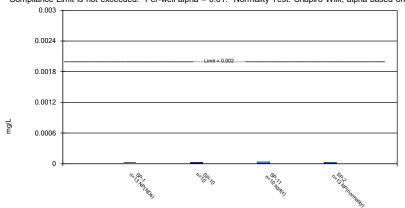
Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG


Parametric Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

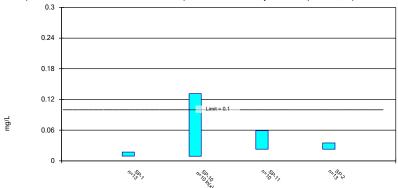
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Lead Analysis Run 12/2/2018 9:02 AM View: Confidence Intervals - App IV Northeastern BAP Client: Geosyntec Data: Northeastern BAP

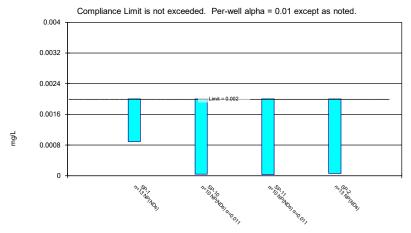
Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

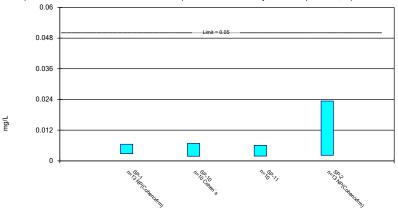


Constituent: Molybdenum Analysis Run 12/2/2018 9:02 AM View: Confidence Intervals - App IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval


Constituent: Thallium Analysis Run 12/2/2018 9:02 AM View: Confidence Intervals - App IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.11 Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Selenium Analysis Run 12/2/2018 9:02 AM View: Confidence Intervals - App IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

STATISTICAL ANALYSIS SUMMARY BOTTOM ASH POND Northeastern Power Station Oologah, Oklahoma

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

engineers | scientists | innovators

941 Chatham Lane Suite 103 Columbus, Ohio 43221

July 12, 2019

CHA8473

TABLE OF CONTENTS

SECTION 1	Execu	tive Summary	ES-1
SECTION 2	2 Botton	n Ash Pond Evaluation	2-1
2.1	Data V	Validation & QA/QC	2-1
2.2	Statist	tical Analysis	2-1
	2.2.1	Establishment of GWPSs	2-1
	2.2.2	Evaluation of Potential Appendix IV SSLs	2-2
	2.2.3	Evaluation of Potential Appendix III SSIs	2-2
2.3	Concl	usions	2-3
SECTION 3	Refere	ences	3-1

LIST OF TABLES

Table 1	Groundwater Data Summary
Table 2	Groundwater Protection Standards
Table 3	Appendix III Data Summary

LIST OF ATTACHMENTS

Attachment A Certification by Qualified Professional Engineer
Attachment B Statistical Analysis Output

LIST OF ACRONYMS AND ABBREVIATIONS

AEP American Electric Power

ASD Alternative Source Demonstration

BAP Bottom Ash Pond

CCR Coal Combustion Residuals

CCV Continuing Calibration Verification

GWPS Groundwater Protection Standard

LCL Lower Confidence Limit

LFB Laboratory Fortified Blanks

LRB Laboratory Reagent Blanks

LPL Lower Prediction Limit

MCL Maximum Contaminant Level

NELAP National Environmental Laboratory Accreditation Program

OAC Oklahoma Administrative Code

ODEQ Oklahoma Department of Environmental Quality

QA Quality Assurance

QC Quality Control

RSL Regional Screening Level

SSI Statistically Significant Increase

SSL Statistically Significant Level

TDS Total Dissolved Solids

UTL Upper Tolerance Limit

SECTION 1

EXECUTIVE SUMMARY

In accordance with the Oklahoma Department of Environmental Quality (ODEQ) and Oklahoma administrative code (OAC) regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (OAC 252:517), groundwater monitoring has been conducted at the Bottom Ash Pond (BAP), an existing CCR unit at the Northeastern Power Plant located in Northeastern Power Station located in Oologah, Oklahoma.

Based on detection monitoring conducted in 2017 and 2018, statistically significant increases (SSIs) over background were concluded for boron, chloride, fluoride, total dissolved solids (TDS), and sulfate at the BAP. pH values below the lower prediction limit (LPL) resulted in SSIs below background as well. An alternative source was not identified at the time, so two assessment monitoring events were conducted at the BAP in 2018, in accordance with OAC 252:517-9-6. A semi-annual assessment monitoring event was also completed in February 2019, with the results of the February 2019 event documented in this report.

Groundwater data underwent several validation tests, including those for completeness, sample tracking accuracy, transcription errors, and consistent use of measurement units. No data quality issues were identified which would impact the usability of the data.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. Groundwater protection standards (GWPSs) were re-established for the Appendix IV parameters. Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether Appendix IV parameters were present at a statistically significant level (SSL) above the GWPS. An SSL was identified for lithium. Thus, either the unit will move to an assessment of corrective measures or an alternative source demonstration (ASD) will be conducted to evaluate if the unit can remain in assessment monitoring. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A.

SECTION 2

BOTTOM ASH POND EVALUATION

2.1 <u>Data Validation & QA/QC</u>

During the assessment monitoring program, one set of samples was collected for analysis from each upgradient and downgradient well to meet the requirements of OAC 252.:517-9-6(b) and 252:517-9-6(d)(1). Samples from the February 2019 semi-annual sampling event were analyzed for the Appendix III and Appendix IV parameters. A summary of data collected during this assessment monitoring event may be found in Table 1.

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program (NELAP). Quality assurance and quality control (QA/QC) samples completed by the analytical laboratory included the use of laboratory reagent blanks (LRBs), continuing calibration verification (CCV) samples, and laboratory fortified blanks (LFBs).

The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.6.14 statistics software. The export file was checked against the analytical data for transcription errors and completeness. No QA/QC issues were noted which would impact data usability.

2.2 Statistical Analysis

Statistical analyses for the BAP were conducted in accordance with the January 2017 *Statistical Analysis Plan* (AEP, 2017), except where noted below. Time series plots and results for all completed statistical tests are provided in Attachment B.

The data obtained to meet the requirements of OAC 252:517-9-6(b) and 252:517-9-6(d)(1) were screened for potential outliers. No outliers were identified.

2.2.1 Establishment of GWPSs

A GWPS was established for each Appendix IV parameter in accordance with OAC 252:517-9-6(h) and the *Statistical Analysis Plan* (AEP, 2017). The established GWPS was determined to be the greater value of the background concentration and the maximum contaminant level (MCL) or regional screening level (RSL) for each Appendix IV parameter. To determine background concentrations, an upper tolerance limit (UTL) was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events. Generally, tolerance limits were calculated parametrically with 95% coverage and 95% confidence. Non-parametric tolerance limits were calculated for antimony, barium, cadmium,

cobalt, lead, mercury, molybdenum, and selenium due to apparent non-normal distributions, for thallium due to a high non-detect frequency, and for beryllium and cobalt due to both apparent non-normal distributions and high non-detect frequencies. Tolerance limits and the final GWPSs are summarized in Table 2.

2.2.2 Evaluation of Potential Appendix IV SSLs

A confidence interval was constructed for each Appendix IV parameter at each compliance well. Confidence limits were generally calculated parametrically ($\alpha = 0.01$); however, non-parametric confidence limits were calculated in some cases (e.g., when the data did not appear to be normally distributed or when the non-detect frequency was too high). An SSL was concluded if the lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). Calculated confidence limits are shown in Attachment B.

The following SSL was identified at the Northeastern BAP:

• An LCL for lithium exceeded the GWPS of 0.15 mg/L at SP-10 (0.275 mg/L).

As a result, the Northeastern BAP will either move to an assessment of corrective measures or an alternative source demonstration will be conducted to evaluate if the unit can remain in assessment monitoring

2.2.3 Evaluation of Potential Appendix III SSIs

While SSLs were identified, a review of the Appendix III results were also completed to assess whether concentrations of Appendix III parameters at the compliance wells exceeded background concentrations. Prediction limits were calculated for the Appendix III parameters to represent background values. As described in the January 2018 *Statistical Analysis Summary* report (Geosyntec, 2018), intrawell tests were used to evaluate potential SSIs for calcium, whereas interwell tests were used to evaluate potential SSIs for boron, chloride, fluoride, pH, sulfate, and TDS.

Prediction limits for the interwell tests were recalculated using data collected during the February 2019 assessment monitoring event. Four data points (i.e., one sample from four background wells) were added to the background dataset for each interwell test. New data were tested for outliers prior to being added to the background dataset. The updated prediction limits were calculated for a one-of-two retesting procedure, as during detection monitoring. The values of the updated prediction limits were similar to the values of the prediction limits calculated during detection monitoring. The revised interwell prediction limits were used to evaluate potential SSIs for boron, calcium, chloride, fluoride, sulfate, and pH.

For the intrawell tests, limited data made it possible to add only one data point (i.e., one sample from each compliance well) to each background dataset. Because one sample result is insufficient to compare against the existing background dataset, the prediction limits were not updated for the

intrawell tests at this time. The intrawell prediction limits calculated during detection monitoring were used to evaluate potential SSIs for calcium.

Data collected during March 2019 assessment monitoring event from each compliance well were compared to the prediction limits to evaluate results above background values. The results from this event and the prediction limits are summarized in Table 3. The following exceedances of the upper prediction limits (UPLs) were noted:

- Boron concentrations exceeded the interwell UPL of 0.493 mg/L at SP-10 (1.16 mg/L).
- Chloride concentrations exceeded the interwell UPL of 775 mg/L at SP-10 (1740 mg/L).
- Fluoride concentrations exceeded the interwell UPL of 4.39 mg/L at SP-10 (5.59 mg/L).
- Sulfate concentrations exceeded the interwell UPL of 90 mg/L at SP-11 (95.1 mg/L).
- TDS concentrations exceeded the interwell UPL of 1577 mg/L at SP-10 (3504 mg/L).

While the prediction limits were calculated assuming a 1-of-2 testing procedure, it was conservatively assumed that an SSI was identified if the initial sample exceeded either the UPL based on previous results. Based on these results, concentrations of Appendix III parameters exceeded background levels at compliance wells at the Northeastern BAP during assessment monitoring.

2.3 Conclusions

A semi-annual assessment monitoring event was conducted in accordance with the OAC 252:517-9. The laboratory and field data were reviewed prior to statistical analysis, with no QA/QC issues identified that impacted data usability. A review of outliers identified no potential outliers in the February 2019 data. GWPSs were re-established for the Appendix IV parameters. A confidence interval was constructed at each compliance well for each Appendix IV parameter; SSLs were concluded if the entire confidence interval exceeded the GWPS. An SSLs was identified for lithium. Appendix III parameters were also evaluated, with exceedances identified for boron, chloride, fluoride, sulfate, and TDS.

Based on this evaluation, the Northeastern BAP CCR unit will either move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring.

SECTION 3

REFERENCES

American Electric Power (AEP). 2017. Statistical Analysis Plan – Northeastern Plant. January 2017.

Geosyntec Consultants (Geosyntec). 2018. Statistical Analysis Summary – Stations 3 and 4 Bottom Ash Pond, Northeastern Power Station, Oologah, Oklahoma. January 15, 2018.

Geosyntec. 2019. Alternative Source Demonstration Report – State CCR Rule. Northeastern Power Station Bottom Ash Pond. April.

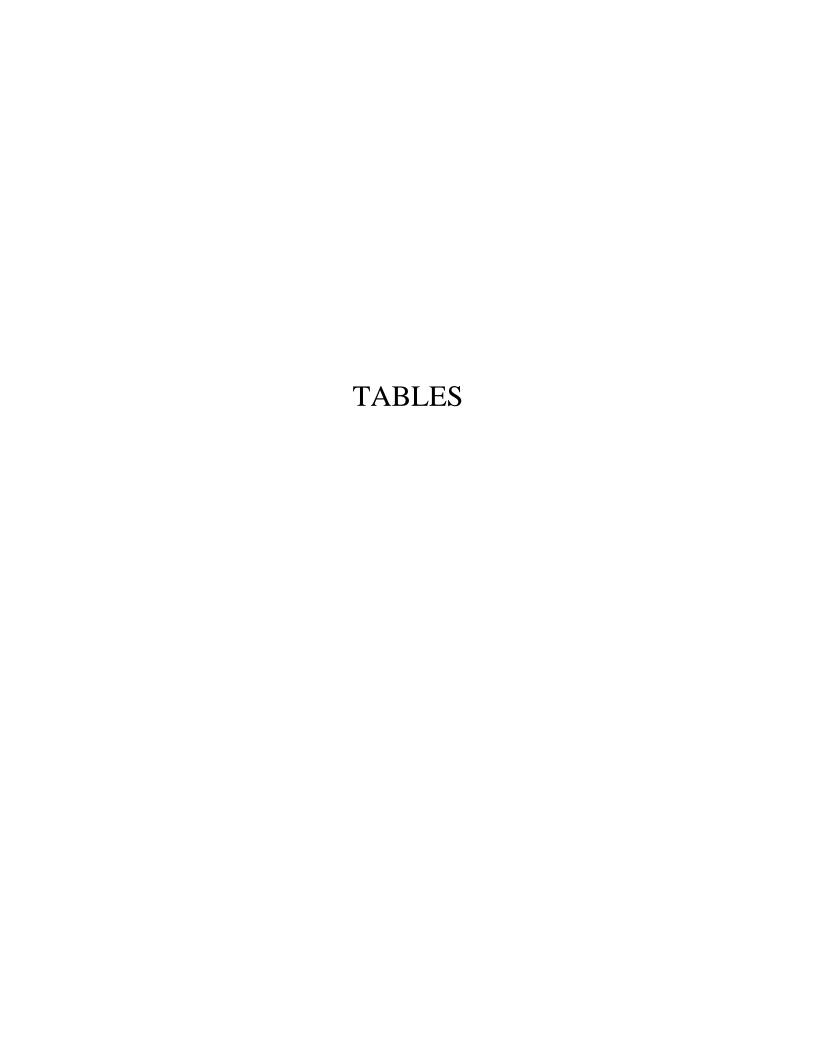


Table 1 - Groundwater Data Summary Northeastern - Bottom Ash Pond

Parameter	Unit	SP-1	SP-2	SP-4	SP-5	SP-10	SP-11	
r ai ainetei	Omt	2/27/2019	2/27/2019	2/27/2019	2/27/2019	2/27/2019	2/27/2019	
Antimony	μg/L	0.600 J	1.39	0.300 J	1.00 U	2.00 J	1.00 U	
Arsenic	μg/L	0.700 J	1.29	1.00 J	25.7	3.48	8.83	
Barium	μg/L	168	841	276	2130	5810	529	
Beryllium	μg/L	1.00 U	1.00 U	1.00 U	1.00 U	2.00 U	1.00 U	
Boron	mg/L	0.200	0.116	0.370	0.233	1.16	0.375	
Cadmium	μg/L	0.500 U	0.500 U	0.500 U	0.500 U	1.00 U	0.500 U	
Calcium	mg/L	122	94.0	85.6	72.8	92.6	49.6	
Chloride	mg/L	42.7	351	470	739	1740	241	
Chromium	μg/L	2.72	4.30	5.71	2.00 J	1.00 J	0.700 J	
Cobalt	μg/L	0.500 U	0.500 U	0.500 U	0.300 J	1.00 U	0.720	
Combined Radium	pCi/L	3.06	5.76	3.14	6.70	15.4	1.81	
Fluoride	mg/L	0.800	2.68	3.26	3.08	5.59	3.44	
Lead	μg/L	0.200 J	0.300 J	1.00 U	0.700 J	2.00 U	0.200 J	
Lithium	mg/L	0.00641	0.0329	0.0602	0.102	0.275	0.0580	
Mercury	mg/L	0.0000250 U						
Molybdenum	μg/L	10.0 J	25.8	20.0 U	20.0 U	40.0 U	6.00 J	
Selenium	μg/L	2.80	3.70	0.600 J	2.00 U	4.00 U	2.00 U	
Total Dissolved Solids	mg/L	532	932	1120	1530	3500	1170	
Sulfate	mg/L	87.1	26.1	61.5	1.60	6.90	95.1	
Thallium	μg/L	5.00 U	5.00 U	5.00 U	5.00 U	10.0 U	5.00 U	
pН	SU	7.34	7.62	7.37	7.70	7.79	7.74	

Notes:

μg/L: micrograms per liter mg/L: milligrams per liter pCi/L: picocuries per liter

SU: standard unit

U: Non-detect value. For statistical analysis, parameters which were not detected were replaced with the reporting limit.

J: Estimated value. Parameter was detected in concentrations below the reporting limit.

-: Not sampled

Table 2: Groundwater Protection Standards Northeastern Plant - Bottom Ash Pond

Constituent Name	MCL	RSL	Background Limit
Antimony, Total (mg/L)	0.006		0.0051
Arsenic, Total (mg/L)	0.01		0.049
Barium, Total (mg/L)	2		4.59
Beryllium, Total (mg/L)	0.004		0.005
Cadmium, Total (mg/L)	0.005		0.0025
Chromium, Total (mg/L)	0.1		0.084
Cobalt, Total (mg/L)	n/a	0.006	0.041
Combined Radium, Total (pCi/L)	5		16.53
Fluoride, Total (mg/L)	4		4.56
Lead, Total (mg/L)	n/a	0.015	0.037
Lithium, Total (mg/L)	n/a	0.04	0.15
Mercury, Total (mg/L)	0.002		0.000058
Molybdenum, Total (mg/L)	n/a	0.1	0.020
Selenium, Total (mg/L)	0.05		0.005
Thallium, Total (mg/L)	0.002		0.005

Notes:

Grey cell indicates calculated UTL is higher than MCL.

MCL = Maximum Contaminant Level

RSL = Regional Screening Level

Calculated UTL (Upper Tolerance Limit) represents site-specific background values.

The higher of the calculated UTL or MCL/RSL is used as the GWPS.

Table 3: Appendix III Data Summary Northeastern Plant - Bottom Ash Pond

Parameter	Units	Description	SP-1	SP-10	SP-11	SP-2				
Parameter	Offits	Description	2/27/2019	2/27/2019	2/27/2019	2/27/2019				
Boron	ma/I	Interwell Background Value (UPL)	0.493							
DOIOII	mg/L	Detection Monitoring Result	0.2	1.16	0.375	0.116				
Calcium	mg/L	Intrawell Background Value (UPL)	136	109	1894	157				
Calcium	mg/L	Detection Monitoring Result	122	92.6	49.6	94				
Chloride	mg/L	Interwell Background Value (UPL)	775							
Cilioride	mg/L	Detection Monitoring Result	42.7	1740	241	351				
Fluoride	mg/L	Interwell Background Value (UPL)		4.	39					
Fluoride	mg/L	Detection Monitoring Result	0.8	5.59	3.44	2.68				
		Interwell Background Value (UPL)		8	.5					
pН	SU	Interwell Background Value (LPL)		7.1						
		Detection Monitoring Result	7.3	7.8	7.7	7.6				
Sulfate	mg/L	Interwell Background Value (UPL)		9	0					
Sulfate	mg/L	Detection Monitoring Result	87.1	6.9	95.1	26.1				
Total Dissolved Solids	ma/I	Interwell Background Value (UPL)		15	77					
Total Dissolved Solids	mg/L	Detection Monitoring Result	532	3504	1168	932				

Notes:

UPL: Upper prediction limit

LPL: Lower prediction limit

*: Designates results for a duplicate sample

-: Not Sampled

Bold values exceed the background value.

Background values are shaded gray.

ATTACHMENT A Certification by Qualified Professional Engineer

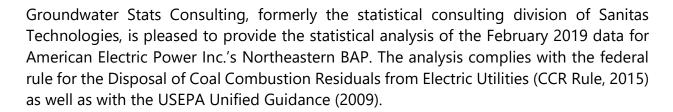
Certification by Qualified Professional Engineer

I certify that the selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Northeastern Bottom Ash Pond CCR management area and that the requirements of OAC 252:517-9-4(g) have been met.

DAVID ANTHO	ONY MILLER	ROFESSIONAL TO
Printed Name of Licen	sed Professional Engineer	DAVID ANTHONY OF MILLER 26057
David Anth	vory Miller	AL AHOMA
Signature		
26057	OKLAHOMA	07.12.19
License Number	Licensing State	Date

ATTACHMENT B Statistical Analysis Output

GROUNDWATER STATS CONSULTING


July 10, 2019

Geosyntec Consultants Attn: Ms. Allison Kreinberg 941 Chatham Lane, #103 Columbus, OH 43221

Re: Northeastern BAP

Assessment Monitoring Event – February 2019

Dear Ms. Kreinberg,

Sampling began at the site for the CCR program in 2017. The monitoring well network, as provided by Geosyntec Consultants, consists of the following:

o Upgradient wells: SP-4 and SP-5; and

Downgradient wells: SP-1, SP-2, SP-10, and SP-11

Data were sent electronically, and the statistical analysis was conducted according to the Statistical Analysis Plan and screening evaluation prepared by GSC and approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC.

The CCR program consists of the following constituents:

- Appendix III (Detection Monitoring) boron, calcium, chloride, fluoride, pH, sulfate, and TDS;
- o **Appendix IV** (Assessment Monitoring) antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium.

Time series plots for Appendix III and IV parameters are provided for all wells and constituents; and are used to evaluate concentrations over the entire record (Figure A). Values previously flagged during the screening as outliers may be seen in a lighter font and disconnected symbol on the time series graphs, and a summary of those values follows this letter (Figure B).

Evaluation of Appendix III Parameters

Interwell prediction limits combined with a 1-of-2 verification strategy were constructed for boron, chloride, pH, sulfate and TDS; and intrawell prediction limits combined with a 1-of-2 verification strategy were constructed for calcium (Figures C and D, respectively). The statistical method selected for each parameter was determined based on the results of the evaluation performed in December 2017; and all proposed background data were screened for outliers and trends at that time. The findings of those reports were submitted with that analysis.

Interwell prediction limits utilize all upgradient well data for construction of statistical limits. During each sample event, upgradient well data are screened for any newly suspected outliers or obvious trending patterns using time series plots. All values flagged as outliers may be seen on the Outlier Summary report following this letter. No obvious trending patterns were observed in the upgradient wells.

Intrawell prediction limits utilize the background data set that was originally screened in 2017. As recommended in the EPA Unified Guidance (2009), the background data set will be tested for the purpose of updating statistical limits using the Mann-Whitney two-sample test when an additional four to eight measurements are available.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified and further research would be required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered a false positive result and, therefore, no further action is necessary.

Calcium was found to have no exceedances of its intrawell prediction limits. Downgradient water quality will continue to be monitored for similar patterns which may occur at downgradient wells as future samples are collected.

Boron, chloride, fluoride and TDS were found to exceed their respective interwell prediction limits for well SP-10; however, concentration levels are stable over time for these constituents at this well. Sulfate also was found to exceed its interwell prediction limit for well SP-11. As mentioned above, further research would be required to determine whether the concentrations at this well relative to those reported upgradient are due to natural variation. That study is beyond the scope of this analysis. The Prediction Limit Summary tables following this letter.

When a statistically significant increase is identified, the data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing or stable. Upgradient wells are included in the trend analyses to identify whether similar patterns exist upgradient of the site which is an indication of natural variability in groundwater unrelated to practices at the site.

No statistically significant increasing trends were noted in the downgradient wells. Statistically significant decreasing trends were identified for sulfate in upgradient well SP-5 and in downgradient well SP-11. A statistically significant increasing trend was noted for chloride in upgradient well SP-5. When trends are noted in upgradient wells, it is generally an indication of naturally changing groundwater concentrations unrelated to the facility. A Trend Test summary table follows this letter (Figure E).

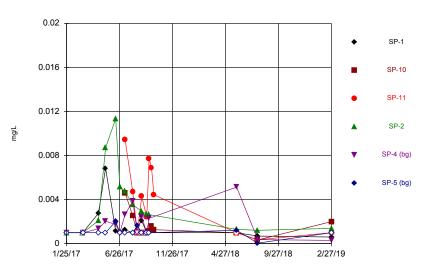
Evaluation of Appendix IV Parameters

Interwell Tolerance limits were used to calculate background limits from all available pooled upgradient well data for Appendix IV parameters to determine the Alternate Contaminant Level (ACL) for each constituent (Figure F). Background data are screened for outliers and extreme trending patterns that would lead to artificially elevated statistical limits. Any flagged values may be seen on the Outlier Summary following this letter.

Parametric limits use a target of 95% confidence and 95% coverage. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. These limits were compared to the Maximum Contaminant Levels (MCLs) and CCR-Rule specified levels in the Groundwater Protection Standard (GWPS) table following this letter to determine the highest limit for use as the GWPS in the Confidence Interval comparisons (Figure G).

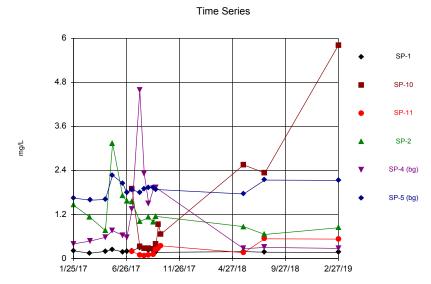
Confidence intervals were then constructed on downgradient wells for each of the Appendix IV parameters using the highest limit of either the MCL, CCR-rule specified level, or ACL as discussed above. Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard. No confidence

intervals exceedances were found except for lithium in well SP-10. A summary of the confidence interval results follows this letter (Figure H).

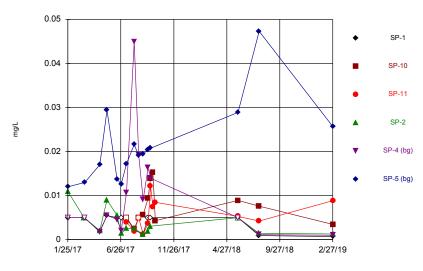

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Northeastern BAP. If you have any questions or comments, please feel free to contact me.

For Groundwater Stats Consulting,

Kristina L. Rayner

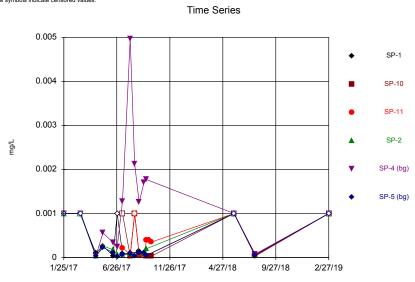

Groundwater Statistician

Constituent: Antimony Analysis Run 6/26/2019 4:10 PM View: App III & IV


Northeastern BAP Client: Geosyntec Data: Northeastern BAP

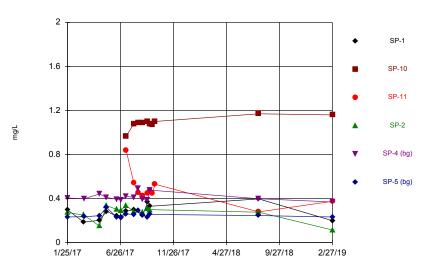
Constituent: Barium Analysis Run 6/26/2019 4:10 PM View: App III & IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

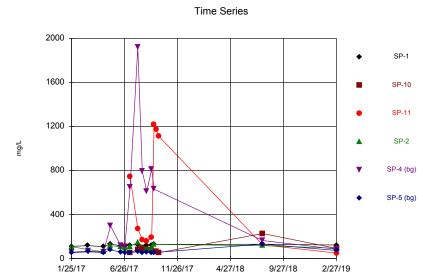

Time Series

Constituent: Arsenic Analysis Run 6/26/2019 4:10 PM View: App III & IV

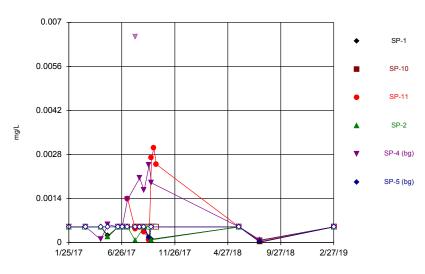
Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Beryllium Analysis Run 6/26/2019 4:10 PM View: App III & IV

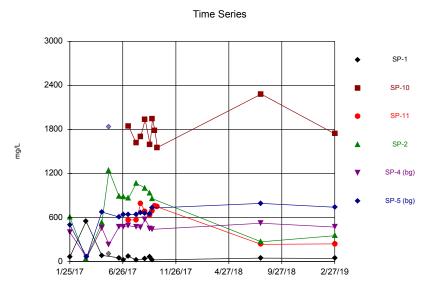

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Boron Analysis Run 6/26/2019 4:10 PM View: App III & IV

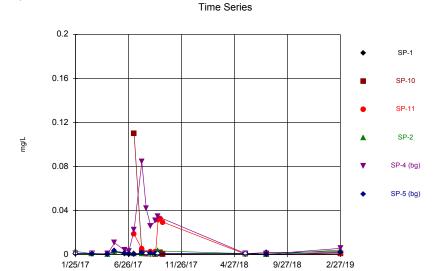

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Calcium Analysis Run 6/26/2019 4:10 PM View: App III & IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Time Series

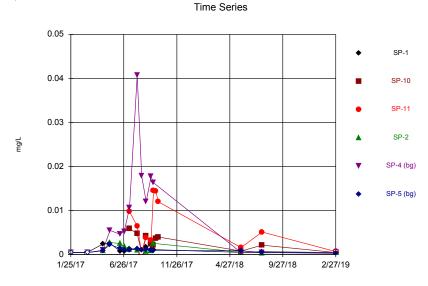
Constituent: Cadmium Analysis Run 6/26/2019 4:10 PM View: App III & IV


Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG

Constituent: Chloride Analysis Run 6/26/2019 4:10 PM View: App III & IV

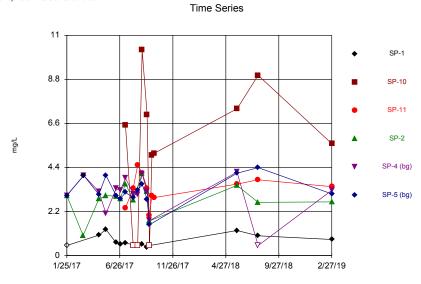
Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Constituent: Chromium Analysis Run 6/26/2019 4:10 PM View: App III & IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

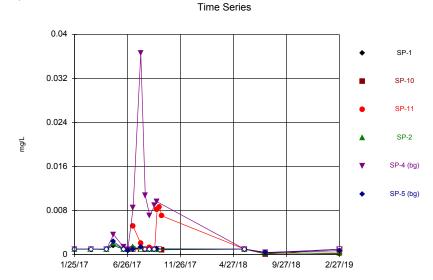
Time Series 30 SP-1 24 SP-10 SP-11 SP-2 12 SP-4 (bg) SP-5 (bg) 1/25/17 6/26/17 11/26/17 4/27/18 9/27/18 2/27/19

Constituent: Combined Radium 226 + 228 Analysis Run 6/26/2019 4:10 PM View: App III & IV


Northeastern BAP Client: Geosyntec Data: Northeastern BAP

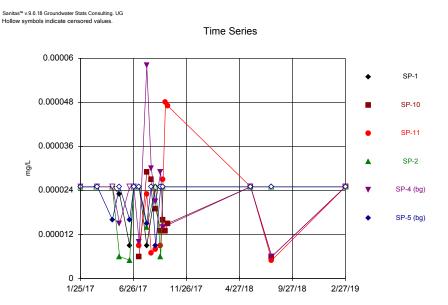
Constituent: Cobalt Analysis Run 6/26/2019 4:10 PM View: App III & IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

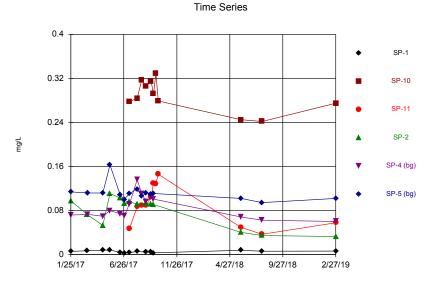

Constituent: Fluoride Analysis Run 6/26/2019 4:10 PM View: App III & IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

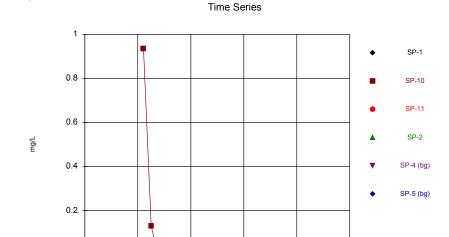
1/25/17


6/26/17

Hollow symbols indicate censored values.


Constituent: Lead Analysis Run 6/26/2019 4:10 PM View: App III & IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Constituent: Mercury Analysis Run 6/26/2019 4:10 PM View: App III & IV

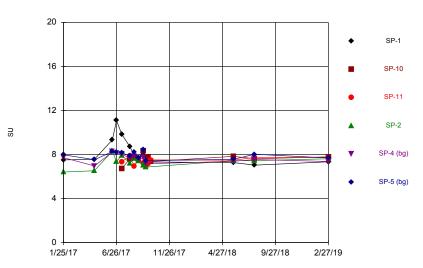
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Lithium Analysis Run 6/26/2019 4:10 PM View: App III & IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

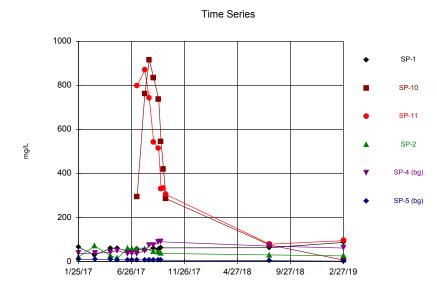
Constituent: Molybdenum Analysis Run 6/26/2019 4:10 PM View: App III & IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

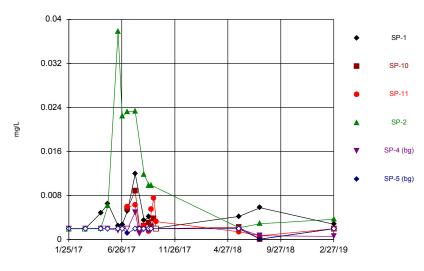

4/27/18

9/27/18

2/27/19

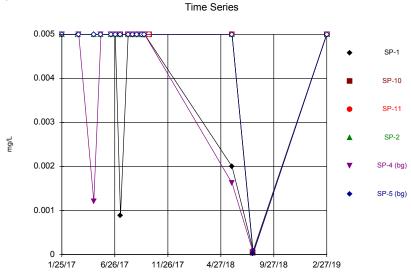

11/26/17

Constituent: pH, field Analysis Run 6/26/2019 4:10 PM View: App III & IV


Northeastern BAP Client: Geosyntec Data: Northeastern BAP

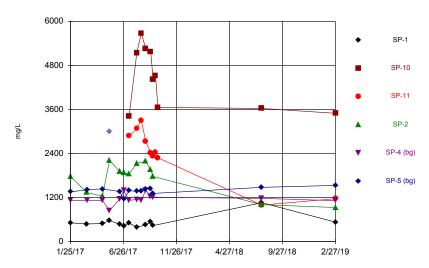
Constituent: Sulfate Analysis Run 6/26/2019 4:10 PM View: App III & IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Time Series

Constituent: Selenium Analysis Run 6/26/2019 4:10 PM View: App III & IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Thallium Analysis Run 6/26/2019 4:10 PM View: App III & IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Time Series

Constituent: Total Dissolved Solids [TDS] Analysis Run 6/26/2019 4:10 PM View: App III & IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

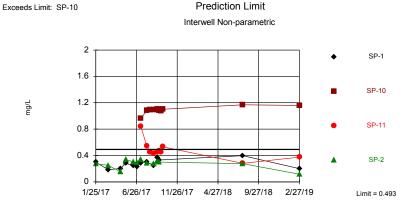
Outlier Summary

Northeastern BAP Client: Geosyntec Data: Northeastern BAP Printed 7/1/2019, 6:48 AM

SP-4 Cadmium (mg/L)
SP-5 Chloride (mg/L)
SP-1 Chloride (mg/L)
SP-1 Fluoride (mg/L)
SP-5 Total Dissolved Solids [TDS] (mg/L)

3/13/2017 4 (o)

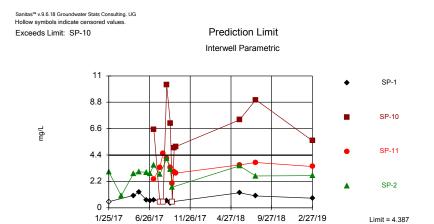
5/18/2017 1834 (o) 104 (o) 3008 (o)

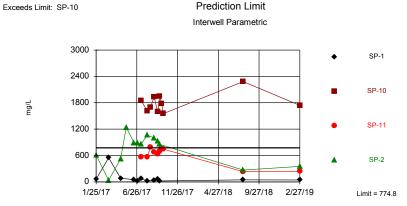

8/4/2017 0.00655 (o)

Interwell Prediction Limit Summary Table - Significant Results Northeastern BAP Client: Geosyntec Data: Northeastern BAP Printed 6/26/2019, 4:16 PM

		Northeastern BAP Client: Geosyntec Data: Northeastern BAP					Printed 6/26/2019, 4:16 PM					
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	N %NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Boron (mg/L)	SP-10	0.493	n/a	2/27/2019	1.16	Yes	28	0	n/a	n/a	0.002268	NP Inter (normality) 1 of 2
Chloride (mg/L)	SP-10	774.8	n/a	2/27/2019	1740	Yes	27	0	None	x^2	0.00188	Param Inter 1 of 2
Fluoride (mg/L)	SP-10	4.387	n/a	2/27/2019	5.59	Yes	30	3.333	None	x^2	0.00188	Param Inter 1 of 2
Sulfate (mg/L)	SP-11	90	n/a	2/27/2019	95.1	Yes	28	0	n/a	n/a	0.002268	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	SP-10	1577	n/a	2/27/2019	3500	Yes	27	0	None	No	0.00188	Param Inter 1 of 2

Interwell Prediction Limit Summary Table - All Results

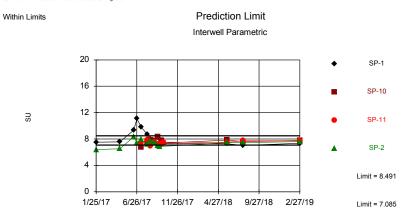

		Northeaste	ern BAP Cli	P Client: Geosyntec Data: Northeastern BAP Prin		Printed 6/26/2019, 4:16 PM						
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	N %NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Boron (mg/L)	SP-1	0.493	n/a	2/27/2019	0.2	No	28	0	n/a	n/a	0.002268	NP Inter (normality) 1 of 2
Boron (mg/L)	SP-10	0.493	n/a	2/27/2019	1.16	Yes	28	0	n/a	n/a	0.002268	NP Inter (normality) 1 of 2
Boron (mg/L)	SP-11	0.493	n/a	2/27/2019	0.375	No	28	0	n/a	n/a	0.002268	NP Inter (normality) 1 of 2
Boron (mg/L)	SP-2	0.493	n/a	2/27/2019	0.116	No	28	0	n/a	n/a	0.002268	NP Inter (normality) 1 of 2
Chloride (mg/L)	SP-1	774.8	n/a	2/27/2019	42.7	No	27	0	None	x^2	0.00188	Param Inter 1 of 2
Chloride (mg/L)	SP-10	774.8	n/a	2/27/2019	1740	Yes	27	0	None	x^2	0.00188	Param Inter 1 of 2
Chloride (mg/L)	SP-11	774.8	n/a	2/27/2019	241	No	27	0	None	x^2	0.00188	Param Inter 1 of 2
Chloride (mg/L)	SP-2	774.8	n/a	2/27/2019	351	No	27	0	None	x^2	0.00188	Param Inter 1 of 2
Fluoride (mg/L)	SP-1	4.387	n/a	2/27/2019	0.8	No	30	3.333	None	x^2	0.00188	Param Inter 1 of 2
Fluoride (mg/L)	SP-10	4.387	n/a	2/27/2019	5.59	Yes	30	3.333	None	x^2	0.00188	Param Inter 1 of 2
Fluoride (mg/L)	SP-11	4.387	n/a	2/27/2019	3.44	No	30	3.333	None	x^2	0.00188	Param Inter 1 of 2
Fluoride (mg/L)	SP-2	4.387	n/a	2/27/2019	2.68	No	30	3.333	None	x^2	0.00188	Param Inter 1 of 2
pH, field (SU)	SP-1	8.491	7.085	2/27/2019	7.34	No	26	0	None	No	0.0009398	Param Inter 1 of 2
pH, field (SU)	SP-10	8.491	7.085	2/27/2019	7.79	No	26	0	None	No	0.0009398	Param Inter 1 of 2
pH, field (SU)	SP-11	8.491	7.085	2/27/2019	7.74	No	26	0	None	No	0.0009398	Param Inter 1 of 2
pH, field (SU)	SP-2	8.491	7.085	2/27/2019	7.62	No	26	0	None	No	0.0009398	Param Inter 1 of 2
Sulfate (mg/L)	SP-1	90	n/a	2/27/2019	87.1	No	28	0	n/a	n/a	0.002268	NP Inter (normality) 1 of 2
Sulfate (mg/L)	SP-10	90	n/a	2/27/2019	6.9	No	28	0	n/a	n/a	0.002268	NP Inter (normality) 1 of 2
Sulfate (mg/L)	SP-11	90	n/a	2/27/2019	95.1	Yes	28	0	n/a	n/a	0.002268	NP Inter (normality) 1 of 2
Sulfate (mg/L)	SP-2	90	n/a	2/27/2019	26.1	No	28	0	n/a	n/a	0.002268	NP Inter (normality) 1 of 2
Total Dissolved Solids [TDS] (mg/L)	SP-1	1577	n/a	2/27/2019	532	No	27	0	None	No	0.00188	Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	SP-10	1577	n/a	2/27/2019	3500	Yes	27	0	None	No	0.00188	Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	SP-11	1577	n/a	2/27/2019	1170	No	27	0	None	No	0.00188	Param Inter 1 of 2
Total Dissolved Solids [TDS] (mg/L)	SP-2	1577	n/a	2/27/2019	932	No	27	0	None	No	0.00188	Param Inter 1 of 2


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 28 background values. Annual per-constituent alpha = 0.002.268 (1 of 2). Comparing 4 points to limit.

Constituent: Boron Analysis Run 6/26/2019 4:13 PM View: App III

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Background Data Summary (based on square transformation): Mean=10.61, Std. Dev.=4.597, n=30, 3.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9417, critical = 0.9. Kappa = 1.88 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.00188. Comparing 4 points to limit.



Background Data Summary (based on square transformation): Mean=298047, Std. Dev.=159041, n=27. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9577, critical = 0.894. Kappa = 1.9 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.00188. Comparing 4 points to limit.

Constituent: Chloride Analysis Run 6/26/2019 4:13 PM View: App III

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG

Background Data Summary: Mean=7.788, Std. Dev=0.3685, n=26. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9734, critical = 0.891. Kappa = 1.907 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.0009398. Comparing 4 points to limit.

200

Exceeds Limit: SP-11

Interwell Non-parametric

SP-1

SP-10

SP-10

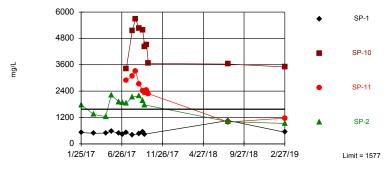
SP-11

1/25/17 6/26/17 11/26/17 4/27/18 9/27/18 2/27/19

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 28 background values. Annual per-constituent alpha = 0.018. Individual comparison alpha = 0.002288 (1 of 2). Comparing 4 points to limit.

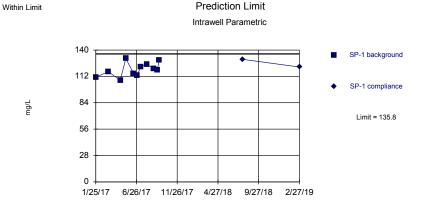
SP-2


Limit = 90

Constituent: Sulfate Analysis Run 6/26/2019 4:13 PM View: App III

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG

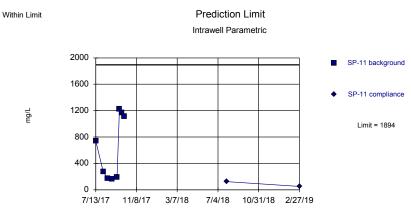

Background Data Summary: Mean=1274, Std. Dev.=159.2, n=27. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9137, critical = 0.894. Kappa = 1.9 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.00188. Comparing 4 points to limit.

Constituent: Total Dissolved Solids [TDS] Analysis Run 6/26/2019 4:13 PM View: App III

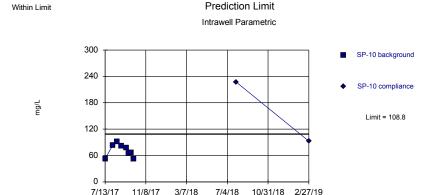
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Intrawell Prediction Limit Summary Table - All Results (No Significant)

								-					-	-
			Northea	stern BAP	Client: G	eosyr	itec	Data: Nor	theastern I	BAP P	rinted 6/2	6/2019, 4:32 PN	И	
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	N Bg Mean	Std. Dev	. %NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Calcium (mg/L)	SP-1	135.8	n/a	2/27/2019	122	No	11	119.1	7.286	0	None	No	0.00188	Param Intra 1 of 2
Calcium (mg/L)	SP-10	108.8	n/a	2/27/2019	92.6	No	8	71.1	14.43	0	None	No	0.00188	Param Intra 1 of 2
Calcium (mg/L)	SP-11	1894	n/a	2/27/2019	49.6	No	8	629.5	483.3	0	None	No	0.00188	Param Intra 1 of 2
Calcium (mg/L)	SP-2	157.3	n/a	2/27/2019	94	No	11	103.8	23.28	0	None	No	0.00188	Param Intra 1 of 2
Calcium (mg/L)	SP-4	2033	n/a	2/27/2019	85.6	No	12	19.81	11.32	0	None	sqrt(x)	0.00188	Param Intra 1 of 2
Calcium (mg/L)	SP-5	79.1	n/a	2/27/2019	72.8	No	12	n/a	n/a	0	n/a	n/a	0.01077	NP Intra (normality) 1 of 2



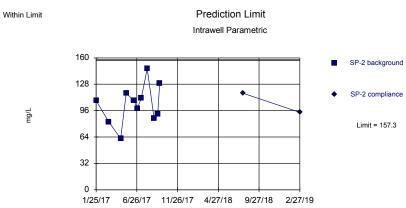
Background Data Summary: Mean=119.1, Std. Dev.=7.286, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9766, critical = 0.792. Kappa = 2.3 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0192


Constituent: Calcium Analysis Run 6/26/2019 4:27 PM View: App III

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG

Background Data Summary: Mean=629.5, Std. Dev.=483.3, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8, critical = 0.749. Kappa = 2.616 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.



Background Data Summary: Mean=71.1, Std. Dev.=14.43, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9303, critical = 0.749. Kappa = 2.616 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188

Constituent: Calcium Analysis Run 6/26/2019 4:27 PM View: App III

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG

Background Data Summary: Mean=103.8, Std. Dev.=23.28, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9891, critical = 0.792. Kappa = 2.3 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Within Limit

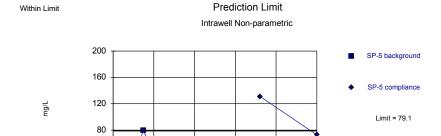
Intrawell Parametric

SP-4 background

SP-4 compliance

Limit = 2033

Prediction Limit


Background Data Summary (based on square root transformation): Mean=19.81, Std. Dev.=11.32, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8858, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 6/26/2019 4:27 PM View: App III

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

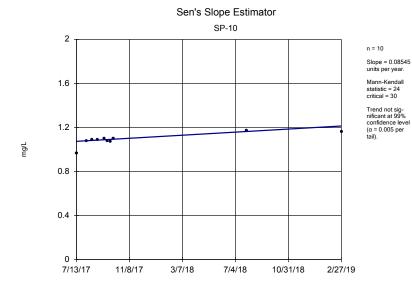
Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG

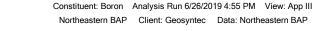
40

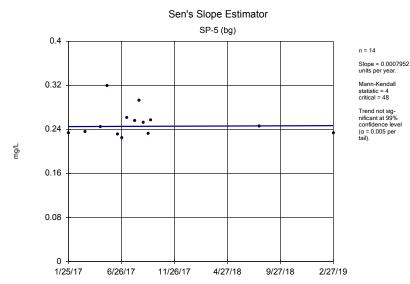
1/25/17 6/26/17 11/26/17 4/27/18 9/27/18 2/27/19

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Constituent: Calcium Analysis Run 6/26/2019 4:27 PM View: App III

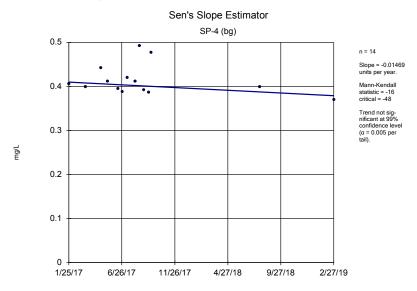

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

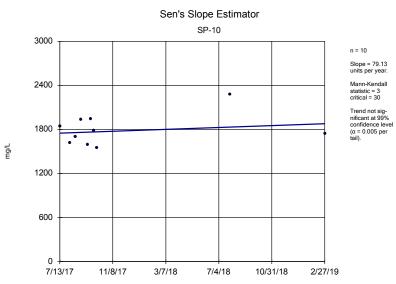

Trend Tests Summary Table - Significant Results Northeastern BAP Client: Geosyntec Data: Northeastern BAP Printed 6/26/2019, 4:58 PM


	Northeastern BAP (lient: Geosyntec	Data: Northeastern BAP Printed 6/26/2019, 4:58 PM									
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method	
Chloride (mg/L)	SP-5 (bg)	161.6	52	43	Yes	13	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	SP-11	-1408	-39	-30	Yes	10	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	SP-5 (bg)	-4.74	-73	-48	Yes	14	0	n/a	n/a	0.01	NP	

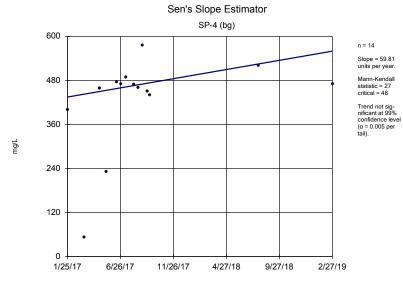
Trend Tests Summary Table - All Results

	Northeastern BAP 0	Client: Geosyntec	Data: Northeastern BAP		Prir	nted 6/26	/2019, 4:	58 PM			
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	SP-10	0.08545	24	30	No	10	0	n/a	n/a	0.01	NP
Boron (mg/L)	SP-4 (bg)	-0.01469	-16	-48	No	14	0	n/a	n/a	0.01	NP
Boron (mg/L)	SP-5 (bg)	0.0007952	4	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	SP-10	79.13	3	30	No	10	0	n/a	n/a	0.01	NP
Chloride (mg/L)	SP-4 (bg)	59.81	27	48	No	14	0	n/a	n/a	0.01	NP
Chloride (mg/L)	SP-5 (bg)	161.6	52	43	Yes	13	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	SP-10	2.387	14	34	No	11	27.27	n/a	n/a	0.01	NP
Fluoride (mg/L)	SP-4 (bg)	-0.04702	-3	-53	No	15	6.667	n/a	n/a	0.01	NP
Fluoride (mg/L)	SP-5 (bg)	0.03827	5	53	No	15	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	SP-11	-1408	-39	-30	Yes	10	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	SP-4 (bg)	30.85	44	48	No	14	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	SP-5 (bg)	-4.74	-73	-48	Yes	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	SP-10	-1179	-19	-30	No	10	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	SP-4 (bg)	44.69	26	48	No	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	SP-5 (bg)	67.52	30	43	No	13	0	n/a	n/a	0.01	NP

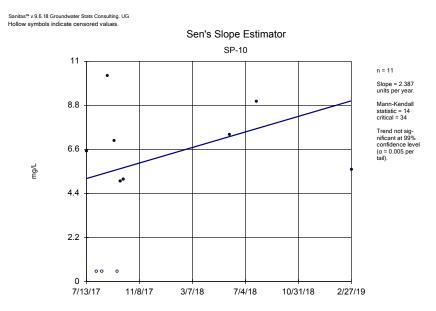



Constituent: Boron Analysis Run 6/26/2019 4:55 PM View: App III

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

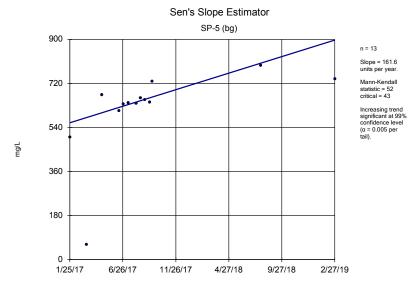

Constituent: Boron Analysis Run 6/26/2019 4:55 PM View: App III

Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG



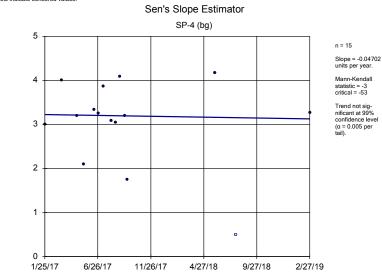
Constituent: Chloride Analysis Run 6/26/2019 4:55 PM View: App III

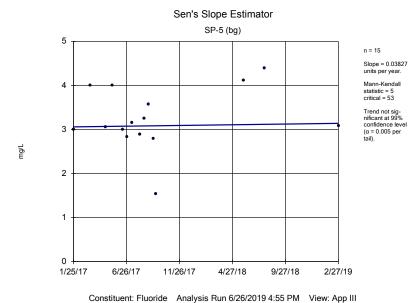
Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Constituent: Chloride Analysis Run 6/26/2019 4:55 PM View: App III Northeastern BAP Client: Geosyntec Data: Northeastern BAP

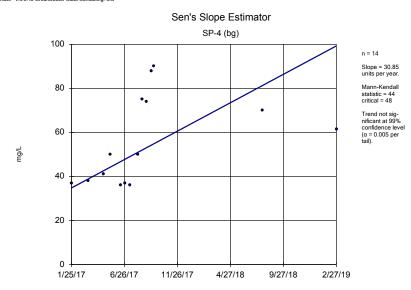
Constituent: Fluoride Analysis Run 6/26/2019 4:55 PM View: App III

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

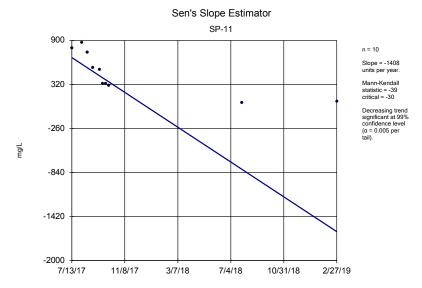

Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG


Constituent: Chloride Analysis Run 6/26/2019 4:55 PM View: App III Northeastern BAP Client: Geosyntec Data: Northeastern BAP

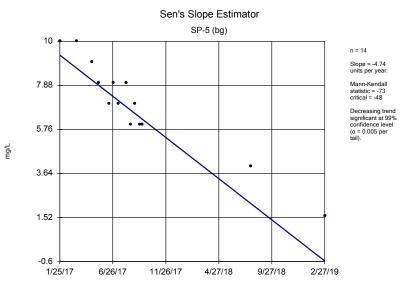
mg/L



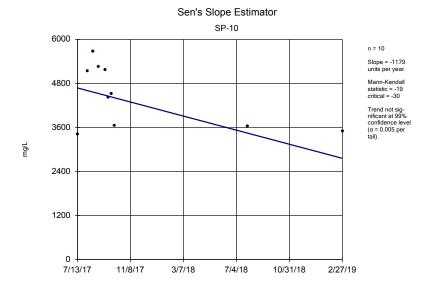
Constituent: Fluoride Analysis Run 6/26/2019 4:55 PM View: App III


Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Sulfate Analysis Run 6/26/2019 4:55 PM View: App III

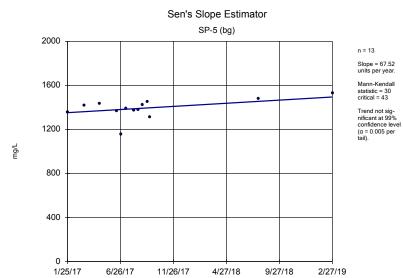

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Sulfate Analysis Run 6/26/2019 4:55 PM View: App III


Northeastern BAP Client: Geosyntec Data: Northeastern BAP

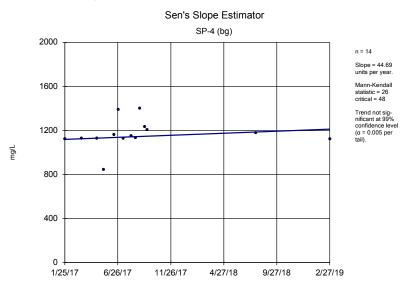
Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG

Constituent: Sulfate Analysis Run 6/26/2019 4:55 PM View: App III


Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Total Dissolved Solids [TDS] Analysis Run 6/26/2019 4:55 PM View: App III

Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG

Constituent: Total Dissolved Solids [TDS] Analysis Run 6/26/2019 4:55 PM View: App III

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG

Constituent: Total Dissolved Solids [TDS] Analysis Run 6/26/2019 4:55 PM View: App III

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Upper Tolerance Limits - Appendix IV

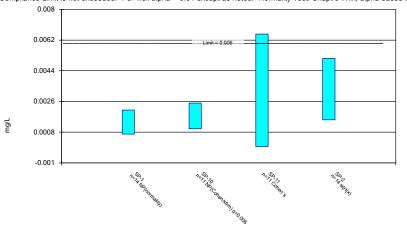
Northeastern BAP Client: Geosyntec Data: Northeastern BAP Printed 6/26/2019, 4:37 PM Std. Dev. %NDs Constituent Upper Lim. Bg N Bg Mean ND Adj. $\underline{\mathsf{Transform}}$ <u>Alpha</u> Method 0.00514 30 n/a n/a 53.33 0.2146 NP Inter(normality) Antimony (mg/L) n/a n/a 0.04927 30 0.1149 10 0.05 Arsenic (mg/L) 0.04823 None sqrt(x) Inter Barium (mg/L) 4.59 30 n/a 0 n/a 0.2146 NP Inter(normality) n/a n/a Beryllium (mg/L) 0.00497 30 26.67 0.2146 NP Inter(Cohens/x... Cadmium (mg/L) 0.00247 0.2259 NP Inter(normality) 29 n/a n/a 65.52 n/a n/a 0.08415 0.2146 Chromium (mg/L) 30 n/a 23.33 n/a n/a NP Inter(Cohens/x... Cobalt (mg/L) 0.04069 16.67 0.2146 NP Inter(normality) 30 n/a n/a n/a n/a Combined Radium 226 + 228 (pCi/L) 16.53 29 8.241 3.709 0 0.05 Inter Fluoride (mg/L) 4.562 30 10.61 4.597 3.333 x^2 0.05 Inter None Lead (mg/L) 0.03663 30 n/a n/a n/a n/a 0.2146 NP Inter(normality) Lithium (mg/L) 0.1491 0.0983 0.0229 0.05 30 0 None No Inter Mercury (mg/L) 0.000058 30 60 0.2146 NP Inter(normality) 0.2146 Molybdenum (mg/L) 0.02 30 53.33 NP Inter(normality) n/a n/a n/a n/a Selenium (mg/L) 0.00499 30 n/a 70 n/a n/a 0.2146 NP Inter(normality) Thallium (mg/L) 0.005 30 86.67 0.2146 NP Inter(NDs) n/a n/a n/a n/a

Confidence Intervals - Significant Results

Northeastern BAP Client: Geosyntec Data: Northeastern BAP Printed 6/26/2019, 4:47 PM

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	Transform	<u>Alpha</u>	Method
Lithium (mg/L)	SP-10	0.3109	0.264	0.15	Yes	11	0	No	0.01	Param.

Confidence Intervals - All Results

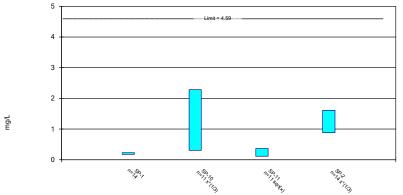

		Comidence intervals - All Nesults								
	Nort	theastern BAP	Client: Geosynte	ec Data: Nor	theaste	rn BAP	Printed 6	6/26/2019, 4:47 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	N	%NDs	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	SP-1	0.00209	0.00069	0.006	No	14	50	No	0.01	NP (normality)
Antimony (mg/L)	SP-10	0.00251	0.001	0.006	No	11	36.36	No	0.006	NP (Cohens/xfrm)
Antimony (mg/L)	SP-11	0.006557	-0.00005032	0.006	No	11	27.27	No	0.01	Param.
Antimony (mg/L)	SP-2	0.005128	0.00152	0.006	No	14	14.29	sqrt(x)	0.01	Param.
Arsenic (mg/L)	SP-1	0.00548	0.00134	0.049	No	14	57.14	No	0.01	NP (normality)
Arsenic (mg/L)	SP-10	0.01081	0.002726	0.049	No	11	18.18	No	0.01	Param.
Arsenic (mg/L)	SP-11	0.008379	0.002917	0.049	No	11	9.091	No	0.01	Param.
Arsenic (mg/L)	SP-2	0.005212	0.00175	0.049	No	14	7.143	x^(1/3)	0.01	Param.
Barium (mg/L)	SP-1	0.2273	0.1738	4.59	No	14	0	No	0.01	Param.
Barium (mg/L)	SP-10	2.283	0.3079	4.59	No	11	0	x^(1/3)	0.01	Param.
Barium (mg/L)	SP-11	0.3625	0.1101	4.59	No	11	0	sqrt(x)	0.01	Param.
Barium (mg/L)	SP-2	1.611	0.8808	4.59	No	14	0	x^(1/3)	0.01	Param.
Beryllium (mg/L)	SP-1	0.001	0.00006	0.005	No	14	35.71	No	0.01	NP (normality)
Beryllium (mg/L)	SP-10	0.001	0.00003	0.005	No	11	36.36	No	0.006	NP (normality)
• • •	SP-10	0.001	0.00003	0.005			27.27	No	0.006	NP (Cohens/xfrm)
Beryllium (mg/L)	SP-2				No	11				
Beryllium (mg/L)		0.001	0.00006	0.005	No	14	28.57	No	0.01	NP (normality)
Cadmium (mg/L)	SP-1	0.0005	0.00011	0.005	No	14	71.43	No	0.01	NP (normality)
Cadmium (mg/L)	SP-10	0.0005	0.0005	0.005	No	11	90.91	No	0.006	NP (NDs)
Cadmium (mg/L)	SP-11	0.0027	0.00009	0.005	No	11	27.27	No	0.006	NP (Cohens/xfrm)
Cadmium (mg/L)	SP-2	0.0005	0.00009	0.005	No	14	71.43	No	0.01	NP (normality)
Chromium (mg/L)	SP-1	0.00183	0.00062	0.1	No	14	42.86	No	0.01	NP (Cohens/xfrm)
Chromium (mg/L)	SP-10	0.00244	0.00036	0.1	No	11	18.18	No	0.006	NP (normality)
Chromium (mg/L)	SP-11	0.01648	0.0008389	0.1	No	11	9.091	ln(x)	0.01	Param.
Chromium (mg/L)	SP-2	0.002485	0.0003201	0.1	No	14	21.43	No	0.01	Param.
Cobalt (mg/L)	SP-1	0.00175	0.0005	0.041	No	14	21.43	No	0.01	NP (Cohens/xfrm)
Cobalt (mg/L)	SP-10	0.004426	0.0008491	0.041	No	11	18.18	No	0.01	Param.
Cobalt (mg/L)	SP-11	0.01099	0.002148	0.041	No	11	9.091	No	0.01	Param.
Cobalt (mg/L)	SP-2	0.00251	0.0005	0.041	No	14	21.43	No	0.01	NP (Cohens/xfrm)
Combined Radium 226 + 228 (pCi/L)	SP-1	4.53	3.014	16.53	No	14	0	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	SP-10	7.241	0.9902	16.53	No	11	0	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	SP-11	4.618	0.785	16.53	No	11	0	ln(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	SP-2	18.54	7.536	16.53	No	11	0	No	0.01	Param.
Fluoride (mg/L)	SP-1	1.098	0.6188	4.56	No	13	15.38	No	0.01	Param.
Fluoride (mg/L)	SP-10	8.162	1.303	4.56	No	11	27.27	No	0.01	Param.
Fluoride (mg/L)	SP-11	3.918	2.711	4.56	No	11	0	No	0.01	Param.
Fluoride (mg/L)	SP-2	3.383	2.31	4.56	No	14	0	No	0.01	Param.
Lead (mg/L)	SP-1	0.002	0.000354	0.037	No	14	57.14	No	0.01	NP (normality)
Lead (mg/L)	SP-10	0.002	0.00087	0.037	No	11	81.82	No	0.006	NP (NDs)
Lead (mg/L)	SP-11	0.00816	0.000404	0.037	No	11	27.27	No	0.006	NP (Cohens/xfrm)
Lead (mg/L)	SP-2	0.00202	0.00091	0.037	No	14	64.29	No	0.01	NP (normality)
Lithium (mg/L)	SP-1	0.006957	0.004515	0.15	No	14	0	No	0.01	Param.
Lithium (mg/L)	SP-10	0.3109	0.264	0.15	Yes	11	0	No	0.01	Param.
Lithium (mg/L)	SP-11	0.1189	0.05708	0.15	No	11	0	No	0.01	Param.
Lithium (mg/L)	SP-2	0.09779	0.06935	0.15	No	14	0	x^3	0.01	Param.
Mercury (mg/L)	SP-1	0.000025	0.000023	0.002	No	14	78.57	No	0.01	NP (NDs)
Mercury (mg/L)	SP-10	0.00002651	0.00001082	0.002	No	11	18.18	No	0.01	Param.
Mercury (mg/L)	SP-11	0.00003405	0.000008311	0.002	No	11	18.18	No	0.01	Param.
Mercury (mg/L)	SP-2	0.000025	0.000006	0.002	No	14	71.43	No	0.01	NP (normality)
Molybdenum (mg/L)	SP-1	0.01646	0.009366	0.1	No	14	0	No	0.01	Param.
Molybdenum (mg/L)	SP-10	0.1082	0.009386	0.1	No	11	9.091	ln(x)	0.01	Param.
	SP-10 SP-11	0.1082								
Molybdenum (mg/L)			0.01939	0.1	No	11	0	No No	0.01	Param.
Molybdenum (mg/L)	SP-2	0.03413	0.02294	0.1	No	14	0	No	0.01	Param.
Selenium (mg/L)	SP-1	0.0058	0.002	0.05	No	14	21.43	No	0.01	NP (Cohens/xfrm)
Selenium (mg/L)	SP-10	0.00567	0.002	0.05	No	11	27.27	No	0.006	NP (Cohens/xfrm)
Selenium (mg/L)	SP-11	0.005442	0.0009195	0.05	No	11	18.18	No	0.01	Param.

Confidence Intervals - All Results

	No	rtheastern BAP	Client: Geosyntee	Data: Nor	theaste	rn BAP	Printed 6	/26/2019, 4:47 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	Transform	<u>Alpha</u>	Method
Selenium (mg/L)	SP-2	0.01707	0.003542	0.05	No	14	14.29	sqrt(x)	0.01	Param.
Thallium (mg/L)	SP-1	0.005	0.002	0.005	No	14	78.57	No	0.01	NP (NDs)
Thallium (mg/L)	SP-10	0.005	0.005	0.005	No	11	90.91	No	0.006	NP (NDs)
Thallium (mg/L)	SP-11	0.005	0.005	0.005	No	11	90.91	No	0.006	NP (NDs)
Thallium (mg/L)	SP-2	0.005	0.00006	0.005	No	14	92.86	No	0.01	NP (NDs)

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

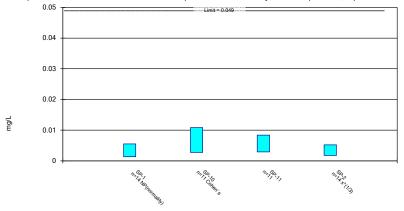

Constituent: Antimony Analysis Run 6/26/2019 4:44 PM View: App IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

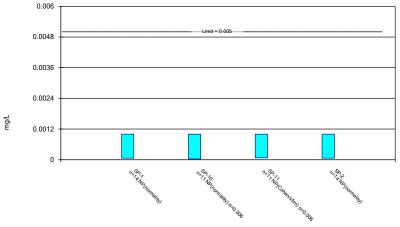


Constituent: Barium Analysis Run 6/26/2019 4:44 PM View: App IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Parametric and Non-Parametric (NP) Confidence Interval

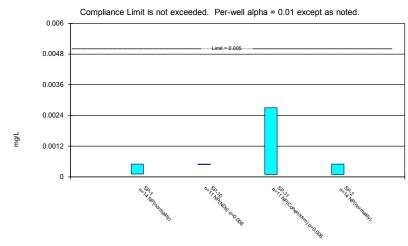
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Arsenic Analysis Run 6/26/2019 4:44 PM View: App IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG

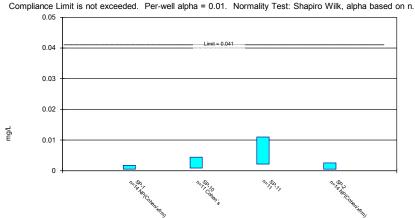
Non-Parametric Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

Constituent: Beryllium Analysis Run 6/26/2019 4:44 PM View: App IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Non-Parametric Confidence Interval

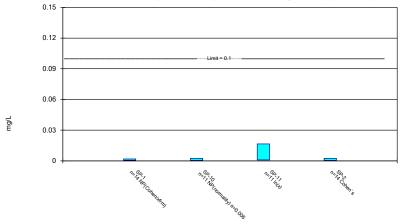


Constituent: Cadmium Analysis Run 6/26/2019 4:44 PM View: App IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

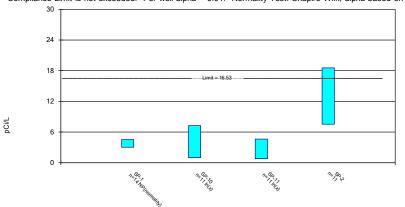


Constituent: Cobalt Analysis Run 6/26/2019 4:44 PM View: App IV

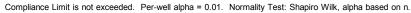
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

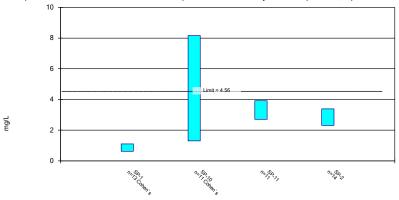
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Chromium Analysis Run 6/26/2019 4:44 PM View: App IV

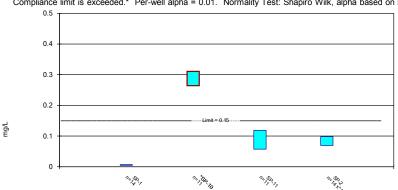
Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

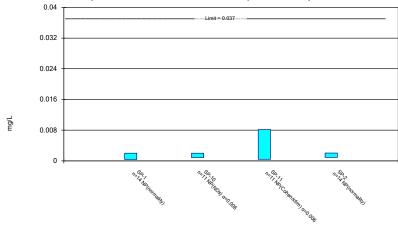
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric Confidence Interval



Constituent: Fluoride Analysis Run 6/26/2019 4:44 PM View: App IV

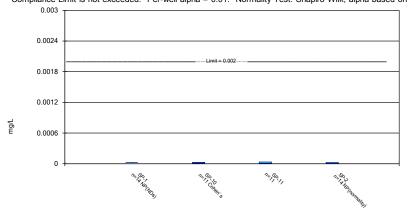
Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG


Parametric Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

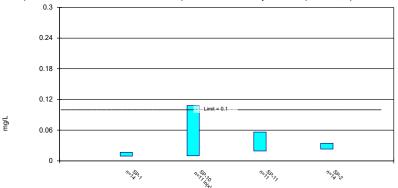
Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.



Constituent: Lead Analysis Run 6/26/2019 4:45 PM View: App IV Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Molybdenum Analysis Run 6/26/2019 4:45 PM View: App IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

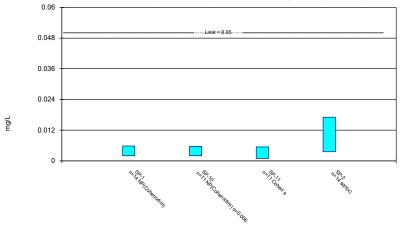
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.

0.006

0.004

0.0024

0.0012


Constituent: Thallium Analysis Run 6/26/2019 4:45 PM View: App IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.18 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Selenium Analysis Run 6/26/2019 4:45 PM View: App IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

STATISTICAL ANALYSIS SUMMARY BOTTOM ASH POND Northeastern Power Station Oologah, Oklahoma

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

engineers | scientists | innovators

941 Chatham Lane Suite 103 Columbus, Ohio 43221

December 17, 2019

CHA8473

TABLE OF CONTENTS

SECTION 1	l Execu	tive Summary	1
		n Ash Pond Evaluation	
2.1	Data V	Validation & QA/QC	2-1
2.2	Statist	tical Analysis	2-1
	2.2.1	Establishment of GWPSs	2-2
	2.2.2	Evaluation of Potential Appendix IV SSLs	2-2
	2.2.3	Evaluation of Potential Appendix III SSIs	2-2
2.3	Concl	usions	2-4
SECTION 3	3 Refere	ences	3-1

LIST OF TABLES

Table 1	Groundwater Data Summary
Table 2	Groundwater Protection Standards
Table 3	Appendix III Data Summary

LIST OF ATTACHMENTS

Attachment A	Certification by Qualified Professional Engineer
Attachment B	Field Sampling Forms
Attachment C	Laboratory Analytical Reports
Attachment D	Statistical Analysis Output

LIST OF ACRONYMS AND ABBREVIATIONS

AEP American Electric Power

ASD Alternate Source Demonstration

BAP Bottom Ash Pond

CCR Coal Combustion Residuals

CCV Continuing Calibration Verification

GWPS Groundwater Protection Standard

LCL Lower Confidence Limit

LFB Laboratory Fortified Blanks

LRB Laboratory Reagent Blanks

MCL Maximum Contaminant Level

NELAP National Environmental Laboratory Accreditation Program

OAC Oklahoma Administrative Code

QA Quality Assurance

QC Quality Control

SSI Statistically Significant Increase

SSL Statistically Significant Level

SU Standard Units

TDS Total Dissolved Solids

UPL Upper Prediction Limit

USEPA United States Environmental Protection Agency

UTL Upper Tolerance Limit

SECTION 1

EXECUTIVE SUMMARY

In accordance with the Oklahoma Department of Environmental Quality (ODEQ) and Oklahoma administrative code (OAC) regarding the disposal of coal combustion residuals (CCR) in landfills and surface impoundments (OAC 252:517), groundwater monitoring has been conducted at the Bottom Ash Pond (BAP), an existing CCR unit at the Northeastern Power Plant located in Oologah, Oklahoma.

Based on detection monitoring conducted in 2017 and 2018, statistically significant increases (SSIs) over background were concluded for boron, chloride, fluoride, total dissolved solids (TDS), and sulfate. Also, pH values below the lower prediction limit (LPL) resulted in SSIs below background as well. An alternative source was not identified at the time, so the BAP initiated an assessment monitoring program. Groundwater protection standards (GWPS) were set in accordance with OAC 252:517-9-6(h). While a lithium exceedance at SP-10 was observed above the GWPS, an alternate source demonstration (ASD) submitted to ODEQ on May 1, 2019 attributed the elevated lithium concentrations at SP-10 to natural variation (Geosyntec, 2019). On October 29, 2019, ODEQ provided a letter to AEP documenting acceptance of the ASD (ODEQ, 2019). Thus, the BAP remained in assessment monitoring. Two assessment monitoring events were conducted at the BAP in June and August 2019, in accordance with OAC 252:517-9-6(b) and OAC 252:517-9-6(d), respectively. Results of these events are documented in this report.

Groundwater data underwent several validation tests, including those for completeness, sample tracking accuracy, transcription errors, and consistent use of measurement units. No data quality issues were identified which would impact the usability of the data.

The monitoring data were submitted to Groundwater Stats Consulting, LLC for statistical analysis. Groundwater protection standards (GWPSs) were re-established for the Appendix IV parameters. Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether Appendix IV parameters were present at a statistically significant level (SSL) above the GWPS. An SSL was identified for lithium. Thus, either the unit will move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring. Certification of the selected statistical methods by a qualified professional engineer is documented in Attachment A.

SECTION 2

BOTTOM ASH POND EVALUATION

2.1 <u>Data Validation & QA/QC</u>

During the assessment monitoring program, two sets of samples were collected for analysis from each upgradient and downgradient well to meet the requirements of OAC 252.:517-9-6(b) (June 2019) and 252:517-9-6(d)(1) (August 2019). Samples from both sampling events were analyzed for the Appendix III and Appendix IV parameters. A summary of data collected during these assessment monitoring events may be found in Table 1. The field sampling forms and laboratory analytical reports are provided in Attachment B and Attachment C, respectively.

Chemical analysis was completed by an analytical laboratory certified by the National Environmental Laboratory Accreditation Program (NELAP). Quality assurance and quality control (QA/QC) samples completed by the analytical laboratory included the use of laboratory reagent blanks (LRBs), continuing calibration verification (CCV) samples, and laboratory fortified blanks (LFBs).

The analytical data were imported into a Microsoft Access database, where checks were completed to assess the accuracy of sample location identification and analyte identification. Where necessary, unit conversions were applied to standardize reported units across all sampling events. Exported data files were created for use with the SanitasTM v.9.6.23 statistics software. The export file was checked against the analytical data for transcription errors and completeness. No QA/QC issues were noted which would impact data usability.

2.2 Statistical Analysis

Statistical analyses for the BAP were conducted in accordance with the January 2017 *Statistical Analysis Plan* (AEP, 2017), except where noted below. Time series plots and results for all completed statistical tests are provided in Attachment D.

The data obtained in June and August 2019 were screened for potential outliers. The June 2017 value for combined radium at SP-1 was identified as an outlier and removed from the dataset. While the June 2019 lithium value at SP-1 was not flagged as an outlier by Tukey's test, it was removed from the dataset as it did not appear to represent the population of data at that well. The reported lithium value of 0.03 mg/L was J-flagged (estimated). Additional values collected during previous sampling events which were not identified as outliers but were removed from the dataset as they were not representative of the population include the July 2017 results for chromium and molybdenum at SP-10 and the August 2017 results for combined radium at SP-11. Multiple results for the August 2017 sampling event at SP-4 appeared substantially higher than subsequent events and these values were removed from the dataset as outliers.

2.2.1 Establishment of GWPSs

A GWPS was established for each Appendix IV parameter in accordance with OAC 252:517-9-6(h) and the *Statistical Analysis Plan* (AEP, 2017). The established GWPS was determined to be the greater value of the background concentration and the maximum contaminant level (MCL) or risk-based level specified in OAC 252:517-9-6(h) for each Appendix IV parameter. To determine background concentrations, an upper tolerance limit (UTL) was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events. Tolerance limits were calculated parametrically with 95% coverage and 95% confidence for arsenic, combined radium, fluoride, and lithium. Non-parametric tolerance limits were calculated for antimony, barium, cadmium, chromium, cobalt, lead, mercury, molybdenum, and selenium due to apparent non-normal distributions, for thallium due to a high non-detect frequency, and for beryllium due to both an apparent non-normal distribution and a high non-detect frequency. Tolerance limits and the final GWPSs are summarized in Table 2.

2.2.2 Evaluation of Potential Appendix IV SSLs

A confidence interval was constructed for each Appendix IV parameter at each compliance well. Confidence limits were generally calculated parametrically ($\alpha = 0.01$); however, non-parametric confidence limits were calculated in some cases (e.g., when the data did not appear to be normally distributed or when the non-detect frequency was too high). An SSL was concluded if the lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). Calculated confidence limits are shown in Attachment D.

The following SSL was identified at the Northeastern BAP:

• The LCL for lithium exceeded the GWPS of 0.15 mg/L at SP-10 (0.241 mg/L).

As a result, the Northeastern BAP will either move to an assessment of corrective measures or an alternative source demonstration will be conducted to evaluate if the unit can remain in assessment monitoring.

2.2.3 Evaluation of Potential Appendix III SSIs

While SSLs were identified, a review of the Appendix III results were also completed to assess whether concentrations of Appendix III parameters at the compliance wells exceeded background concentrations. Prediction limits were calculated for the Appendix III parameters to represent background values. As described in the January 2018 *Statistical Analysis Summary* report (Geosyntec, 2018), intrawell tests were used to evaluate potential SSIs for calcium, whereas interwell tests were used to evaluate potential SSIs for boron, chloride, fluoride, pH, sulfate, and TDS.

Prediction limits for the interwell tests were recalculated using data collected during the June and August 2019 assessment monitoring events. Eight data points (i.e., two samples from four background wells) were added to the background dataset for each interwell test. New data were

tested for outliers prior to being added to the background dataset. The updated prediction limits were calculated using a one-of-two retesting procedure, as during detection monitoring. This resulted in updated prediction limits similar to the values of the prediction limits calculated during detection monitoring. Therefore, the revised interwell prediction limits were used to evaluate potential SSIs for boron, chloride, fluoride, sulfate, TDS and pH.

For the intrawell tests, limited data made it possible to add only one data point (i.e., one sample from each compliance well) to each background dataset. Because one sample result is insufficient to compare against the existing background dataset, the prediction limits were not updated for the intrawell tests at this time. The intrawell prediction limits calculated during detection monitoring were used to evaluate potential SSIs for calcium.

Data collected during the August 2019 assessment monitoring events from each compliance well were compared to the prediction limits to evaluate results above background values. The results from these recent events and the newly or formerly established prediction limits are summarized in Table 4. The following exceedances were noted:

- Boron concentrations exceeded the interwell UPL of 0.610 mg/L at SP-10 (1.03 mg/L).
- Calcium concentrations exceeded the intrawell UPL of 157 mg/L at SP-2 (211 mg/L) and the intrawell UPL of 109 mg/L at SP-10 (216 mg/L).
- Chloride concentrations exceeded the interwell UPL of 769 mg/L at SP-2 (1070 mg/L) and SP-10 (1940 mg/L).
- Fluoride concentrations exceeded the interwell UPL of 4.39 mg/L at SP-10 (4.87 mg/L).
- The pH measurement exceeded the interwell UPL of 8.5 SU for the August measurements at SP-1 (9.0 SU), SP-10 (8.9 SU), and SP-11 (8.9 SU).
- Sulfate concentrations exceeded the interwell UPL of 90.0 mg/L at SP-11 (122 mg/L).
- TDS concentrations exceeded the interwell UPL of 1570 mg/L at SP-2 (2250 mg/L) and SP-10 (3450 mg/L).

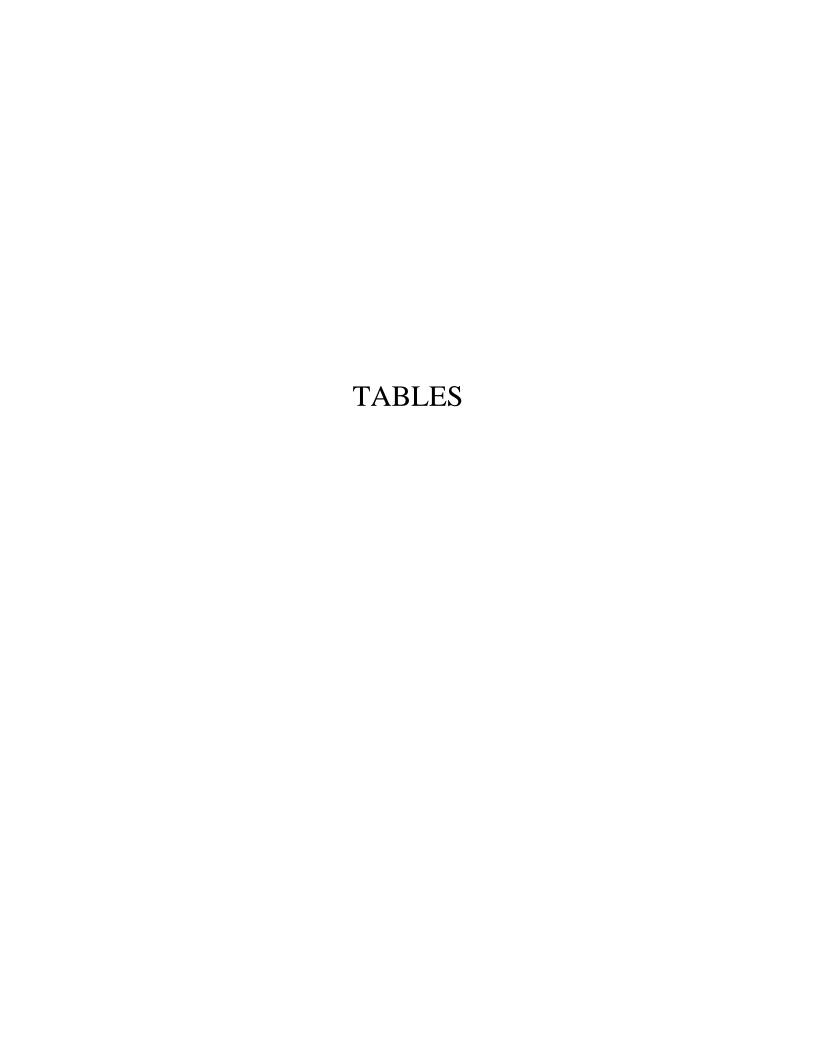
Based on these results, concentrations of Appendix III parameters exceeded background levels at compliance wells at the Northeastern BAP during assessment monitoring.

2.3 Conclusions

Assessment monitoring was conducted in accordance with the OAC 252:517-9. The laboratory and field data were reviewed prior to statistical analysis, with no QA/QC issues identified that impacted data usability. A review of outliers identified no potential outliers in the June and August 2019 data. GWPSs were re-established for the Appendix IV parameters. A confidence interval was constructed at each compliance well for each Appendix IV parameter; SSLs were concluded if the entire confidence interval exceeded the GWPS. An SSL was identified for lithium. Appendix III parameters were also evaluated, with exceedances identified for boron, calcium, chloride, fluoride, pH, sulfate, and TDS.

Based on this evaluation, the Northeastern BAP CCR unit will either move to an assessment of corrective measures or an ASD will be conducted to evaluate if the unit can remain in assessment monitoring.

SECTION 3


REFERENCES

American Electric Power (AEP). 2017. Statistical Analysis Plan – Northeastern Power Station. January 2017.

Geosyntec Consultants (Geosyntec). 2018. Statistical Analysis Summary – Bottom Ash Pond, Northeastern Power Station, Oologah, Oklahoma. January 15, 2018.

Geosyntec. 2019. Alternative Source Demonstration Report – State CCR Rule. Northeastern Power Station Bottom Ash Pond. April.

Oklahoma Department of Environmental Quality. 2019. Letter Transmittal – Alternate Source Demonstration for Lithium – Bottom Ash Pond. October.

Table 1 - Groundwater Data Summary Northeastern - Bottom Ash Pond

Component	Unit	S	P-1	SI	?-2	SI	P-4	SI	P-5	SP	-10	SP	-11
component		6/20/2019	8/26/2019	6/20/2019	8/28/2019	6/20/2019	8/26/2019	6/20/2019	8/26/2019	6/20/2019	8/26/2019	6/20/2019	8/26/2019
Antimony	μg/L	0.930	0.430	1.34	1.22	0.300 J	0.250	0.500 U	0.0600 J	0.650	0.610	0.300 J	0.370
Arsenic	μg/L	1.44	0.730	1.43	1.53	0.830	1.64	59.9	49.3	3.66	3.00	4.18	6.30
Barium	μg/L	242	160	868	1220	337	359	2410	2340	3880	3060	169	492
Beryllium	μg/L	0.200 J	0.0800 J	0.100 J	0.0700 J	0.500 U	0.101	0.500 U	0.0600 J	0.500 U	0.0800 J	0.500 U	0.0400 J
Boron	mg/L	0.198	0.124	0.109	0.173	0.325	0.365	0.202	0.220	0.916	1.03	0.550	0.304
Cadmium	μg/L	0.100 J	0.0900	0.0900 J	0.0500	0.0700 J	0.0500	0.200 U	0.0200 J	0.200 U	0.0300 J	0.0600 J	0.130
Calcium	mg/L	126	120	58.2	211	56.4	182	48.5	128	50.3	216	65.6	139
Chloride	mg/L	25.2	9.00	357	1070	450	458	675	697	1780	1940	137	129
Chromium	μg/L	0.700 J	1.49	0.900 J	0.701	1.06	1.01	0.800 J	0.335	8.76	1.61	6.71	1.47
Cobalt	μg/L	5.54	0.481	0.434	0.568	0.388	1.07	0.598	0.485	0.743	1.06	0.948	2.73
Combined Radium	pCi/L	2.75	2.75	7.94	8.72	3.75	3.24	13.0	11.6	26.4	8.11	0.810	1.62
Fluoride	mg/L	0.770	0.525 J	2.69	2.69	3.24	2.99	3.06	2.79	6.40	4.87	1.67	2.23
Lead	μg/L	0.650	0.835	0.400 J	0.334	1.07	0.596	0.701	0.545	0.300 J	0.449	0.719	0.764
Lithium	mg/L	0.0300 J	0.00285	0.0620	0.0582	0.0680	0.0554	0.111	0.0928	0.290	0.241	0.0470	0.0337
Mercury	mg/L	0.0000100 J	0.0000250 U	0.0000250 U	0.0000250 U	0.00000700 J	0.0000250 U	0.00000800 J	0.0000250 U	0.0000100 J	0.0000250 U	0.0000100 J	0.0000250 U
Molybdenum	μg/L	12.1	5.86	25.0	22.3	2.00 J	2.00 J	10.0 U	1.00 J	9.00 J	8.22	10.0 U	5.70
Selenium	μg/L	9.90	3.40	2.90	3.70	0.400 J	0.600	1.00 U	0.100 J	1.00 U	0.400	0.300 J	0.800
Total Dissolved Solids	mg/L	452	438	1040	2250	1130	1170	1430	1450	3510	3450	1000	970
Sulfate	mg/L	61.4	48.0	28.5	14.0	58.0	61.0	0.900 J	3.00	30.3	29.0	203	122
Thallium	μg/L	2.00 U	0.100 J	2.00 U	0.100 J	2.00 U	0.500 U	2.00 U	0.500 U	2.00 U	0.500 U	2.00 U	0.500 U
рН	SU	7.09	9.01	6.79	8.54	7.12	8.78	7.33	8.80	7.78	8.87	6.84	8.86

Notes:

μg/L: micrograms per liter mg/L: milligrams per liter pCi/L: picocuries per liter

SU: standard unit

U: Parameter was not present in concentrations above the method detection limit and is reported as the reporting limit

J: Estimated value. Parameter was detected in concentrations below the reporting limit

Table 2: Groundwater Protection Standards
Northeastern Plant - Bottom Ash Pond

Constituent Name	MCL	CCR Rule-Specified	Calculated UTL
Antimony, Total (mg/L)	0.006		0.0051
Arsenic, Total (mg/L)	0.01		0.06
Barium, Total (mg/L)	2		2.41
Beryllium, Total (mg/L)	0.004		0.002
Cadmium, Total (mg/L)	0.005		0.0025
Chromium, Total (mg/L)	0.1		0.042
Cobalt, Total (mg/L)	n/a	0.006	0.018
Combined Radium, Total (pCi/L)	5		16.52
Fluoride, Total (mg/L)	4		4.47
Lead, Total (mg/L)	n/a	0.015	0.011
Lithium, Total (mg/L)	n/a	0.04	0.15
Mercury, Total (mg/L)	0.002		0.00003
Molybdenum, Total (mg/L)	n/a	0.1	0.01
Selenium, Total (mg/L)	0.05		0.005
Thallium, Total (mg/L)	0.002		0.002

Notes:

Grey cell indicates calculated UTL is higher than MCL or CCR Rule-specified value.

MCL = Maximum Contaminant Level

Calculated UTL (Upper Tolerance Limit) represents site-specific background values.

The higher of the calculated UTL or MCL/Rule-Specified Level is used as the GWPS.

Table 3: Appendix III Data Summary Northeastern Plant - Bottom Ash Pond

Danamatan	Unit	Description	Description SP-1 SP-2		-2	SP-10		SP-11		
Parameter	Unit	Description	6/20/2019*	8/26/2019	6/20/2019*	8/26/2019	6/20/2019*	8/26/2019	6/20/2019*	8/26/2019
Boron	mg/L	Interwell Background Value (UPL)			0.6	510				
Bolon	mg/L	Detection Monitoring Result	0.198	0.124	0.109	0.173	0.916	1.03	0.550	0.304
Calcium	mg/L	Intrawell Background Value (UPL)	13	66	15	57	10	19	18	94
Calcium	mg/L	Detection Monitoring Result	126	120	58.2	211	50.3	216	65.6	139
Chloride	mg/L	Interwell Background Value (UPL)				76	59			
Cilioride	mg/L	Detection Monitoring Result	25.2	9.00	357	1070	1780	1940	137	129
Fluoride	mg/L	Interwell Background Value (UPL)	4.39							
Fluoride	mg/L	Detection Monitoring Result	0.770	0.525	2.69	2.69	6.40	4.87	1.67	2.23
		Interwell Background Value (UPL)				8.	.5			
pН	SU	Interwell Background Value (LPL)				7.	.1			
		Detection Monitoring Result	7.1	9.0	6.8	8.5	7.8	8.9	6.8	8.9
Sulfate	mg/L	Interwell Background Value (UPL)				90	0.0			
Sullate	mg/L	Detection Monitoring Result	61.4	48.0	28.5	14.0	30.3	29.0	203	122
Total Dissolved	mg/L	Interwell Background Value (UPL)				15	70			
Solids	mg/L	Detection Monitoring Result	452	438	1040	2250	3510	3450	1000	970

Notes:

UPL: Upper prediction limit LPL: Lower prediction limit

 $Bold\ values\ exceed\ the\ background\ value.$

*252:517-9-6(b) sampling event

Background values are shaded gray.

ATTACHMENT A Certification by Qualified Professional Engineer

Certification by Qualified Professional Engineer

I certify that the selected and above described statistical method is appropriate for evaluating the groundwater monitoring data for the Northeastern Bottom Ash Pond CCR management area and that the requirements of OAC 252:517-9-4(g) have been met.

DAVID ANTI	HONY MILLER	TOPESSIONAL CL
Printed Name of Licen	sed Professional Engineer	DAVID ANTHONY OF MILLER MILLER 26057
Dourd Am	thony Miller	AHOMI
Signature		
26057	OKLAHOMA	12.18.19
License Number	Licensing State	Date

ATTACHMENT B Field Sampling Forms

NORTHEASTERN POWER PLANT GROUNDWATER SAMPLING DATA FORM

SAMPLED BY: King Mi Donald . DATE: 06/20/19

Well Identification Number	SP-1	SP-2	SP-4	SP-5	SP-10	SP-11
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Samples	Appendix III & IV					
Depth to Water (ft)	16.88	23,31	22,53	4.82	12,32	4.72
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	37.99	38.19	38.30	78.00	54.10	34.51
Height of Water Column (ft.)	21,11	14.88	15.77	73.18	41.78	29.79
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	3,44	2,43	2,57	11.93	6,81	4,86
Water Removed From Well (gallons)	12,0	6,25	4,0	24,0	18.75	8.25
Method of Removal	Pump	Pump	Pump	Pump	Pump	Pimp
Was Well Purged Dry?	No	Yts	Yts	Yes	Yts	YES
pH (standard units)	7.09	6,79	7,12	7,33	7.78	6,84
Temperature (°C)	20,0	19.6	20,5	21,2	19.8	21.7
Conductivity (µmhos/cc)	690	3040	1710	6620	7270	1420
Turbidity (NTU)	28.7	40,2	57.1	20,7	701	113
Appearance	Cifan	CHAN	5216HTLY TURBIO	Culan	SUBITILY TURDID	SUIGHTU9 TUNDID
Odor	Non 6	NON (-	None	NONE	Nont	None
Ohio Containers	250 mL Unpres 250mL HNO3 3 x 1L HNO3					
Shreveport Containers	250 mL Unpres 250mL HNO3					
Sample Time	1620	1955	1650	1715	1515	1535
Sample Date	06/20/19	06/20/19	06/20/19	06/20/19	06/20/19	06/20/19

DUPLICATE

For 2" well multiply by	0.163
For 4" well multiply by	0.653

NORTHEASTERN POWER PLANT GROUNDWATER SAMPLING DATA FORM

SAMPLED BY: KANNY MC DENALD . DATE: 06/20-21/19

Well Identification Number	SP-6	SP-7			
Activities	Gauge	Gauge			
Samples	Appendix III & IV	Appendix III & IV			
Depth to Water (ft)	59,07	32,84			
Water Level Elevation (ft. NGVD)					
Measured Depth Total Depth of Well (ft.)	73.93	84.02			
Height of Water Column (ft.)	14.86	51.18	e	¥	
Well Size (I.D.) (inches)	2	2			
Volume of Water in Well (gallons)	2,42	8,34			
Water Removed From Well (gallons)	2,0	7,0			
Method of Removal	Pump	Pump			
Was Well Purged Dry?	YES	4+5			
pH (standard units)	6.78	6.83			
Temperature (°C)	20,7	22,8			
Conductivity (µmhos/cc)	19030	2/220			
Turbidity (NTU)	78,2	50,6			
Appearance	Clian	Clan			
Odor	NON-	nont			
Ohio Containers	250 mL Unpres 250mL HNO3 3 x 1L HNO3	250 mL Unpres 250mL HNO3 3 x 1L HNO3			
Shreveport Containers	250 mL Unpres 250mL HNO3	250 mL Unpres 250mL HNO3			
Sample Time	1430	1450			
Sample Date	06/21/19	06/21/19			

METALS UNLY METALSTWA

For 2" well multiply by	0.163
For 4" well multiply by	0.653

NORTHEASTERN POWER PLANT GROUNDWATER SAMPLING DATA FORM

SAMPLED BY: KINNY MIDERALD /MATT HAMILTON DATE: 08/26/19

Well Identification Number	SP-1	SP-2	SP-4	SP-5	SP-10	SP-11
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Samples	Appendix III & IV					
Depth to Water (ft)	17.51	28,43	25,00	6.39	3,85	14.60
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	37.99	38.19	38.30	78.00	54.10	34.51
Height of Water Column (ft.)	20,48	9.76	13,30	71.61	50,25	19,91
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	3,34	1,59	2.17	11.67	8.19	3,25
Water Removed From Well (gallons)	12.0	4,0	6,0	28.25	18.25	5.0
Method of Removal	Pump	Pump	Pomp	Pump	Pump	Pump
Was Well Purged Dry?	NO	Yts	Yts	Yts	Yes	YES
pH (standard units)	9,01	8,54	8.78	8,80	8187	8,86
Temperature (°C)	21.91	23,35	22,81	23,24	23,02	22,69
Conductivity (µmhos/cc)	899	4390	2200	2930	6620	1560
Turbidity (NTU)	78:1	196	199	935	24.4	128
Appearance	Cunn	crem	SUCHTEY	CLEAN	CLEAN DEACHTING	SLIGHTLY
Odor	Nont	Work	Nort	Nont	NONT	None
Ohio Containers	250mL HNO3 3 x 1L HNO3					
Shreveport Containers	1L Unpres 250mL HNO3	1L Unpres 250mL HNO3	1L Unpres 250mL HNO3	1L Unpres 250mL HNO3	1L Unpres 250mL HNO3	1L Unpres 250mL HNO3
Sample Time	1650	1640	1705	1720	1622	1635
Sample Date	08/26/19	08/20/19	08/26/19	08/26/19		

For 2" well multiply by	0.163
For 4" well multiply by	0.653

BAP BUPLICATE

NORTHEASTERN POWER PLANT GROUNDWATER SAMPLING DATA FORM

SAMPLED BY: Konny Mi Donald /MHTT HAMILTON DATE: 08/26/19

Well Identification Number	SP-3			
Activities	Gauge			
Samples	NA			
Depth to Water (ft)	16.28			
Water Level Elevation (ft. NGVD)				
Measured Depth Total Depth of Well (ft.)	37.90			
Height of Water Column (ft.)	21.62			
Well Size (I.D.) (inches)	2			
Volume of Water in Well (gallons)	7,52			
Water Removed From Well (gallons)				
Method of Removal	_			
Was Well Purged Dry?)			
pH (standard units))			
Temperature (°C)				
Conductivity (µmhos/cc)	-			
Turbidity (NTU)	_			
Appearance				
Odor		ā		
Ohio Containers	_			
Shreveport Containers	~			
Sample Time	-			
Sample Date	_			

For 2" well multiply by	0.163
For 4" well multiply by	0.653

ATTACHMENT C Laboratory Analytical Reports

AEP ANALYTICAL CHEMISTRY SERVICES Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40009 Company: SEP - Environmental (JP-W) Address: 502 N. Allen Avenue Contact: Jill Parker-Witt Shreveport, LA 7110

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816

Fay: (318) 673-3960

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 226451 Collected Date: 06/20/2019 By: KM

Cust Sample ID: SP-1 Location: Northeastern PP CCR Matrix: Water

Sample Desc.:

Metals (226451)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.00001	mg/L	0.000005	1	EPA 7470A 1994	06/27/2019 16:15	J	LNM
Water (226451)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	452	mg/L	2	1	SM 2540 C-2011	06/24/2019 17:53		JTD

AEP Sample ID: 226452 Collected Date: 06/20/2019 By: KM

Cust Sample ID: SP-2 Location: Northeastern PP CCR Matrix: Water Sample Desc.:

Metals (226452)

11101410 (220102)											
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech			
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/27/2019 16:25	U	LNM			
Water (226452)											
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech			
Solids, Total Dissolved (TDS)	1044	mg/L	2	1	SM 2540 C-2011	06/24/2019 17:53		JTD			

 AEP Sample ID : 226453
 Collected Date: 06/20/2019
 By: KM

Cust Sample ID: SP-4 Location: Northeastern PP CCR Matrix: Water

Sample Desc.:

Metals (226453) Parameter Value Unit Det. Limit Dil./Conc. Method **Analysis Date/Time** Tech Codes 0.000007 mg/L 0.000005 EPA 7470A 1994 06/27/2019 16:28 LNM Mercury

Water (226453) **Analysis Date/Time** Parameter Value Unit Det. Limit Dil./Conc. Method Codes Tech Solids, Total Dissolved (TDS) 1128 2 1 SM 2540 C-2011 06/24/2019 17:53 JTD mg/L

AEP ANALYTICAL CHEMISTRY SERVICES Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40009 Company: SEP - Environmental (JP-W) Address: 502 N. Allen Avenue Contact: Jill Parker-Witt Shreveport, LA 7110

Contact: Jill Parker-Witt Shreveport, LA 71101 **Phone:** (318) 673-3816 **Fax:** (318) 673-3960

AEP Sample ID: 226454 Collected Date: 06/20/2019 By: KM

Cust Sample ID: SP-5 Location: Northeastern PP CCR Matrix: Water

Metals (226454)

Sample Desc.:

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.000008	mg/L	0.000005	1	EPA 7470A 1994	06/27/2019 16:32	J	LNM
Water (226454)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	1428	mg/L	2	1	SM 2540 C-2011	06/24/2019 17:53		JTD

AEP Sample ID: 226455 Collected Date: 06/20/2019 By: KM

Cust Sample ID: SP-10 Location: Northeastern PP CCR Matrix: Water

Sample Desc.:

Metals (226455) Value Det. Limit Dil./Conc. Method Parameter Unit **Analysis Date/Time** Codes Tech 0.00001 mg/L 0.000005 1 EPA 7470A 1994 06/27/2019 16:35 LNM Mercury Water (226455)

Water (226455)ParameterValueUnitDet. LimitDil./Conc.MethodAnalysis Date/TimeCodesTechSolids, Total Dissolved (TDS)3512mg/L21SM 2540 C-201106/24/2019 17:53JTD

AEP Sample ID: 226456 Collected Date: 06/20/2019 By: KM

Cust Sample ID: SP-11 Location: Northeastern PP CCR Matrix: Water Sample Desc.:

Metals (226456)

Parameter Det. Limit Dil./Conc. Value Unit Method **Analysis Date/Time** Tech Codes 0.00001 mg/L 0.000005 1 EPA 7470A 1994 06/27/2019 16:38 J LNM Mercury Water (226456)

Parameter Value Unit Det. Limit Dil./Conc. Method **Analysis Date/Time** Codes Tech 1000 Solids, Total Dissolved (TDS) 2 1 SM 2540 C-2011 06/24/2019 17:53 JTD mg/L

AEP ANALYTICAL CHEMISTRY SERVICES Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40009 Company: SEP - Environmental (JP-W) Address: 502 N. Allen Avenue Shreveport, LA 71101

Phone: (318) 673-3816

73-3816 **Fax:** (318) 673-3960

AEP Sample ID: 226457 Collected Date: 06/20/2019 By: KM

Cust Sample ID: Duplicate BAP Location: Northeastern PP CCR Matrix: Water

Sample Desc.:

Metals (226457)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.000007	mg/L	0.000005	1	EPA 7470A 1994	06/27/2019 16:41	J	LNM
Water (226457)			•					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	466	mg/L	2	1	SM 2540 C-2011	06/26/2019 13:56		JTD

AEP Sample ID: 226458 Collected Date: 06/20/2019 By: KM
Cust Sample ID: Equipment Blank BAP Location: Northeastern PP CCR Matrix: Water

Sample Desc.:

Metals (226458)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/27/2019 16:44	U	LNM

	Quality Control Data											
	* Quality control units are the same as reported analytical results											
			Blank Standard					Spike		Surrogate	Duplicate %	
Date	Parameter Sa	ample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
6/27/2019	Mercury 226	6449.1	<0.00000	0.001	0.00096	96.0	0.001	0.0009542	95.4		0.4	LNM
6/24/2019	Solids, Total Dissolved (TDS)		<2	100.6	96	95.4	1022	1010	98.8		4.6	JTD
6/26/2019	Solids, Total Dissolved (TDS) 226	6457	<2	100.6	92	91.5	1000	1002	100.2		1.7	JTD

Code Code Description

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

U Analyte concentration below MDL.

17-Jul-19

Quality Assurance Officer Report Date

Shreveport, LA 71101				rogran	n. Coa	Com	bustion F	Program: Coal Combustion Residuals (CCR)	CRCR				***
Jonathan Barnhill (318-673-3803) Contacts: John Davis (318-673-3811)				Ġ	8	Site Contact:	tact:			Date:		00	COC/Order #: OC #
Project Name: Northeastern PP CCR							250 mL	Field-filter 500 mL	250 ml	Three			40009
Contact Name: Jill Parker-Witt	Analysis T	urnaround	Analysis Turnaround Time (in Calendar Days)	lendar Da	ays)		bottle, pH<2.	bottle, then		10th*) 1			
Contact Phone: 318-673-3816	© Nee	Need Results by July 12	by July 12				HNO3	HNO3	0-6C	pH<2, HNO3	H		
Sampler(s): Kenneth McDonald						3		nd Mn		28			
						Initial		l Fe aı		Ra-2:		Т	
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of	Sampler(s) I	Mercury	dissolved	TDS	Ra-226, F			Sample Specific Notes:
SP-1	6/20/2019	1620	G	GW	2		×		×				226451.1-226451.2
SP-2	6/20/2019	1555	ര	GW	2		×		×				126452.1-226452.7
SP-4	6/20/2019	1650	G	GW	2		×		×			2	26453,1-226458.2
SP-5	6/20/2019	1715	G	GW	2		×		×			2	26454, 1-226454.2
SP-10	6/20/2019	1515	G	GW	2		×		×			2	26455,1-226456,2
SP-11	6/20/2019	1535	ഹ-	GW	2		×		×			2	26456,1-226456,2
DUPLICATE BAP	6/20/2019	1620	G	GW	2		×		×			N	26457.1-226457.2
EQUIPMENT BLANK BAP	6/20/2019	1725	G	8	_		×					N	26458
										,			
Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	NO3; 5=Na0	H; 6= Oth	er	_; F= fil	F= filter in field	eld.	4	F4	1	4			
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th s	ample.											
Special Instructions/QC Requirements & Comments:	ts:												
	* * * *	**** NEED		SUL	.TS	BY.	RESULTS BY JULY 12	12					
Relinquished by: // And	Company: CAULF	2194		Date/Time: 06/24/19	116/1	1008	Received by:					Date	Date/Time:
Relinquished by:	Company:			Date/Time:	ē:	Ť	Received by:	• •				Date	Date/Time:
Relinquished by:	Company:	5		Date/Time:	ë	- TI	Received in	91	Johnson	aon		Date	Date/Time: 04/24/19 10:15
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	d for Coal C	ombustio	n Residual	(CCR) S	ampling	- Shre	veport, Rev	- 1				ŀ	

Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave.

Chain of Custody Record

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type	1	Delivery Type						
Bag Action Pak PCB Mailer Bottle	UPS	FEDEX	US Mail	Walk in	Shuttle			
Other	Othe	r						
	Tracking #							
Client Sill Parker - Witt	4.04.44.64.44.44.64.64.64.64.64.64.64.64.64	****	ample Matr	rix	190			
Received By Rose Ha Dohnison	DGA	PCB Oil	Water	Oil	Soil			
Received Date Open Date 06-24-2019 06-24-2019	— Solid	Liquid	Other		<u>E</u>)			
Container Temp Read	<u>. w</u> /	Project I.D						
Correction Factor Thermometer Serial #F04103	Were sa	amples receive	ed on ice?	VES	NO			
Corrected Temp		impies receive	ed office;	41.5	110			
Did container arrive in good condition?	VES	NO						
Was sample documentation received?	YES	NO						
Was documentation filled out properly?	YÈS	NO						
Were samples labeled properly?	YES	NO						
Were correct containers used?	(ES)	NO						
Were the pH's of samples appropriately checked?	YES	NO						
Total number of sample containers					en de			
Was any corrective action taken?	NO	Person Coi						
Comments		Date & Tin	ne					
	716			i.				
					-			

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 7/12/2019

SP-1

Sample Number: 192190-001 Date Collected: 06/20/2019 16:20 Date Received: 6/25/2019

		Data					
Parameter Res	ılt Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B 0.1	98 mg/L		0.1	0.02	DAM	07/09/2019 16:23	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	26 mg/L		0.3	0.04	DAM	07/09/2019 16:23	EPA 200.7-1994, Rev. 4.4
Lithium, Li 0	03 mg/L	J	0.03	0.009	DAM	07/09/2019 16:23	EPA 200.7-1994, Rev. 4.4
Antimony, Sb 0	93 ug/L		0.5	0.1	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Arsenic, As	44 ug/L		0.5	0.2	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Barium, Ba	42 ug/L		0.5	0.1	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Beryllium, Be).2 ug/L	J	0.5	0.1	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd).1 ug/L	J	0.2	0.05	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Chromium, Cr).7 ug/L	J	1	0.2	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Cobalt, Co 5	54 ug/L		0.2	0.1	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Lead, Pb 0.6	50 ug/L		0.5	0.1	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	2.1 ug/L		10	2	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Selenium, Se	.9 ug/L		1	0.2	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Thallium, TI <).5 ug/L	U	2	0.5	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Chloride, Cl 2s	i.2 mg/L		0.04	0.01	CRJ	06/27/2019 00:44	EPA 300.1-1997, Rev. 1.0
Fluoride, F 0	77 mg/L		0.06	0.01	CRJ	06/27/2019 00:44	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4 6	.4 mg/L		0.4	0.06	CRJ	06/27/2019 00:44	EPA 300.1-1997, Rev. 1.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	2.033	pCi/L	0.18	0.52	ttp	7/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	0.712	pCi/L	0.12	0.14	sdw	7/9/2019	SW-846 9315-1986,Rev. 0

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-2

Sample Number: 192190-002 Date Collected: 06/20/2019 15:55 Date Received: 6/25/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.109	mg/L		0.1	0.02	DAM	07/09/2019 16:26	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	58.2	mg/L		0.3	0.04	DAM	07/09/2019 16:26	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.062	mg/L		0.03	0.009	DAM	07/09/2019 16:26	EPA 200.7-1994, Rev. 4.4
Antimony, Sb	1.34	ug/L		0.5	0.1	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.43	ug/L		0.5	0.2	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Barium, Ba	868	ug/L		0.5	0.1	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.1	ug/L	J	0.5	0.1	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.09	ug/L	J	0.2	0.05	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.9	ug/L	J	1	0.2	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.434	ug/L		0.2	0.1	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.4	ug/L	J	0.5	0.1	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	25.0	ug/L		10	2	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Selenium, Se	2.9	ug/L		1	0.2	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.5	ug/L	U	2	0.5	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Chloride, Cl	357	mg/L		1	0.3	CRJ	06/26/2019 20:31	EPA 300.1-1997, Rev. 1.0
Fluoride, F	2.69	mg/L		0.2	0.04	CRJ	06/27/2019 01:07	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	28.5	mg/L		1	0.2	CRJ	06/27/2019 01:07	EPA 300.1-1997, Rev. 1.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	4.47	pCi/L	0.19	0.44	ttp	7/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	3.47	pCi/L	0.25	0.12	sdw	7/9/2019	SW-846 9315-1986,Rev. 0

The carrier recovery (125.22%) is outside the established range of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Sp-4

Sample Number: 192190-003 Date Collected: 06/20/2019 16:50 Date Received: 6/25/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.325	mg/L		0.1	0.02	DAM	07/09/2019 16:53	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	56.4	mg/L		0.3	0.04	DAM	07/09/2019 16:53	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.068	mg/L		0.03	0.009	DAM	07/09/2019 16:53	EPA 200.7-1994, Rev. 4.4
Antimony, Sb	0.3	ug/L	J	0.5	0.1	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Arsenic, As	0.83	ug/L		0.5	0.2	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Barium, Ba	337	ug/L		0.5	0.1	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
The MS/MSD is outside the accepta	able rang	e of 75-1	125%. The F	RPD betv	ween the N	MS/MSD exceed	ls 20%.	
Beryllium, Be	< 0.1	ug/L	U	0.5	0.1	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.07	ug/L	J	0.2	0.05	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1.06	ug/L		1	0.2	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.388	ug/L		0.2	0.1	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Lead, Pb	1.07	ug/L		0.5	0.1	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	2	ug/L	J	10	2	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.4	ug/L	J	1	0.2	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.5	ug/L	U	2	0.5	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Chloride, Cl	450	mg/L		1	0.3	CRJ	06/26/2019 20:54	EPA 300.1-1997, Rev. 1.0
Fluoride, F	3.24	mg/L		0.2	0.04	CRJ	06/27/2019 01:52	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	58.0	mg/L		1	0.2	CRJ	06/27/2019 01:52	EPA 300.1-1997, Rev. 1.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	2.931	pCi/L	0.19	0.51	ttp	7/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	0.82	pCi/L	0.12	0.11	sdw	7/9/2019	SW-846 9315-1986,Rev. 0

The carrier recovery (124.33%) is outside the established range of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-5

Sample Number: 192190-004 Date Collected: 06/20/2019 17:15 Date Received: 6/25/2019

		Data					
Parameter Res	It Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B 0.2)2 mg/L		0.1	0.02	DAM	07/09/2019 16:57	EPA 200.7-1994, Rev. 4.4
Calcium, Ca 48	.5 mg/L		0.3	0.04	DAM	07/09/2019 16:57	EPA 200.7-1994, Rev. 4.4
Lithium, Li 0.1	1 mg/L		0.03	0.009	DAM	07/09/2019 16:57	EPA 200.7-1994, Rev. 4.4
Antimony, Sb < 0	.1 ug/L	U	0.5	0.1	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Arsenic, As 59	.9 ug/L		0.5	0.2	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Barium, Ba 24	I0 ug/L		0.5	0.1	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Beryllium, Be < 0	.1 ug/L	U	0.5	0.1	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd < 0.)5 ug/L	U	0.2	0.05	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	.8 ug/L	J	1	0.2	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Cobalt, Co 0.5	98 ug/L		0.2	0.1	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Lead, Pb 0.7)1 ug/L		0.5	0.1	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	2 ug/L	U	10	2	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Selenium, Se < 0	.2 ug/L	U	1	0.2	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Thallium, TI < 0	.5 ug/L	U	2	0.5	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Chloride, Cl 6	75 mg/L		1	0.3	CRJ	06/26/2019 21:17	EPA 300.1-1997, Rev. 1.0
Fluoride, F 3.	06 mg/L		0.2	0.04	CRJ	06/27/2019 02:15	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	.9 mg/L	J	1	0.2	CRJ	06/27/2019 02:15	EPA 300.1-1997, Rev. 1.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	5.967	pCi/L	0.23	0.54	ttp	7/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	7.01	pCi/L	0.54	0.23	sdw	7/9/2019	SW-846 9315-1986,Rev. 0

The carrier recovery (111.55%) is outside the established range of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-10

Sample Number: 192190-005 Date Collected: 06/20/2019 15:15 Date Received: 6/25/2019

			Data					
Parameter Res	ult U	Jnits	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B 0.9	16 m	ng/L		0.1	0.02	DAM	07/09/2019 17:01	EPA 200.7-1994, Rev. 4.4
Calcium, Ca 5).3 m	ng/L		0.3	0.04	DAM	07/09/2019 17:01	EPA 200.7-1994, Rev. 4.4
Lithium, Li 0.2	90 m	ng/L		0.03	0.009	DAM	07/09/2019 17:01	EPA 200.7-1994, Rev. 4.4
Antimony, Sb 0	65 u	ıg/L		0.5	0.1	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Arsenic, As	66 u	ıg/L		0.5	0.2	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Barium, Ba 38	80 u	ıg/L		0.5	0.1	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Beryllium, Be <).1 u	ıg/L	U	0.5	0.1	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd < 0	05 u	ıg/L	U	0.2	0.05	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Chromium, Cr 8	76 u	ıg/L		1	0.2	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Cobalt, Co 0.7	43 u	ıg/L		0.2	0.1	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Lead, Pb).3 u	ıg/L	J	0.5	0.1	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	9 u	ıg/L	J	10	2	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Selenium, Se <).2 u	ıg/L	U	1	0.2	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Thallium, TI <).5 u	ıg/L	U	2	0.5	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Chloride, Cl	80 m	ng/L		5	2	CRJ	06/26/2019 22:03	EPA 300.1-1997, Rev. 1.0
Fluoride, F	40 m	ng/L		0.3	0.07	CRJ	06/27/2019 03:01	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4).3 m	ng/L		2	0.3	CRJ	06/27/2019 03:01	EPA 300.1-1997, Rev. 1.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.4	pCi/L	0.14	0.39	ttp	7/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	25	pCi/L	1.1	0.25	sdw	7/9/2019	SW-846 9315-1986,Rev. 0

The carrier recovery (145.83%) is outside the established range of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-11

Sample Number: 192190-006 Date Collected: 06/20/2019 15:35 Date Received: 6/25/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.550 mg/L		0.1	0.02	DAM	07/09/2019 17:13	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	65.6 mg/L		0.3	0.04	DAM	07/09/2019 17:13	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.047 mg/L		0.03	0.009	DAM	07/09/2019 17:13	EPA 200.7-1994, Rev. 4.4
Antimony, Sb	0.3 ug/L	J	0.5	0.1	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Arsenic, As	4.18 ug/L		0.5	0.2	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Barium, Ba	169 ug/L		0.5	0.1	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.1 ug/L	U	0.5	0.1	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.06 ug/L	J	0.2	0.05	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	6.71 ug/L		1	0.2	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.948 ug/L		0.2	0.1	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.719 ug/L		0.5	0.1	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	< 2 ug/L	U	10	2	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.3 ug/L	J	1	0.2	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.5 ug/L	U	2	0.5	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Chloride, Cl	137 mg/L		1	0.3	CRJ	06/26/2019 22:26	EPA 300.1-1997, Rev. 1.0
Fluoride, F	1.67 mg/L		0.2	0.04	CRJ	06/27/2019 03:24	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	203 mg/L		10	2	CRJ	06/26/2019 22:26	EPA 300.1-1997, Rev. 1.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	0.42	pCi/L	0.18	0.61	ttp	7/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	0.39	pCi/L	0.11	0.20	sdw	7/9/2019	SW-846 9315-1986,Rev. 0

The carrier recovery (147.78%) is outside the established range of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Duplicate BAP

Sample Number: 192190-007 Date Collected: 06/20/2019 16:20 Date Received: 6/25/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.208	mg/L		0.1	0.02	DAM	07/09/2019 17:42	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	119	mg/L		0.3	0.04	DAM	07/09/2019 17:42	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.034	mg/L		0.03	0.009	DAM	07/09/2019 17:42	EPA 200.7-1994, Rev. 4.4
Antimony, Sb	0.91	ug/L		0.5	0.1	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.31	ug/L		0.5	0.2	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Barium, Ba	216	ug/L		0.5	0.1	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.2	ug/L	J	0.5	0.1	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.1	ug/L	J	0.2	0.05	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.7	ug/L	J	1	0.2	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	4.87	ug/L		0.2	0.1	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.600	ug/L		0.5	0.1	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	11.1	ug/L		10	2	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Selenium, Se	8.7	ug/L		1	0.2	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Thallium, TI	< 0.5	ug/L	U	2	0.5	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Chloride, Cl	28.9	mg/L		0.1	0.03	CRJ	06/26/2019 19:23	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.82	mg/L		0.2	0.04	CRJ	06/26/2019 19:23	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	63.6	mg/L		1	0.2	CRJ	06/26/2019 19:23	EPA 300.1-1997, Rev. 1.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Equipment Blank BAP

Sample Number: 192190-008 Date Collected: 06/20/2019 17:25 Date Received: 6/25/2019

Parameter.	D 14	1114	Data	D.	MDI	Aalazzia Da	Analosis Data Missa	Made at
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	< 0.02	mg/L	U	0.1	0.02	DAM	07/09/2019 17:46	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	0.07	mg/L	J	0.3	0.04	DAM	07/09/2019 17:46	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.03	mg/L	J	0.03	0.009	DAM	07/09/2019 17:46	EPA 200.7-1994, Rev. 4.4
Antimony, Sb	< 0.02	ug/L	U	0.1	0.02	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Arsenic, As	< 0.03	ug/L	U	0.1	0.03	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Barium, Ba	0.41	ug/L		0.1	0.02	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.02	ug/L	U	0.1	0.02	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.01	ug/L	U	0.05	0.01	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.07	ug/L	J	0.2	0.04	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	< 0.02	ug/L	U	0.05	0.02	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Lead, Pb	< 0.02	ug/L	U	0.1	0.02	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	< 0.4	ug/L	U	2	0.4	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.03	ug/L	U	0.2	0.03	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1	ug/L	U	0.5	0.1	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

Jessica Stalnaker, Chemist Sr

Email jlstalnaker@aep.com Tel. 614-836-4229
Fax 614-836-4168 Audinet 8-210-4229

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40446 Company: SEP - Environmental (JP-W)

Contact: Jill Parker-Witt

Address: 502 N. Allen Avenue Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

AEP Sample ID: 228531

Date Received: 08/29/2019

Collected Date: 08/26/2019

By: KM/MH

Cust Sample ID: SP-1 Sample Desc.: CCR Location: Northeastern PP

Matrix: Water

Metals (228531)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.00005	mg/L	0.000005	1	EPA 7470A 1994	09/06/2019 12:59	U	LNM
Water (228531)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	9	mg/L	0.219	1	EPA 300.0	09/01/2019 11:12		GB
Fluoride	0.525	mg/L	0.083	1	EPA 300.0	09/01/2019 11:12	J	GB
Solids, Total Dissolved (TDS)	438	mg/L	2	1	SM 2540 C-2011	08/30/2019 12:00		JTD
Sulfate	48	mg/L	0.140	1	EPA 300.0	09/01/2019 11:12		GB

AEP Sample ID: 228532 Collected Date: 08/26/2019 By: KM/MH
Cust Sample ID: SP-2 Location: Northeastern PP Matrix: Water

Sample Desc.: CCR

Metals (228532)

wietais (220032)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/06/2019 13:02	U	LNM
Water (228532)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	1072	mg/L	0.219	1:10	EPA 300.0	09/01/2019 14:00		GB
Fluoride	2.685	mg/L	0.083	1	EPA 300.0	09/01/2019 13:41		GB
Solids, Total Dissolved (TDS)	2246	mg/L	2	1	SM 2540 C-2011	08/30/2019 12:00		JTD
Sulfate	14	mg/L	0.140	1	EPA 300.0	09/01/2019 13:41		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40446 Company: SEP - Environmental (JP-W)

Contact: Jill Parker-Witt

Address: 502 N. Allen Avenue Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

AEP Sample ID: 228533

Collected Date: 08/26/2019

By: KM/MH

Cust Sample ID: SP-4
Sample Desc.: CCR

Date Received: 08/29/2019

Location: Northeastern PP Matrix: Water

Metals (228533)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/06/2019 14:29	U	LNM
Water (228533)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	458	mg/L	0.219	1:10	EPA 300.0	09/01/2019 15:15		GB
Fluoride	2.990	mg/L	0.083	1	EPA 300.0	09/01/2019 14:56		GB
Solids, Total Dissolved (TDS)	1170	mg/L	2	1	SM 2540 C-2011	08/30/2019 12:00		JTD
Sulfate	61	mg/L	0.140	1	EPA 300.0	09/01/2019 14:56		GB

AEP Sample ID: 228534 Collected Date: 08/26/2019 By: KM/MH
Cust Sample ID: SP-5 Location: Northeastern PP Matrix: Water

Sample Desc.: CCR

Metals (228534)

WELAIS (220004)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/06/2019 14:32	U	LNM
Water (228534)			•					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	697	mg/L	0.219	1:10	EPA 300.0	09/01/2019 15:53		GB
Fluoride	2.789	mg/L	0.083	1	EPA 300.0	09/01/2019 15:34		GB
Solids, Total Dissolved (TDS)	1450	mg/L	2	1	SM 2540 C-2011	08/30/2019 12:00		JTD
Sulfate	3	mg/L	0.140	1	EPA 300.0	09/01/2019 15:34		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 40446 Report ID

Contact: Jill Parker-Witt

Address: 502 N. Allen Avenue Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

AEP Sample ID: 228535

Date Received: 08/29/2019

Collected Date: 08/26/2019

Bv: KM/MH

By: KM/MH

Cust Sample ID: SP-10 Sample Desc.: CCR

Location: Northeastern PP

Matrix: Water

Metals (228535)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/06/2019 14:35	U	LNM
Water (228535)			·			•		
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	1939	mg/L	0.219	1:10	EPA 300.0	09/01/2019 16:30		GB
Fluoride	4.874	mg/L	0.083	1:10	EPA 300.0	09/01/2019 16:30		GB
Solids, Total Dissolved (TDS)	3446	mg/L	2	1	SM 2540 C-2011	08/30/2019 12:00		JTD
Sulfate	29	mg/L	0.140	1	EPA 300.0	09/01/2019 16:11		GB

AEP Sample ID: 228536 **Collected Date:** 08/26/2019 Cust Sample ID: SP-11 Location: Northeastern PP Matrix: Water

Sample Desc.: CCR

Motals (228536)

Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/06/2019 14:38	U	LNM
		·					·
Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
129	mg/L	0.219	1:10	EPA 300.0	09/01/2019 17:08		GB
2.225	mg/L	0.083	1	EPA 300.0	09/01/2019 16:49		GB
970	mg/L	2	1	SM 2540 C-2011	08/30/2019 12:00		JTD
122	mg/L	0.140	1:10	EPA 300.0	09/01/2019 17:08		GB
	< 0.000005 Value 129 2.225 970	< 0.000005 mg/L Value Unit 129 mg/L 2.225 mg/L 970 mg/L	Value Unit Det. Limit 129 mg/L 0.219 2.225 mg/L 0.083 970 mg/L 2	Value Unit Det. Limit Dil./Conc. 129 mg/L 0.219 1:10 2.225 mg/L 0.083 1 970 mg/L 2 1	Value Unit Det. Limit Dil./Conc. Method 129 mg/L 0.219 1:10 EPA 300.0 2.225 mg/L 0.083 1 EPA 300.0 970 mg/L 2 1 SM 2540 C-2011	Value Unit Det. Limit Dil./Conc. Method Analysis Date/Time 129 mg/L 0.219 1:10 EPA 300.0 09/01/2019 17:08 2.225 mg/L 0.083 1 EPA 300.0 09/01/2019 16:49 970 mg/L 2 1 SM 2540 C-2011 08/30/2019 12:00	Value Unit Det. Limit Dil./Conc. Method Analysis Date/Time Codes 129 mg/L 0.219 1:10 EPA 300.0 09/01/2019 17:08 2.225 mg/L 0.083 1 EPA 300.0 09/01/2019 16:49 970 mg/L 2 1 SM 2540 C-2011 08/30/2019 12:00

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 40446 Report ID

Contact: Jill Parker-Witt

Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

Address: 502 N. Allen Avenue

AEP Sample ID: 228537 **Collected Date:** 08/26/2019 Cust Sample ID: Duplicate BAP

Location: Northeastern PP

Bv: KM/MH

Sample Desc.: CCR

Date Received: 08/29/2019

Matrix: Water

Metals (228537)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/06/2019 14:41	U	LNM
Water (228537)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	1922	mg/L	0.219	1:10	EPA 300.0	09/01/2019 17:45		GB
Fluoride	4.791	mg/L	0.083	1:10	EPA 300.0	09/01/2019 17:45		GB
Solids, Total Dissolved (TDS)	3498	mg/L	2	1	SM 2540 C-2011	08/30/2019 12:00		JTD
Sulfate	30	mg/L	0.140	1	EPA 300.0	09/01/2016 17:26		GB

By: KM/MH AEP Sample ID: 228538 **Collected Date:** 08/26/2019 Cust Sample ID: Equipment Blank BAP Location: Northeastern PP Matrix: Water

Sample Desc.: CCR

Metals (228538)

Parameter	Value	Unit	Unit Det. Limit		Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/06/2019 14:44	U	LNM

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40446 **Date Received**: 08/29/2019

Company: SEP - Environmental (JP-W)

Contact: Jill Parker-Witt

Address: 502 N. Allen Avenue

Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

Quality Control Data

* Quality control units are the same as reported analytical results

			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
9/1/2019	Chloride	228531		25	23	92.0	25	25	100.0		0.0	GB
9/1/2019	Chloride		<0.219									GB
9/1/2019	Chloride	228539.1		25	23	92.0	25	33	132.0		0.0	GB
9/1/2019	Fluoride	228531		6	5.8	96.7	6	5.9	98.3		0.0	GB
9/1/2019	Fluoride		<0.083									GB
9/1/2019	Fluoride	228539.1		6	5.8	96.7	6	6.1	101.7		0.0	GB
9/6/2019	Mercury	228512.2	<0.00000	0.001	0.0009894	98.9	0.001	0.0012053	120.5		1.9	JDB
9/6/2019	Mercury	228502.2	<0.00000	0.001	0.00104	104.0	0.001	0.0011859	118.6		0.8	JDB
9/6/2019	Mercury	228492.2	<0.00000	0.001	0.00104	104.0	0.001	0.0009299	93.0		9.5	JDB
9/6/2019	Mercury	228522.2	0.0000068	0.001	0.0010355	103.6	0.001	0.001099	109.9		3.5	JDB
9/6/2019	Mercury	228552.1	<0.00000	0.001	0.0009375	93.7	0.001	0.0009907	99.1		1.3	JDB
9/6/2019	Mercury	228532.2	0.0000068	0.001	0.0010355	103.6	0.001	0.0011589	115.9		4.2	JDB
8/30/2019	Solids, Total Dissolved (TDS)	228494	<2	50	46	92.0	1018	1008	99.0		1.8	JTD
9/1/2019	Sulfate	228539.1		25	23	92.0	50	59	118.0		0.0	GB
9/1/2019	Sulfate	228531		25	23	92.0	25	27	108.0		2.0	GB
9/1/2019	Sulfate		<0.140									GB

Quality Assurance Officer

Date required: 10/12/19

Code Code Description

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

U Analyte concentration below MDL.

10-Oct-19

Report Date

Relinquished by: Company: Date/Time: Received in June 1997 Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev.	Relinquished by:	Relinquished by Manual Co		Special Instructions/QC Requirements & Comments:	Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other * Six 11 Bottles must be collected for Radjum for every 10th sample.				EQUIPMENT BLANK BAP 8/	DUPLICATE BAP 8/	SP-11 8/	SP-10 8/	SP-5	SP-4 8/	SP-2 8/	SP-1 8/	Sample Identification S	Sampler(s): Kenneth McDonald/Matt Hamilton	Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816	Project Name: Northeastern PP CCR	Contacts:	Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave. Shreveport , LA 71101
Company:	mpany:	Company:	**		3; 5=NaOH	L			8/26/2019	8/26/2019	8/26/2019	8/26/2019	8/26/2019	8/26/2019	8/26/2019	8/26/2019	Sample S Date		RESULTS DUE OCTOBER 12	nalveis Tii		
ombustion		Ċ	RES		t; 6= Oth	L			1700	1622	1635	1622	1720	1705	1640	1650	Sample Time		ILTS DUI		2	3
n Residua		:	RESULTS DUE		9				G	G	G	ଜ	G	G	G	ര	Sample Type (C=Comp, G=Grab)		E OCTOE	Time (in Ca	_	\$ C
Date/Time:	Date/Time:	Date/Time:	S DL		 				8	GW	GW	GW	GW	GW	GW	GW	Matrix		3ER 12	lendar D		Cha Program:
ne: Samplin	ne:	e/Time:			F= filter in field	L				2	2	2	2	2	2	2	# of Cont.		3	avs)	<u> </u>	n: Coa
g - Shre		148	CTC		Ple			_									Sampler(s) In	itials			Site Contact:	of Cu
Received in	Received by:	Received by:	OCTOBER		4				×	×	×	×	×	×	×	×	Mercury		pH<2, HNO3	250 mL	lact:	Istody bustion F
beboratory by	77		12		4.												dissolved F	e and Mn	pH<2, HNO3	Field-filter 500 mL		Chain of Custody Record
D y					_					×	×	×	×	×	×	×	CHLORIDE FLUORIDE SULFATE,	5	Cool, 0-6C			(CCR)
Paller					4												Ra-226, R	a-228	L bottles, pH<2, HNO3	Three (six every	Date:	ei e
5	_										\vdash							2710				
Date/Time: 8 - 29 - 19 11: 45	Date/Ilme:	Date/Time:							228538	3	228536.14.2	228535.14.2	8534.14.2	228533.10.2	228532.14.2	228531.10.2	Sample Specific Notes:			04+0400	COC/Order #:	

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Delivery Type							
) UPS	FEDEX US Mail Walk in Shuttle						
Othe	er						
Tracking #	#						
	Sample Matrix						
LE DGA	PCB Oil Water Oil Soil						
Solid	Liquid Other						
_	Project I.D. Coc. 40446						
Were sa	amples received on ice? YES NO						
(YES)	NO						
YES	NO						
VES	NO						
VES	NO						
YES	NO						
ES)	NO						
2							
NO	Person Contacted						
	Date & Time						
	Tracking at DGA Solid Were s VES VES VES VES						

Sample ID	Analysis	pH Presei	vative Added / Lot #
SP-1	Meta LS	12	
SP-2			
50. Sp-3			
Sp-4			
Sp-5			
Sp-10			
SP-11			
DBPI: CAKBA	P		
Equipment Blank	BAP 1		
1			
<u> </u>			
<u> </u>			
			J

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 10/10/2019

SP-1

Sample Number: 192952-001 Date Collected: 08/26/2019 16:50 Date Received: 9/4/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.43 ug/L		0.1	0.02	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Arsenic, As	0.73 ug/L		0.1	0.03	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Barium, Ba	160 ug/L		0.2	0.05	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.08 ug/L	J	0.1	0.02	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.09 ug/L		0.05	0.01	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1.49 ug/L		0.2	0.04	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.481 ug/L		0.05	0.02	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.835 ug/L		0.2	0.05	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	5.86 ug/L		2	0.4	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Selenium, Se	3.4 ug/L		0.2	0.03	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.1 ug/L	J	0.5	0.1	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Boron, B	0.124 mg/L		0.05	0.02	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	120 mg/L		0.05	0.02	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00285 mg/L		0.0002	0.00005	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.41	pCi/L	0.16	0.47	ttp	9/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	1.34	pCi/L	0.20	0.18	sdw	9/10/2019	SW-846 9315-1986,Rev. 0

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-2

Sample Number: 192952-002 Date Collected: 08/26/2019 16:40 Date Received: 9/4/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	1.22	ug/L		0.1	0.02	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.53	ug/L		0.1	0.03	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Barium, Ba	1220	ug/L		1	0.2	KAN	09/23/2019 16:11	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.07	ug/L	J	0.1	0.02	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.05	ug/L		0.05	0.01	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.701	ug/L		0.2	0.04	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.568	ug/L		0.05	0.02	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.334	ug/L		0.2	0.05	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	22.3	ug/L		2	0.4	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Selenium, Se	3.7	ug/L		0.2	0.03	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.1	ug/L	J	0.5	0.1	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Boron, B	0.173	mg/L		0.05	0.02	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	211	mg/L		0.05	0.02	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0582	mg/L		0.0002	0.00005	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	5.62	pCi/L	0.22	0.52	ttp	9/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	3.1	pCi/L	0.26	0.13	sdw	9/10/2019	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the acceptable limit of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Sp-4

Date Collected: 08/26/2019 17:05 Date Received: 9/4/2019 Sample Number: 192952-003

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.25	ug/L		0.1	0.02	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.64	ug/L		0.1	0.03	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Barium, Ba	359	ug/L		0.2	0.05	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
The MS/MSD is outside the accept	able limit	of 75-125%	6. The R	PD betwe	en the MS	S/MSD exceeds	20%.	
Beryllium, Be	0.101	ug/L		0.1	0.02	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.05	ug/L		0.05	0.01	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1.01	ug/L		0.2	0.04	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	1.07	ug/L		0.05	0.02	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.596	ug/L		0.2	0.05	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	2	ug/L	J	2	0.4	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.6	ug/L		0.2	0.03	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1	ug/L	U	0.5	0.1	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Boron, B	0.365	mg/L		0.05	0.02	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	182	mg/L		0.05	0.02	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
The MS is outside the acceptable li	mit of 75-	125%. The	RPD be	etween the	e MS/MSI	D exceeds 20%.		
Lithium, Li	0.0554	mg/L		0.0002	0.00005	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	2.23	pCi/L	0.18	0.52	ttp	9/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	1.01	pCi/L	0.16	0.18	sdw	9/10/2019	SW-846 9315-1986,Rev. 0

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "onesigma" which has the same units of measurement as the result.

SP-5R

Sample Number: 192952-004 Date Collected: 08/26/2019 17:20 Date Received: 9/4/2019

		Data					
Parameter	Result Units	S Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.06 ug/L	J	0.1	0.02	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Arsenic, As	49.3 ug/L		0.1	0.03	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Barium, Ba	2340 ug/L		1	0.2	KAN	09/23/2019 16:21	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.06 ug/L	J	0.1	0.02	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.02 ug/L	J	0.05	0.01	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.335 ug/L		0.2	0.04	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.485 ug/L		0.05	0.02	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.545 ug/L		0.2	0.05	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	1 ug/L	J	2	0.4	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.1 ug/L	J	0.2	0.03	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1 ug/L	U	0.5	0.1	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Boron, B	0.220 mg/L		0.05	0.02	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	128 mg/L		0.05	0.02	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0928 mg/L		0.0002	0.00005	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	5.99	pCi/L	0.20	0.41	ttp	9/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	5.57	pCi/L	0.36	0.15	sdw	9/10/2019	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the acceptable limit of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-10

Sample Number: 192952-005 Date Collected: 08/26/2019 16:22 Date Received: 9/4/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.61 ug/L		0.1	0.02	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Arsenic, As	3.00 ug/L		0.1	0.03	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Barium, Ba	3060 ug/L		1	0.2	KAN	09/23/2019 16:26	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.08 ug/L	J	0.1	0.02	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.03 ug/L	J	0.05	0.01	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1.61 ug/L		0.2	0.04	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	1.06 ug/L		0.05	0.02	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.449 ug/L		0.2	0.05	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	8.22 ug/L		2	0.4	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.4 ug/L		0.2	0.03	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1 ug/L	U	0.5	0.1	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Boron, B	1.03 mg/L		0.05	0.02	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	216 mg/L		0.05	0.02	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.241 mg/L		0.0002	0.00005	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.17	pCi/L	0.13	0.38	ttp	9/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	6.94	pCi/L	0.39	0.14	sdw	9/10/2019	SW-846 9315-1986,Rev. 0

The RPD between the sample and duplicate result exceed 25%. The carrier recovery is outside the acceptable limit of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-11

Sample Number: 192952-006 Date Collected: 08/26/2019 16:35 Date Received: 9/4/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.37	ug/L		0.1	0.02	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Arsenic, As	6.30	ug/L		0.1	0.03	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Barium, Ba	492	ug/L		0.2	0.05	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.04	ug/L	J	0.1	0.02	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.13	ug/L		0.05	0.01	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1.47	ug/L		0.2	0.04	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	2.73	ug/L		0.05	0.02	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.764	ug/L		0.2	0.05	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	5.70	ug/L		2	0.4	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.8	ug/L		0.2	0.03	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1	ug/L	U	0.5	0.1	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Boron, B	0.304	mg/L		0.05	0.02	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	139	mg/L		0.05	0.02	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0337	mg/L		0.0002	0.00005	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	0.583	pCi/L	0.15	0.48	ttp	9/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	1.04	pCi/L	0.16	0.16	sdw	9/10/2019	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the acceptable limit of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Duplicate BAP

Sample Number: 192952-007 Date Collected: 08/26/2019 16:22 Date Received: 9/4/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.38	ug/L		0.1	0.02	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Arsenic, As	2.93	ug/L		0.1	0.03	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Barium, Ba	3190	ug/L		1	0.2	KAN	09/23/2019 18:14	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.04	ug/L	J	0.1	0.02	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.01	ug/L	J	0.05	0.01	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.836	ug/L		0.2	0.04	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.369	ug/L		0.05	0.02	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.1	ug/L	J	0.2	0.05	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	4.01	ug/L		2	0.4	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.1	ug/L	J	0.2	0.03	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Thallium, TI	< 0.1	ug/L	U	0.5	0.1	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Boron, B	1.06	mg/L		0.05	0.02	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	213	mg/L		0.05	0.02	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.249	mg/L		0.0002	0.00005	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Equipment Blank

Sample Number: 192952-008 Date Collected: 08/26/2019 17:00 Date Received: 9/4/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.02 ug/L	U	0.1	0.02	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Arsenic, As	< 0.03 ug/L	U	0.1	0.03	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Barium, Ba	0.26 ug/L		0.2	0.05	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.02 ug/L	U	0.1	0.02	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.01 ug/L	U	0.05	0.01	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.04 ug/L	J	0.2	0.04	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	< 0.02 ug/L	U	0.05	0.02	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Lead, Pb	< 0.05 ug/L	U	0.2	0.05	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	< 0.4 ug/L	U	2	0.4	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.03 ug/L	J	0.2	0.03	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1 ug/L	U	0.5	0.1	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Boron, B	0.087 mg/L		0.05	0.02	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	0.03 mg/L	J	0.05	0.02	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00009 mg/L	J	0.0002	0.00005	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

BAP CCR

Michael Ohlinger, Chemist

Muhael S. Ollinger

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

ATTACHMENT D Statistical Analysis Output

GROUNDWATER STATS CONSULTING

December 9, 2019

Geosyntec Consultants Attn: Ms. Allison Kreinberg 941 Chatham Lane, #103 Columbus, OH 43221

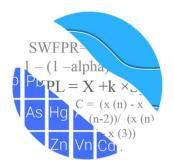
Re: Northeastern BAP

Assessment Monitoring Event – December 2019

Dear Ms. Kreinberg,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the statistical analysis of the February 2019 data for American Electric Power Inc.'s Northeastern BAP. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the USEPA Unified Guidance (2009).

Sampling began at the site for the CCR program in 2017. The monitoring well network, as provided by Geosyntec Consultants, consists of the following:


o **Upgradient wells:** SP-4 and SP-5; and

o **Downgradient wells:** SP-1, SP2, SP-10, and SP-11.

Data were sent electronically, and the statistical analysis was conducted according to the Statistical Analysis Plan and screening evaluation prepared by GSC and approved by Dr. Kirk Cameron, PhD Statistician with MacStat Consulting, primary author of the USEPA Unified Guidance, and Senior Advisor to GSC.

The CCR program consists of the following constituents:

 Appendix III (Detection Monitoring) - boron, calcium, chloride, fluoride, pH, sulfate, and TDS;

Appendix IV (Assessment Monitoring) – antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium.

Time series and box plots for Appendix III and IV parameters are provided for all wells and constituents; and are used to evaluate concentrations over the entire record (Figures A & B respectively). Values previously flagged during the screening as outliers may be seen in a lighter font and disconnected symbol on the time series graphs (Figure C).

Evaluation of Appendix III Parameters

Intrawell prediction limits combined with a 1-of-2 verification strategy were constructed for calcium and interwell prediction limits combined with a 1-of-2 verification strategy were constructed for boron, chloride, fluoride, pH, sulfate and TDS (Figures D & E). In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified and further research would be required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered a false positive result and, therefore, no further action is necessary. The statistical method selected for each parameter was determined based on the results of the screening analysis performed in January 2018.

The Sen's Slope/Mann Kendall trend test was used to evaluate upgradient well data for constituents tested with interwell prediction limits for the purpose of updating (Figure F). No statistically significant trends were found except for a decreasing trend for sulfate in upgradient well SP-5. While concentrations are lower than historical concentrations in this well, the entire record of measurements is significantly lower than those reported in upgradient well SP-4. Therefore, no adjustment was required to this record. A summary table of trend test results follows this letter.

Intrawell prediction limits utilize background through October 2017 until a minimum of 4 new samples are available. Background data will be tested for updating when sufficient samples are available.

Evaluation of Appendix IV Parameters

Parametric tolerance limits were used to calculate background limits from pooled upgradient well data for Appendix IV parameters with a target of 95% confidence and 95% coverage to determine the Alternate Contaminant Level (ACL) (Figure G). The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. These limits were compared to the Maximum Contaminant Levels (MCLs) and CCR-Rule specified levels in the Groundwater Protection Standard (GWPS) table following this letter to determine the highest limit for use as the GWPS in the Confidence Interval comparisons.

Background data are screened for outliers and extreme trending patterns that would lead to artificially elevated statistical limits. Tukey's outlier test on downgradient wells only identified a high value for combined radium 226 + 228 in well SP-1, which was flagged as an outlier. Additional values not identified by Tukey's test were flagged as outliers as they did not represent the populations of their respective wells are chromium in well SP-10, combined radium in well SP-11, lithium in well SP-1 and molybdenum in well SP-10.

Substantially high values were identified across many Appendix IV parameters for upgradient well SP-4 on 8/4/17 through visual screening. Since they appear as laboratory or sampling issues, they have been flagged as outliers but will be reevaluated after further confirmation. Any flagged values may be seen on the Outlier Summary following this letter.

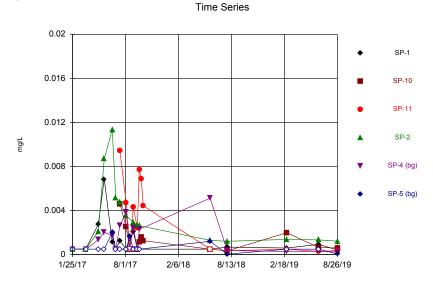
Parametric limits use a target of 95% confidence and 95% coverage. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. These limits were compared to the Maximum Contaminant Levels (MCLs) and CCR-Rule specified levels in the Groundwater Protection Standard (GWPS) table following this letter to determine the highest limit for use as the GWPS in the Confidence Interval comparisons (Figure H).

Confidence intervals were then constructed on downgradient wells for each of the Appendix IV parameters using the highest limit of the MCL, RSL, or ACL as discussed above (Figure I). Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard. No confidence intervals exceedances were found except for lithium in well SP-10. A summary of the confidence interval results follows this letter.

Thank you for the opportunity to assist you in the statistical analysis of groundwater

quality for the Northeastern BAP. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,


Kristina Rayner

Andrew T. Collins Groundwater Analyst

Kristina L. Rayner

Groundwater Statistician

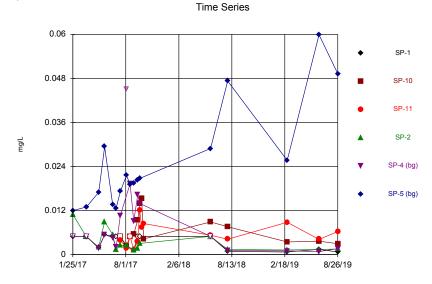
1/25/17

Constituent: Antimony Analysis Run 12/9/2019 11:54 AM

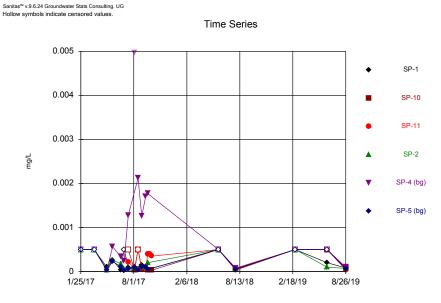
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Time Series SP-1 4.8 SP-10 SP-11 SP-2 2.4 SP-4 (bg) SP-5 (bg)

Constituent: Barium Analysis Run 12/9/2019 11:54 AM


Northeastern BAP Client: Geosyntec Data: Northeastern BAP

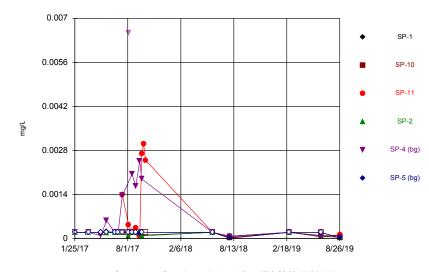
8/13/18


2/18/19

8/26/19

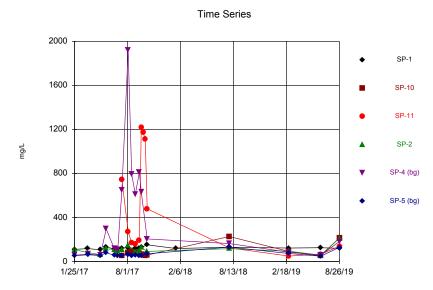
2/6/18

Constituent: Arsenic Analysis Run 12/9/2019 11:54 AM
Northeastern BAP Client: Geosyntec Data: Northeastern BAP



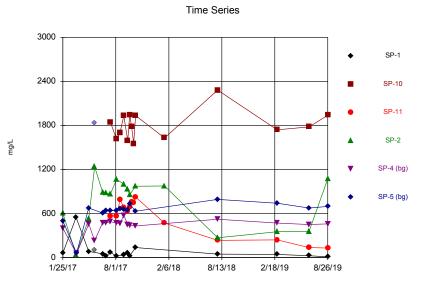
Constituent: Beryllium Analysis Run 12/9/2019 11:54 AM
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Boron Analysis Run 12/9/2019 11:54 AM


Northeastern BAP Client: Geosyntec Data: Northeastern BAP

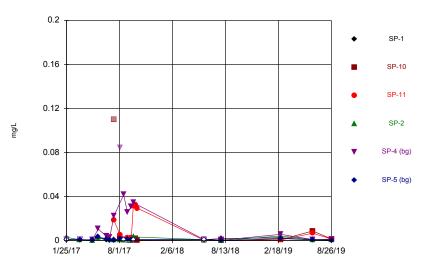
Time Series

Constituent: Cadmium Analysis Run 12/9/2019 11:54 AM
Northeastern BAP Client: Geosyntec Data: Northeastern BAP



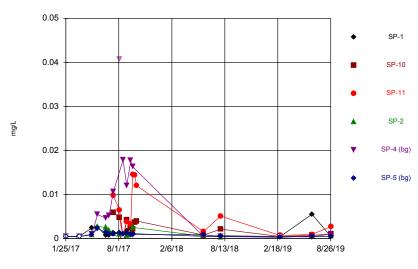
Constituent: Calcium Analysis Run 12/9/2019 11:54 AM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Sanitas™ v.9.6.24 Groundwater Stats Consulting. UG

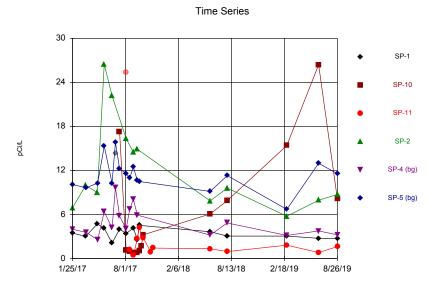
Constituent: Chloride Analysis Run 12/9/2019 11:54 AM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP



Constituent: Chromium Analysis Run 12/9/2019 11:54 AM

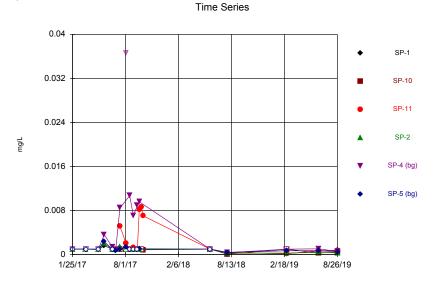
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

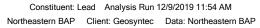

Time Series

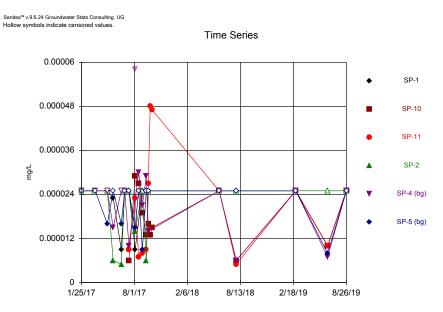
Constituent: Cobalt Analysis Run 12/9/2019 11:54 AM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

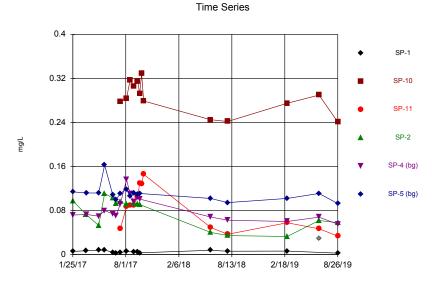
Sanitas[™] v.9.6.24 Groundwater Stats Consulting. UG

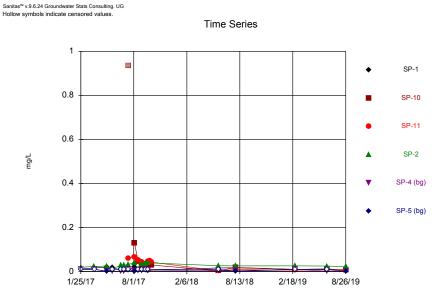

Constituent: Combined Radium 226 + 228 Analysis Run 12/9/2019 11:54 AM


Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Sanitas™ v.9.6.24 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

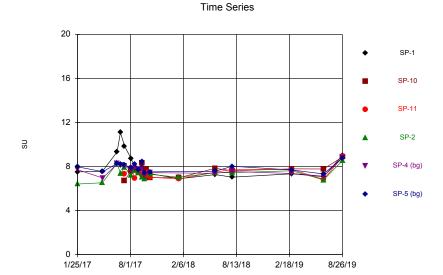
Constituent: Fluoride Analysis Run 12/9/2019 11:54 AM
Northeastern BAP Client: Geosyntec Data: Northeastern BAP





Constituent: Mercury Analysis Run 12/9/2019 11:54 AM

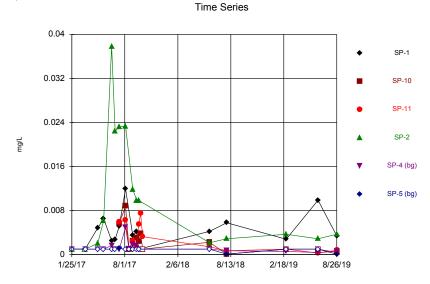
Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Constituent: Lithium Analysis Run 12/9/2019 11:54 AM
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

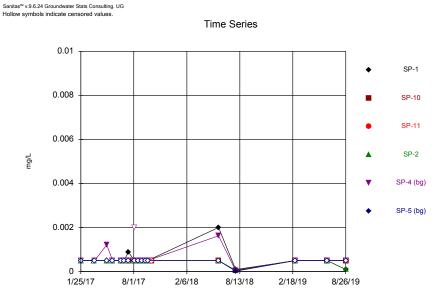
Constituent: Molybdenum Analysis Run 12/9/2019 11:54 AM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.24 Groundwater Stats Consulting. UG

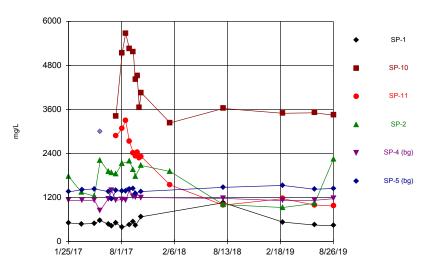

Constituent: pH, field Analysis Run 12/9/2019 11:54 AM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Time Series 1000 SP-1 800 SP-10 600 SP-2 400 SP-4 (bg) SP-5 (bg) 200 1/25/17 2/6/18 8/13/18 2/18/19 8/26/19

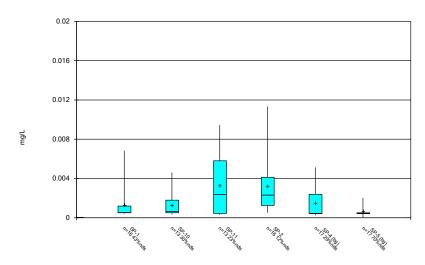
Constituent: Sulfate Analysis Run 12/9/2019 11:54 AM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Constituent: Selenium Analysis Run 12/9/2019 11:54 AM
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Thallium Analysis Run 12/9/2019 11:54 AM

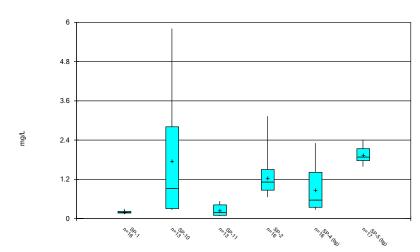
Northeastern BAP Client: Geosyntec Data: Northeastern BAP



Constituent: Total Dissolved Solids [TDS] Analysis Run 12/9/2019 11:54 AM

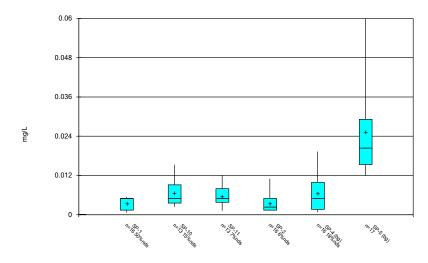
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Box & Whiskers Plot



Constituent: Antimony Analysis Run 12/9/2019 11:55 AM

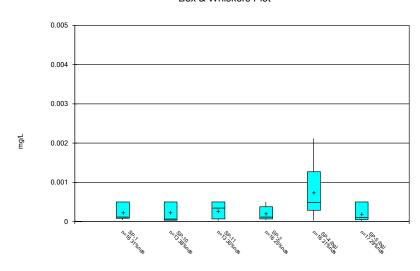
Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Sanitas™ v.9.6.24 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Barium Analysis Run 12/9/2019 11:55 AM
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

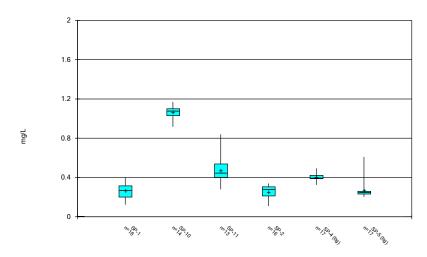
Box & Whiskers Plot



Constituent: Arsenic Analysis Run 12/9/2019 11:55 AM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

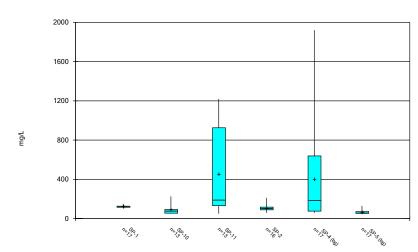
Sanitas™ v.9.6.24 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Beryllium Analysis Run 12/9/2019 11:55 AM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

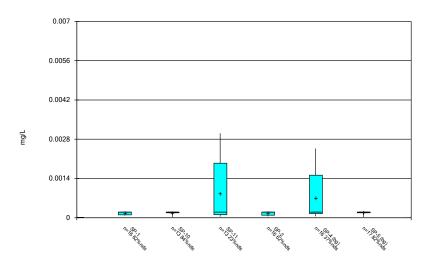
Box & Whiskers Plot



Constituent: Boron Analysis Run 12/9/2019 11:55 AM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

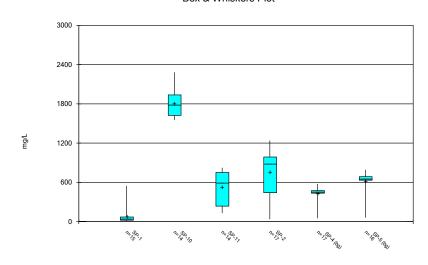
Sanitas™ v.9.6.24 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Calcium Analysis Run 12/9/2019 11:55 AM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

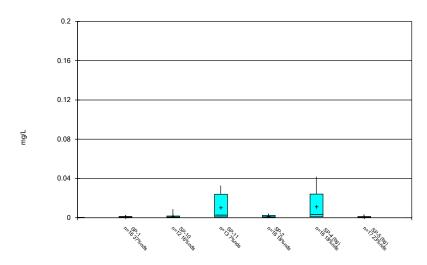
Box & Whiskers Plot



Constituent: Cadmium Analysis Run 12/9/2019 11:55 AM

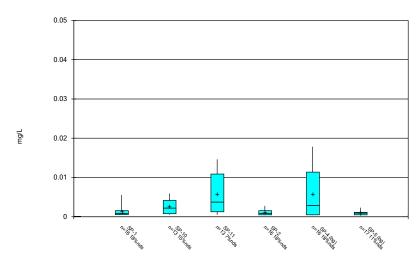
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.24 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Chloride Analysis Run 12/9/2019 11:55 AM

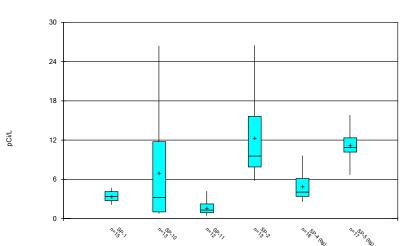
Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Box & Whiskers Plot

Constituent: Chromium Analysis Run 12/9/2019 11:55 AM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Box & Whiskers Plot

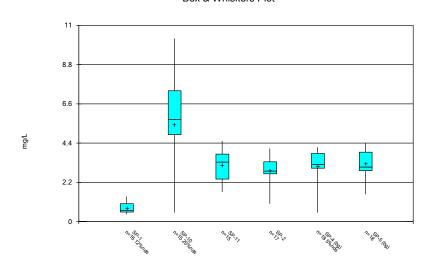


Constituent: Cobalt Analysis Run 12/9/2019 11:55 AM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.24 Groundwater Stats Consulting. UG

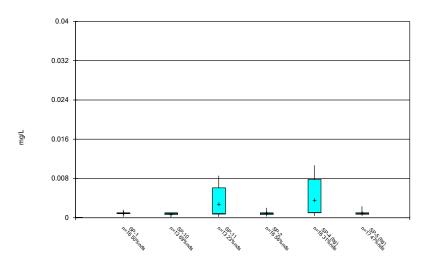
Box & Whiskers Plot



Constituent: Combined Radium 226 + 228 Analysis Run 12/9/2019 11:55 AM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

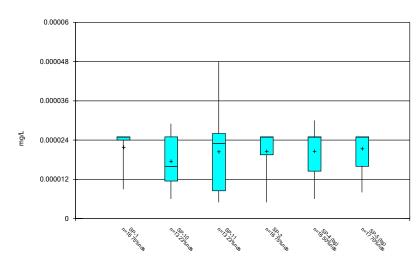
Sanitas™ v.9.6.24 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Fluoride Analysis Run 12/9/2019 11:55 AM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

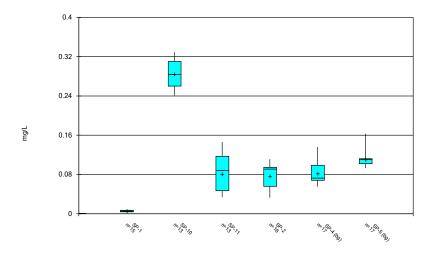
Box & Whiskers Plot



Constituent: Lead Analysis Run 12/9/2019 11:55 AM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

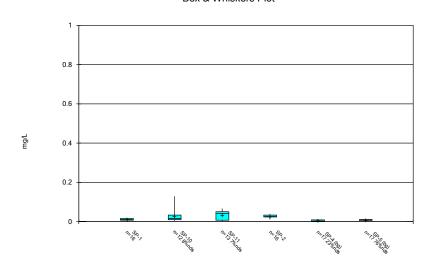
Sanitas™ v.9.6.24 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Mercury Analysis Run 12/9/2019 11:55 AM

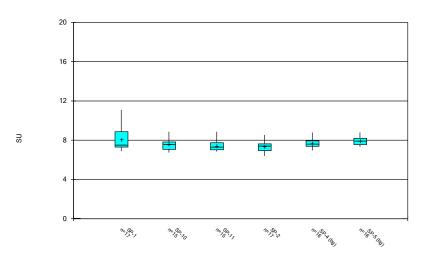
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Box & Whiskers Plot



Constituent: Lithium Analysis Run 12/9/2019 11:55 AM

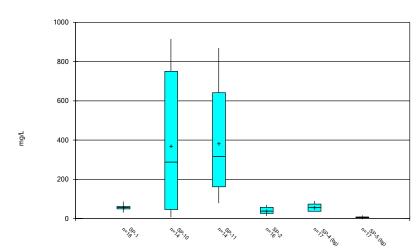
Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Sanitas™ v.9.6.24 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Molybdenum Analysis Run 12/9/2019 11:55 AM
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

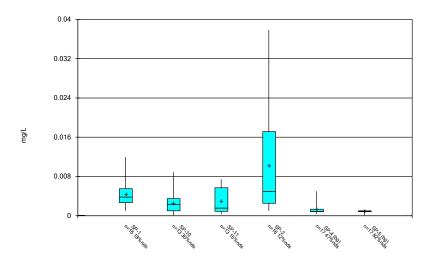
Box & Whiskers Plot



Constituent: pH, field Analysis Run 12/9/2019 11:55 AM

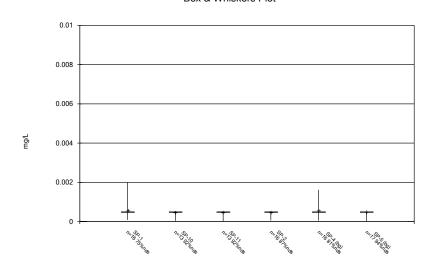
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.24 Groundwater Stats Consulting. UG


Box & Whiskers Plot

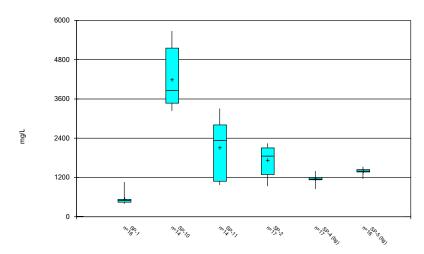
Constituent: Sulfate Analysis Run 12/9/2019 11:55 AM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Box & Whiskers Plot

Constituent: Selenium Analysis Run 12/9/2019 11:55 AM
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

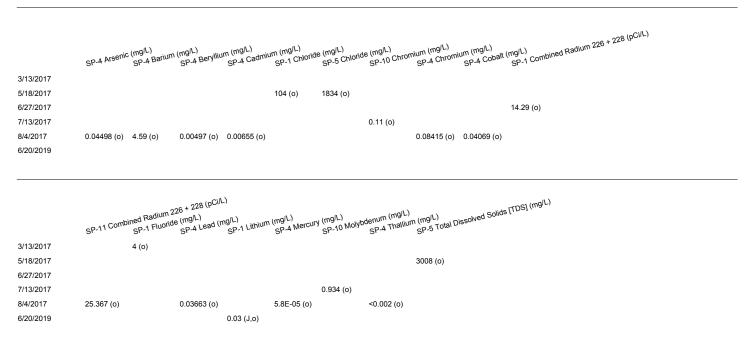
Sanitas™ v.9.6.24 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Thallium Analysis Run 12/9/2019 11:55 AM

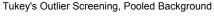
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

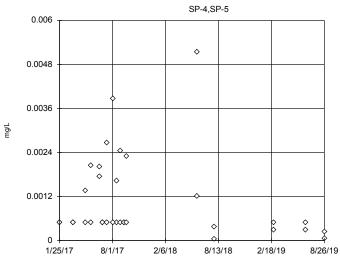
Box & Whiskers Plot



Constituent: Total Dissolved Solids [TDS] Analysis Run 12/9/2019 11:55 AM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Outlier Summary


Northeastern BAP Client: Geosyntec Data: Northeastern BAP Printed 12/9/2019, 4:09 PM

Upgradient Outlier Analysis - All Results

		Northeastern BAP	Clien	t: Geosyntec	Data: Northe	astern BAP	Printed	12/5	/2019, 7:06 PM			
Constituent	Well	<u>Ou</u>	ıtlier	Value(s)		Method	Alpha	<u>N</u>	Mean	Std. Dev.	Distribution	Normality Test
Antimony (mg/L)	SP-4,SP-5	No)	n/a		NP	NaN	34	0.001066	0.001141	ln(x)	ShapiroWilk
Arsenic (mg/L)	SP-4,SP-5	No)	n/a		NP	NaN	34	0.0167	0.01515	x^(1/3)	ShapiroWilk
Barium (mg/L)	SP-4,SP-5	No)	n/a		NP	NaN	34	1.517	0.909	sqrt(x)	ShapiroWilk
Beryllium (mg/L)	SP-4,SP-5	No)	n/a		NP	NaN	34	0.0006003	0.0009429	ln(x)	ShapiroWilk
Boron (mg/L)	SP-4,SP-5	No)	n/a		NP	NaN	34	0.3369	0.09923	x^(1/3)	ShapiroWilk
Cadmium (mg/L)	SP-4,SP-5	n/a	a	n/a		NP	NaN	34	0.0006194	0.001226	unknown	ShapiroWilk
Chloride (mg/L)	SP-4,SP-5	Ye	s	52,62,1834		NP	NaN	34	562.2	280.7	sqrt(x)	ShapiroWilk
Chromium (mg/L)	SP-4,SP-5	No)	n/a		NP	NaN	34	0.008442	0.01735	ln(x)	ShapiroWilk
Cobalt (mg/L)	SP-4,SP-5	No)	n/a		NP	NaN	34	0.004423	0.008256	ln(x)	ShapiroWilk
Combined Radium 226 + 228 (pCi/L)	SP-4,SP-5	No)	n/a		NP	NaN	33	8.197	3.807	normal	ShapiroWilk
Fluoride (mg/L)	SP-4,SP-5	No)	n/a		NP	NaN	36	3.171	0.7808	x^2	ShapiroWilk
Lead (mg/L)	SP-4,SP-5	Yes	s	0.03663		NP	NaN	34	0.003275	0.006578	ln(x)	ShapiroWilk
Lithium (mg/L)	SP-4,SP-5	No)	n/a		NP	NaN	34	0.09636	0.02338	sqrt(x)	ShapiroWilk
Mercury (mg/L)	SP-4,SP-5	No)	n/a		NP	NaN	34	0.00002218	0.000009233	x^(1/3)	ShapiroWilk
Molybdenum (mg/L)	SP-4,SP-5	No)	n/a		NP	NaN	34	0.006372	0.003953	x^(1/3)	ShapiroWilk
pH, field (SU)	SP-4,SP-5	No)	n/a		NP	NaN	32	7.796	0.449	ln(x)	ShapiroWilk
Selenium (mg/L)	SP-4,SP-5	n/a	a	n/a		NP	NaN	34	0.001084	0.0007727	unknown	ShapiroWilk
Sulfate (mg/L)	SP-4,SP-5	No)	n/a		NP	NaN	34	31.97	29.27	ln(x)	ShapiroWilk
Thallium (mg/L)	SP-4,SP-5	n/a	a	n/a		NP	NaN	34	0.0005265	0.0002563	unknown	ShapiroWilk
Total Dissolved Solids [TDS] (mg/L)	SP-4,SP-5	Ye	s	3008		NP	NaN	34	1328	333.4	ln(x)	ShapiroWilk

n = 34 No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.06435, low cutoff = 0.00001309, based on IQR multiplier of 3.

No outliers found.

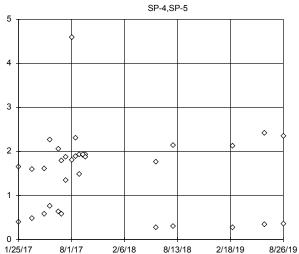
ed by user.

Tukey's method select-

Data were square root

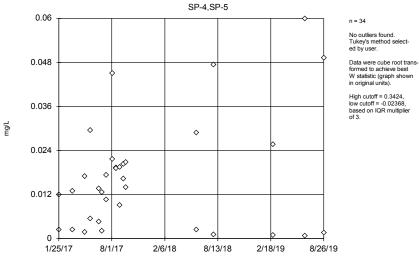
transformed to achieve

best W statistic (graph


shown in original units).

High cutoff = 11.31, low cutoff = -1.424, based on IQR multiplier of 3.

Constituent: Antimony Analysis Run 12/5/2019 7:05 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

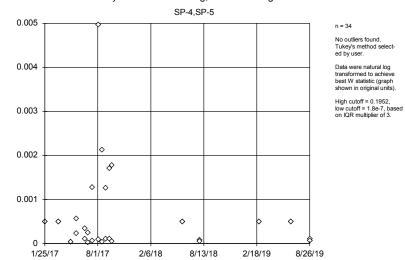

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Tukey's Outlier Screening, Pooled Background

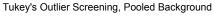
Constituent: Barium Analysis Run 12/5/2019 7:05 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

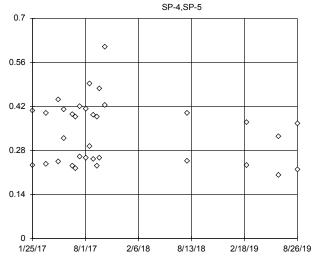
Tukey's Outlier Screening, Pooled Background

W statistic (graph shown in original units). High cutoff = 0.3424,


low cutoff = -0.02368, based on IQR multiplier of 3.

Constituent: Arsenic Analysis Run 12/5/2019 7:05 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG


mg/L

Tukey's Outlier Screening, Pooled Background

Constituent: Beryllium Analysis Run 12/5/2019 7:05 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Boron Analysis Run 12/5/2019 7:05 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Tukey's Outlier Screening, Pooled Background SP-4,SP-5 2000 1600 1200 800 \Diamond ∞\$ \Diamond 400 \Diamond 0 1/25/17 8/1/17 2/6/18 8/13/18 2/18/19 8/26/19

Constituent: Chloride Analysis Run 12/5/2019 7:05 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

n = 34

n = 34

solid.

ed by user.

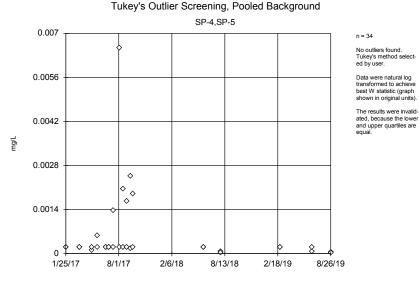
Outliers are drawn as

Tukey's method select-

Data were square root transformed to achieve

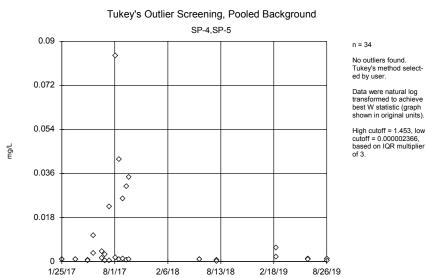
best W statistic (graph

shown in original units).

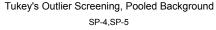

High cutoff = 1487, low cutoff = 69.92, based

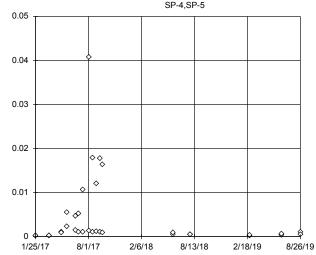
on IQR multiplier of 3.

No outliers found. Tukey's method selected by user.


Data were cube root transformed to achieve best W statistic (graph shown in original units).

High cutoff = 1.34, low cutoff = 0.01787, based on IQR multiplier of 3.


Constituent: Cadmium Analysis Run 12/5/2019 7:05 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Chromium Analysis Run 12/5/2019 7:05 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

pCi/L

n = 34

No outliers found.
Tukey's method select-

ed by user.

n = 36

ed by user.

No outliers found. Tukey's method select-

Data were square trans-

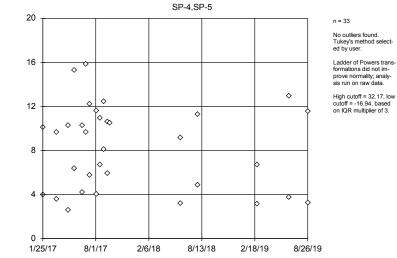
W statistic (graph shown

High cutoff = 5.492, low cutoff = -2.631, based on IQR multiplier of 3.

formed to achieve best

in original units).

Data were natural log transformed to achieve best W statistic (graph shown in original units).

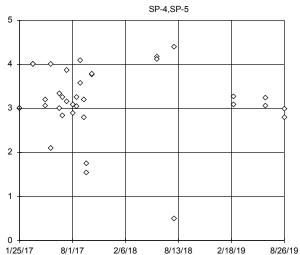

High cutoff = 5.308, low cutoff = 4.5e-7, based on IQR multiplier of 3.

Constituent: Cobalt Analysis Run 12/5/2019 7:05 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

08, low

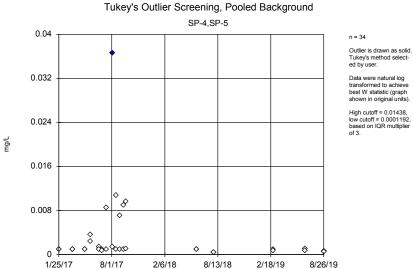
Tukey's Outlier Screening, Pooled Background



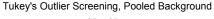
Constituent: Combined Radium 226 + 228 Analysis Run 12/5/2019 7:05 PM

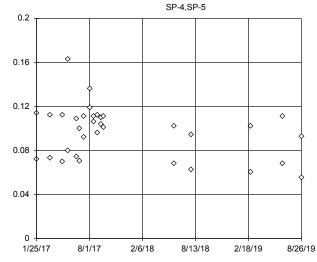
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG


Tukey's Outlier Screening, Pooled Background

Constituent: Fluoride Analysis Run 12/5/2019 7:05 PM


Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Lead Analysis Run 12/5/2019 7:05 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

n = 34

No outliers found.

Tukey's method select-

ed by user.

Data were square root transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.2755, low cutoff = 0.00601, based on IQR multiplier of 3.

No outliers found. Tukey's method select-

Data were cube root trans-

formed to achieve best W statistic (graph shown

High cutoff = 0.1258,

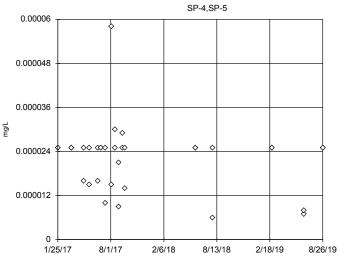
low cutoff = -0.004525, based on IQR multiplier

in original units).

ed by user.

Constituent: Lithium Analysis Run 12/5/2019 7:05 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

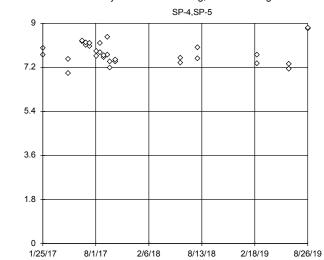

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Tukey's Outlier Screening, Pooled Background SP-4,SP-5 0.01 -**◇---◇**--**◇**--**◇**--0.008 \Diamond \Diamond 0.006 **\lambda** 0.004 \Diamond 0.002 $\Diamond \Diamond$ ✨ 1/25/17 8/1/17 2/6/18 8/13/18 2/18/19 8/26/19

Constituent: Molybdenum Analysis Run 12/5/2019 7:05 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Tukey's Outlier Screening, Pooled Background


Constituent: Mercury Analysis Run 12/5/2019 7:05 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

SC

Tukey's Outlier Screening, Pooled Background

Constituent: pH, field Analysis Run 12/5/2019 7:05 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

n = 32

n = 34

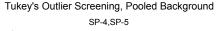
No outliers found. Tukey's method select-

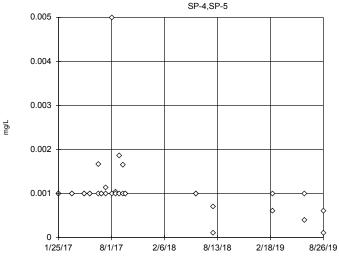
Data were cube root trans-

formed to achieve best

in original units).

W statistic (graph shown


High cutoff = 0.00007499, low cutoff = 0.000001728,


based on IQR multiplier of 3.

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 10.49, low cutoff = 5.804, based on IQR multiplier of 3.

n = 34

No outliers found.
Tukey's method selected by user.

Data were cube root transformed to achieve best W statistic (graph shown in original units).

The results were invalidated, because the lower and upper quartiles are equal.

n = 34

ed by user.

No outliers found. Tukey's method select-

Data were square root

transformed to achieve

best W statistic (graph

shown in original units).

The results were invalidated, because the lower

and upper quartiles are equal.

Constituent: Selenium Analysis Run 12/5/2019 7:05 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

$Sanitas^{\text{\tiny TM}} \ v.9.6.23 \ Groundwater \ Stats \ Consulting. \ UG$

Tukey's Outlier Screening, Pooled Background SP-4,SP-5 0.002 0.0016 0.0012 0.0008 \diamond \diamond \diamond \diamond \diamond \Diamond \Diamond 0.0004 2/18/19 1/25/17 8/1/17 2/6/18 8/13/18 8/26/19

Constituent: Thallium Analysis Run 12/5/2019 7:05 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

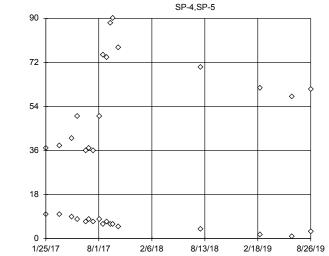
Tukey's Outlier Screening, Pooled Background

n = 34

No outliers found. Tukey's method select-

Data were natural log

transformed to achieve


best W statistic (graph

shown in original units).

High cutoff = 45988, low

cutoff = 0.008382, based

on IQR multiplier of 3.

Constituent: Sulfate Analysis Run 12/5/2019 7:05 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

1/25/17

8/1/17

Tukey's Outlier Screening, Pooled Background SP-4,SP-5 4000 Outlier is drawn as solid. Tukey's method selected by user 3200 Data were natural log transformed to achieve best W statistic (graph shown in original units) High cutoff = 2753, low cutoff = 589.4, based on IQR multiplier of 3. 2400 mg/L 1600 \Diamond \Diamond \Diamond 800

Constituent: Total Dissolved Solids [TDS] Analysis Run 12/5/2019 7:05 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

8/13/18

2/18/19

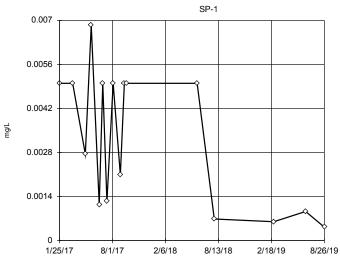
8/26/19

2/6/18

Outlier Analysis - Significant Results

Northeastern BAP Client: Geosyntec Data: Northeastern BAP Printed 12/5/2019, 7:09 PM

Constituent	Well	<u>Outlier</u>	Value(s)	Method	<u>Alpha</u>	<u>N</u>	Mean	Std. Dev.	Distribution	Normality Test
Combined Radium 226 + 228 (pCi/L)	SP-1	Yes	14.29	NP	NaN	16		2.814	In(x)	ShapiroWilk


Outlier Analysis - All Results

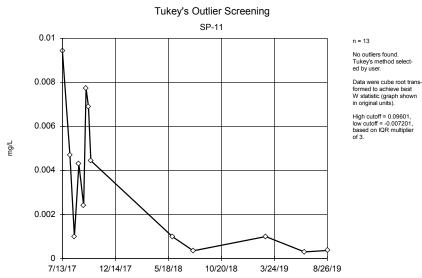
Client: Geosyntec Data: Northeastern BAP Northeastern BAP Printed 12/5/2019, 7:09 PM Distribution Constituent Well Outlier Value(s) Method Alpha <u>N</u> Mean Std. Dev. Normality Test SP-1 NF NaN 16 0.003233 0.002181 ShapiroWilk Antimony (mg/L) No x^(1/3) n/a 0.001941 Antimony (mg/L) SP-10 No n/a NP NaN 13 0.002672 ln(x) ShapiroWilk SP-11 NP NaN 0.003377 0.003125 ShapiroWilk Antimony (ma/L) No 13 x^(1/3) n/a Antimony (mg/L) SP-2 No NP NaN 16 0.003766 0.002879 In(x) ShapiroWilk Arsenic (mg/L) SP-1 NF NaN 0.003415 0.001954 ShapiroWilk No n/a 16 In(x) Arsenic (mg/L) SP-10 No n/a NP NaN 13 0.006745 0.004118 ShapiroWilk In(x) NP SP-11 NaN 13 0.005585 0.003026 ShapiroWilk Arsenic (mg/L) No n/a sqrt(x) Arsenic (mg/L) SP-2 No NΡ NaN 16 0.003491 0.002932 ShapiroWilk 0.03818 Barium (mg/L) SP-1 Nο n/a NP NaN 16 0.2006 In(x) ShapiroWilk Barium (mg/L) SP-10 No n/a NP NaN 13 1.744 1.731 x^(1/3) ShapiroWilk Barium (mg/L) NP 0.169 ShapiroWilk SP-11 Nο n/a NaN 13 0.2556 In(x) 0.5881 Barium (mg/L) SP-2 ΝP ShapiroWilk No NaN 16 In(x) 0.0004295 Beryllium (mg/L) SP-1 NP 0.0003881 ShapiroWilk No n/a NaN 16 In(x) Beryllium (mg/L) SP-10 No n/a ΝP NaN 0.0002218 0.0002294 ln(x) ShapiroWilk 0.000199 Beryllium (mg/L) SP-11 Nο n/a NP NaN 13 0 0002799 sart(x) ShaniroWilk Beryllium (mg/L) No NP NaN 16 0.0003344 0.0004011 ShapiroWilk n/a In(x) 0.0001958 Cadmium (mg/L) SP-1 No n/a NP NaN 16 0.000355 In(x) ShapiroWilk Cadmium (mg/L) SP-10 NP NaN 13 0.0001731 0.00006575 ShapiroWilk n/a n/a unknown Cadmium (mg/L) SP-11 No n/a NP NaN 13 0.0009385 0.001086 In(x) ShapiroWilk 0.0003475 Cadmium (mg/L) SP-2 No n/a NP NaN 16 0.000205 ShapiroWilk In(x) Calcium (mg/L) SP-1 No n/a NP NaN 17 122.3 10.05 In(x) ShapiroWilk SP-10 NP NaN 93.32 58.74 Calcium (mg/L) No 13 ln(x) ShapiroWilk n/a Calcium (mg/L) SP-11 No NP NaN 13 453.3 447.6 ShapiroWilk In(x) NP Calcium (mg/L) SP-2 No n/a NaN 16 107.1 35.8 In(x) ShapiroWilk Calcium (mg/L) SP-4 (bg) No n/a NP NaN 17 400.9 478.9 ln(x) ShapiroWilk Calcium (mg/L) SP-5 (bg) NP NaN 17 67.18 24.87 ln(x) ShapiroWilk Nο n/a Chromium (mg/L) SP-1 No NP NaN 0.001149 0.0006792 ShapiroWilk n/a 16 In(x) 0.03012 SP-10 NP 0.01004 ShapiroWilk Chromium (ma/L) No NaN 13 n/a In(x) Chromium (mg/L) SP-11 No ΝP NaN 0.01025 0.01287 ShapiroWilk n/a 13 In(x) NP 16 0.001531 0.001234 Chromium (mg/L) SP-2 No n/a NaN x^(1/3) ShapiroWilk Cobalt (mg/L) SP-1 No NP NaN 0.001367 0.001295 In(x) ShapiroWilk 0.002623 0.001741 Cobalt (mg/L) SP-10 Nο n/a NP NaN 13 x^(1/3) ShapiroWilk 0.004931 Cobalt (mg/L) SP-11 No n/a NP NaN 13 0.006188 x^(1/3) ShapiroWilk Cobalt (mg/L) SP-2 NP 0.001122 0.0008247 ShapiroWilk Nο n/a NaN 16 In(x) Combined Radium 226 + 228 (pCi/L) SP-1 ΝP 2.814 ShapiroWilk Yes 14.29 NaN 16 4.103 In(x) Combined Radium 226 + 228 (pCi/L) SP-10 No n/a NP NaN 13 6.984 8.061 In(x) ShapiroWilk Combined Radium 226 + 228 (pCi/L) SP-11 No n/a NP NaN 13 3.502 6.649 In(x) ShapiroWilk Combined Radium 226 + 228 (pCi/L) SP-2 No NP NaN 13 12.31 6.281 In(x) ShapiroWilk n/a NP Fluoride (mg/L) SP-1 No NaN 17 0.9669 0.8403 ln(x) ShapiroWilk n/a Fluoride (mg/L) SP-10 No n/a NP NaN 15 5.447 2.95 x^2 ShapiroWilk Fluoride (mg/L) SP-11 No NP NaN 15 3.185 0.8592 ShapiroWilk n/a normal Fluoride (mg/L) SP-2 No n/a NP NaN 17 2.871 0.7089 x^2 ShapiroWilk Lead (mg/L) SP-1 NP NaN 16 0.002924 0.002167 ShapiroWilk No n/a In(x) Lead (mg/L) SP-10 No n/a NP NaN 13 0.001517 0.0007715 x^(1/3) ShapiroWilk SP-11 NP 0.00305 Lead (mg/L) NaN 13 0.003791 ShapiroWilk No sart(x) n/a SP-2 ΝP 16 0.003164 0.002194 ShapiroWilk Lead (mg/L) No NaN In(x) SP-1 NP 16 0.007072 0.006362 ShapiroWilk Lithium (mg/L) No n/a NaN In(x) Lithium (mg/L) SP-10 No n/a NP NaN 13 0.2841 0.02877 ShapiroWilk x^3 Lithium (mg/L) SP-11 Nο NP NaN 13 0.08066 0.03839 x^(1/3) ShapiroWilk n/a SP-2 NP 0.02586 ShapiroWilk Lithium (mg/L) No n/a NaN SP-1 0.00002194 0.000006277 ShapiroWilk Mercury (mg/L) n/a n/a NP NaN 16 unknown NP Mercury (mg/L) SP-10 No n/a NaN 13 0.00001762 0.000007974 normal ShapiroWilk 0.00001449 Mercury (mg/L) SP-11 No n/a NP NaN 13 0.00002062 In(x) ShapiroWilk SP-2 NP 0.000007939 ShapiroWilk Mercury (mg/L) No n/a NaN 16 0.00002069 normal ShapiroWilk Molybdenum (ma/L) SP-1 NF NaN 16 0.01242 0.004984 Nο n/a normal

Outlier Analysis - All Results

		Northeastern BAP	Clien	t: Geosyntec	Data: Northe	astern BAP	Printed	12/5	/2019, 7:09 PM			
Constituent	Well	Out	tlier	Value(s)		Method	<u>Alpha</u>	<u>N</u>	Mean	Std. Dev.	Distribution	Normality Test
Molybdenum (mg/L)	SP-10	No		n/a		NP	NaN	13	0.09942	0.2528	ln(x)	ShapiroWilk
Molybdenum (mg/L)	SP-11	No		n/a		NP	NaN	13	0.03278	0.02353	x^2	ShapiroWilk
Molybdenum (mg/L)	SP-2	No		n/a		NP	NaN	16	0.02792	0.007558	normal	ShapiroWilk
Selenium (mg/L)	SP-1	No		n/a		NP	NaN	16	0.005163	0.002543	ln(x)	ShapiroWilk
Selenium (mg/L)	SP-10	No		n/a		NP	NaN	13	0.002548	0.00244	x^(1/3)	ShapiroWilk
Selenium (mg/L)	SP-11	No		n/a		NP	NaN	13	0.003052	0.002409	x^(1/3)	ShapiroWilk
Selenium (mg/L)	SP-2	No		n/a		NP	NaN	16	0.01075	0.01048	ln(x)	ShapiroWilk
Thallium (mg/L)	SP-1	n/a		n/a		NP	NaN	16	0.001693	0.000682	unknown	ShapiroWilk
Thallium (mg/L)	SP-10	n/a		n/a		NP	NaN	13	0.0004646	0.0001276	unknown	ShapiroWilk
Thallium (mg/L)	SP-11	n/a		n/a		NP	NaN	13	0.0004638	0.0001304	unknown	ShapiroWilk
Thallium (mg/L)	SP-2	n/a		n/a		NP	NaN	16	0.00176	0.0006558	unknown	ShapiroWilk

Constituent: Antimony Analysis Run 12/5/2019 7:07 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP


n = 16

No outliers found. Tukey's method selected by user.

Data were cube root transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.05525, low cutoff = -0.001289, based on IQR multiplier of 3.

$Sanitas^{\text{\tiny TM}} \text{ v.9.6.23 Groundwater Stats Consulting. UG}$

Constituent: Antimony Analysis Run 12/5/2019 7:07 PM

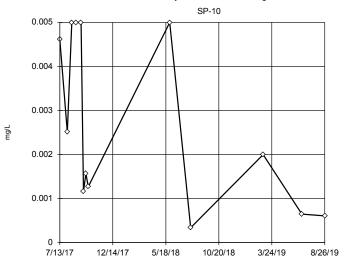
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Tukey's Outlier Screening

n = 13

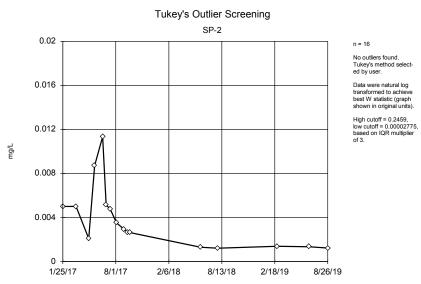
No outliers found. Tukey's method select-

Data were natural log


transformed to achieve

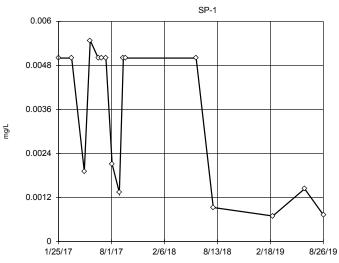
best W statistic (graph

shown in original units).


High cutoff = 0.9546, low cutoff = 0.000004548,

based on IQR multiplier of 3.

Constituent: Antimony Analysis Run 12/5/2019 7:07 PM

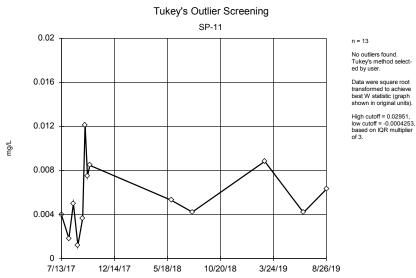

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Antimony Analysis Run 12/5/2019 7:07 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

n = 16

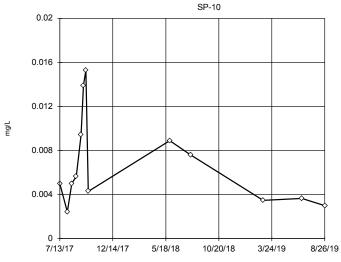
No outliers found.
Tukey's method selected by user.


Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.2332, low cutoff = 0.00002979, based on IQR multiplier of 3.

Constituent: Arsenic Analysis Run 12/5/2019 7:07 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP


$Sanitas^{\text{\tiny TM}} \ v.9.6.23 \ Groundwater \ Stats \ Consulting. \ UG$

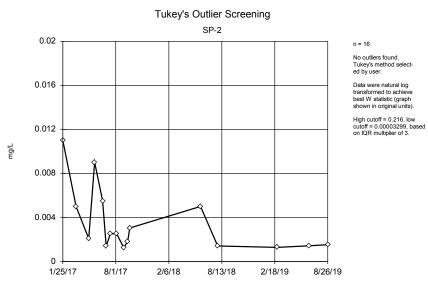
Constituent: Arsenic Analysis Run 12/5/2019 7:07 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Tukey's Outlier Screening

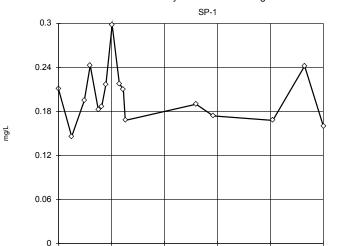
No outliers found. Tukey's method selected by user.

n = 13


Data were natural log transformed to achieve best W statistic (graph shown in original units).

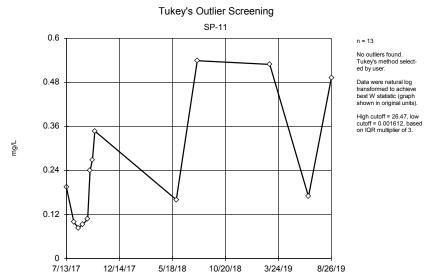
High cutoff = 0.1546, low cutoff = 0.0002113, based on IQR multiplier of 3.

Constituent: Arsenic Analysis Run 12/5/2019 7:07 PM

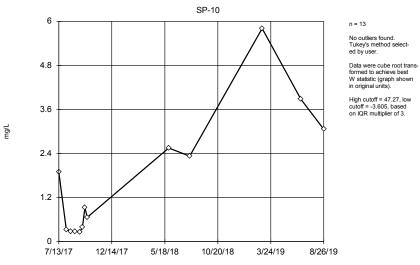

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

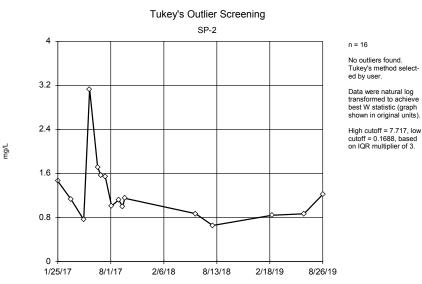
Constituent: Arsenic Analysis Run 12/5/2019 7:07 PM


Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Barium Analysis Run 12/5/2019 7:07 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

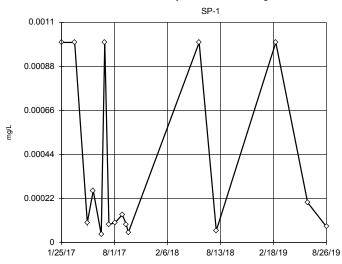

Tukey's Outlier Screening n = 16 No outliers found. Tukey's method selected by user. Data were natural log transformed to achieve best W statistic (graph shown in original units). High cutoff = 0.4478, low cutoff = 0.08305. based on IQR multiplier 1/25/17 8/1/17 2/6/18 8/13/18 2/18/19 8/26/19

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG



Constituent: Barium Analysis Run 12/5/2019 7:07 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Tukey's Outlier Screening



Constituent: Barium Analysis Run 12/5/2019 7:07 PM

Constituent: Barium Analysis Run 12/5/2019 7:07 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Tukey's Outlier Screening

n = 16

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

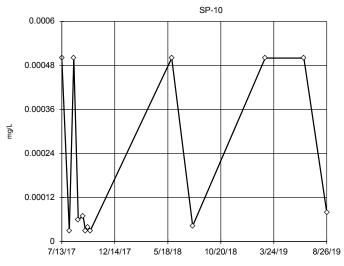
High cutoff = 1.637, low cutoff = 5.2e-8, based on IQR multiplier of 3.

No outliers found. Tukey's method select-

Data were square root

transformed to achieve

best W statistic (graph


shown in original units).

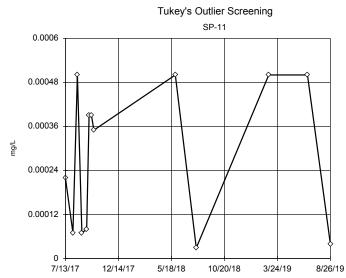
High cutoff = 0.00414, low cutoff = -0.00113, based on IQR multiplier

ed by user.

Constituent: Beryllium Analysis Run 12/5/2019 7:07 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

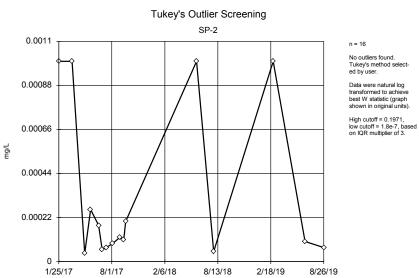
Tukey's Outlier Screening

n = 13


No outliers found. Tukey's method selected by user.

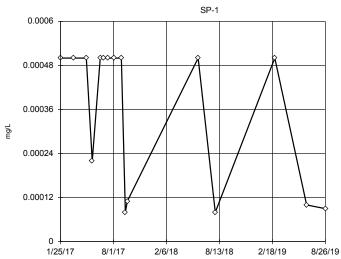
Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 1.504, low cutoff = 1.2e-8, based on IQR multiplier of 3.


Constituent: Beryllium Analysis Run 12/5/2019 7:07 PM
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

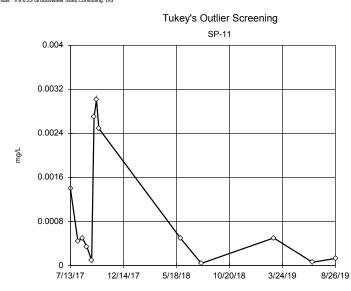
Sanitas[™] v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Beryllium Analysis Run 12/5/2019 7:07 PM


Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Beryllium Analysis Run 12/5/2019 7:07 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP


n = 16

Data were natural log shown in original units).

on IQR multiplier of 3.

Constituent: Cadmium Analysis Run 12/5/2019 7:07 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Cadmium Analysis Run 12/5/2019 7:07 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

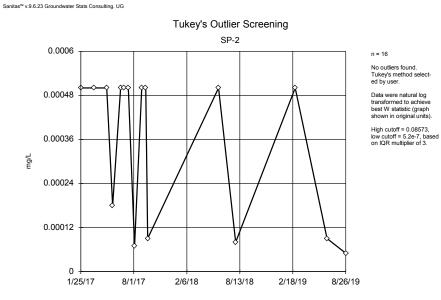
No outliers found. Tukey's method selected by user.

transformed to achieve best W statistic (graph

High cutoff = 0.05417, low cutoff = 9.7e-7, based

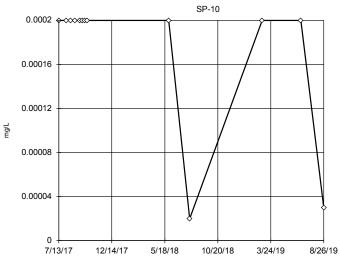
n = 13

No outliers found. Tukey's method select-


Data were natural log transformed to achieve

best W statistic (graph

shown in original units).


High cutoff = 9.602, low cutoff = 2.1e-8, based on IQR multiplier of 3.

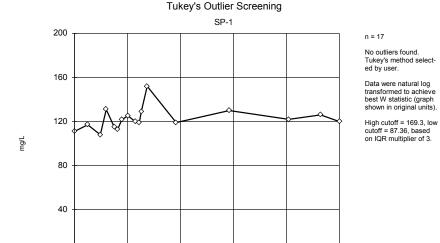
ed by user.

Constituent: Cadmium Analysis Run 12/5/2019 7:07 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Tukey's Outlier Screening

The results were invalidated, because the lower and upper quartiles are

No outliers found. Tukey's method select-


Data were natural log transformed to achieve

best W statistic (graph

shown in original units).

n = 13

Constituent: Cadmium Analysis Run 12/5/2019 7:07 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

2/6/18

Constituent: Calcium Analysis Run 12/5/2019 7:07 PM
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

8/13/18

2/18/19

8/26/19

Tukey's Outlier Screening SP-10 180 120 60 7/13/17 12/14/17 5/18/18 10/20/18 3/24/19 8/26/19

Constituent: Calcium Analysis Run 12/5/2019 7:07 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

n = 13

ed by user.

No outliers found.

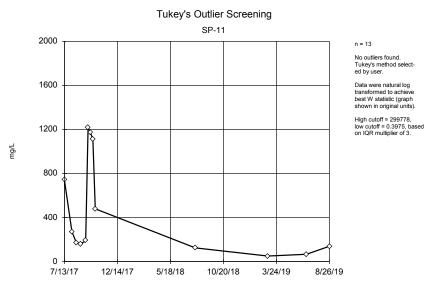
Tukey's method select-

Data were natural log

transformed to achieve

best W statistic (graph

shown in original units).

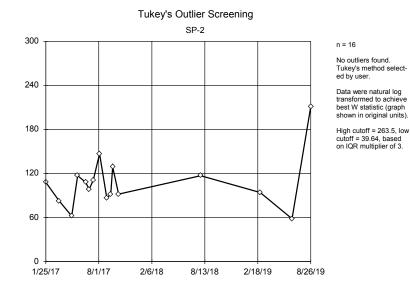

High cutoff = 416, low cutoff = 12.3, based on

IQR multiplier of 3.

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

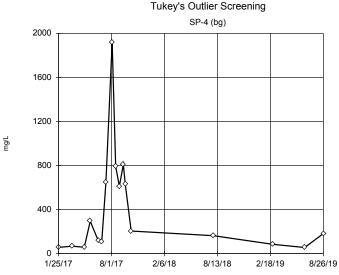
1/25/17

8/1/17



Constituent: Calcium Analysis Run 12/5/2019 7:07 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

mg/L

Constituent: Calcium Analysis Run 12/5/2019 7:07 PM

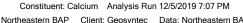
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

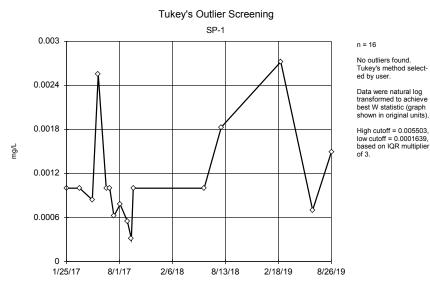
n = 17

ed by user.

No outliers found. Tukey's method select-


Data were natural log

transformed to achieve best W statistic (graph


shown in original units).

High cutoff = 383715, low cutoff = 0.1261, based

on IQR multiplier of 3.

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

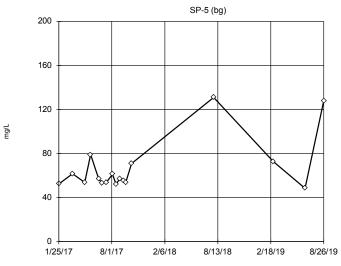
Constituent: Chromium Analysis Run 12/5/2019 7:07 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Tukey's Outlier Screening

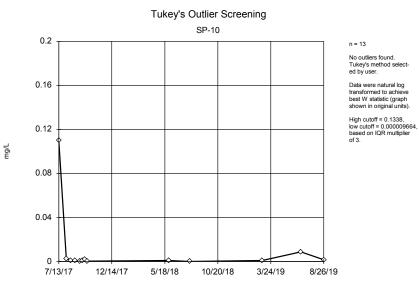
n = 17

ed by user.

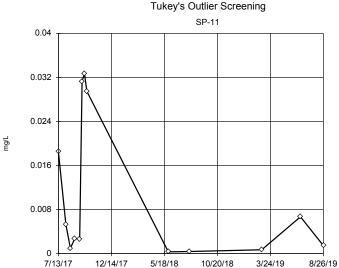
No outliers found. Tukey's method select-


Data were natural log

transformed to achieve


best W statistic (graph shown in original units).

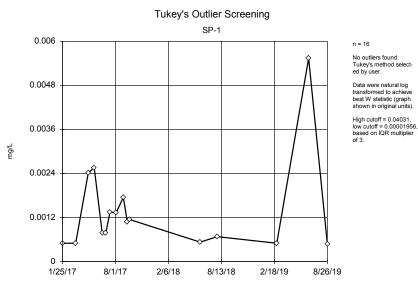
High cutoff = 176, low


cutoff = 21.8, based on IQR multiplier of 3.

Constituent: Calcium Analysis Run 12/5/2019 7:07 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Chromium Analysis Run 12/5/2019 7:07 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Chromium Analysis Run 12/5/2019 7:07 PM
Northeastern BAP Client: Geosyntec Data: Northeastern BAP


n = 13

No outliers found. Tukey's method selected by user.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 509.3, low cutoff = 3.8e-8, based on IQR multiplier of 3.

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Cobalt Analysis Run 12/5/2019 7:07 PM

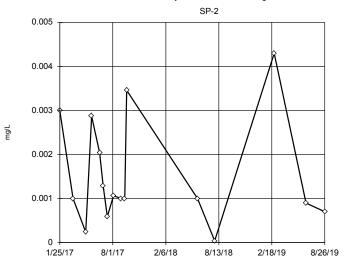
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Tukey's Outlier Screening

n = 16

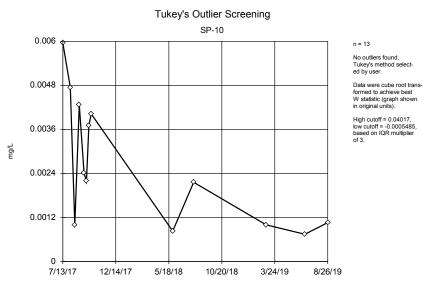
No outliers found. Tukey's method select-

Data were cube root trans-

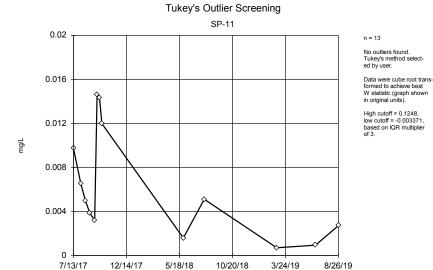

formed to achieve best

High cutoff = 0.01754, low cutoff = -0.00003478,

based on IQR multiplier of 3.


in original units).

W statistic (graph shown


Constituent: Chromium Analysis Run 12/5/2019 7:07 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Cobalt Analysis Run 12/5/2019 7:07 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Cobalt Analysis Run 12/5/2019 7:07 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

0.003 0.0024 0.0018 0.0012 0.0006

2/6/18

Constituent: Cobalt Analysis Run 12/5/2019 7:07 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

8/13/18

2/18/19

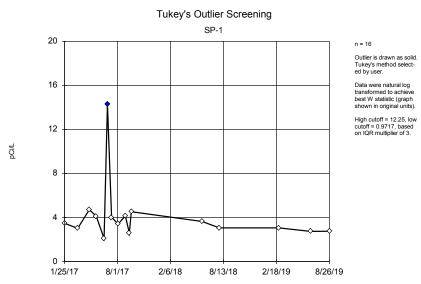
8/26/19

Tukey's Outlier Screening

n = 16

No outliers found. Tukey's method select-

Data were natural log transformed to achieve

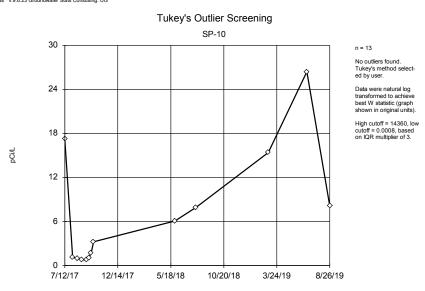

best W statistic (graph

shown in original units).

High cutoff = 0.04009, low cutoff = 0.00001866,

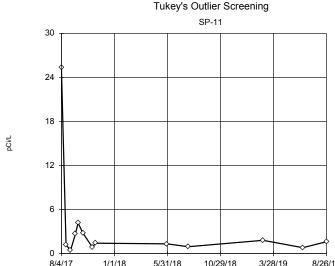
based on IQR multiplier of 3.

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

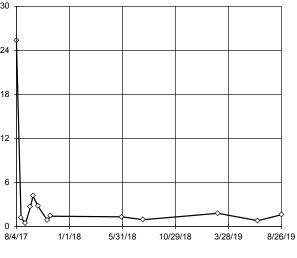

Constituent: Combined Radium 226 + 228 Analysis Run 12/5/2019 7:07 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG


1/25/17

8/1/17



Constituent: Combined Radium 226 + 228 Analysis Run 12/5/2019 7:07 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Combined Radium 226 + 228 Analysis Run 12/5/2019 7:07 PM

n = 13

No outliers found.

ed by user.

Tukey's method select-

Data were natural log transformed to achieve

best W statistic (graph

shown in original units).

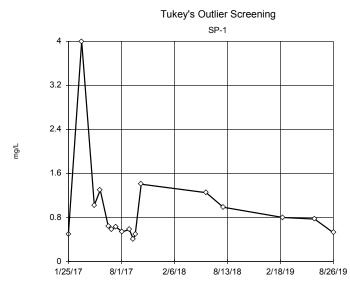
High cutoff = 77.88, low cutoff = 0.03186, based

on IQR multiplier of 3.

No outliers found. Tukey's method select-

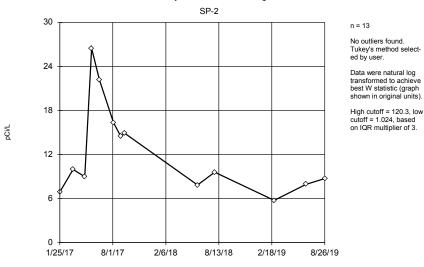
Data were natural log transformed to achieve

best W statistic (graph

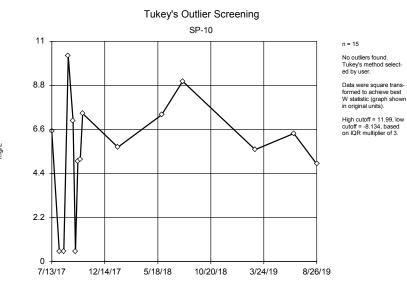

shown in original units).

High cutoff = 10.71, low cutoff = 0.05624, based on IQR multiplier of 3.

ed by user.

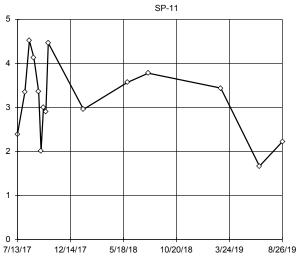

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG



Constituent: Fluoride Analysis Run 12/5/2019 7:07 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

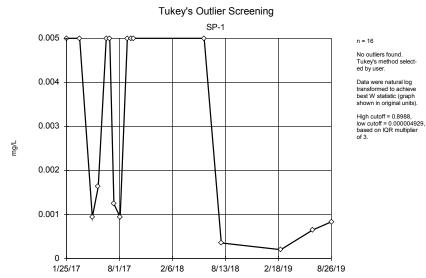
Tukey's Outlier Screening


Constituent: Combined Radium 226 + 228 Analysis Run 12/5/2019 7:07 PM

Constituent: Fluoride Analysis Run 12/5/2019 7:07 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

mg/L

Constituent: Fluoride Analysis Run 12/5/2019 7:07 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP


n = 15

No outliers found. Tukey's method selected by user.

Ladder of Powers trans-formations did not improve normality; analysis run on raw data.

High cutoff = 7.962, low cutoff = -1.796, based on IQR multiplier of 3.

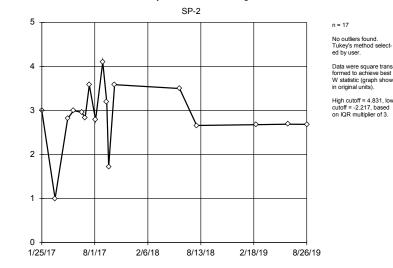
Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Lead Analysis Run 12/5/2019 7:07 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Tukey's Outlier Screening

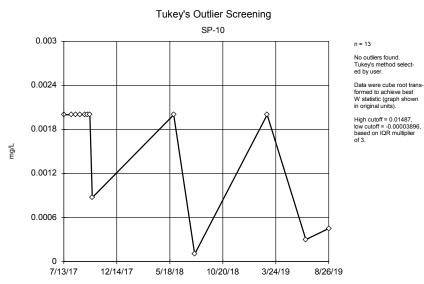
n = 17

Data were square transformed to achieve best


W statistic (graph shown

High cutoff = 4.831, low

cutoff = -2.217, based


on IQR multiplier of 3.

in original units).

Constituent: Fluoride Analysis Run 12/5/2019 7:07 PM

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

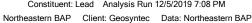
Constituent: Lead Analysis Run 12/5/2019 7:07 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Lead Analysis Run 12/5/2019 7:08 PM

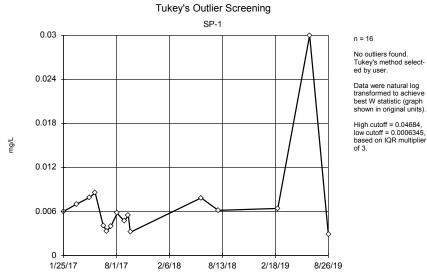
n = 13

No outliers found. Tukey's method selected by user.

Data were square root

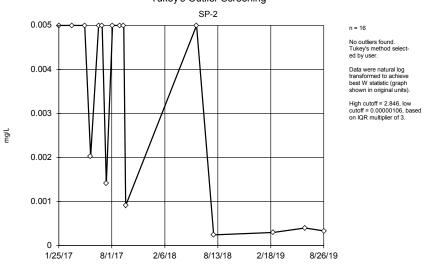

transformed to achieve

best W statistic (graph

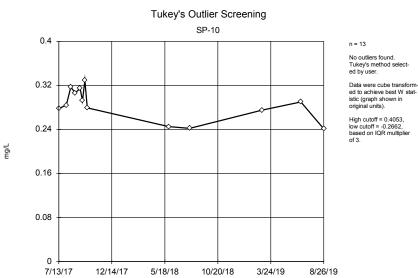

shown in original units).

High cutoff = 0.05286,

low cutoff = -0.01557. based on IQR multiplier



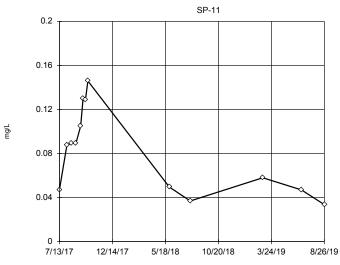
Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG



Constituent: Lithium Analysis Run 12/5/2019 7:08 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Tukey's Outlier Screening

Constituent: Lead Analysis Run 12/5/2019 7:08 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP



Constituent: Lithium Analysis Run 12/5/2019 7:08 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

0.2

0.16

n = 13

formed to achieve best W statistic (graph shown in original units).

High cutoff = 0.662, low cutoff = -0.00001086, based on IQR multiplier of 3.

n = 16

ed by user.

original units).

No outliers found. Tukey's method select-

Data were x^4 transform-

The results were invalidated, because both the

lower and upper quartiles represent reporting limits.

ed to achieve best W statistic (graph shown in

Constituent: Lithium Analysis Run 12/5/2019 7:08 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

0.12 mg/L 0.08 0.04

2/6/18

Constituent: Lithium Analysis Run 12/5/2019 7:08 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

8/13/18

2/18/19

8/26/19

Tukey's Outlier Screening

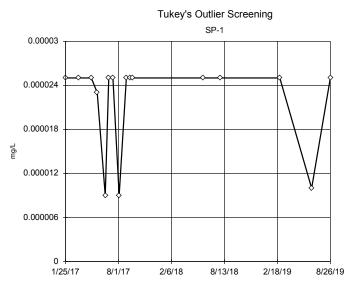
SP-2

n = 16

No outliers found. Tukey's method select-

istic (graph shown in

High cutoff = 0.1421,

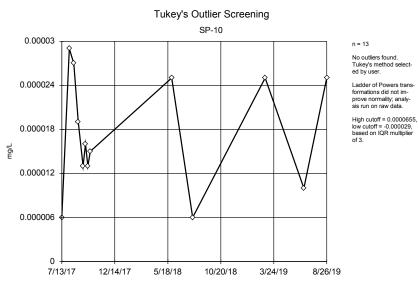

low cutoff = -0.1227,

based on IQR multiplier of 3.

original units).

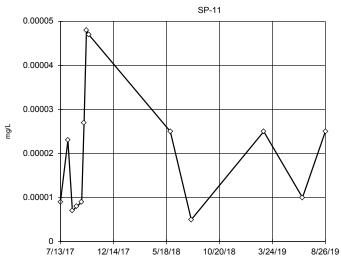
Data were cube transformed to achieve best W stat-

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG



Constituent: Mercury Analysis Run 12/5/2019 7:08 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG


1/25/17

8/1/17

Constituent: Mercury Analysis Run 12/5/2019 7:08 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

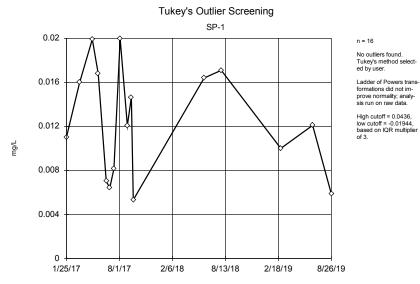
ed by user.

n = 13

Data were natural log

High cutoff = 0.0007458, low cutoff = 3.0e-7, based on IQR multiplier of 3.

ed by user.


sis run on raw data.

Constituent: Mercury Analysis Run 12/5/2019 7:08 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

No outliers found. Tukey's method select-

transformed to achieve best W statistic (graph shown in original units).

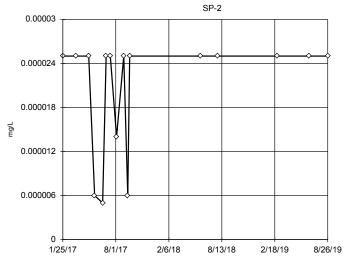
Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Molybdenum Analysis Run 12/5/2019 7:08 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Tukey's Outlier Screening

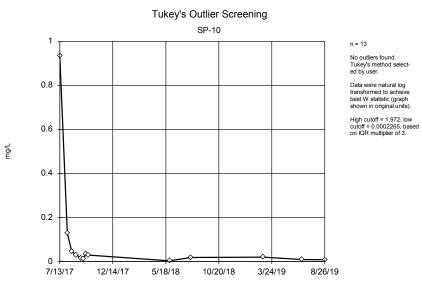
n = 16

No outliers found. Tukey's method select-

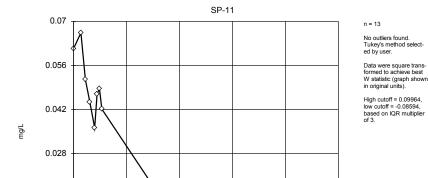

Ladder of Powers trans-formations did not im-

High cutoff = 0.0000415,

low cutoff = 0.000003,


based on IQR multiplier of 3.

sis run on raw data.



Constituent: Mercury Analysis Run 12/5/2019 7:08 PM

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Molybdenum Analysis Run 12/5/2019 7:08 PM

5/18/18

Constituent: Molybdenum Analysis Run 12/5/2019 7:08 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

10/20/18

3/24/19

8/26/19

No outliers found.

ed by user.

Tukey's method select-

Data were natural log transformed to achieve

best W statistic (graph

High cutoff = 0.02215, low cutoff = 0.0008574, based on IQR multiplier

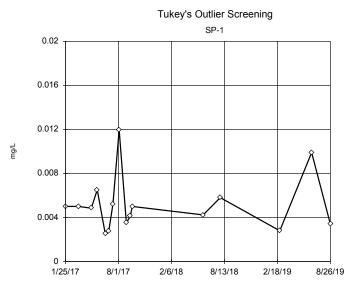
shown in original units).

Tukey's Outlier Screening

SP-2 0.04 n = 16 No outliers found. Tukey's method select-0.032 Ladder of Powers trans-formations did not imsis run on raw data. High cutoff = 0.06286, low cutoff = -0.00543, 0.024 based on IQR multiplier of 3. mg/L 0.016 0.008 1/25/17 8/1/17 2/6/18 8/13/18 2/18/19 8/26/19

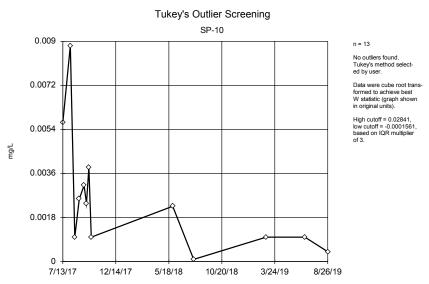
Tukey's Outlier Screening

Constituent: Molybdenum Analysis Run 12/5/2019 7:08 PM


Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

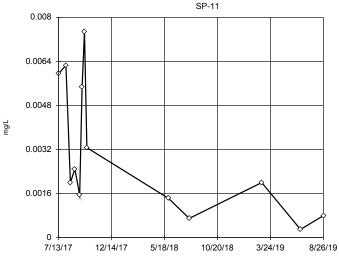
0.014


7/13/17

12/14/17

Constituent: Selenium Analysis Run 12/5/2019 7:08 PM

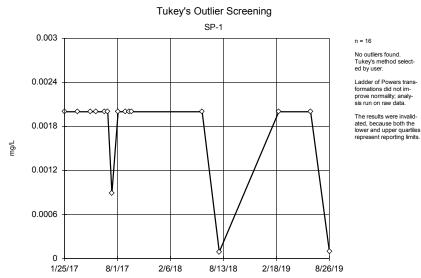
Northeastern BAP Client: Geosyntec Data: Northeastern BAP



Constituent: Selenium Analysis Run 12/5/2019 7:08 PM

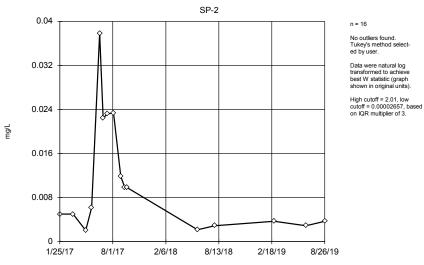
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Tukey's Outlier Screening

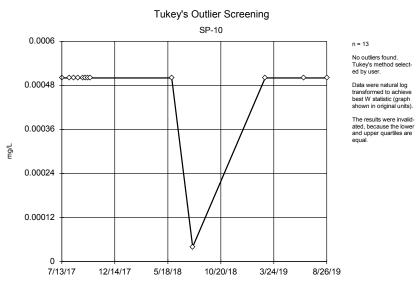

n = 13 No outliers found. Tukey's method selected by user.

Data were cube root transformed to achieve best W statistic (graph shown in original units).

High cutoff = 0.0671, low cutoff = -0.001951, based on IQR multiplier of 3.


Constituent: Selenium Analysis Run 12/5/2019 7:08 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

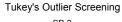


Constituent: Thallium Analysis Run 12/5/2019 7:08 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Tukey's Outlier Screening

Constituent: Selenium Analysis Run 12/5/2019 7:08 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP

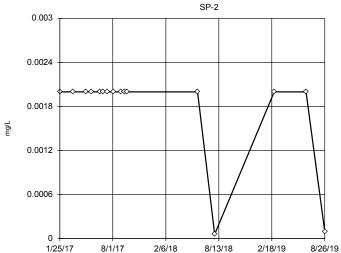
Constituent: Thallium Analysis Run 12/5/2019 7:08 PM Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Thallium Analysis Run 12/5/2019 7:08 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

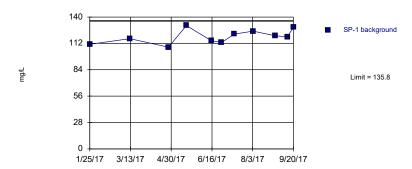


n = 16

No outliers found. Tukey's method select-

Data were natural log transformed to achieve best W statistic (graph shown in original units).

The results were invalidated, because the lower and upper quartiles are equal.

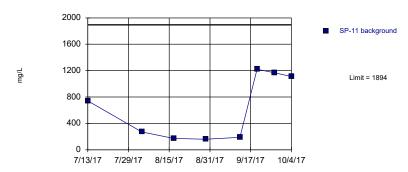

Constituent: Thallium Analysis Run 12/5/2019 7:08 PM

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Intrawell Prediction Limit Summary

	Northeastern BAP	Client: Geosy	yntec	Data:	Northeasterr	BAP Prin	ted 12/9/	2019, 4:21 PM			
<u>Constituent</u> <u>Well</u>	Upper Lim.	Lower Lim.	Sig.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Calcium (mg/L) SP-1	135.8	n/a	n/a	11	119.1	7.286	0	None	No	0.00188	Param Intra 1 of 2
Calcium (mg/L) SP-10	108.8	n/a	n/a	8	71.1	14.43	0	None	No	0.00188	Param Intra 1 of 2
Calcium (mg/L) SP-11	1894	n/a	n/a	8	629.5	483.3	0	None	No	0.00188	Param Intra 1 of 2
Calcium (mg/L) SP-2	157.3	n/a	n/a	11	103.8	23.28	0	None	No	0.00188	Param Intra 1 of 2
Calcium (mg/L) SP-4	2033	n/a	n/a	12	19.81	11.32	0	None	sqrt(x)	0.00188	Param Intra 1 of 2
Calcium (mg/L) SP-5	79.1	n/a	n/a	12	n/a	n/a	0	n/a	n/a	0.01077	NP Intra (normality) 1 of 2

Prediction Limit Intrawell Parametric, SP-1



Background Data Summary: Mean=119.1, Std. Dev.=7.286, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9766, critical = 0.792. Kappa = 2.3 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188. Assumes 1 future value.

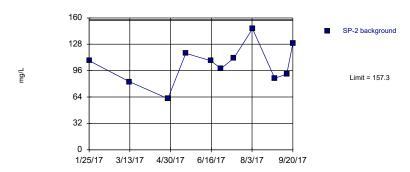
Constituent: Calcium Analysis Run 12/9/2019 4:20 PM View: PLs Intrawell Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, SP-11

Background Data Summary: Mean=629.5, Std. Dev.=483.3, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8, critical = 0.749. Kappa = 2.616 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188. Assumes 1 future value.

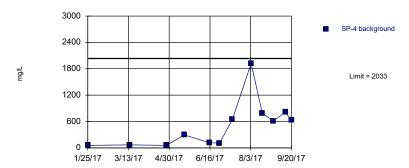
Prediction Limit Intrawell Parametric, SP-10



Background Data Summary: Mean=71.1, Std. Dev.=14.43, n=8. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9303, critical = 0.749. Kappa = 2.616 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188. Assumes 1 future value.

Constituent: Calcium Analysis Run 12/9/2019 4:20 PM View: PLs Intrawell
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

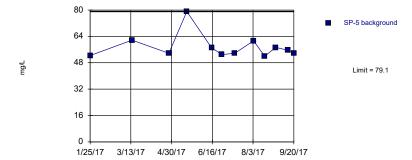
Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG


Prediction Limit Intrawell Parametric, SP-2

Background Data Summary: Mean=103.8, Std. Dev.=23.28, n=11. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9891, critical = 0.792. Kappa = 2.3 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188. Assumes 1 future value.

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Parametric, SP-4 (bg)



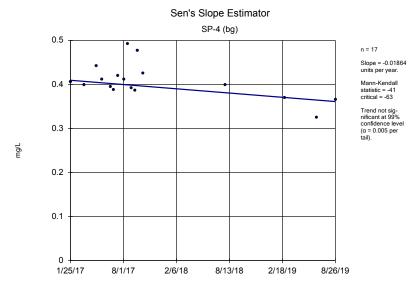
Background Data Summary (based on square root transformation): Mean=19.81, Std. Dev.=11.32, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8858, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188. Assumes 1 future value.

Constituent: Calcium Analysis Run 12/9/2019 4:20 PM View: PLs Intrawell Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23e Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Intrawell Non-parametric, SP-5 (bg)

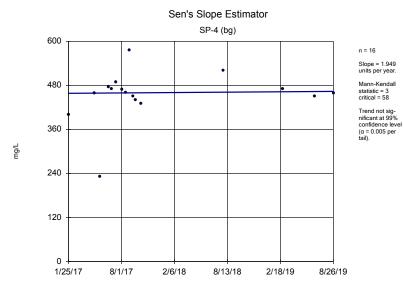
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2). Assumes 1 future value.

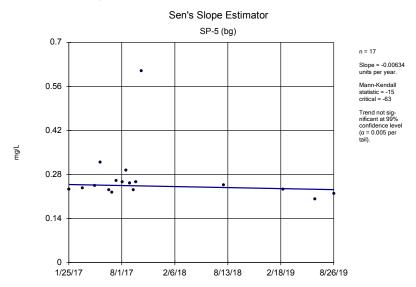

Constituent: Calcium Analysis Run 12/9/2019 4:20 PM View: PLs Intrawell Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Interwell Prediction Limit Summary Table - All Results

Northeastern BAP Client: Geosyntec Data: Northeastern BAP Printed 12/9/2019, 2:42 PM Well Upper Lim. Lower Lim. Date $\underline{\mathsf{Observ.}} \ \ \underline{\mathsf{Sig.}} \ \underline{\mathsf{Bg}} \ \underline{\mathsf{N}} \, \underline{\mathsf{Bg}} \ \underline{\mathsf{Mean}} \quad \underline{\mathsf{Std.}} \ \underline{\mathsf{Dev.}} \quad \underline{\mathsf{\%NDs}} \, \underline{\mathsf{ND}} \, \underline{\mathsf{Adj.}}$ <u>Transform</u> <u>Alpha</u> <u>Constituent</u> Method Boron (mg/L) n/a 0.61 n/a n/a 4 future n/a 30 n/a n/a 0 n/a n/a 0.001957 NP Inter (normality) 1 of 2 0.00188 Chloride (mg/L) n/a 769.2 4 future n/a 29 297583 155841 0 None x^2 Param Inter 1 of 2 Fluoride (mg/L) n/a 4.394 n/a n/a 4 future n/a 32 10.84 4.537 3.125 None x^2 0.00188 Param Inter 1 of 2 7.077 n/a pH, field (SU) 8.455 0.0009398 Param Inter 1 of 2 n/a 4 future n/a 28 7.766 0.3639 0 None No n/a n/a 4 future n/a 30 n/a Sulfate (mg/L) 90 n/a 0 0.001957 NP Inter (normality) 1 of 2 n/a n/a n/a Total Dissolved Solids [TDS] (mg/L) n/a 1567 n/a n/a 4 future n/a 29 1275 155 0 None 0.00188 Param Inter 1 of 2 No

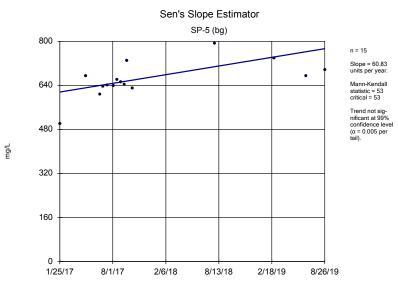
Trend Tests Summary Table - Upgradient Wells


	Northeastern BAP	Client: Geosynte	ec [Data: Northeastern BAP		Printed	11/19/2	2019, 4:2	1 PM			
Constituent	Well	Slope		Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	SP-4 (bg)	-0.0186	i4	-41	-63	No	17	0	n/a	n/a	0.01	NP
Boron (mg/L)	SP-5 (bg)	-0.0063	14	-15	-63	No	17	0	n/a	n/a	0.01	NP
Chloride (mg/L)	SP-4 (bg)	1.949		3	58	No	16	0	n/a	n/a	0.01	NP
Chloride (mg/L)	SP-5 (bg)	60.83		53	53	No	15	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	SP-4 (bg)	-0.0427	1	-9	-68	No	18	5.556	n/a	n/a	0.01	NP
Fluoride (mg/L)	SP-5 (bg)	-0.0041	01	-4	-68	No	18	0	n/a	n/a	0.01	NP
pH, field (SU)	SP-4 (bg)	-0.2636	i	-38	-58	No	16	0	n/a	n/a	0.01	NP
pH, field (SU)	SP-5 (bg)	-0.1811		-18	-58	No	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	SP-4 (bg)	15.77		53	63	No	17	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	SP-5 (bg)	-3.975		-114	-63	Yes	17	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	SP-4 (bg)	18.3		26	63	No	17	0	n/a	n/a	0.01	NP
Total Dissolved Solids [TDS] (mg/L)	SP-5 (bg)	37.26		43	58	No	16	0	n/a	n/a	0.01	NP

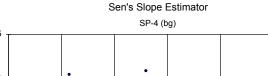

Constituent: Boron Analysis Run 11/19/2019 4:20 PM View: Interwell

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG


Constituent: Chloride Analysis Run 11/19/2019 4:20 PM View: Interwell
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Boron Analysis Run 11/19/2019 4:20 PM View: Interwell

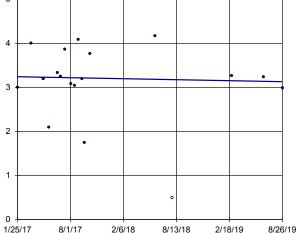

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Chloride Analysis Run 11/19/2019 4:20 PM View: Interwell
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

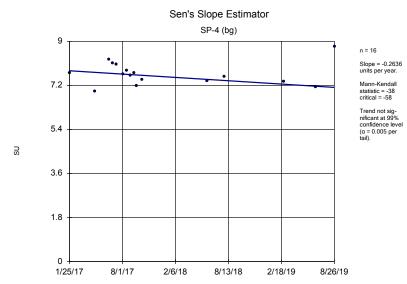
mg/L

Slope = -0.04271

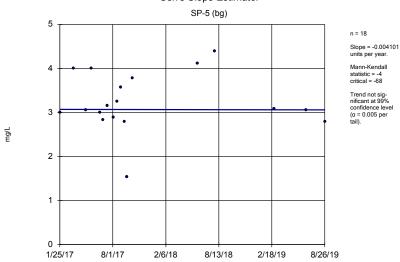

units per year.

Mann-Kendall

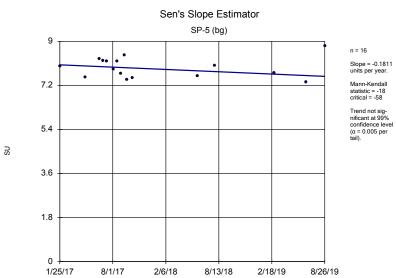
Trend not sig-nificant at 99% confidence level


 $(\alpha = 0.005 \text{ per})$

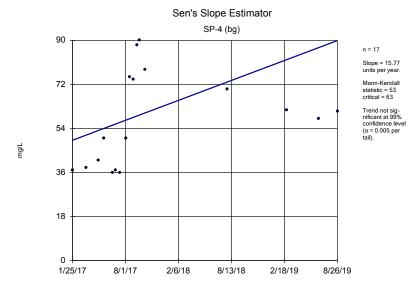
statistic = -9 critical = -68


Constituent: Fluoride Analysis Run 11/19/2019 4:21 PM View: Interwell Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

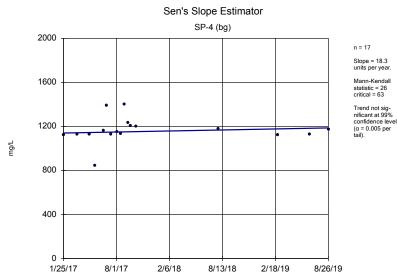

Constituent: pH, field Analysis Run 11/19/2019 4:21 PM View: Interwell Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sen's Slope Estimator

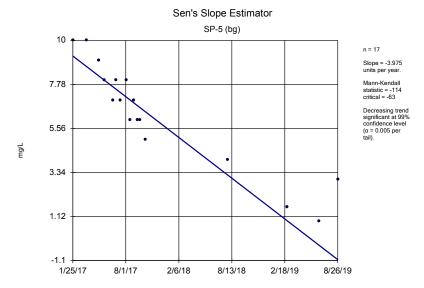


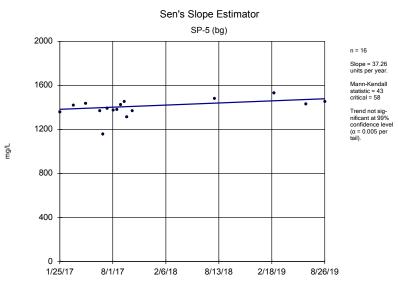
Constituent: Fluoride Analysis Run 11/19/2019 4:21 PM View: Interwell Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG



Constituent: pH, field Analysis Run 11/19/2019 4:21 PM View: Interwell


Constituent: Sulfate Analysis Run 11/19/2019 4:21 PM View: Interwell
Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Constituent: Total Dissolved Solids [TDS] Analysis Run 11/19/2019 4:21 PM View: Interwell

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Constituent: Sulfate Analysis Run 11/19/2019 4:21 PM View: Interwell
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Constituent: Total Dissolved Solids [TDS] Analysis Run 11/19/2019 4:21 PM View: Interwell

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Upper Tolerance Limits - App IV

		Northeast	ern BAP	Client: Geosynt	ec Data:	Northeastern BAP	Printed 12/5/201	9, 7:36 PM	
Constituent	Upper Lim.	Bg N	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	Alpha	Method
Antimony (mg/L)	0.00514	34	n/a	n/a	50	n/a	n/a	0.1748	NP Inter(normality)
Arsenic (mg/L)	0.05675	33	0.1124	0.05752	9.091	None	sqrt(x)	0.05	Inter
Barium (mg/L)	2.41	33	n/a	n/a	0	n/a	n/a	0.184	NP Inter(normality)
Beryllium (mg/L)	0.00212	33	n/a	n/a	30.3	n/a	n/a	0.184	NP Inter(Cohens/xform)
Cadmium (mg/L)	0.00247	33	n/a	n/a	60.61	n/a	n/a	0.184	NP Inter(normality)
Chromium (mg/L)	0.04182	33	n/a	n/a	21.21	n/a	n/a	0.184	NP Inter(normality)
Cobalt (mg/L)	0.01786	33	n/a	n/a	15.15	n/a	n/a	0.184	NP Inter(normality)
Combined Radium 226 + 228 (pCi/L)	16.52	33	8.197	3.807	0	None	No	0.05	Inter
Fluoride (mg/L)	4.468	36	10.65	4.316	2.778	None	x^2	0.05	Inter
Lead (mg/L)	0.0107	33	n/a	n/a	39.39	n/a	n/a	0.184	NP Inter(normality)
Lithium (mg/L)	0.1472	34	0.09636	0.02338	0	None	No	0.05	Inter
Mercury (mg/L)	0.00003	33	n/a	n/a	60.61	n/a	n/a	0.184	NP Inter(normality)
Molybdenum (mg/L)	0.01	34	n/a	n/a	50	n/a	n/a	0.1748	NP Inter(normality)
Selenium (mg/L)	0.00499	34	n/a	n/a	64.71	n/a	n/a	0.1748	NP Inter(normality)
Thallium (mg/L)	0.00162	33	n/a	n/a	87.88	n/a	n/a	0.184	NP Inter(NDs)

NORTHEASTERN BAP GWPS						
		CCR	Background			
Constituent Name	MCL	Rule-Specified	Limit	GWPS		
Antimony, Total (mg/L)	0.006		0.0051	0.006		
Arsenic, Total (mg/L)	0.01		0.06	0.06		
Barium, Total (mg/L)	2		2.41	2.41		
Beryllium, Total (mg/L)	0.004		0.0021	0.004		
Cadmium, Total (mg/L)	0.005		0.0025	0.005		
Chromium, Total (mg/L)	0.1		0.042	0.1		
Cobalt, Total (mg/L)	n/a	0.006	0.018	0.018		
Combined Radium, Total (pCi/L)	5		16.52	16.52		
Fluoride, Total (mg/L)	4		4.47	4.47		
Lead, Total (mg/L)	0.015		0.011	0.015		
Lithium, Total (mg/L)	n/a	0.04	0.15	0.15		
Mercury, Total (mg/L)	0.002		0.00003	0.002		
Molybdenum, Total (mg/L)	n/a	0.1	0.01	0.1		
Selenium, Total (mg/L)	0.05		0.005	0.05		
Thallium, Total (mg/L)	0.002		0.002	0.002		

^{*}Grey cell indicates ACL is higher than MCL.

^{*}MCL = Maximum Contaminant Level

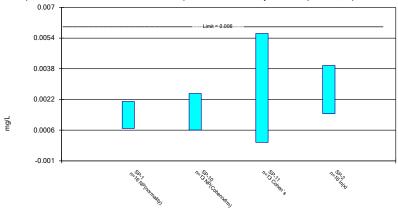
^{*}RSL = Regional Screening Level

Confidence Intervals - Significant Results

Northeastern BAP Client: Geosyntec Data: Northeastern BAP Printed 12/5/2019, 7:39 PM

Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig. N	Mean	Std. Dev.	%NDs	ND Adj.	Transfo	rmAlpha	Method
Lithium (mg/L)	SP-10	0.3055	0.2627	0.15	Yes 13	0.2841	0.02877	0	None	No	0.01	Param.

Confidence Intervals - All Results

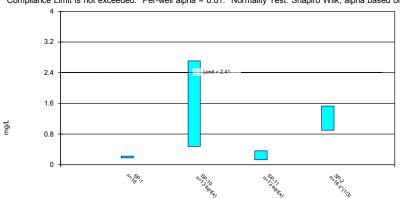

Data: Northeastern BAP Client: Geosyntec Constituent Well <u>N</u> Std. Dev %NDs ND Adj. TransformAlpha Method Upper Lim. Lower Lim. Compliance Sig. SP-1 0.00209 0.00069 0.006 16 0.001483 0.001536 43.75 No NP (normality) Antimony (mg/L) No None 0.01 NP (Cohens/xfrm) Antimony (mg/L) SP-10 0.00251 0.00061 0.006 No 13 0.001441 0.001118 30.77 None No 0.01 SP-11 0.00564 -0.00003259 0.006 0.003377 0.003125 23.08 Antimony (ma/L) No 13 Cohen's No 0.01 Param. Antimony (mg/L) SP-2 0.003973 0.001465 0.006 No 16 0.003266 0.002973 12.5 None In(x) 0.01 0.00093 Arsenic (mg/L) SP-1 0.005 0.06 No 16 0.003415 0.001954 50 No 0.01 NP (normality) None Arsenic (mg/L) SP-10 0.01392 0.003 0.06 No 13 0.006745 0.004118 15.38 No 0.01 NP (Cohens/xfrm) None SP-11 0.007836 0.003335 0.06 0.005585 0.003026 7.692 Arsenic (mg/L) No 13 None No 0.01 Param. Arsenic (mg/L) SP-2 0.0055 0.0014 0.06 No 16 0.003491 0.002932 6.25 None No 0.01 NP (normality) SP-1 0.1758 0.2006 0.03818 0 Barium (mg/L) 0.2255 2.41 Nο 16 None Nο 0.01 Param. Barium (mg/L) SP-10 2.706 0.4788 2.41 No 13 1.744 1.731 0 None sqrt(x) 0.01 Param SP-11 0.1293 2.41 0.2556 0.169 0 Barium (mg/L) 0.3622 Nο 13 None sqrt(x) 0.01 Param. SP-2 2.41 1.251 0.5881 0 Barium (mg/L) 1.528 0.9 No 16 None x^(1/3) 0.01 SP-1 31.25 Beryllium (mg/L) 0.0005 0.00006 0.004 16 0.0002319 0.0001945 0.01 NP (normality) No None No Beryllium (mg/L) SP-10 0.0005 0.00003 0.004 No 13 0.0002218 0.0002294 38.46 No 0.01 NP (normality) SP-11 0.0002799 Beryllium (mg/L) 0.0005 0.00004 0.004 Nο 13 0.000199 30.77 None Nο 0.01 NP (normality) Beryllium (mg/L) SP-2 0.00006 0.004 No 16 0.0002094 0.0001827 25 No 0.01 NP (Cohens/xfrm) SP-1 0.0001675 Cadmium (mg/L) 0.00022 0.00009 0.005 No 16 0.00005323 62.5 None No 0.01 NP (normality) Cadmium (mg/L) SP-10 0.0002 0.00003 0.005 13 0.0001731 0.00006575 84.62 0.01 NP (NDs) No None No SP-11 Cadmium (mg/L) 0.0027 0.00006 0.005 No 13 0.0008692 0.001124 23.08 None No 0.01 NP (Cohens/xfrm) Cadmium (mg/L) SP-2 0.0002 0.00008 0.005 No 16 0.00016 0.00005933 62.5 None No 0.01 NP (normality) Chromium (mg/L) SP-1 0.00183 0.00062 0.1 No 16 0.001149 0.0006792 37.5 None Nα 0.01 NP (Cohens/xfrm) Chromium (mg/L) SP-10 0.00244 12 0.001714 0.002323 NP (Cohens/xfrm) 0.00036 0.1 No None No 0.01 16.67 Chromium (mg/L) SP-11 0.01504 0.001187 0.1 No 13 0.01025 0.01287 7.692 x^(1/3) 0.01 None Chromium (mg/L) SP-2 0.003 0.00059 0.001531 0.001234 NP (Cohens/xfrm) 0.1 No 16 18.75 None No 0.01 Cobalt (mg/L) SP-1 0.00242 0.0005 0.018 No 16 0.001367 0.001295 18.75 None No 0.01 NP (Cohens/xfrm) Cobalt (mg/L) SP-10 0.003919 0.0008215 0.018 Nο 13 0.002546 0.001827 15.38 Cohen's No 0.01 Param. Cobalt (mg/L) SP-11 0.009689 0.001996 0.018 No 13 0.005842 0.005173 7.692 No 0.01 None SP-2 0.001122 Cobalt (mg/L) 0.00251 0.0005 0.018 16 0.0008247 0.01 NP (Cohens/xfrm) No 18.75 None No Combined Radium 226 + 228 (pCi/L) SP-1 3.939 2.909 15 3.424 0.7606 0 16.52 No No 0.01 Param. Combined Radium 226 + 228 (pCi/L) SP-10 11.03 6.984 8.061 0 1.405 16.52 No 13 None sart(x) 0.01 Param. Combined Radium 226 + 228 (pCi/L) SP-11 2.519 0.8399 16.52 No 12 1.679 1.07 0 No 0.01 Combined Radium 226 + 228 (pCi/L) SP-2 7 817 16.52 12 31 6 281 Ω 16 29 Nο 13 None sart(x) 0.01 Param Fluoride (mg/L) SP-1 0.9569 0.5669 4.47 No 16 0.7773 0.3186 12.5 None sqrt(x) 0.01 Param SP-10 Fluoride (ma/L) 7.478 2.988 4.47 15 5.447 20 Nο 2.95 Cohen's No 0.01 Param. SP-11 Fluoride (mg/L) 3.768 2.603 No 15 0 None No 0.01 Param. Fluoride (mg/L) SP-2 3.316 2.427 4.47 No 17 2.871 0.7089 0 None Nο 0.01 Param. Lead (mg/L) SP-1 0.002 0.00065 0.015 No 16 0.001424 0.0006727 50 None No 0.01 NP (normality) Lead (mg/L) SP-10 0.002 0.0003 0.015 No 13 0.001517 0.0007715 69.23 None No 0.01 NP (normality) SP-11 0.015 0.003098 0.003036 Lead (mg/L) 0.00816 0.000404 No 13 23.08 No 0.01 NP (Cohens/xfrm) None None Lead (mg/L) SP-2 0.00202 0.000334 0.015 No 16 0.001476 0.0007506 56.25 No 0.01 NP (normality) Lithium (mg/L) SP-1 0.006777 0.00431 0.15 15 0.005543 0.001821 0 No 0.01 Param. No None Lithium (mg/L) SP-10 0.3055 0.2627 0.15 0.2841 0.02877 0 No 0.01 Param. 13 Lithium (ma/L) SP-11 0.1092 0.05211 0.15 13 0.08066 0.03839 0 No 0.01 Param. No None Lithium (mg/L) SP-2 0.09406 0.06395 0.15 No 16 0.07643 0.02586 0 x^2 0.01 Param. None SP-1 0.000025 0.00001 0.002 16 0.00002194 0.000006277 75 0.01 NP (normality) Mercury (ma/L) No None No SP-10 0.00002628 0.00001173 0.002 13 0.00001762 0.000007974 23.08 Mercury (mg/L) No Cohen's No 0.01 SP-11 0.000047 0.000007 0.002 13 0.00002062 0.00001449 23.08 0.01 NP (Cohens/xfrm) Mercury (mg/L) No None No SP-2 0.000025 0.000014 0.002 No 16 0.00002069 0.000007939 75 No 0.01 NP (normality) Mercury (mg/L) None SP-1 Molybdenum (ma/L) 0.01566 0.009179 0.1 Nο 16 0.01242 0.004984 0 None Nο 0.01 Param. SP-10 0.04589 0.02862 0.03426 Molybdenum (mg/L) 0.007288 0.1 No 12 8.333 None sgrt(x) 0.01 SP-11 0.02353 Molybdenum (mg/L) 0.05198 0.02165 0.03278 7.692 0.1 Nο 13 None x^2 0.01 Param. Molybdenum (mg/L) SP-2 0.03284 0.02301 0.1 No 16 0.02792 0.007558 0 None No 0.01 Param. SP-1 0.00651 0.003054 Selenium (mg/L) 0.00254 0.05 Nο 16 0.004413 18.75 None No 0.01 NP (Cohens/xfrm) SP-10 0.00567 0.002548 0.00244 Selenium (mg/L) 0.0004 0.05 No 13 30.77 None No 0.01 NP (Cohens/xfrm) Selenium (ma/L) SP-11 0.00626 0.0007 0.05 13 0.002898 0.002509 0.01 NP (Cohens/xfrm) Nο 15.38 None Nο

Confidence Intervals - All Results

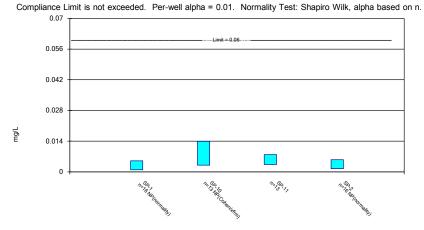
		Northeaster	n BAP Clier	nt: Geosyntec	Data	: Nor	theastern BAP	Printed 12/5/	2019, 7:	39 PM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	<u>Sig.</u> !	N	Mean	Std. Dev.	%NDs	ND Adj.	Transform	nAlpha	Method
Selenium (mg/L)	SP-2	0.01476	0.003135	0.05	No '	16	0.01025	0.01085	12.5	None	sqrt(x)	0.01	Param.
Thallium (mg/L)	SP-1	0.00089	0.0001	0.002	No '	16	0.0005675	0.0004209	75	None	No	0.01	NP (normality)
Thallium (mg/L)	SP-10	0.0005	0.00004	0.002	No '	13	0.0004646	0.0001276	92.31	None	No	0.01	NP (NDs)
Thallium (mg/L)	SP-11	0.0005	0.00003	0.002	No '	13	0.0004638	0.0001304	92.31	None	No	0.01	NP (NDs)
Thallium (mg/L)	SP-2	0.0005	0.0001	0.002	No '	16	0.0004475	0.0001436	87.5	None	No	0.01	NP (NDs)

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



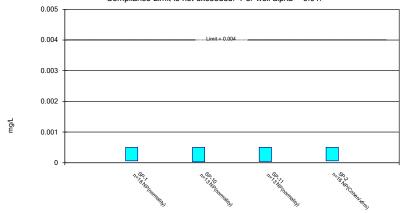
Constituent: Antimony Analysis Run 12/5/2019 7:38 PM View: Appendix IV Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

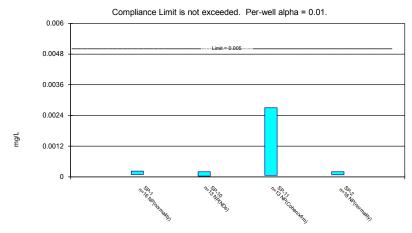
Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Parametric and Non-Parametric (NP) Confidence Interval



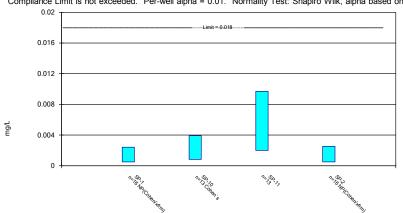
Constituent: Arsenic Analysis Run 12/5/2019 7:38 PM View: Appendix IV Northeastern BAP Client: Geosyntec Data: Northeastern BAP


Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.

Non-Parametric Confidence Interval

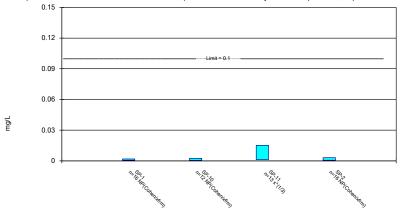


Constituent: Cadmium Analysis Run 12/5/2019 7:38 PM View: Appendix IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

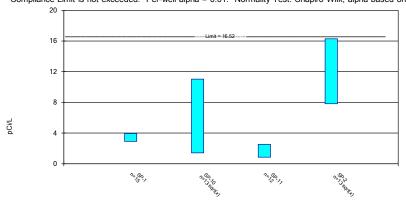


Constituent: Cobalt Analysis Run 12/5/2019 7:38 PM View: Appendix IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

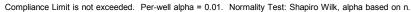
Parametric and Non-Parametric (NP) Confidence Interval

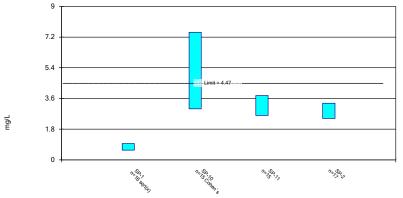
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Chromium Analysis Run 12/5/2019 7:38 PM View: Appendix IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

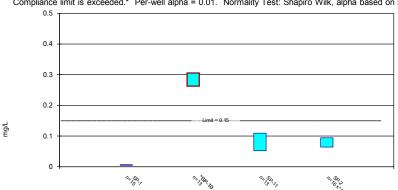
Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG


Parametric Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

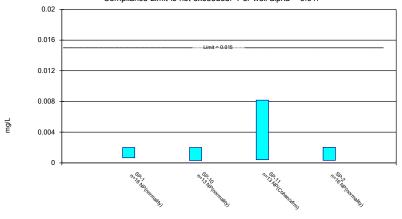
Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Parametric Confidence Interval



Constituent: Fluoride Analysis Run 12/5/2019 7:38 PM View: Appendix IV Northeastern BAP Client: Geosyntec Data: Northeastern BAP

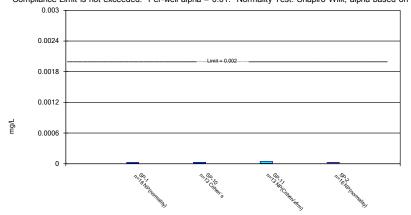
Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG


Parametric Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Non-Parametric Confidence Interval

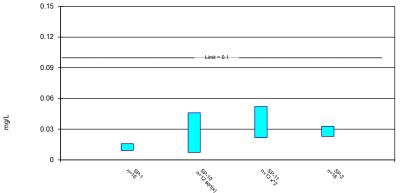
Compliance Limit is not exceeded. Per-well alpha = 0.01.



Constituent: Lead Analysis Run 12/5/2019 7:38 PM View: Appendix IV Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

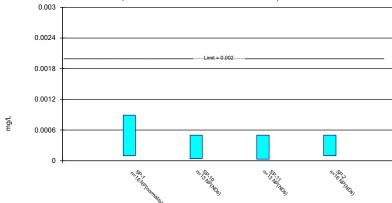
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

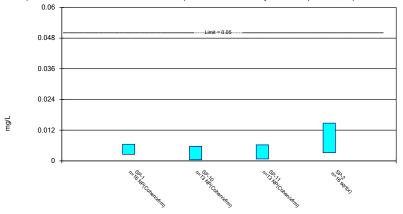


Constituent: Molybdenum Analysis Run 12/5/2019 7:38 PM View: Appendix IV
Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Non-Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01.


Constituent: Thallium Analysis Run 12/5/2019 7:38 PM View: Appendix IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

Sanitas™ v.9.6.23 Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Selenium Analysis Run 12/5/2019 7:38 PM View: Appendix IV

Northeastern BAP Client: Geosyntec Data: Northeastern BAP

APPENDIX III

Alternate source demonstrations are included in this appendix. Alternate sources are sources or reasons that explain that statistically significant increases over background or statistically significant levels above the groundwater protection standard are not attributable to the CCR unit.

May 1, 2019

Hillary Young, P.E. Oklahoma Department of Environmental Quality 707 N Robinson Oklahoma City, OK 73102

Subject:

Northeastern Power Station

252:517 - Coal Combustion Residual

Alternate Source Demonstration – Bottom Ash Pond

Dear Ms. Young:

In accordance with 252:517-9-6-(g)(3)(B) American Electric Power is submitting a report documenting the demonstration of an alternate source for the statistically significant level of lithium detected at the facility referenced above for your approval. This report has been certified by a qualitied professional engineer. This report is being submitted with in the required time frame which includes the 30 day extension granted by ODEQ in correspondence dated march 19, 2019.

Based on the alternate source demonstration the Bottom Ash Pond will continue to operate under the assessment monitoring program. This alternate source demonstration will be included in the annual 2019 groundwater monitoring and corrective action report in accordance with OAC 252:517-9-1(e).

If you have any questions regarding these submittals, you can contact me at 318-673-3816, or by email at jcparker-witt@aep.com.

Sincerely,

Jill Parker-Witt

AEP Environmental Services

ALTERNATIVE SOURCE DEMONSTRATION REPORT STATE CCR RULE

Northeastern Power Station Bottom Ash Pond Oologah, Oklahoma

Submitted to

1 Riverside Plaza Columbus, Ohio 43215-2372

Submitted by

engineers | scientists | innovators

941 Chatham Lane Suite 103 Columbus, OH 43221

April 24, 2019

CHA8462

TABLE OF CONTENTS

SECTION 1 Intro	oduction and Summary	1-1					
1.1 CCR	CCR Rule Requirements1-1						
1.2 Dem	1.2 Demonstration of Alternative Sources						
SECTION 2 Alter	rnative Source Demonstration	2-1					
2.1 Regi	ional Geology	2-1					
2.2 Site	Geology	2-2					
2.3 Site Hydrogeology							
	Geochemistry						
2.4.1	•						
	d Chemistry						
	•						
•	posed Alternative Source						
	pling Requirements						
	clusions and Recommendations						
SECTION 4 Refe	erences	4-1					
Table 1 Table 2	TABLES X-Ray Diffraction Analytical Results Cation Exchange Capacity and Total Lithium Analytic	al Results					
	FIGURES						
Figure 1	Soil Boring and Monitoring Well Location Map						
Figure 2	Water Level Time Series Graph						
Figure 3	Schoeller Diagram						
Figure 4	Piper Diagram – All Wells						
Figure 5	Piper Diagrams – Individual Wells						
Figure 6	Spatial Distribution of Groundwater Types						
Figure 7	Sodium v. Well Screen Depth						
Figure 8	Spatial Distribution of Lithium						
Figure 9	Sodium v. Lithium Concentrations						
Figure 10	Chloride v. Lithium Concentrations						
Figure 11 Figure 12	Lithium v. Well Screen Depth Cation Distribution						
Figure 13	BAP Water Schoeller Diagram						
116416 13	Bill Water Schoolier Blagram						
	ATTACHMENTS						
Attachment A	Boring Logs						
Attachment B	BAP-B1 Photolog						
Attachment C	Mineralogical Analysis Laboratory Report						
Attachment D	BAP Water Laboratory Analytical Data						
Attachment E Certification by a Qualified Professional Engineer							

LIST OF ACRONYMS AND ABBREVIATIONS

AEP American Electric Power

ASD Alternative Source Demonstration

ASL Alternate Screening Level

BAP Bottom Ash Pond

CCR Coal Combustion Residuals

CEC Cation Exchange Capacity

CFR Code of Federal Regulations

EPRI Electric Power Research Institute

GSC Groundwater Stats Consulting, LLC

GWPS Groundwater Protection Standard

LCL Lower Confidence Limit

MCL Maximum Contaminant Level

OAC Oklahoma Administrative Code

ODEQ Oklahoma Department of Environmental Quality

OGS Oklahoma Geological Survey

QA Quality Assurance

QC Quality Control

SSL Statistically Significant Level

UTL Upper Tolerance Limit

USEPA United States Environmental Protection Agency

XRD X-Ray Diffraction

XRF X-Ray Fluorescence

SECTION 1

INTRODUCTION AND SUMMARY

The Northeastern Power Station has two regulated coal combustion residuals (CCR) management units, including the Bottom Ash Pond (BAP). In 2018, two assessment monitoring events were conducted at the BAP in accordance with OAC 252:517-9-6. The monitoring data were submitted to Groundwater Stats Consulting, LLC (GSC) for statistical analysis. Groundwater protection standards (GWPSs) were established for each Appendix IV parameter in accordance with United States Environmental Protection Agency's (USEPA) *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance* (Unified Guidance; USEPA, 2009). The established GWPSs were determined as the greater of the background concentration and the maximum contaminant level (MCL) or alternate screen level (ASL) for each Appendix IV parameter. To determine background concentrations, an upper tolerance limit (UTL) was calculated using pooled data from the background wells collected during the background monitoring and assessment monitoring events.

Confidence intervals were calculated for Appendix IV parameters at the compliance wells to assess whether Appendix IV parameters were present at a statistically significant level (SSL) above the GWPS. An SSL was concluded if the lower confidence limit (LCL) exceeded the GWPS (i.e., if the entire confidence interval exceeded the GWPS). An SSL was identified for lithium at SP-10 at the BAP (Geosyntec, 2019). The LCL for lithium at SP-10 of 0.263 milligram/liter (mg/L) exceeded the GWPS of 0.15 mg/L.

1.1 CCR Rule Requirements

Oklahoma Department of Environmental Quality (ODEQ) regulations regarding assessment monitoring of CCR landfills and surface impoundments provide owners and operators with the option to make an alternative source demonstration when an SSL is identified (OAC 252:517-9-6(g)(3)(B)). An owner or operator may:

Demonstrate that a source other than the CCR unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer and submitted to DEQ for approval. If a successful demonstration is made, the owner or operator must continue monitoring in accordance with the assessment monitoring program pursuant to this Section...

Pursuant to OAC 252:517-9-6(g)(3)(B), Geosyntec Consultants, Inc. (Geosyntec) has prepared this Alternative Source Demonstration (ASD) report to document that the SSL identified for lithium should not be attributed to the BAP.

1.2 <u>Demonstration of Alternative Sources</u>

An evaluation was completed to assess possible alternative sources to which the identified SSL could be attributed. Alternative sources were identified amongst five types, based on methodology provided by EPRI (2017):

- ASD Type I: Sampling Causes;
- ASD Type II: Laboratory Causes;
- ASD Type III: Statistical Evaluation Causes;
- ASD Type IV: Natural Variation; and
- ASD Type V: Alternative Sources.

A demonstration was conducted to show that the SSL identified for lithium was based on a Type IV cause at SP-10 and not by a release from the BAP.

SECTION 2

ALTERNATIVE SOURCE DEMONSTRATION

In accordance with OAC 252:517-9-6(g)(3)(B), the owner or operator of a CCR unit has 90 days from the determination of an SSL to demonstrate that a source other than the CCR unit caused the SSL. On March 19, 2019 ODEQ granted a 30-day extension for completion of this demonstration. Initial review of site groundwater geochemistry, historical data, and laboratory QA/QC did not identify alternative sources due to Type I (sampling), Type II (laboratory), or Type III (statistical evaluation) issues. As described below, the SSL has been attributed to natural variation in the underlying geology and geochemistry, which are Type IV issues.

2.1 Regional Geology

The generalized stratigraphic column of the regional geology in the Site vicinity is summarized below:

Series	Group	Formation			
		Oolagah			
	Marmaton	Labette			
Desmoinesian		Fort Scott Limestone			
		Senora			
	Cherokee	Boggy			
		Savanna			

The Site is underlain by the Oologah Formation. The Oologah Formation is characterized as a dark gray argillaceous limestone with a small amount of fissile shale (Oakes et al., 1952). The limestone is typically dense to moderately crystalline, unjointed, and thinly to massively bedded. The Oologah Formation is approximately 80 to 100 feet thick and is subdivided into three members, the Altamont Limestone, the Bandera Shale, and the Pawnee Limestone (in descending order) as described below:

- Altamont Limestone. Grayish orange pink (5YR7/2) to medium gray (N5) limestone, mudstone, wackestones and locally packstones. The texture varies from thin and somewhat wavy to medium planar and is influenced by the presence of fossil algal material. The bedding of the upper portion of the member is typically thinner than the lower portion (Oklahoma Geological Survey [OGS], 2005). The thickness of the Altamont Limestone typically ranges from approximately 65 to 100 feet.
- Bandera Shale. Medium dark gray to dark gray, well-laminated to fissile shale. The member is approximately 2-feet thick about 13 miles south of the Site (OGS, 2005 and Woodruff, 1928).
- *Pawnee Limestone*. Medium gray, slightly wavy, thin to medium bedded limestone. The bedding is typically 2 to 4-inches thick but can reach 12 inches in thickness. The Pawnee

Limestone contains abundant fossil debris and varies in thickness from approximately 19 to 22 feet (OGS, 2005).

The Oologah Formation is underlain by the Labette Formation, a grayish-brown to dark gray, laminated clayshale. The clayshale contains some zones of weakly calcareous shale, and multiple horizons of sandy shale to sandstone. The thickness of the Labette Formation typically ranges from approximately 120 to 180 feet. A zone of alternating shale and sandstone (Peru Sandstone) or shale and limestone (Sageeyah Limestone) may be present near the top of the Labette Formation. This member (if present) does not typically contain fossils and varies in thickness up to 20 feet south of the Site (OGS, 2005).

The Labette Formation is underlain by the Fort Scott Formation which consists of three members, in descending order: the Higginsville Limestone; the Little Osage Shale; and the Blackjack Creek Limestone. The Fort Scott Formation limestone consists primarily of a light gray, thin to medium, wavy-bedded fossiliferous wackestone and mudstone (OGS, 2004).

2.2 Site Geology

According to the groundwater monitoring network report for the BAP (Terracon, 2017), the Site is underlain by a limestone unit from ground surface to approximately 30 to 50 feet below ground surface (ft bgs), with a shale unit underlying the limestone. The wells within the CCR compliance network (SP-1, SP-2, SP-4, SP-5R, SP-10, and SP-11) were selected to monitor the upper limestone unit, which was determined to contain the shallow aquifer at the site. Wells set at deeper intervals (SP-3, SP-6, SP-7, SP-8, SP-9) were not selected for inclusion in the CCR compliance monitoring well network, as they were believed to be screened within the lower shale unit.

A subsequent review of the boring logs for co-located wells SP-9 (shale) and SP-10 (limestone) indicates a discrepancy regarding the upper elevation of the limestone-shale interface. The SP-9 boring log identified shale with interbedded limestone beginning at approximately 40 ft bgs, whereas the SP-10 boring log identified limestone to approximately 51.5 ft bgs, with increasing frequency of interbedded shale at greater depths. The two borings were logged using cuttings, which can obscure lithologic changes. To clarify the site geology, Geosyntec advanced two additional borings at the Site in early 2019 (Figure 1). Boring BAP-B1 was advanced to a depth of 186 ft bgs.

The following is a general summary of the geologic units encountered at BAP-B1:

Geologic Unit	Depth (ft bgs)	Elevation (ft amsl) ¹
Unconsolidated Soil	0 to 3	625.8 to 622.8
Limestone (Oologah Formation)	3 to 100	622.8 to 525.8
Shale (Labette Formation)	100 to 181	525.8 to 444.8
Limestone (Fort Scott Formation)	181 to 186	444.8 to 439.8

Note: 1. ft amsl = feet above mean sea level

The boring log for BAP-B1 is provided in Attachment A and a photolog documenting the observed lithology is provided in Attachment B. Based on this and logs for other borings near the BAP, it appears that all wells near the BAP are set within the upper limestone unit. This limestone unit appears representative of the Oologah Formation and may be inclusive of the Altamont limestone member (upper portion of the Oologah Formation) and the Pawnee member (lower portion of the Oologah Formation). At several boring locations, thin horizons of shale were identified from elevations of approximately 25 to 75 ft bgs.

Boring BAP-B2 was advanced in the vicinity of SP-10 to relog that location and provide clarity regarding the geology of the well at the screened interval. The boring log for BAP-B2 is provided in Attachment A. A thin shale horizon was observed at 46 ft bgs, which is within the screened interval of SP-10.

Samples were collected from four intervals at boring BAP-B2 for laboratory analysis, as summarized below:

Sample Depth (ft bgs)	Sample ID	Description
32.0-32.4	SP-10-LOG-1	Upper limestone
46.0-47.0	SP-10-LOG-2	Shale lens within the screened interval of SP-10
46.0-47.0	SP-10-LOG-3	Limestone within screened interval of SP-10
72.0-72.4	SP-10-LOG-4	Limestone within the screened interval of SP-9

The samples were submitted to Mineralogy, Inc. (Tulsa, Oklahoma) for mineralogical analysis, including bulk analysis by X-ray diffraction (XRD), X-ray fluorescence (XRF), cation exchange capacity (CEC), and thin section petrography. A portion of each sample was submitted to Accurate Environmental Laboratories (Tulsa, Oklahoma) for acid digestion and analysis of total lithium by USEPA Method 6020A.

The XRD analysis confirmed that limestone is present at depths to at least 72 ft bgs, which is deeper than expected based on the previous monitoring well network report and boring logs. The analyses also confirmed the horizon observed at 46 ft bgs is a shale parting, with clay minerals including illite and smectite (Table 1). The mineralogy report is provided as Attachment C.

2.3 <u>Site Hydrogeology</u>

A review of groundwater conditions across the Site suggests that groundwater is not significantly present or laterally contiguous within the shallow limestone unit. Many of the wells in the vicinity of the BAP, including wells SP-2, SP-4, and SP-11 within the monitoring well network, typically have insufficient water for sampling (less than 0.5 feet of water in the well). Static water level measurements have shown significant variability between wells during each measurement event (typically on the order of approximately 30 feet), significant variation at individual wells over time, and inconsistent trend variation between wells over time. A time series graph illustrating groundwater elevation data over time shows chaotic fluctuations both within and between wells (Figure 2).

The petrographic analysis identified minimal porosity in the limestone fraction (Attachment C). Optical analysis of the sample collected at 32 ft bgs noted that porosity accounted for approximately 0.5-1.0% of the bulk volume of the sample. The deeper limestone samples collected at 46 ft bgs and 72 ft bgs were both described as non-porous. It was noted that the shale sample collected at 46 ft bgs had minor to trace amounts of micro-crack porosity. Thus, the geology at the site is generally non-porous, and indicates that there is little groundwater within the limestone.

These results suggest groundwater in the shallow limestone unit likely resides in discrete non-connected and poorly defined features (i.e., joints, fractures, cavities, or bedding planes).

2.4 <u>Site Geochemistry</u>

A review of groundwater geochemistry at the Site generally supports the conceptual site model that groundwater in the shallow limestone unit resides in discrete, non-connected, and poorly defined features. Groundwater chemistry indicates different water types are present at the Site, as illustrated by the observed variability in both Schoeller and Piper diagrams (Figures 3 and 4, respectively). The Schoeller diagram illustrates data from one representative sampling event at each well, whereas the Piper plot depicts all available data over several sampling events. These different water types include calcium-carbonate, sodium-chloride, and sodium-chloride-sulfate groundwaters, as described below.

Groundwater in contact with limestone typically reaches equilibrium with carbonates such as calcite (CaCO₃) or dolomite [CaMg(CO₃)₂] due to relatively fast reaction kinetics. Equilibrium with carbonate minerals controls the concentration of calcium, alkalinity, and pH in the groundwater. This equilibrium results in a calcium-carbonate type groundwater signature, which is high in both calcium and carbonate. While all of the wells at the Site are believed to be screened in the upper limestone unit as described in Section 2.2, only SP-1 and SP-8 groundwater appears to represent calcium-carbonate type water (Figure 5). For instance, the presence of relatively high

magnesium at SP-1 suggests that dolomitic limestone is in close proximity to the well screen, whereas the low concentration of magnesium at SP-8 suggests the limestone is predominantly calcite near that well screen. There appears to be no hydraulic connection between these two wells, and no indications of mixing, which would be represented by similar magnesium concentrations at each well.

While carbonate is present in all the wells near the BAP, several of the wells appear to be dominated by a sodium-chloride type of water (SP-2, SP-3, SP-4, SP-5). Wells SP-6, SP-7, and SP-9 also are sodium-chloride type water; however, the concentration of total dissolved solids (TDS) concentrations are over an order of magnitude higher than SP2, SP-3, SP-4 and SP-5. The increase in TDS is the result of higher concentrations of sodium and chloride (Figure 3). These elevated sodium and chloride concentrations may indicate the presence of mineral salts in some parts of the aquifer. SP-10 and SP-11 are also sodium-chloride type waters, although they contain bicarbonate and sulfate anions as well (Figure 5).

This variability in groundwater chemistry suggests that the groundwater in the wells across the Site are not connected by a common aquifer. The different water types seem to be distributed randomly throughout the BAP unit, instead of being grouped according to physical location (Figure 6). On a constituent basis, sodium appears to correlate with the depth of the well screen interval, with higher concentrations detected at lower elevations (Figure 7). This suggests that the groundwater at locations with deeper screened intervals (i.e., SP-7, SP-9) may be influenced by the interbedded shale partings within the limestone, which generally become more prevalent at depth. The shale partings are a potential source of sodium, as shale contains clay fractions which can release sodium and other cations by ion exchange.

Mineralogical analysis of a sample from a shale lens at BAP-B2 (46 ft bgs) indicates that clay minerals such as illite and smectite comprised more than half of the sample material (Table 1). Smectite has a very high CEC, which includes a significant number of labile cations that populate its interlayer region. Additionally, this shale fraction has detectable levels of exchangeable cations (potassium and sodium), at higher concentrations than the limestone samples, suggesting that it is a source of cations to the groundwater (Table 2).

Some deeper wells (i.e., SP-8, SP-10) do not have high chloride concentrations as would be predicted based on the depth of their screened interval and the relationship noted above. This could be due to a lower prevalence of shale lenses within the screened interval at these locations compared to wells with higher chloride concentrations. The multiple types of groundwater and their limited relationship to spatial location or depth suggests that groundwater composition is highly variable at the site. This variability provides evidence that groundwater geochemistry at each well is influenced by localized geology (i.e., carbonate type, presence or absence of shale lenses) and indicates a lack of groundwater communication or mixing between wells.

2.4.1 Lithium Distribution at the Site

Lithium concentrations at the Site are also variable. While SP-10 has the highest lithium concentrations of the wells included in the monitoring network, other wells located near the BAP have significantly higher lithium concentrations (Figure 8). SP-9, which is co-located with SP-10 but screened approximately 20 feet deeper, has lithium concentrations which are approximately an order of magnitude higher. If lithium in groundwater was due to a release from the pond, we would expect to see higher concentrations at the shallower intervals closer to the source. Additionally, SP-6, which is east of the Pond also has concentrations that are much higher than those observed at SP-10.

Lithium at the Site appears to be correlated with the concentrations of major cations and anions, including sodium (Figure 9) and chloride (Figure 10). If lithium were elevated at a well due to a unique source (such as a release from the BAP), the ratio of lithium to other constituents would likely change due to differential mixing. However, the approximately linear relationship between lithium and other alkali metals, especially sodium and potassium, suggests that the lithium is a minor constituent of the saline source which is consistent across the Site.

As discussed in Section 2.4, the concentration of sodium is generally correlated with screen depth. A similar relationship is observed for lithium (Figure 11), with the same hypothesis that this increase in lithium with depth is due to the increasing frequency of shale lenses. Figure 12 compares the distribution of the exchangeable species in sample SP-10-LOG-2 with the concentration of the same group of cations in groundwater at SP-10. Based on their respective concentrations, calcium is preferentially taken up by exchange sites on clay minerals. This is apparent in the figure showing calcium occupying half the number of exchanges sites (upper graph), while dissolved calcium represents a relatively smaller fraction of the groundwater (lower graph). The clay's preference for calcium can be quantified using the values in Table 2. The ratio of exchangeable sodium to exchangeable calcium is 0.55/1, whereas the ratio of dissolved sodium to dissolved calcium in groundwater is 13/1, indicating a much higher proportion (factor of 24) of exchangeable calcium in the interlayer spaces than in the groundwater. The greater affinity for calcium in the interlayer region is mainly due to its divalent positive charge, whereas sodium and other alkali metals have a single positive charge.

Note that exchangeable cations were quantified for sodium, potassium, calcium and magnesium, whereas exchangeable lithium was too low to be detected by the standard laboratory method. Based on the slope of the relationship between lithium and sodium, the ratio of dissolved sodium to dissolved lithium is about 1400/1 (Figure 9). Using this ratio, exchangeable lithium is not likely to be present above the detection limit based on the concentration of exchangeable sodium observed (Table 2). While the laboratory results do not provide sufficient evidence for the release of lithium from the clay shale layers due to the relationship between the expected aqueous lithium concentration and the detection limit, total lithium was identified at a concentration of 76 mg/kg dry weight in the sample collected from the shale fraction at BAP-B2 (intended to serve as relogging for SP-10) and analyzed following total digestion.

The process by which groundwater reaches equilibrium with the host rock can be described in the following conceptual model. Recharge surface water coming into contact with limestone becomes enriched in calcium as the water equilibrates with calcite. The magnesium concentration will also increase during this process if dolomite is present. As limestone minerals equilibrate with the groundwater solution, dissolved calcium then interacts with clay minerals in the shale zones which results in calcium displacing sodium (or other alkali metals such as lithium and potassium) on exchange sites. The presence of lithium within the shale fraction at BAP-B2 provides evidence that this process is occurring within SP-10 groundwater.

2.5 Pond Chemistry

The BAP has much lower concentrations of lithium than those observed at SP-10, with one sample reporting an estimated lithium concentration of 0.00874 mg/L (Attachment D), which is approximately 20 times less than the GWPS for lithium of 0.15 mg/L. Additionally, a review of the chemistry of the BAP as compared to SP-10 groundwater chemistry illustrates that they have very different chemical compositions (Figure 13). This supports the hydrogeologic conceptual model presented in Section 2.3, which suggests that unless the Pond is directly connected to SP-10 through a fracture in the limestone, it is unlikely to affect groundwater chemistry at the well.

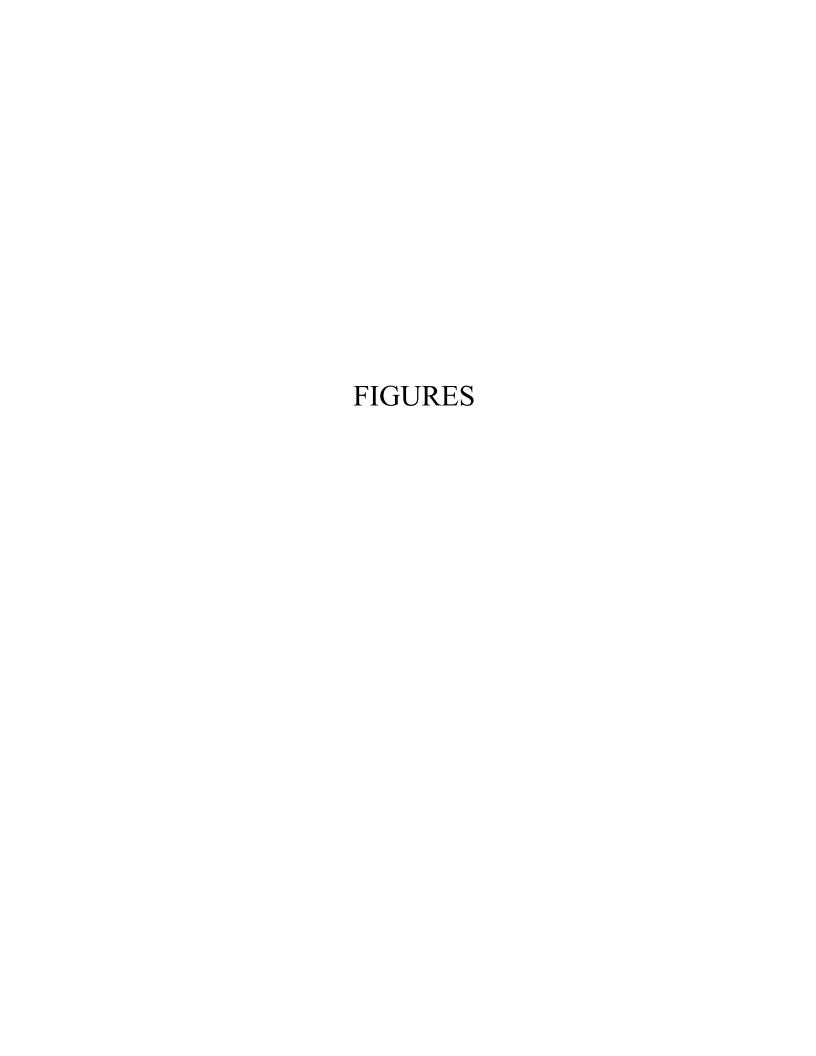
2.6 **Proposed Alternative Source**

The presence of naturally occurring lithium in shale lenses in the monitored zone, limited possibility of transport from the BAP to the screened interval at SP-10, and the low concentration of lithium in the pond suggest the BAP is not the source of lithium at SP-10. A review of the hydrogeology of the Site provides evidence that groundwater in the shallow limestone unit likely resides in discrete non-connected features such as joints or fractures instead of as a discrete aquifer. Thus, the groundwater composition at each well is likely controlled by its immediate geology. As discussed above, lithium appears to be naturally occurring at the Site and correlated with the shale lenses that are present with increasing frequency with depth. The release of lithium from the clay minerals within the shale lens located at 46 ft bgs within the screened interval of SP-10 is the likely source of lithium in groundwater at that location.

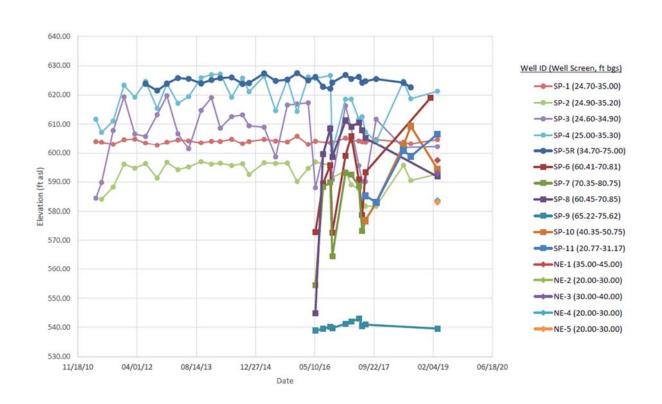
2.7 **Sampling Requirements**

As the ASD described above supports the position that the identified SSL is not due to a release from the BAP, the unit will remain in the assessment monitoring program. Groundwater at the unit will continue to be sampled for Appendix IV parameters on a semi-annual basis.

SECTION 3


CONCLUSIONS AND RECOMMENDATIONS


The preceding information serves as the ASD prepared in accordance with OAC 252:517-9-6(g)(3)(B) and supports the position that the SSL of lithium at SP-10 identified during assessment monitoring in 2018 was not due to a release from the BAP. The identified SSL was, instead, attributed to natural variation in the underlying lithology including the presence of shale lenses containing lithium within the screened interval at SP-10. Therefore, no further action is warranted, and the BAP will remain in the assessment monitoring program. Certification of this ASD by a qualified professional engineer is provided in Attachment E.


SECTION 4

REFERENCES

- AEP, 2017. Statistical Analysis Plan Northeastern Power Station, Oologah, Oklahoma. January.
- EPRI, 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites. 3002010920. October.
- Geosyntec Consultants, 2019. Statistical Analysis Summary Bottom Ash Pond Northeastern Power Station, Oologah, Oklahoma. Oologah, Oklahoma. January.
- Oakes, M.C., Dille, G.S., and Warren, J.H.,1952. Geology and Mineral Resources of Tulsa County, Oklahoma. *Okla. Geol. Survey. Bull.* 69.
- Oklahoma Geological Survey, 2004. Geologic Map of the Sageeyah 7.5' Quadrangle, Rodgers County, Oklahoma.
- Oklahoma Geologic Survey, 2005. Geologic Map of the Collinsville 7.5' Quadrangle, Rogers and Tulsa Counties, Oklahoma.
- Terracon, 2017. Report 1 Groundwater Monitoring Network for CCR Compliance. Public Service Company of Oklahoma Northeastern Station 3&4 Bottom Ash Pond. September.
- USEPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance. EPA 530/R-09/007. March.
- Woodruff, E.G. and Cooper, C.L. 1928. Oil and Gas in Oklahoma, Geology of Rogers County, *Okla. Geol. Survey Bull.* 40.

Notes:

ft asl: feet above mean sea level ft bgs: feet below ground surface

Water Level Time Series Graph

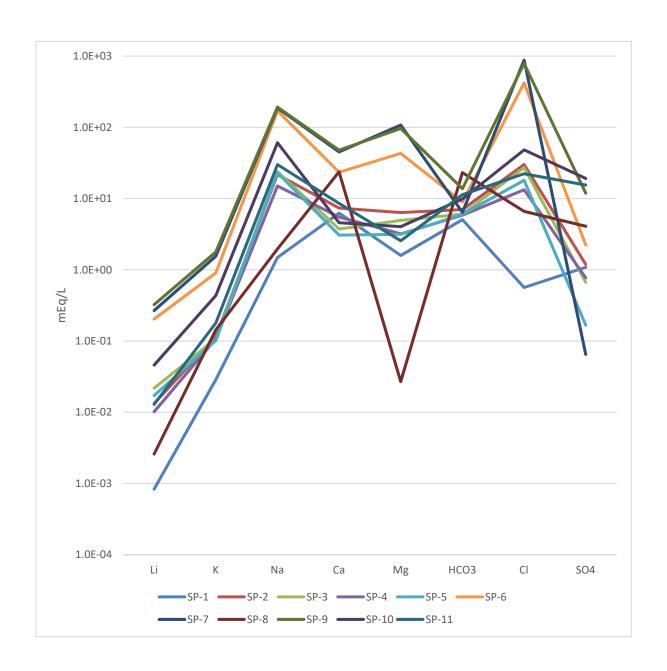
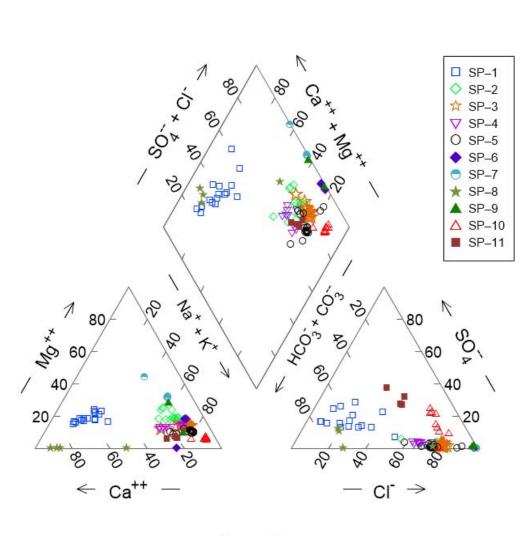

Northeastern Bottom Ash Pond

Figure 2

Columbus, Ohio

16-Apr-2019


Notes: One representative sample for each well was graphed. Data for all wells were selected for sampling events between July and September 2017.

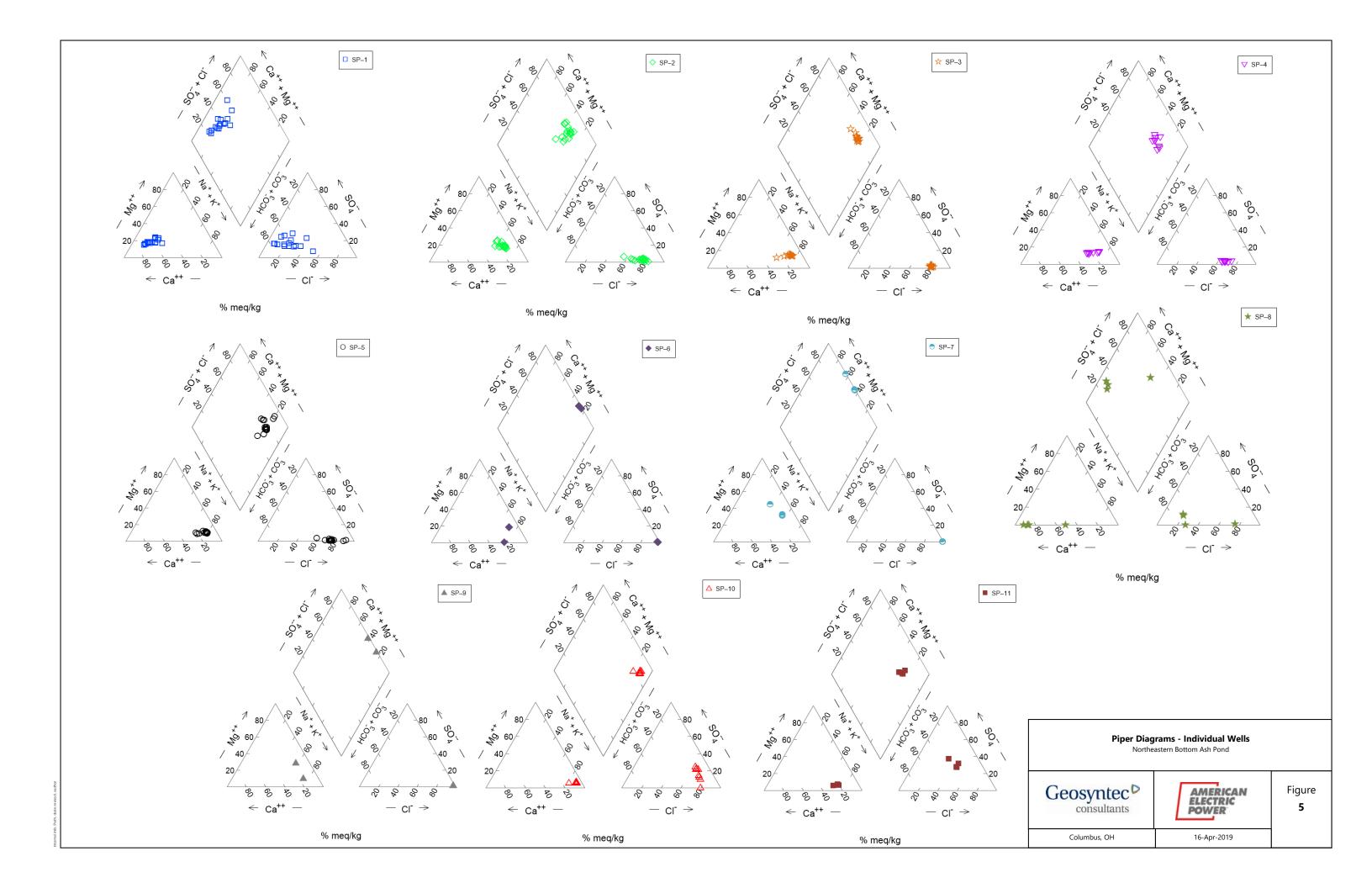
Schoeller Diagram

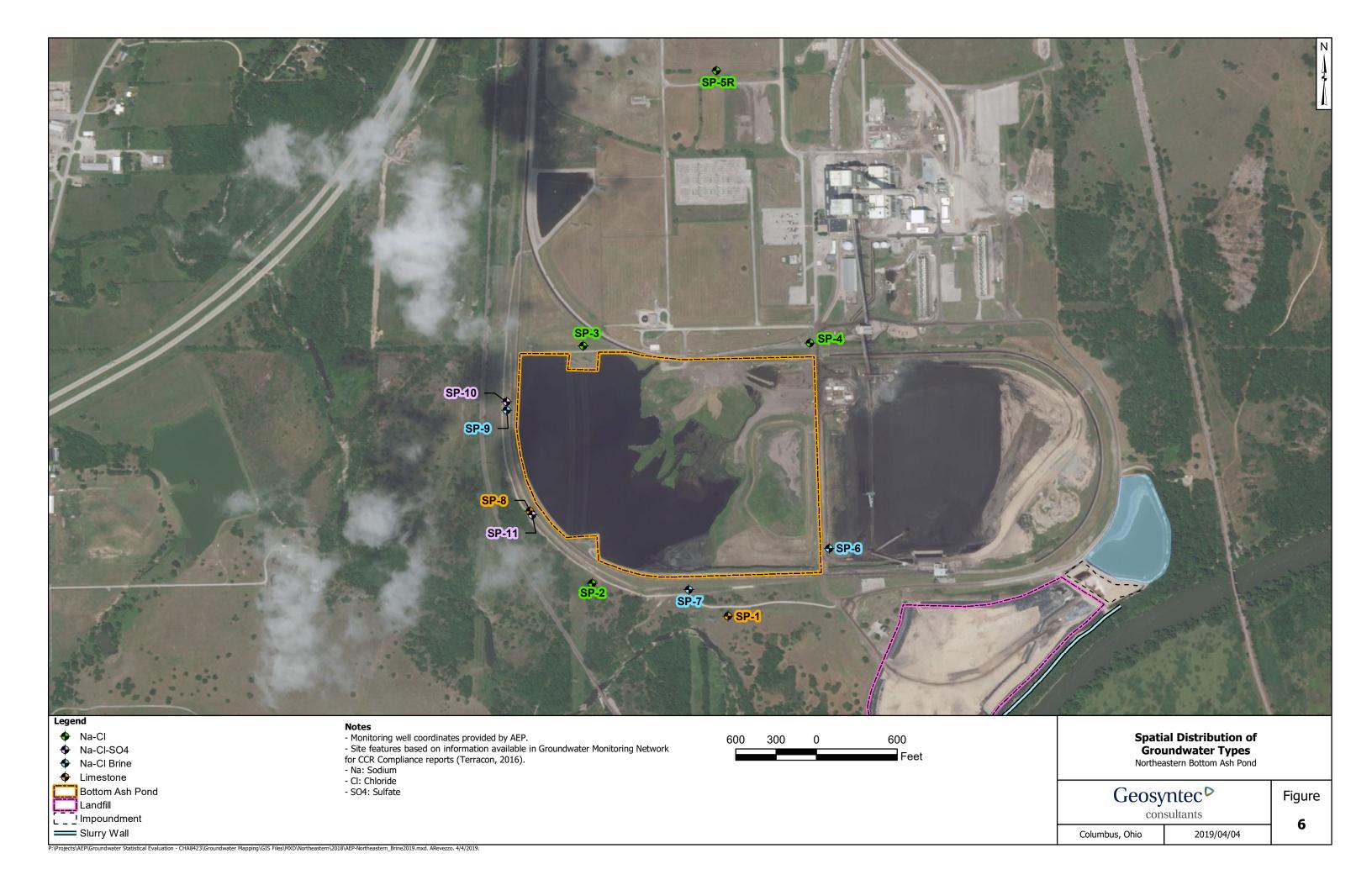
Northeastern Bottom Ash Pond

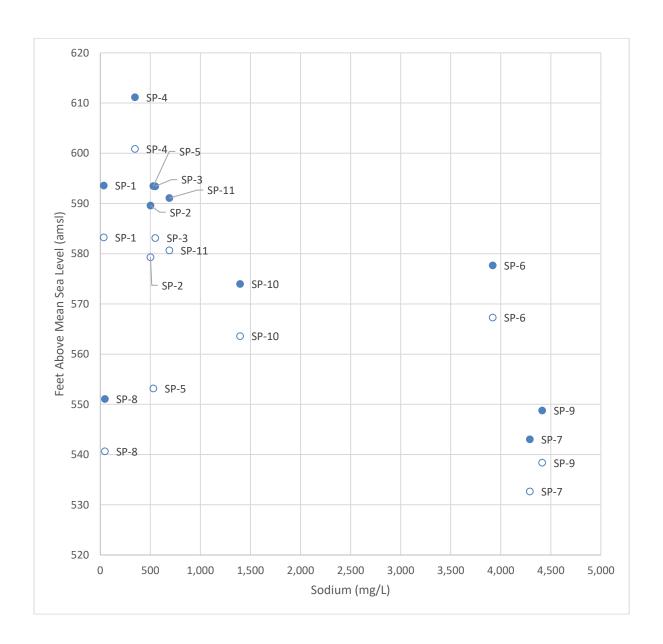
Figure 3

% meq/kg

Notes: Multiple events for each well are graphed where data were available.


Piper Plot Northeastern Bottom Ash Pond




Figure 4

Columbus, Ohio

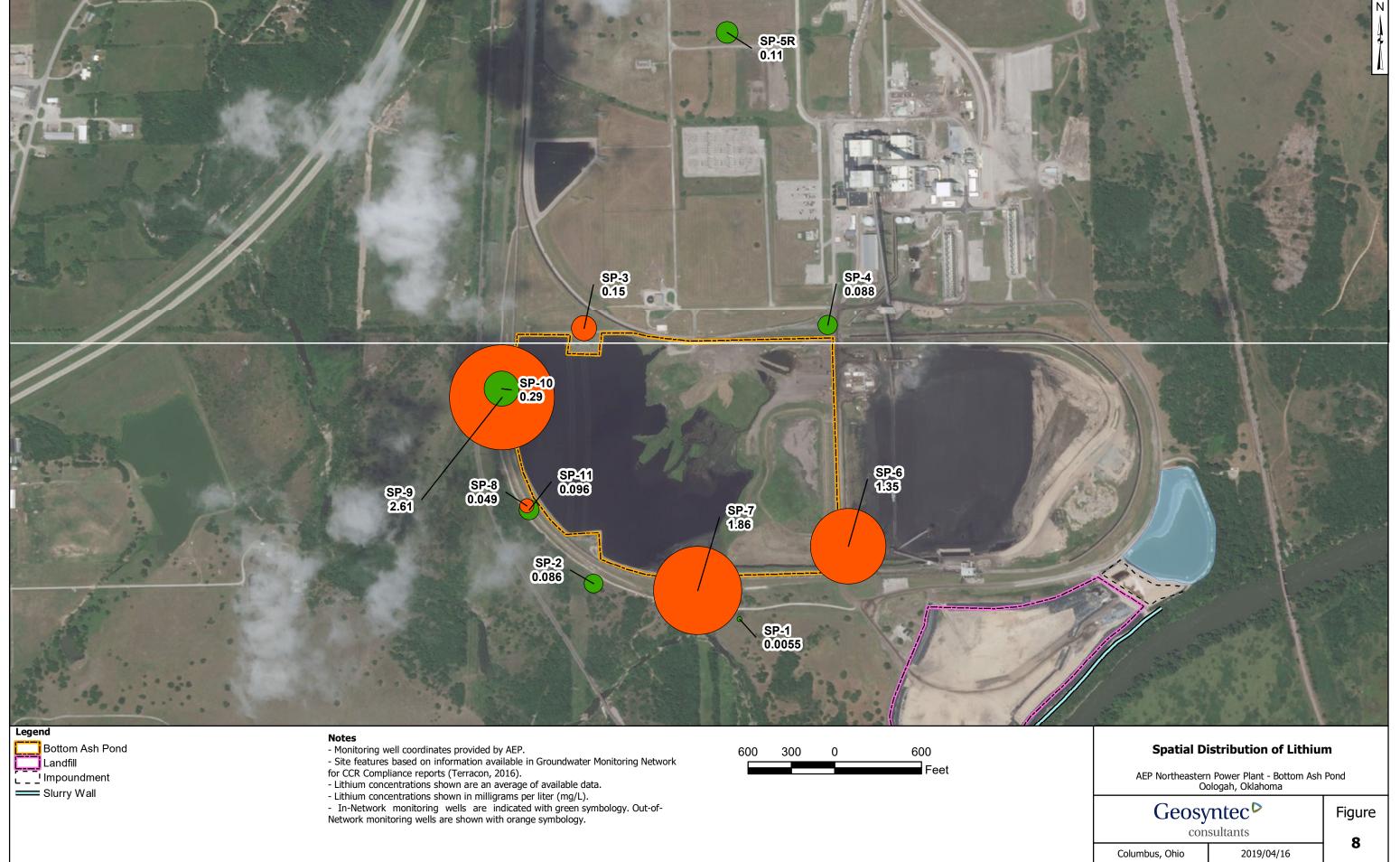
02-Apr-2019

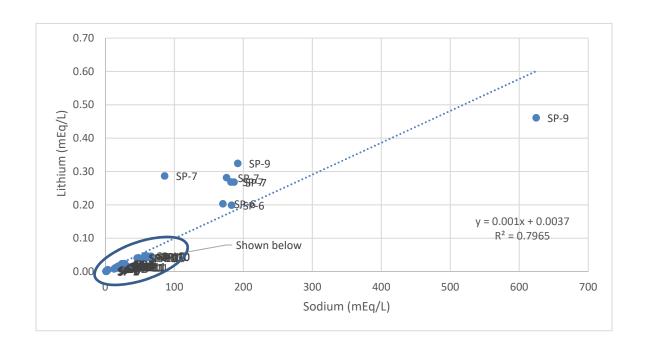
Notes:

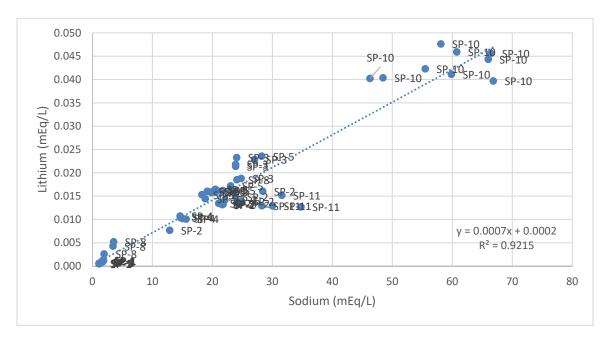
Filled circles represent the elevation of the top of the well screen for the identified well. Hollow circles represent the bottom of the well screen for the identified well.

Sodium v. Well Screen Interval

Northeastern Bottom Ash Pond

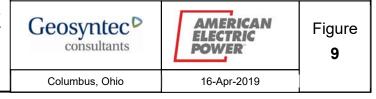


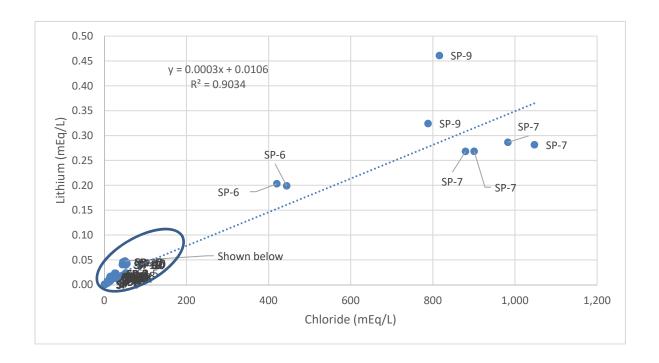


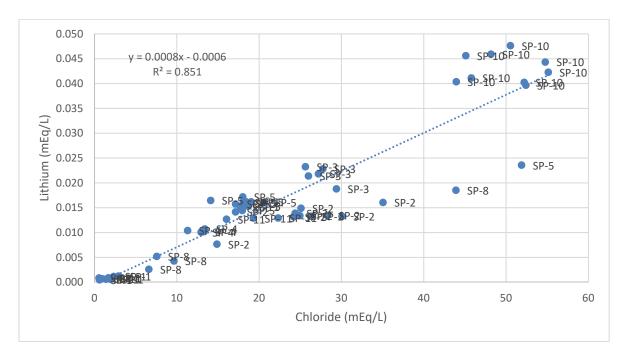

Figure **7**

Columbus, Ohio

16-Apr-2019

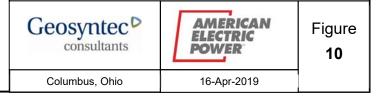


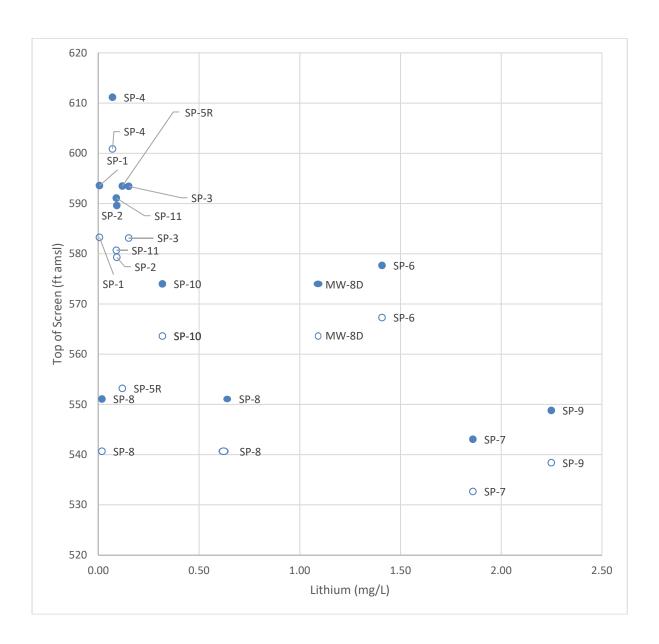



All results are shown in milliequivalents per liter (mEq/L). The top graph shows all data, whereas the bottom graph excludes wells SP-6, SP-7, and SP-9, which have significantly higher concentrations of both lithium and sodium.

Sodium v. Lithium Concentrations

Northeastern Bottom Ash Pond





All results are shown in milliequivalents per liter (mEq/L). The top graph shows all data, whereas the bottom graph excludes wells SP-6, SP-7, and SP-9, which have significantly higher concentrations of both lithium and chloride.

Chloride v. Lithium Concentrations

Northeastern Bottom Ash Pond

Filled circles represent the elevation of the top of the well screen for the identified well. Hollow circles represent the bottom of the well screen for the identified well.

Lithium v. Well Screen Interval

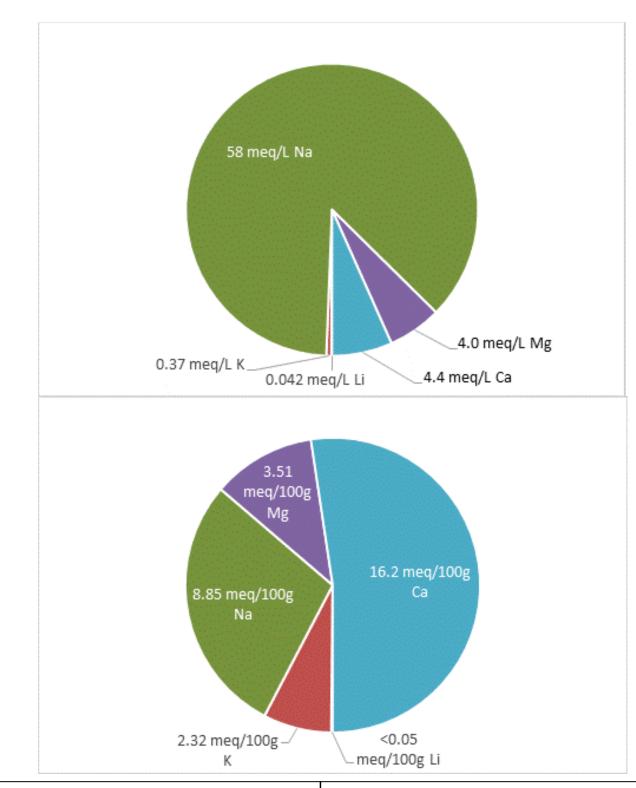
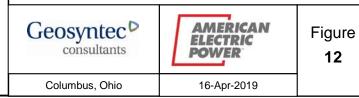
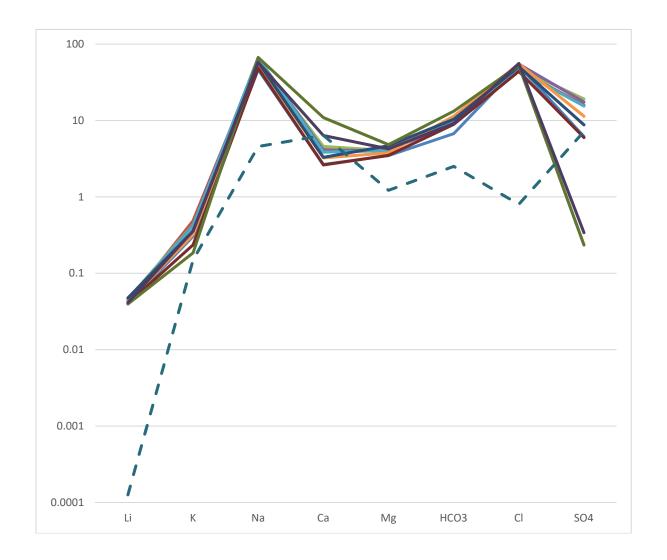

Northeastern Bottom Ash Pond

Figure **11**

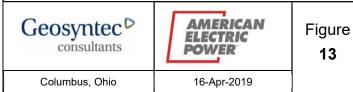
Columbus, Ohio


16-Apr-2019


Notes: The top graph shows the concentration of exchangeable cations in the shale sample (SP-LOG-10-2) in meq/100g, while the bottom graph shows concentrations of these cations in time-averaged SP-10 groundwater (in meq/L).

Cation Distribution

Northeastern Bottom Ash Pond


internal info: path, date revised, author

Notes: The dashed line represents a surface water sample collected from the bottom ash pond on February 5, 2019. All other lines represent individual sampling events at SP-10 between 2017 and 2019.

Bottom Ash Pond Schoeller Diagram

Northeastern Bottom Ash Pond

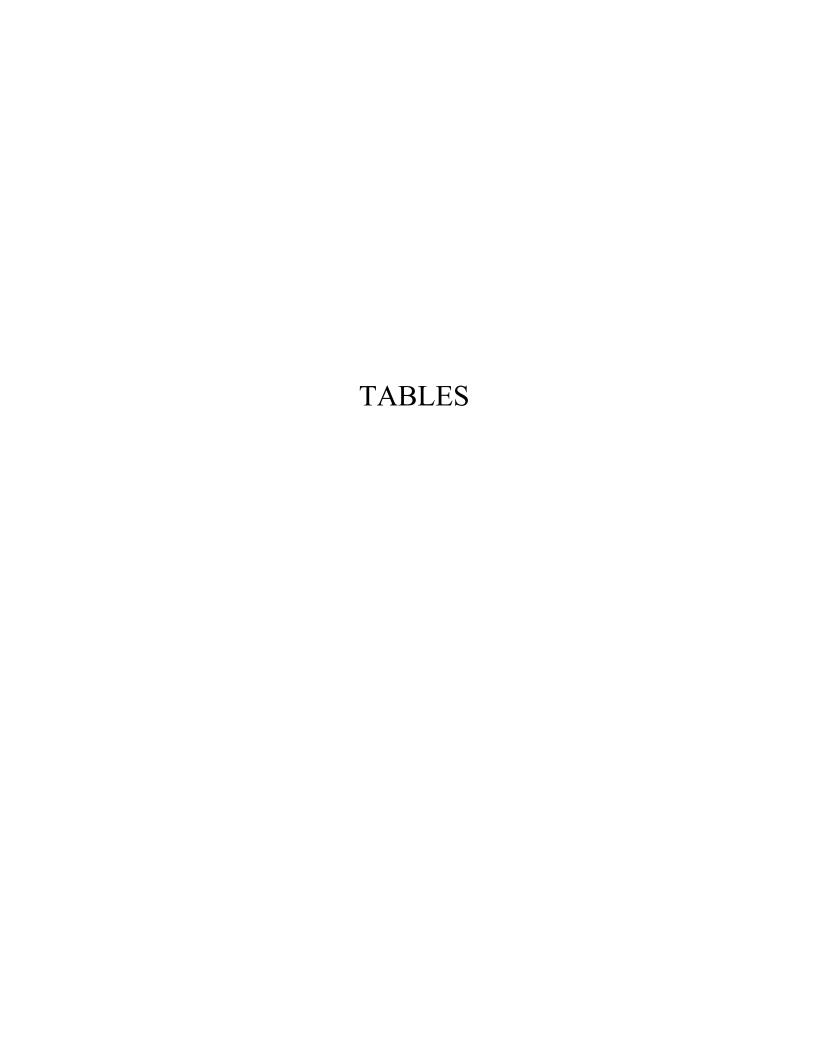


Table 1: X-Ray Diffraction Laboratory Analysis Results
Northeastern Plant Bottom Ash Pond

Sample ID	SP-10-LOG 1	SP-10-LOG 2	SP-10-LOG 4	SP-10-LOG 4
Depth (ft bgs)	32-32.4	46.0-47.0	46.0-47.0	72-72.4
Description	Upper Limestone	Shale within screened interval of SP-10	Limestone within screened interval of SP-10	Limestone within screened interval of SP-9
Quartz	1	20	3	6
Albite	ND	4	ND	ND
Microcline	ND	1	ND	ND
Calcite	95	2	93	91
Ferroan Dolomite	4	ND	ND	2
Siderite	ND	1	ND	ND
Pyrite	ND	5	1	ND
Kaolinite	ND	2	1	< 0.5
Chlorite	ND	3	< 0.5	ND
Illite/Mica	ND	38	1	1
Mixed-Layered Illite/Smectite	ND	24	1	< 0.5
% Illite Layers in ML I/S	N/A	75	75	BDL

Results are shown as percentage of the bulk material.

ND: not detected N/A: not applicable

BDL: below detection limit

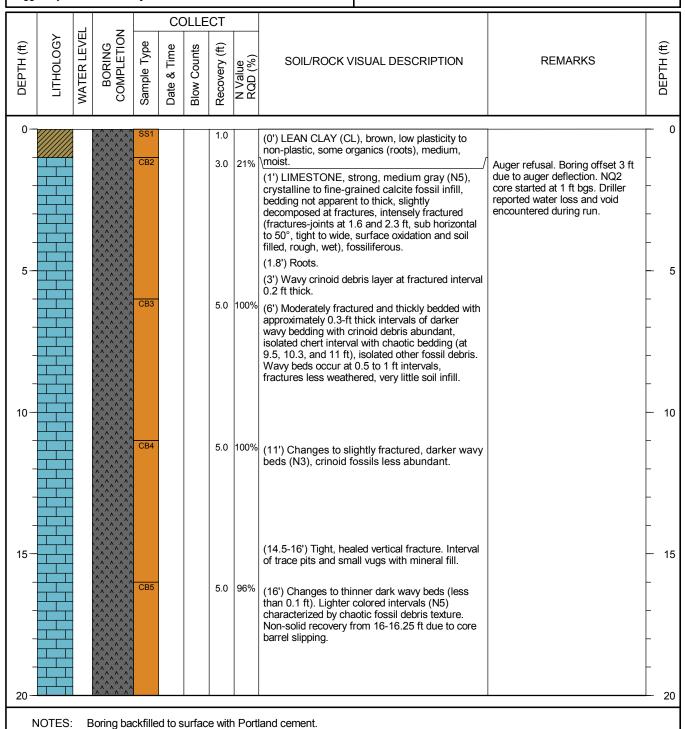
Table 2: Cation Exchange Capacity and Total Lithium Analytical Northeastern Plant Bottom Ash Pond

Sample ID	Sample Depth	Description	Total Lithium (mg/kg dry wt)	Exchangeable Lithium (mEq/100g)	Exchangeable Calcium (mEq/100g)	Exchangeable Magnesium (mEq/100g)	Exchangeable Potassium (mEq/100g)	Exchangeable Sodium (mEq/100g)
SP-10-LOG-1	32.0-32.4'	Upper limestone	<10.0	<0.05	20	0.567	<0.10	0.226
SP-10-LOG-2	46.0-47.0'	Shale lens within screened interval of SP-10		<0.05	16.2	3.51	2.32	8.85
SP-20-LOG-3	46.0-47.0'	Limestone within screened interval of SP-10		<0.05	21.6	0.642	0.250	0.896
SP-10-LOG-4	72.0-72.4'	Limestone within screened interval of SP-9		<0.05	21.1	1.16	0.313	0.822

mg/kg dry weight: milligram of lithium per kilogram dry weight of material mEq/100g: milliequivalent per 100 gram of material

ATTACHMENT A Boring Logs

Client: American Electric Power / Northeastern Plant


Project: CHW8290 Address: Oologah, OK BORING LOG Boring No. BAP-B1 Page: 1 of 10

Drilling Start Date:3/11/2019Boring Depth (ft):186Drilling End Date:3/14/2019Boring Diameter (in):7"/3"Drilling Company:GeotechnologySampling Method(s):SS/NQ2

Drilling Method: HSA/Air Rotary DTW During Drilling (ft):

Drilling Equipment: HSA/Air Rotary DTW After Drilling (ft):

Driller: C. Steiner Ground Surface Elev. (ft): 625.8

Client: American Electric Power / Northeastern Plant

Project: CHW8290 Address: Oologah, OK BORING LOG
Boring No. BAP-B1
Page: 2 of 10

Drilling Start Date: 3/11/2019

Boring Depth (ft): 186

Drilling End Date: 3/14/2019

Boring Diameter (in): 7"/3"

Drilling Company: Geotechnology

Sampling Method(s): SS/NQ2

Drilling Method: HSA/Air Rotary DTW During Drilling (ft):
Drilling Equipment: HSA/Air Rotary DTW After Drilling (ft):

NOTES: Boring backfilled to surface with Portland cement.

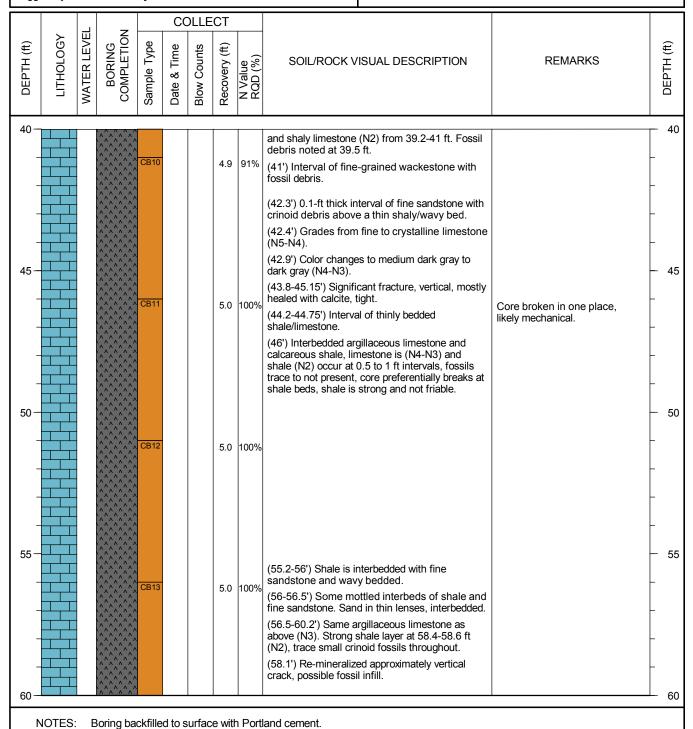
Driller: C. Steiner Ground Surface Elev. (ft): 625.8

COLLECT											
DEPTH (ft)	LITHOLOGY	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft)	N Value RQD (%)	SOIL/ROCK VISUAL DESCRIPTION	REMARKS	DEPTH (ft)
20 -											- 20
-				CB6			5.0	100%	Isolated chaotic cherty intervals (at 21.7, 22.5, 23.3, 24.1, and 24.6 ft), pits and vugs continue. (22.8' and 25') Approximately 30° inclined fractures associated with dark bedding planes.		-
25 —				CB7			5.0	100%			- 25 -
_									(26.6-26.7') Chaotic cherty layer above wavy dark bedding. (27.5') Chaotic cherty layer interbedded with dark wavy bedding, tight 30° fracture. (27.7-31.8') Color changes to medium-dark gray (N4-N3) and very dark gray, interbedded,		-
30 —				CB8			3.75	75%	algal/crinoid fossils abundant, wavy bedding, thinly bedded. (31.8') Distinctive cherty, wavy, crinoid debris		- 30 - -
_									layer with associated dark wavy bedding from 31.8-31.9 ft, moderately fractured. (31.9-32.8') Significant vertical fracture with little to no healing/weathering.		-
35-				CB9			5.0	100%	(32.8-33.4') Color changes to N3 below a thin dark wavy bed, significant vertical fractures. (32.9') Notable fossil demineralized vug. (34.2') Color changes to N5-N4 below wavy dark		- 35 -
-				CDA			5.0	100%	bed. (36.7 and 37.7') Darker wavy beds.		-
40-									(38.7') Grades to N3-N4 limestone at 39.2 ft. (39.2') Interval of thinly bedded limestone (N3)		- - 40

Client: American Electric Power / Northeastern Plant

Project: CHW8290 Address: Oologah, OK BORING LOG Boring No. BAP-B1 Page: 3 of 10

Drilling Start Date:3/11/2019Boring Depth (ft):186Drilling End Date:3/14/2019Boring Diameter (in):7"/3"Drilling Company:GeotechnologySampling Method(s):SS/NQ2

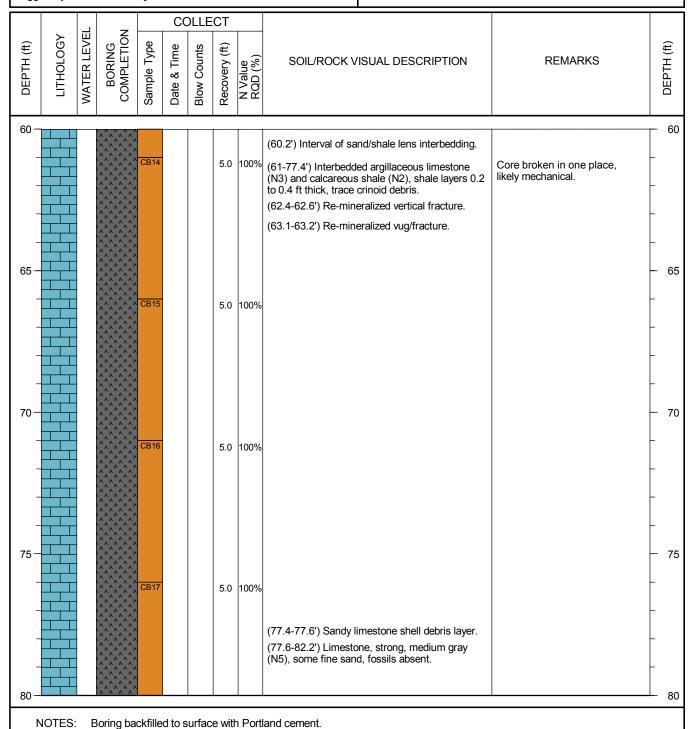

Drilling Method: HSA/Air Rotary

Drilling Equipment: HSA/Air Rotary

DTW During Drilling (ft):

DTW After Drilling (ft):

Driller: C. Steiner Ground Surface Elev. (ft): 625.8


Client: American Electric Power / Northeastern Plant

Project: CHW8290 Address: Oologah, OK BORING LOG Boring No. BAP-B1 Page: 4 of 10

Drilling Start Date: 3/11/2019 Boring Depth (ft): 186
Drilling End Date: 3/14/2019 Boring Diameter (in): 7"/3"
Drilling Company: Geotechnology Sampling Method(s): SS/NQ2

Drilling Method: HSA/Air Rotary DTW During Drilling (ft):
Drilling Equipment: HSA/Air Rotary DTW After Drilling (ft):

Driller: C. Steiner Ground Surface Elev. (ft): 625.8

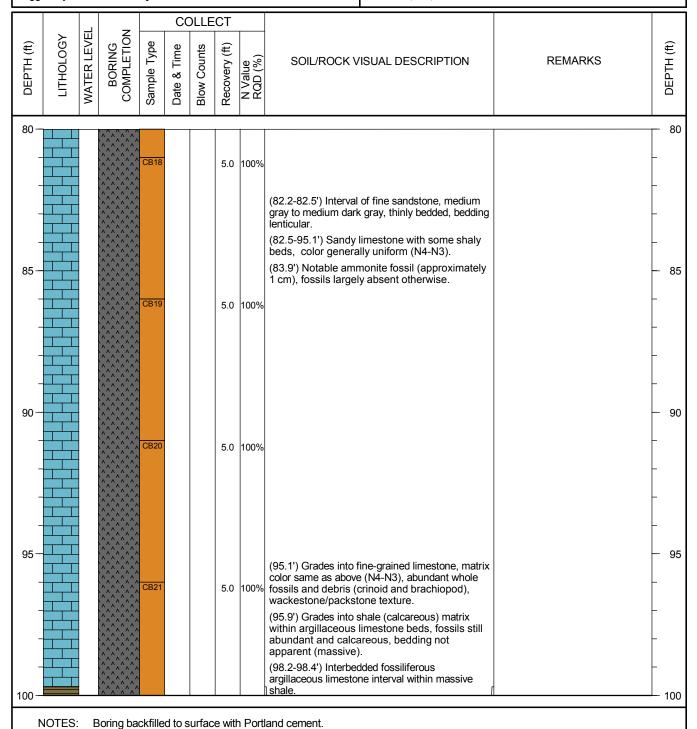
Client: American Electric Power / Northeastern Plant

Project: CHW8290 Address: Oologah, OK BORING LOG Boring No. BAP-B1 Page: 5 of 10

Drilling Start Date: 3/11/2019

Drilling End Date: 3/14/2019

Drilling Company: Geotechnology

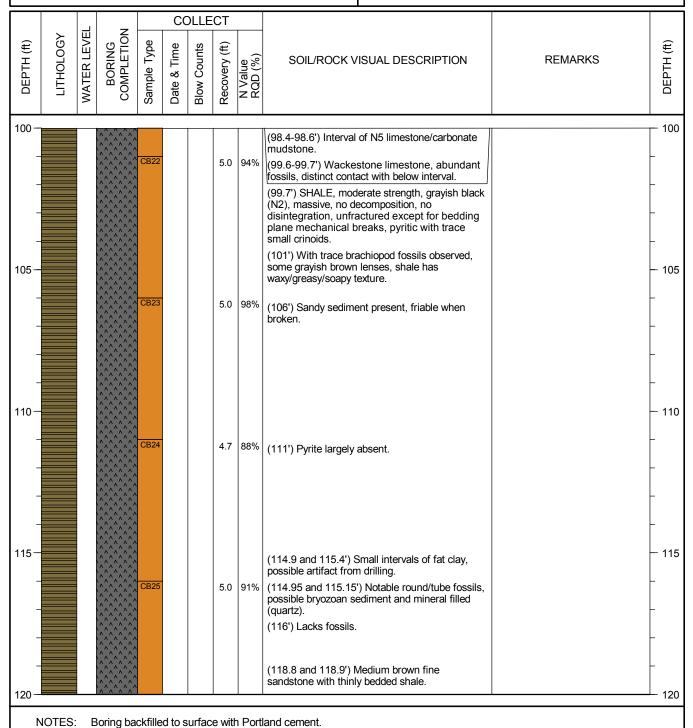

Boring Depth (ft): 186

Boring Diameter (in): 7"/3"

Sampling Method(s): SS/NQ2

Drilling Method: HSA/Air Rotary DTW During Drilling (ft):
Drilling Equipment: HSA/Air Rotary DTW After Drilling (ft):

Driller: C. Steiner Ground Surface Elev. (ft): 625.8


Client: American Electric Power / Northeastern Plant

Project: CHW8290 Address: Oologah, OK BORING LOG Boring No. BAP-B1 Page: 6 of 10

Drilling Start Date:3/11/2019Boring Depth (ft):186Drilling End Date:3/14/2019Boring Diameter (in):7"/3"Drilling Company:GeotechnologySampling Method(s):SS/NQ2

Drilling Method: HSA/Air Rotary DTW During Drilling (ft):
Drilling Equipment: HSA/Air Rotary DTW After Drilling (ft):

Driller: C. Steiner Ground Surface Elev. (ft): 625.8

Client: American Electric Power / Northeastern Plant

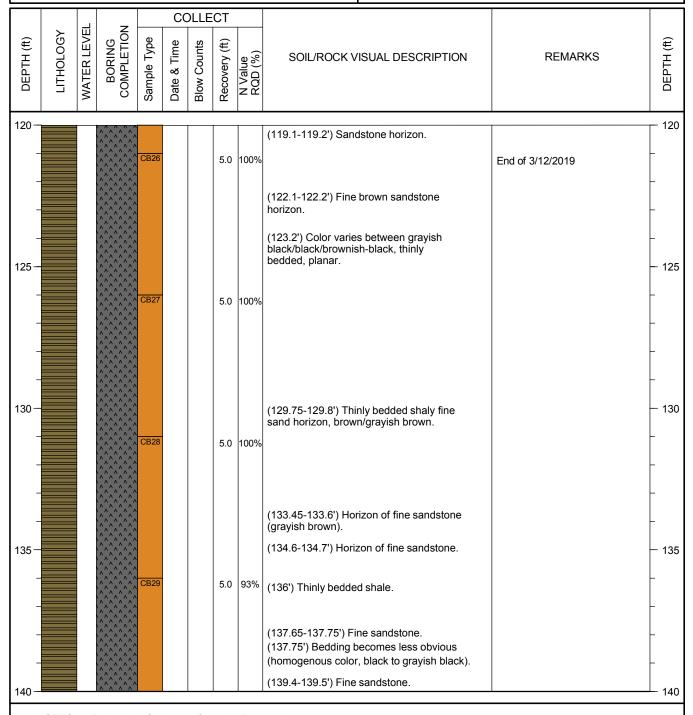
Project: CHW8290 Address: Oologah, OK BORING LOG Boring No. BAP-B1 Page: 7 of 10

Drilling Start Date: 3/11/2019

Drilling End Date: 3/14/2019

Drilling Company: Geotechnology

Boring Depth (ft): 186


Boring Diameter (in): 7"/3"

Sampling Method(s): SS/NQ2

Drilling Method: HSA/Air Rotary DTW During Drilling (ft):
Drilling Equipment: HSA/Air Rotary DTW After Drilling (ft):

Driller: C. Steiner Ground Surface Elev. (ft): 625.8

Logged By: M. Bizjack Location (X,Y): 2644286.365, 524133.353

Client: American Electric Power / Northeastern Plant

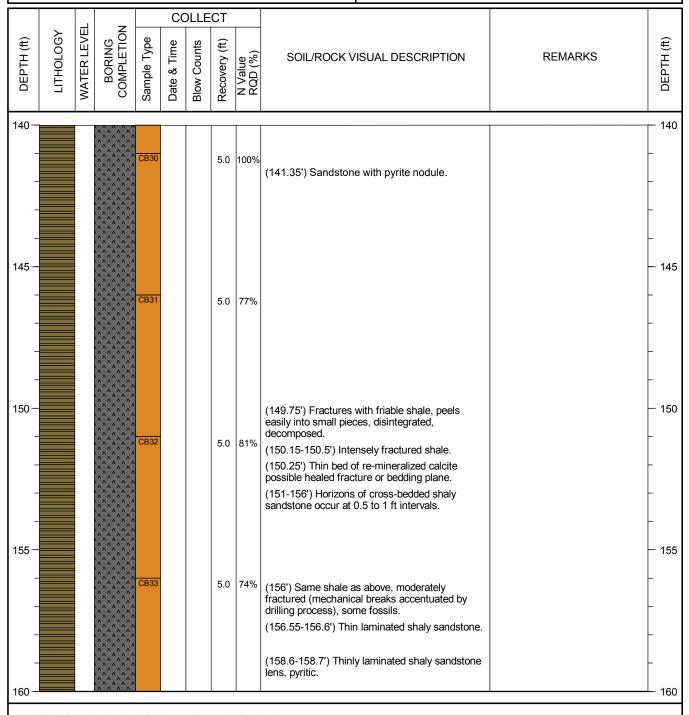
Project: CHW8290 Address: Oologah, OK BORING LOG Boring No. BAP-B1 Page: 8 of 10

Drilling Start Date: 3/11/2019

Drilling End Date: 3/14/2019

Drilling Company: Geotechnology

Boring Depth (ft): 186


Boring Diameter (in): 7"/3"

Sampling Method(s): SS/NQ2

Drilling Method: HSA/Air Rotary DTW During Drilling (ft):
Drilling Equipment: HSA/Air Rotary DTW After Drilling (ft):

Driller: C. Steiner Ground Surface Elev. (ft): 625.8

Logged By: M. Bizjack Location (X,Y): 2644286.365, 524133.353

Client: American Electric Power / Northeastern Plant

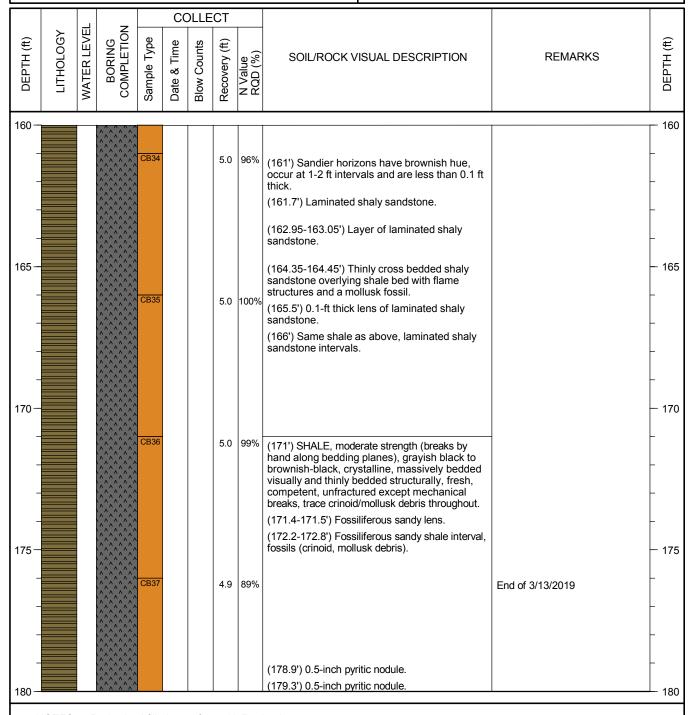
Project: CHW8290 Address: Oologah, OK BORING LOG Boring No. BAP-B1 Page: 9 of 10

Drilling Start Date: 3/11/2019

Drilling End Date: 3/14/2019

Drilling Company: Geotechnology

Boring Depth (ft): 186


Boring Diameter (in): 7"/3"

Sampling Method(s): SS/NQ2

Drilling Method: HSA/Air Rotary DTW During Drilling (ft):
Drilling Equipment: HSA/Air Rotary DTW After Drilling (ft):

Driller: C. Steiner Ground Surface Elev. (ft): 625.8

Logged By: M. Bizjack Location (X,Y): 2644286.365, 524133.353

Client: American Electric Power / Northeastern Plant

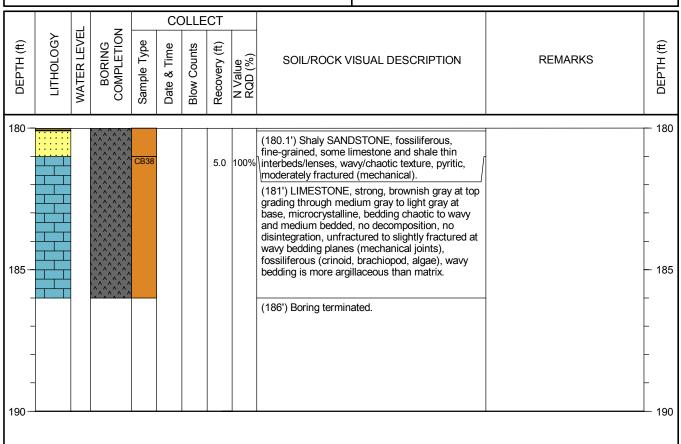
Project: CHW8290 Address: Oologah, OK BORING LOG
Boring No. BAP-B1
Page: 10 of 10

Drilling Start Date: 3/11/2019

Boring Depth (ft): 186

Drilling End Date: 3/14/2019

Boring Diameter (in): 7"/3"


Drilling Company: Geotechnology

Sampling Method(s): SS/NQ2

Drilling Method: HSA/Air Rotary DTW During Drilling (ft):
Drilling Equipment: HSA/Air Rotary DTW After Drilling (ft):

Driller: C. Steiner Ground Surface Elev. (ft): 625.8

Logged By: M. Bizjack Location (X,Y): 2644286.365, 524133.353

Client: American Electric Power / Northeastern Plant

Project: CHW8290 Address: Oologah, OK BORING LOG Boring No. BAP-B2 Page: 1 of 5

Drilling Start Date: 2/18/2019 Boring Depth (ft): 90


Drilling End Date: 2/19/2019 Boring Diameter (in): 7"/3"

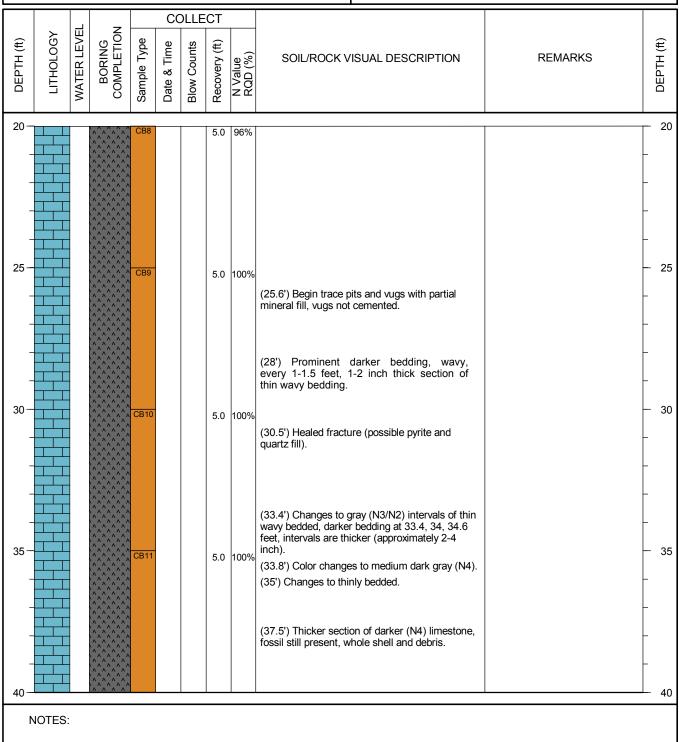
Drilling Company: Geotechnology Sampling Method(s): SS/NQ2

Drilling Method: HSA/Air Rotary DTW During Drilling (ft):
Drilling Equipment: HSA/Air Rotary DTW After Drilling (ft):

Driller: C. Steiner Ground Surface Elev. (ft): 612.1

Logged By: M. Bizjack Location (X,Y): 2642411.069, 525028.743

Client: American Electric Power / Northeastern Plant


Project: CHW8290 Address: Oologah, OK BORING LOG Boring No. BAP-B2 Page: 2 of 5

Drilling Start Date:2/18/2019Boring Depth (ft):90Drilling End Date:2/19/2019Boring Diameter (in):7"/3"Drilling Company:GeotechnologySampling Method(s):SS/NQ2

Drilling Method: HSA/Air Rotary DTW During Drilling (ft):
Drilling Equipment: HSA/Air Rotary DTW After Drilling (ft):

Driller: C. Steiner Ground Surface Elev. (ft): 612.1

Logged By: M. Bizjack Location (X,Y): 2642411.069, 525028.743

2/18/2019

2/19/2019

C. Steiner

Geotechnology

HSA/Air Rotary

Drilling Equipment: HSA/Air Rotary

Drilling Start Date:

Drilling End Date:

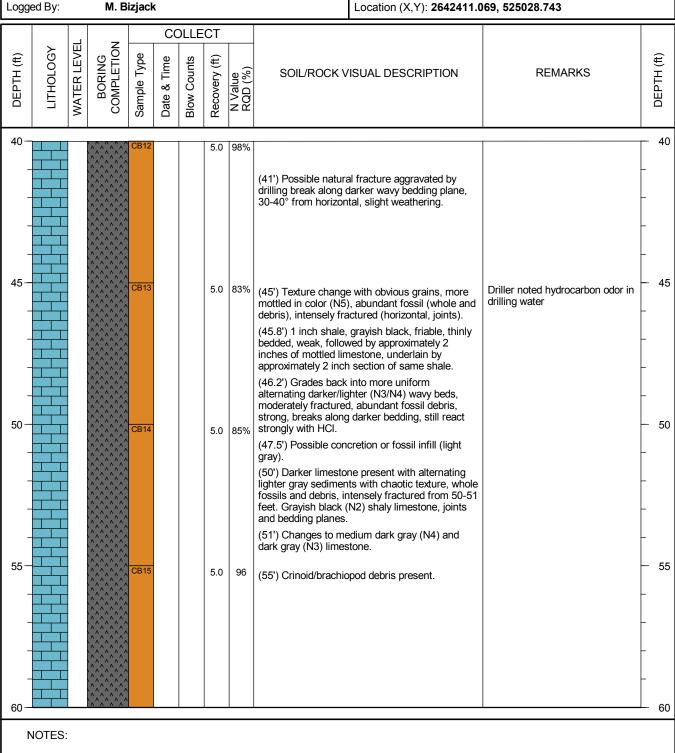
Drilling Company:

Drilling Method:

Driller:

Client: American Electric Power / Northeastern Plant

Project: CHW8290 Address: Oologah, OK


BORING LOG Boring No. BAP-B2 Page: 3 of 5

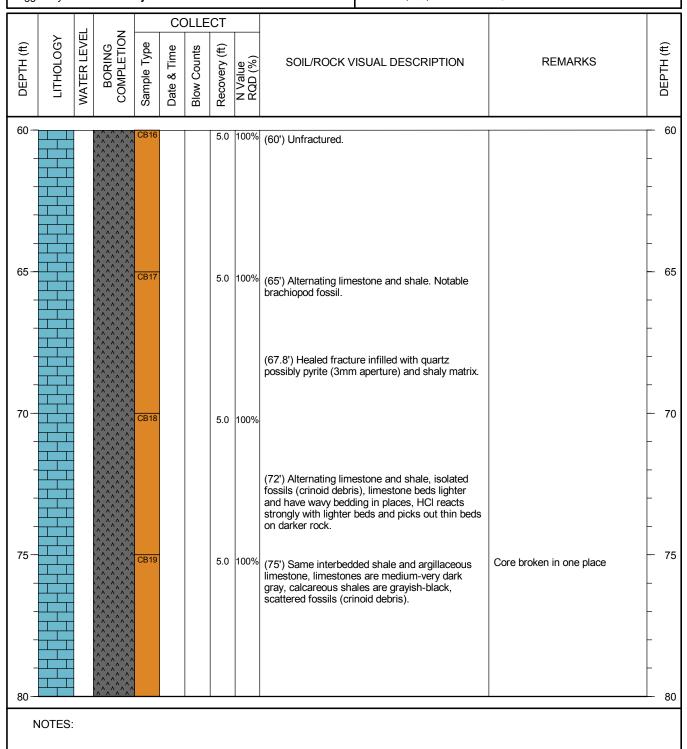
Boring Depth (ft): 7"/3" Boring Diameter (in): Sampling Method(s): SS/NQ2

DTW During Drilling (ft): DTW After Drilling (ft):

Ground Surface Elev. (ft): 612.1

Location (X,Y): 2642411.069, 525028.743

Client: American Electric Power / Northeastern Plant


Project: CHW8290 Address: Oologah, OK BORING LOG Boring No. BAP-B2 Page: 4 of 5

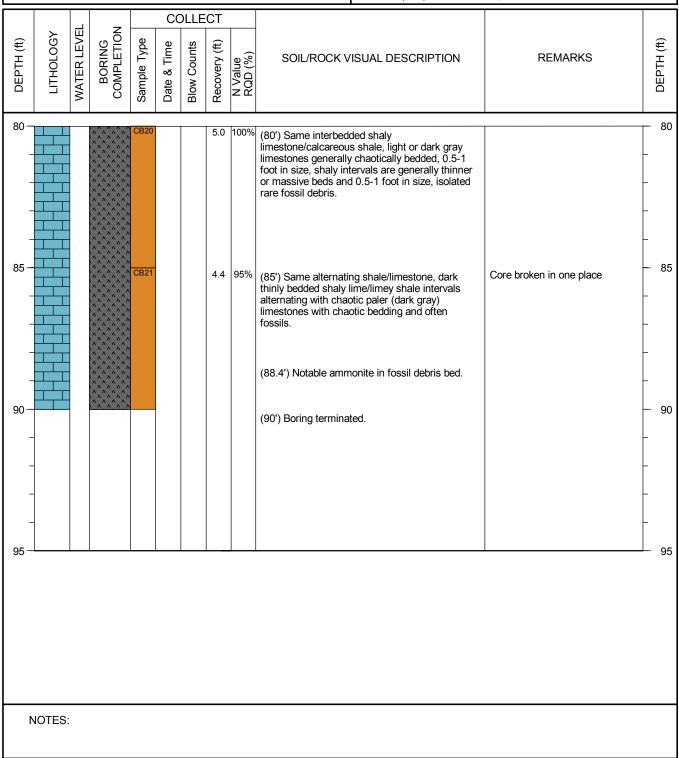
Drilling Start Date: 2/18/2019 Boring Depth (ft): 90
Drilling End Date: 2/19/2019 Boring Diameter (in): 7"/3"
Drilling Company: Geotechnology Sampling Method(s): SS/NQ2

Drilling Method: HSA/Air Rotary DTW During Drilling (ft):
Drilling Equipment: HSA/Air Rotary DTW After Drilling (ft):

Driller: C. Steiner Ground Surface Elev. (ft): 612.1

Logged By: M. Bizjack Location (X,Y): 2642411.069, 525028.743

Client: American Electric Power / Northeastern Plant


Project: CHW8290 Address: Oologah, OK BORING LOG Boring No. BAP-B2 Page: 5 of 5

Drilling Start Date: 2/18/2019 Boring Depth (ft): 90
Drilling End Date: 2/19/2019 Boring Diameter (in): 7"/3"
Drilling Company: Geotechnology Sampling Method(s): SS/NQ2

Drilling Method: HSA/Air Rotary DTW During Drilling (ft):
Drilling Equipment: HSA/Air Rotary DTW After Drilling (ft):

Driller: C. Steiner Ground Surface Elev. (ft): 612.1

Logged By: M. Bizjack Location (X,Y): 2642411.069, 525028.743

ATTACHMENT D BAP-B1 Photolog

Client: AEP Project Number: CHW8193

Site Name: Northeastern Plant Site Location: Oologah, OK

Photograph 1

Date: 3/12/2019

Direction: BAP-B1

Comments:

1-12.5 feet (ft) below ground surface (bgs)

Photograph 2

Date: 3/12/2019

Direction: BAP-B1

Comments: 12.5-21.9 ft bgs

Client: AEP Project Number: CHW8193

Site Name: Northeastern Plant Site Location: Oologah, OK

Photograph 3

Date: 3/12/2019

Direction: BAP-B1

Comments: 21-26 ft bgs

Photograph 4

Date: 3/12/2019

Direction: BAP-B1

Comments: 26-31 ft bgs

Client: AEP Project Number: CHW8193

Site Name: Northeastern Plant Site Location: Oologah, OK

Photograph 5

Date: 3/14/2019

Direction: BAP-B1

Comments: 31.4-41 ft bgs

Photograph 6

Date: 3/14/2019

Direction: BAP-B1

Comments: 41-50.75 ft bgs

Client: AEP Project Number: CHW8193

Site Name: Northeastern Plant Site Location: Oologah, OK

Photograph 7

Date: 3/14/2019

Direction: BAP-B1

Comments:

50.75-60.55 ft bgs

Photograph 8

Date: 3/12/2019

Direction: BAP-B1

Comments: 61-66 ft bgs

Client: AEP Project Number: CHW8193

Site Name: Northeastern Plant Site Location: Oologah, OK

Photograph 9

Date: 3/12/2019

Direction: BAP-B1

Comments: 66-71 ft bgs

Photograph 10

Date: 3/12/2019

Direction: BAP-B1

Comments: 71-76 ft bgs

Client: AEP Project Number: CHW8193

Site Name: Northeastern Plant Site Location: Oologah, OK

Photograph 11

Date: 3/12/2019

Direction: BAP-B1

Comments: 76-81 ft bgs

Photograph 12

Date: 3/12/2019

Direction: BAP-B1

Comments: 81-86 ft bgs

Client: AEP Project Number: CHW8193

Site Name: Northeastern Plant Site Location: Oologah, OK

Photograph 13

Date: 3/12/2019

Direction: BAP-B1

Comments: 86-91 ft bgs

Photograph 14

Date: 3/12/2019

Direction: BAP-B1

Comments: 91-96ft bgs

Client: AEP Project Number: CHW8193

Site Name: Northeastern Plant Site Location: Oologah, OK

Photograph 15

Date: 3/12/2019

Direction: BAP-B1

Comments: 96-101 ft bgs

Photograph 16

Date: 3/12/2019

Direction: BAP-B1

Comments: 101-106 ft bgs

Client: AEP Project Number: CHW8193

Site Name: Northeastern Plant Site Location: Oologah, OK

Photograph 17

Date: 3/12/2019

Direction: BAP-B1

Comments: 106-111 ft bgs

Photograph 18

Date: 3/13/2019

Direction: BAP-B1

Comments:

108.8-118.5 ft bgs

Client: AEP Project Number: CHW8193

Site Name: Northeastern Plant Site Location: Oologah, OK

Photograph 19

Date: 3/13/2019

Direction: BAP-B1

Comments:

118.5-128.2 ft bgs

Photograph 20

Date: 3/13/2019

Direction: BAP-B1

Comments: 128.2-138 ft bgs

Geosyntec Consultants Photographic Record

Client: AEP Project Number: CHW8193

Site Name: Northeastern Plant Site Location: Oologah, OK

Photograph 21

Date: 3/13/2019

Direction: BAP-B1

Comments: 138-148 ft bgs

Photograph 22

Date: 3/13/2019

Direction: BAP-B1

Comments: 148-158 ft bgs

Geosyntec Consultants Photographic Record

Client: AEP Project Number: CHW8193

Site Name: Northeastern Plant Site Location: Oologah, OK

Photograph 23

Date: 3/13/2019

Direction: BAP-B1

Comments: 158-167.7 ft bgs

Photograph 24

Date: 3/13/2019

Direction: BAP-B1

Comments: 167.7-176 ft bgs

Geosyntec Consultants Photographic Record

Client: AEP Project Number: CHW8193

Site Name: Northeastern Plant Site Location: Oologah, OK

Photograph 25

Date: 3/13/2019

Direction: BAP-B1

Comments: 177-186 ft bgs

ATTACHMENT C O kpgtcmi kecn'Cpcn(uku' Ncdqtcvqty Report

CHA8462/10/01

Requested by: Alison Kreinberg Geosyntec Consultants

Mineralogy, Inc. Number 19051

Date:

March 21, 2019

Submitted by:

Timothy B. Murphy

Mineralogy, Inc. 3321 East 27th Street Tulsa, Oklahoma 74114 USA +1 (918) 744.8284

www.mineralogy-inc.com

Table of Contents

Conditions & Qualifications

Section I	Introduction	
	X-ray Diffraction Analysis	
Appendix I	X-ray Fluorescence	
	Cation Exchange Capacity	

Sample ID		Petrographic Data	Thin Section Images
SP-10-LOG 1 (32-32.4')	19051-01	<u>•</u>	<u>•</u>
SP-10-LOG 2 (46')	19051-02	<u>•</u>	<u>•</u>
SP-10-LOG 3 (46')	19051-03	•	<u>•</u>
SP-10-LOG 4 (72-72.4')	19051-04	•	<u>•</u>

CONDITIONS AND QUALIFICATIONS

Mineralogy, Inc. will endeavor to provide accurate and reliable laboratory measurements of the samples provided by the client. The results of any x-ray diffraction, petrographic or core analysis test are necessarily influenced by the condition and selection of the samples to be analyzed. It should be recognized that geological samples are commonly heterogeneous and lack uniform properties. Mineralogical, geochemical and/or petrographic data obtained for a specific sample provides compositional data pertinent to that specific sampling location. Such "site-specific data" may fail to provide adequate characterization of the range of compositional variability possible within a given project area, thus the "projection" of these laboratory findings and values to adjoining, "untested" areas of the formation or project area is inherently risky, and exceeds the scope of the laboratory work request. Hence, Mineralogy, Inc. shall not assume any liability risk or responsibility for any loss or potential failure associated with the application of "site or sample-specific laboratory data" to "untested" areas of the formation or project area. Unless otherwise directed, the samples selected for analysis will be chosen to reflect a visually representative portion of the bulk sample submitted for analysis. Where provided, the interpretation of x-ray diffraction, petrographic or core analysis results constitutes the best geological judgment of Mineralogy, Inc., and is subject to the sampling limitations described above, and the detection limits inherent to semi-quantitative and/or qualitative mineralogical and microscopic analysis. Mineralogy, Inc. assumes no responsibility nor offers any guarantee of the productivity, suitability or performance of any oil or gas well, hydrocarbon recovery process, dimension stone, and/or ore material based upon the data or conclusions presented in this report.

Introduction

Four selected core intervals have been submitted for a combination of mineralogical, chemical, and petrographic analysis. The results of the x-ray diffraction mineralogical analysis are summarized in Table I. X-ray fluorescence chemical analysis data for these samples are presented in Table II. Results of the cation exchange capacity analysis (CEC) are summarized in Table III. The CEC results provide exchange capacities for a series of selected cation species, including: lithium, calcium, potassium, magnesium and sodium ions. The results of the thin section petrographic analysis are summarized in the individual thin section descriptions presented following Table III. The descriptive summaries include thin section photomicrographs that offer representative images of the micro-fabric for these core samples.

Sample ID	Mineralogy, Inc. No.	Analysis Requested
SP-10-LOG 1 (32-32.4')	19051-01	XRD / XRF / CEC / TSP
SP-10-LOG 2 (46')	19051-02	XRD / XRF / CEC / TSP
SP-10-LOG 3 (46')	19051-03	XRD / XRF / CEC / TSP
SP-10-LOG 4 (72-72.4')	19051-04	XRD / XRF / CEC / TSP

XRD = X-ray Diffraction | XRF = X-ray Fluorescence | CEC = Cation Exchange Capacity | TSP = Thin Section Petrography

X-ray Diffraction

Client:	Geosyntec Consultants	MI#:	19051
Project:	CHA8462/10/01	Date:	03/21/19
Location:	N/A	Method:	X-ray Diffraction

	Sample ID	SP-10-LOG 1	SP-10-LOG 2	SP-10-LOG 4	SP-10-LOG 4
	Depth (ft)	32-32.4	46	46	72-72.4
	MI#	19051-01	19051-02	19051-03	19051-04
Mineral Co	onstituent		Relative Abu	undance (%)	
Qua	artz	1	20	3	6
Alb	pite	ND	4	ND	ND
Micro	ocline	ND	1	ND	ND
Calcite		95	2	93	91
Ferroan Dolomite		4	ND	ND	2
Siderite		ND	1	ND	ND
Py	rite	ND	5	1	ND
Kaol	linite	ND	2	1	<0.5
Chlo	orite	ND	3	<0.5	ND
Illite/Mica		ND	38	1	1
Mixed-Layered Illite/Smectite		ND	24	1	<0.5
То	tal	100	100	100	100
% Illite Laye	ers in ML I/S		75%	75%	BDL

*ND = Not Detected

BDL = Below Detection Limit

X-ray Fluorescence

Client:	Geosyntec Consultants	MI#:	19051
Project:	CHA8462/10/01	Date:	03/21/19
Location:	N/A	Method:	X-ray Fluorescence

Sample II	SP-10-LOG	1 SP-10-LOG 2	SP-10-LOG 4	SP-10-LOG 4
Depth (ft)	32-32.4	46	46	72-72.4
MI#	19051-01	19051-02	19051-03	19051-04
Compound		Results	(mass %)	
Na2O	ND	0.1895	0.115	0.1679
MgO	0.8658	0.8691	0.6868	1.2152
Al2O3	0.229	2.623	2.8345	1.8392
SiO2	1.8268	9.8542	11.7333	15.4175
P2O5	0.1167	0.2455	0.1844	0.1426
S	0.0281	0.5322	0.3903	0.1484
CI	0.0366	0.0313	0.0366	0.0309
K2O	0.0729	0.5631	0.36	0.4304
CaO	95.2326	80.3021	79.7826	78.3752
TiO2	ND	0.1647	0.0679	0.1096
MnO	0.0797	0.1224	0.1512	0.1627
Fe2O3	0.7094	2.596	1.912	1.2662
Sr	0.5788	0.8884	0.922	0.3485
Y	ND	ND	0.0116	ND
ВаО	0.0758	0.0597	0.056	0.0598

^{*}ND = Not Detected

Cation Exchange Capacity

Client:	Geosyntec Consultants	MI#:	19051
Project:	CHA8462/10/01	Date:	03/21/19
Location:	N/A	Method:	C.E.C.

	Lith	ium	Calc	ium	Magnesium		Magnesium Potassium		Sodium	
	Results	PQL**	Results	PQL**	Results	PQL**	Results	PQL**	Results	PQL**
Sample ID	(meg/	100g)	(meg/	100g)	(meg/	100g)	(meg/	100g)	(meg/	100g)
SP-10-LOG 1	BDOL	0.05	20.0	0.100	0.567	0.100	DDOL	0.100	0.226	0.400
32 - 32.4'	BPQL	0.05	20.0	0.100	0.567	0.100	BPQL	0.100	0.226	0.100
SP-10-LOG 2	DDOI	0.05	16.2	0.400	3.51	0.400	2.32	0.400	0.05	0.400
46'	BPQL	0.05	16.2	0.100	3.51	0.100	2.32	0.100	8.85	0.100
SP-10-LOG 3	DDOI	0.05	24.6	0.400	0.040	0.400	0.050	0.400	0.000	0.400
46'	BPQL	0.05	21.6	0.100	0.642	0.100	0.250	0.100	0.896	0.100
SP-10-LOG 4	DDOL	0.05	24.4	0.400	4.40	0.400	0.242	0.400	0.000	0.400
72 - 72.4'	BPQL	0.05	21.1	0.100	1.16	0.100	0.313	0.100	0.822	0.100

Method Reference: 40 CFR 136, 261, Method for Chemical Analysis of Water and Waste EPA-600/4-79-020 March 1983

CEC Method Reference: Method of Soil Analysis, Chemical and Microbiological Properties, 2nd Ed.; American Society of Agronomy, linc.

Soil Science Society of America, Inc. page 160.

*CEC analysis provided by Accurate Laboratories & Training Center; Stillwater, OK

**PQL= Practical Quantitation Limit | BPQL = Below Practical Quantitation Limit

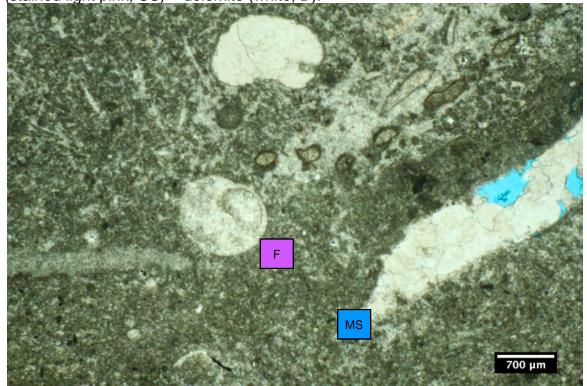
SP-10-LOG 1 (32-32.4'); MI#19051-01 Petrographic Data

This core interval is comprised of non-porous, partially recrystallized, slightly dolomitic, mollusk lime wackstone. Some characteristics of the limestone framework and microfabric are noted as follows:

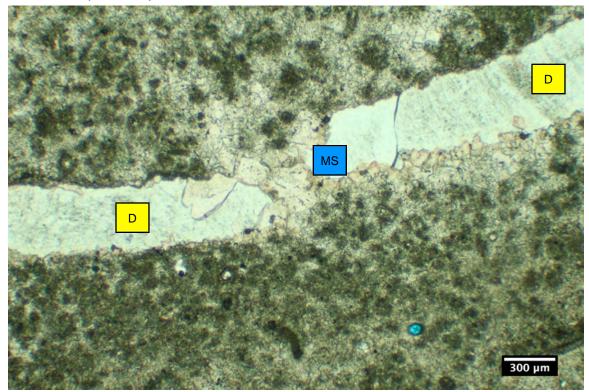
- The limestone is extensively crystalized and exhibits a grain assemblage that includes recrystallized mollusk shells and gastropod fragments, undifferentiated skeletal debris (recrystallized skeletal grains partially to completely replaced with calcite spar and/or dolomite cement), foram tests, and ostracod fragments.
- The sedimentary fabric is burrow mottled and exhibits localized evidence of geopetal sheltering adjoining selected shell fragments. The sheltered portions of the limestone fabric exhibit contrasts in the matrix packing density & the distribution of some secondary cements within this interval.
- The groundmass of this sample is dominated by microcrystalline calcite. Portions of the matrix have been locally replaced with very finely crystalline calcite spar +/dolomite cement owing to aggrading neomorphism.
- Traces of microcrystalline chert cement are locally present as a late stage secondary cement occupying patches of sheltered inter-crystalline porosity that adjoin the mollusk shell fragments. The chert cement is visually estimated to account for <1% of the mineral volume in this interval.
- Porosity accounts for ~0.5-1.0% of the bulk volume. Void types include scattered secondary dissolution voids (associated with the dolomite-replaced mollusk shell fragments), and traces of inter-crystalline microporosity.

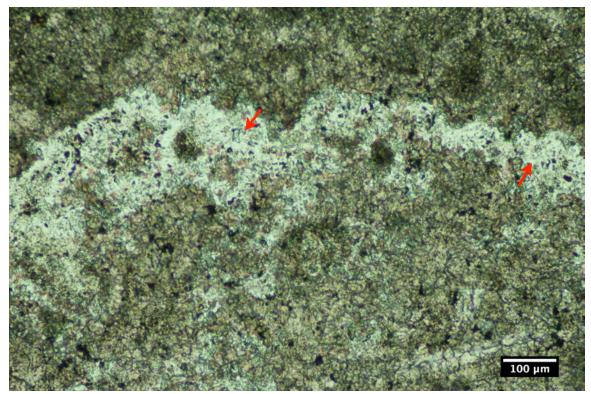
Mineralogical Data

Mineral Constituents	Concentration (%)
Quartz	1
Calcite	95
Ferroan Dolomite	4


Photo lags				
Calcite spar cement	CS			
Dolomite	D			
Mollusk shell fragments	MS			
Foram test	F			

SP-10-LOG 1 (32-32.4'); MI#19051-01


1A. Mollusk shell fragments (MS) recrystallized and replaced with calcite spar (stained light pink; CS) + dolomite (white; D).


1B. Secondary intraparticle dissolution macroporosity (blue) associated with a leached mollusk shell fragment (MS). Recrystallized foram (?) test (F).

SP-10-LOG 1 (32-32.4'); MI#19051-01

1C. Dolomite replacement (D) within a re-crystallized mollusk shell fragment (MS).

1D. Chert cement (red arrows) replacing portions of the lime mud groundmass within this limestone sample.

SP-10-LOG 2 (46'); MI#19051-02 Petrographic Data

This core sample is characterized as a parallel-bedded, organic matter-rich, calcareous and fossiliferous, silty shale. The fabric and mineralogy of this core interval is noted as follows:

- The silty shale groundmass is densely packed & exhibits parallel-bedded lamina of organic matter-rich detrital clay interbedded with limestone skeletal fragments and lens-shaped concentrations of quartz-rich silt. The clay matrix fraction accounts for ~ 67% of the mineral volume & includes illite/mica, mixed-layered illite/smectite, kaolinite and chlorite.
- The silty shale is interbedded with clay matrix-rich skeletal lime wackstone. The interbedded limestone materials are burrow mottled, fossiliferous, and incorporate common lenses of organic-rich clay. The matrix materials locally drape the carbonate grains and fill intercrystalline voids of the limestone. Skeletal allochems include very poorly preserved mollusk shell fragments, calcareous algae plates, and foram tests. Most of the carbonate grains have been completely recrystallized and replaced with calcite spar cement.
- Burial compaction and deformation of the interbedded matrix materials has contributed to the development of pressure solution artifacts including low amplitude stylolites.
- Minor to trace amounts of micro-crack porosity are present within the organic-rich silty-shale materials. The fracture voids are parallel to bedding and likely represent artifacts related to fabric relaxation.

Mineralogical Data

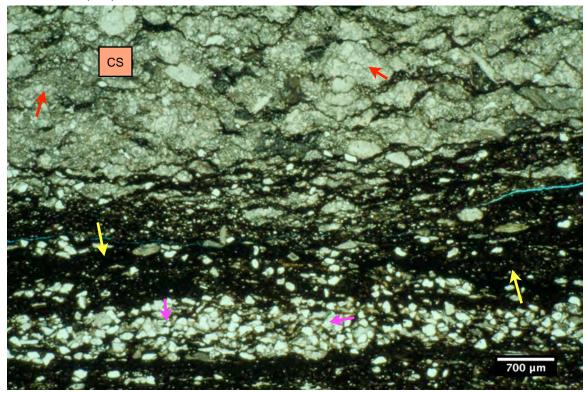
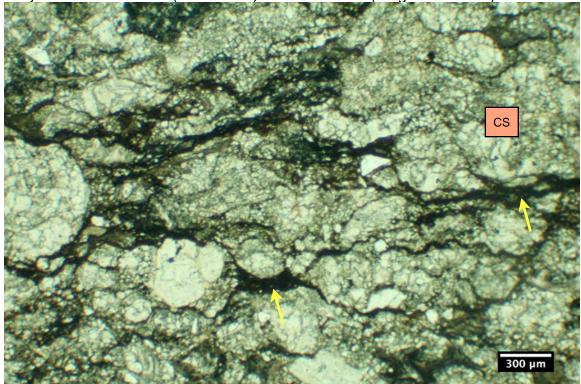
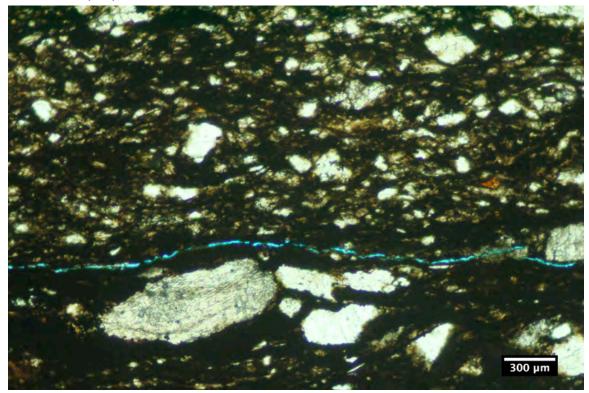

Mineral Constituents	Concentration (%)
Quartz	20
Albite	4
Microcline	1
Calcite	2
Siderite	1
Pyrite	5
Kaolinite	2
Chlorite	3
Illite/Mica	38
Mixed-Layered Illite/Smectite	24

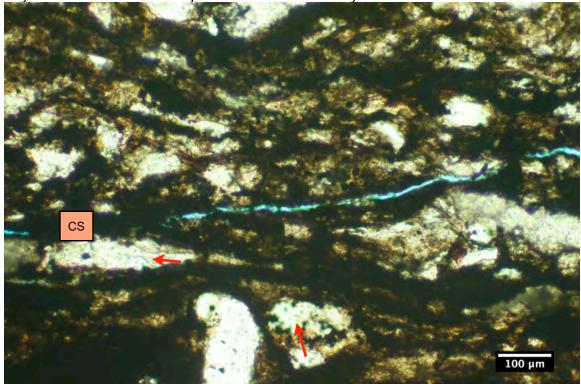
Photo Tags


Calcite spar cement	CS
Dolomite	D
Mollusk shell fragments	MS
Foram test	F

SP-10-LOG 2 (46'); MI#19051-02



2A. The silty shale (yellow arrows) is organic matter-rich & contains interbeds of recrystallized limestone (red arrows) & lenses of silt (magenta arrows).



2B. The limestone interbed is flaser-bedded & exhibits lenses of black-colored, organic-rich matrix (yellow arrows) draping the calcite crystals (CS).

SP-10-LOG 2 (46'); MI#19051-02

2C. Micro-crack (blue) attributed to fabric relaxation of the compressed shale. The clays are enriched with respect to illite & mixed-layered illite/smectite.

2D. Nearly all of the available intergranular space is choked with organic-rich detrital clay of carbonate cement (red arrows).

SP-10-LOG 3 (46'); MI#19051-03 Petrographic Data

This core sample is characterized as an organic matter and clay matrix-rich skeletal lime packstone. The limestone is non-porous and exhibits wavy or flaser bedding, with detrital clay matrix locally concentrated in the 'troughs' of the fabric. Clay lenses and lamina are locally deformed along low amplitude pressure solution seams.

- The limestone mineralogy is dominated by calcite (~93%), together with modest amounts of quartz (3%), pyrite (1%), and clay matrix minerals (~3%). The clay mineral suite for this sample includes a mix of illite/mica, mix-layered illite/smectite, kaolinite, and traces of chlorite.
- Skeletal allochems include: undifferentiated and locally recrystallized skeletal grains, mollusk shell fragments, foram tests, intraclasts (lime wackstone and lime mudstone), bryozoan fronds, gastropod fragments, and traces of quartz-rich silt and sand.
- Pyrite cement occurs as a common replacement for organic matter.

Mineralogical Data

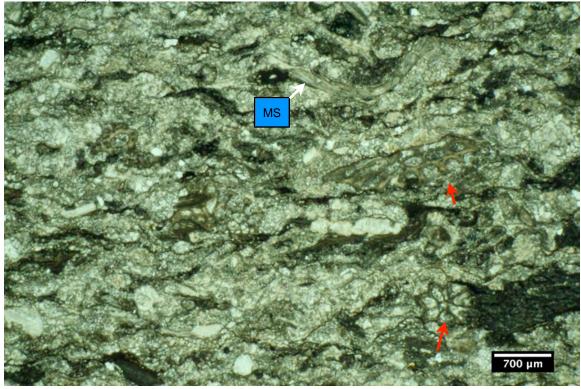
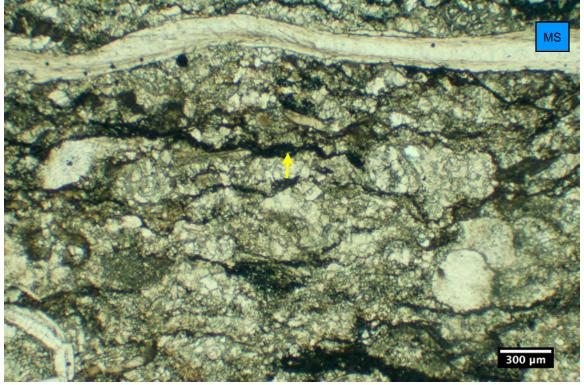
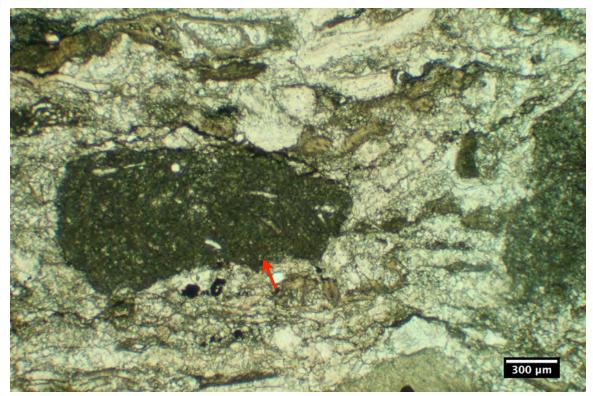

Mineral Constituents	Concentration (%)
Quartz	3
Calcite	93
Pyrite	1
Kaolinite	1
Chlorite	<0.5
Illite/Mica	1
Mixed-Layered Illite/Smectite	1

Photo Tags


· · · · · · · · · · · · · · · · · · ·	
Calcite spar cement	cs
Dolomite	D
Mollusk shell fragments	MS
Foram test	F

SP-10-LOG 3 (46'); MI#19051-03

3A. Bryozoan fronds (red arrows) + poorly preserved mollusk shell fragments (MS) in this flaser-bedded skeletal lime packstone.


3B. Mollusk shell fragment (MS) + undifferentiated & skeletal fragments. Note the mechanically deformed & compacted matrix lenses (yellow arrow).

SP-10-LOG 3 (46'); MI#19051-03

3C. Intraclast of lime wackestone (red arrow). The limestone fabric is non-porous.

3D. Intraclast (red arrow) within this extensively recrystallized skeletal lime packstone.

SP-10-LOG 4 (72-72.4'); MI#19051-04 Petrographic Data

This core interval is comprised of densely-crystallized, burrow mottled, skeletal lime packstone/wackstone. The mineralogy and fabric properties for this sample are noted as follows:

- The sample fabric is parallel-bedded and burrow mottled. The skeletal grain assemblage is comprised of very poorly preserved and locally re-crystallized sponge spicules, calcareous algae plates, pelloids, and undifferentiated skeletal fragments.
- The limestone is locally interbedded with parallel bedded lamina of organic matterrich silty-shale.
- The mineralogy of the limestone is dominated by calcite (91%), coupled with significant amounts of quartz-rich silt and sand (~6%), ferroan dolomite (~2%), and clay matrix minerals (~1%). The XRD analysis of the clay matrix fraction indicates a mineralogy dominated by illite/mica coupled with minor to accessory amounts of mixed-layered illite/smectite and kaolinite.
- The limestone fabric is described as non-porous and extensively recrystallized. Very finely crystalline calcite spar and patches of dolomite cement are common replacements for skeletal grains present in this sample.

Mineralogical Data

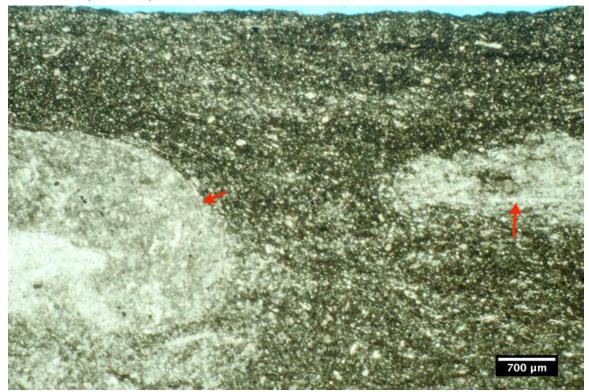
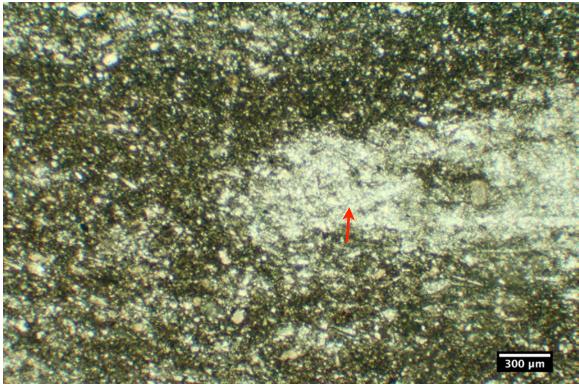
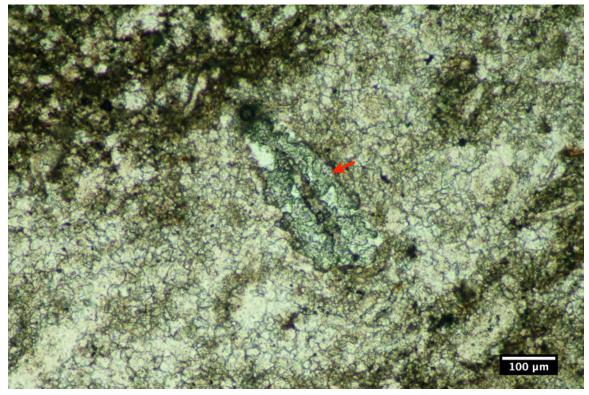

Mineral Constituents	Concentration (%)
Quartz	6
Calcite	91
Ferroan Dolomite	2
Kaolinite	<0.5
Illite/Mica	1
Mixed-Layered Illite/Smectite	<0.5

Photo Tags


i noto lugo	
Calcite spar cement	CS
Dolomite	D
Mollusk shell fragments	MS
Foram test	F

SP-10-LOG 4 (72-72.4'); MI#19051-04

4A. Burrow molds (red arrows) within this sponge spicule-rich lime packstone/wackestone.



4B. The groundmass of this sample is enriched with respect to lime mud & contains recrystallized skeletal fragments that include sponge fragments, calcareous algae, pelloids, and undifferentiated skeletal fragments.

Table of Contents

SP-10-LOG 4 (72-72.4'); MI#19051-04

4C. A phosphatic bone fragment (red arrows) surrounded by recrystallized calcite spar cement.

4D. As in Figure 4C, with cross polarized light.

March 08, 2019

Client: Mineralogy Inc.

3321 East 27th Street

Tulsa, OK 74114

Requested By: Kristopher Murphy

National Environmental Laboratory Accreditation Program Kansas CERT # E-10219

Sample Project Name: 19051

Date Samples Received: February 25, 2019 Time: 9:15 sample temp upon arrival at lab = 19° C

Matrix: Solid

Lab Log Numbers: BB25007-01 BB25007-02 BB25007-03 BB25007-04

Work Order: BB25007

Report # BB25007-0308191045

EPA Lab ID#'s: Stillwater OK00092 Tulsa OK00983 OKC OK00129 ICR OK 001

Oklahoma Certification: Stillwater WasteWater, DEQ 8316/ Drinking Water, DEQ D9602

Tulsa WasteWater, DEQ 9905 / Drinking Water, DEQ D9901

Oklahoma City WasteWater DEQ 7202 / Drinking Water, DEQ D9937

Kansas Certification: Stillwater NELAP CERT # E-10219

Oklahoma City NELAP CERT # E-10414

New Hampshire Cert.: Oklahoma City Drinking Water NH ELAP Lab ID # 2072

Texas Certification: Stillwater Drinking Water NELAP CERT # T105704533-14-1

Method Reference: 40 CFR 136, 141, and 261 Methods for Chemical Analysis of Water and Wastes

EPA-600/4-79-020, March 1983. Test Methods for Evaluating Solid Wastes, SW-846, Final Update III. Standard Methods 1998 (20th Edition), Standard Methods 2005 (21st Edition) and Standard Methods 2011 (22nd Edition) for the

Examination of Water and Wastewater.

Analysis Reference: If qualifiers present in "Prep Info" or "Analysis Info", then analysis performed as

follows: @= Tulsa Lab and * = OKC Lab. If no qualifiers present, then analysis

performed at Stillwater Lab.

Accurate Environmental Laboratories certify that the test results performed at the Stillwater lab meet all requirements of NELAP. Any exceptions to this can be

found in the report footer or Quality Control Section of the report.

This report is to only be replicated in its entirety.

Accurate Environmental sampling protocol was followed for any sampling

performed by Accurate Field Services.

505 S. Lowry Street ■ Stillwater, OK 74074 ■ 405-372-5300 ■ Fax: 405-372-5396

Page 1 of 5 BB25007-0308191045

Sample: 19051-01 Location Code: PWSID#:

Collection Type: Grab Sample Time: 2/25/19 0:00 Lab Log# BB25007-01

Method/Parameter	Test	Result	Notes	PQL#	Prep Info	Analysis Info
Lithium (Li) EPA 6020A	Lithium	BPQL mg/kg dry		10.0	03/04/19 10:15 LF	03/06/19 11:26 LF
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Calcium	20.0 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:17 RW
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Magnesium	0.567 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:17 RW
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Potassium	BPQL meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:17 RW
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Sodium	0.226 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:17 RW

Sample: 19051-02 Location Code: PWSID#:

Collection Type: Grab Sample Time: 2/25/19 0:00 Lab Log# BB25007-02

Method/Parameter	Test	Result	Notes	PQL#	Prep Info	Analysis Info
Lithium (Li) EPA 6020A	Lithium	76.0 mg/kg d	ry	10.0	03/04/19 10:15 LF	03/06/19 11:30 LF
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Calcium	16.2 meq/100)g	0.100	02/28/19 09:30 LF	03/01/19 13:21 RW
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Magnesium	3.51 meq/100)g	0.100	02/28/19 09:30 LF	03/01/19 13:21 RW
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Potassium	2.32 meq/100)g	0.100	02/28/19 09:30 LF	03/01/19 13:21 RW
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Sodium	8.85 meq/100)g	0.100	02/28/19 09:30 LF	03/01/19 13:21 RW

Sample: 19051-03 Location Code: PWSID#:

Collection Type: Grab Sample Time: 2/25/19 0:00 Lab Log# BB25007-03

Method/Parameter	Test	Result	Notes	PQL#	Prep Info	Analysis Info
Lithium (Li) EPA 6020A	Lithium	BPQL mg/kg dry		10.0	03/04/19 10:15 LF	03/06/19 11:35 LF
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Calcium	21.6 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:24 RW
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Magnesium	0.642 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:24 RW
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Potassium	0.250 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:24 RW
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Sodium	0.896 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:24 RW

Sample: 19051-04 Location Code: PWSID#:

Collection Type: Grab Sample Time: 2/25/19 0:00 Lab Log# BB25007-04

Method/Parameter	Test	Result	Notes	PQL#	Prep Info	Analysis Info
Lithium (Li) EPA 6020A	Lithium	BPQL mg/kg dr	7	10.0	03/04/19 10:15 LF	03/06/19 11:39 LF
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Calcium	21.1 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:28 RW
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Magnesium	1.16 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:28 RW

505 S. Lowry Street ■ Stillwater, OK 74074 ■ 405-372-5300 ■ Fax: 405-372-5396

Sample: **Location Code:** PWSID#:

2/25/19 0:00 **Collection Type:** Grab Sample Time: Lab Log# BB25007-04

Method/Parameter	Test	Result	Notes	PQL#	Prep Info	Analysis Info
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Potassium	0.313 meq/100g		0.100	02/28/19 09:30 LF	03/01/19 13:28 RW
Exchangeable Cations EPA 9081 (No Cert. Avail.)	Sodium	0.822 meq/100g	;	0.100	02/28/19 09:30 LF	03/01/19 13:28 RW

Notes and Definitions

MCL Analyte concentration may exceed Maximum Contaminant Limit (MCL) for EPA Primary or Secondary Drinking Water Regulations.

Analyte concentration may exceed regulatory limit.

Practical Quantitation Limit - the method reporting limit (MRL) adjusted for any dilutions or other changes made to the sample to deal with PQL

interferences/matrix effects

Below Practical Quantitation Limit (if applicable). BPQL

The "Prep Date" of the QC analysis coincides with the characters of the appropriate QC Lab ID. (Example: 19 A 02 15 - BLK = 2019, Jan 2, Batch #15 - Blank)

Lab Manager

505 S. Lowry Street

■ Stillwater, OK 74074

405-372-5300

Page 3 of 5

Fax: 405-372-5396

Quality Control Data

Blank Data

QC Lab #	Test Group	Test	Result	PQL	Flags
19C0429-BLK1	Lithium (Li) EPA 6020A	Lithium	BPQL mg/kg dry	10.0	

Duplicate Sample Data

QC Lab #	Test Group	Test Name	Source	Dup Result	Samp Result	% RPD	RPD Limit	Flags
19B2864-DUP1	Exchangeable Cations EPA 9081 (No Cert. Avail.)	Calcium	BB25007-04	21.7	21.1	3	20	
19B2864-DUP1	Exchangeable Cations EPA 9081 (No Cert. Avail.)	Magnesium	BB25007-04	1.19	1.16	3	20	
19B2864-DUP1	Exchangeable Cations EPA 9081 (No Cert. Avail.)	Potassium	BB25007-04	0.318	0.313	2	20	
19B2864-DUP1	Exchangeable Cations EPA 9081 (No Cert. Avail.)	Sodium	BB25007-04	0.896	0.822	9	20	

Laboratory Control Sample Data

Lab QC#	Test Group	Test Name	LCS Result	Spike Level	Units	% Rec.	Control Limits	Flags
19C0429-BS1	Lithium (Li) EPA 6020A	Lithium	491	495.0	mg/kg dry	99	85 - 115	

Matrix Spike Data

QC Lab #	Test Group	Test Name	Source Sample	Sample Result	Units	Spike Result	Spike Level	% Rec.	Acceptance Limits	Flags
19C0429-MS1	Lithium (Li) EPA 6020A	Lithium	BB25007-04	5.29	mg/kg dry	484	478.7	100	85 - 115	

Matrix Spike Duplicate Data

QC Lab#	Test Group	Test Name	Sample Result	Spike Result	Spike Level	Units	% Rec.	Rec.	% RPD	RPD Limit	Flags
19C0429-MSD1	Lithium (Li) EPA 6020A	Lithium	5.29	482	490.2	ng/kg dr	97	85-115	0.5	20	

505 S. Lowry Street ■ Stillwater, OK 74074 ■ 405-372-5300 ■ Fax: 405-372-5396

Page 4 of 5 BB25007-0308191045

MI NUMBER

Feb 25, 2019

P.O.# PROJECT: 19051

DATE REQUESTED:

BILL TO:

Standard PROJECT INFORMATION:

19051

Mineralogy, Inc. 3321 E 27th ST Tulsa, OK 74114

mickala@mineralogy-inc.com kris@mineralogy-inc.com

M.I.#	SAMPLE ID	LOCATION	TYPE	ANALYSIS
- 01	19051-01			CEC
- 02	19051-02			CEC
- 03	19051-03			CEC
- 04	19051-04			CEC

No sample clate/time pronded to Mineralogy.

19.5/0

SPECIAL INSTRUCTIONS / COMMENTS

RELINQUISHED BY

(MuStin Sheemuhe RECEIVED BY

02/25/19

Accurate Labs 505 S. Lowry St. Stillwater, OK 74074 Attn: Dr. Ali Fazel

Re: C.E.C. analysis (MI#19051-01 - 19051-04)

Dr. Fazel:

Please provide C.E.C. + leachate analysis for the included samples. The standard protocol you've used for our samples in the past would be great (i.e., calcium, sodium, potassium, magnesium). Results can be sent to kris@mineralogy-inc.com. If you have any questions, please feel free to call or write. Thanks as always for the continued service.

Best regards,

Kristopher Murphy Mineralogy, Inc.

ATTACHMENT D Bottom Ash Pond Water Laboratory Analytical Data

BAP Surface Water

Sample Number: 190407-	003 Date C	ollected:	02/05/201	9 12:30	Date Received:	2/6/2019
Parameter	Result Units	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.57 ug/L	0.10	0.020	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Arsenic, As	5.18 ug/L	0.10	0.030	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Barium, Ba	315 ug/L	0.10	0.020	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.245 ug/L	0.10	0.020	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.19 ug/L	0.050	0.010	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	647 ug/L	0.20	0.040	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	9.04 ug/L	0.050	0.020	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Lead, Pb	3.33 ug/L	0.10	0.020	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	26.7 ug/L	2.0	0.40	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Selenium, Se	4.5 ug/L	0.20	0.030	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Thallium, TI	< 0.500 ug/L	0.50	0.10	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Boron, B	0.617 mg/L	0.0050	0.0009	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	128 mg/L	0.020	0.0030	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Iron, Fe	5.77 mg/L	0.010	0.0020	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00874 mg/L	0.0002	0.00001	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Magnesium, Mg	14.8 mg/L	0.010	0.0020	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Sodium, Na	105 mg/L	0.050	0.010	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Manganese, Mn	292 ug/L	0.10	0.020	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Potassium, K	5.85 mg/L	0.050	0.010	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Strontium, Sr	1.25 mg/L	0.0002	0.00003	GES	02/06/2019 13:59	EPA 200.8-1994, Rev. 5.4
Alkalinity, as CaCO3	127 mg/L	10	3.0	GES	02/06/2019 16:44	SM 2320B-2011
Bromide, Br Surrogate is recovering above	< 0.500 mg/L re acceptance limits due	0.50 to Chlorate	0.10 being in the	CRJ as-rec'd sample	02/06/2019 17:11	EPA 300.1-1997, Rev. 1.0
Chloride, Cl Surrogate is recovering abov	28.3 mg/L re acceptance limits due	0.10 to Chlorate	0.030 being in the	CRJ as-rec'd sample	02/06/2019 17:11 e.	EPA 300.1-1997, Rev. 1.0
Fluoride, F Surrogate is recovering abov	0.37 mg/L re acceptance limits due	0.15 to Chlorate	0.035 being in the	CRJ as-rec'd sample	02/06/2019 17:11 e.	EPA 300.1-1997, Rev. 1.0
Residue, Filterable, TDS Due to the reduced time allow	694 mg/L wed for analysis per the	40 plant's requ	10 lest, the sam	KAL ples were dried	02/07/2019 at 180*C. KAL020719	SM 2540C-2011
Sulfate, SO4	345 mg/L	10	1.5	CRJ	02/06/2019 14:22	EPA 300.1-1997, Rev. 1.0

Report was reissued on 2/12/19 due to a reanalysis that occurred on alkalinity.

Michael Ohlinger, Chemist

Muhael & Ollinger

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

ATTACHMENT E Certification by Qualified Professional Engineer

CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

I certify that the selected and above described alternative source demonstration is appropriate for evaluating the groundwater monitoring data for the Bottom Ash Pond CCR management area at the Northeastern Power Station and that the requirements of OAC 252:517-9-6(g)(3)(B) have been met.

		PROFESS 101
Beth Ann Gross		A PETU SE ME
Printed Name of Licens	ed Professional Engineer	BETH A. GROSS
Bith an	h	18167 OFLAHOMA
Signature	- Jaury	- A HOW
		Geosyntec Consultants 8217 Shoal Creek Blvd., Suite 200 Austin, TX 78757
		Oklahoma Firm Certificate of Authorization No. 1996 Exp. 6/30/2020
18167	Oklahoma	4/24/2019
License Number	Licensing State	Date

SCOTT A. THOMPSON Executive Director

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

July 8, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re: Alternate Source Demonstration for Lithium –Bottom Ash Pond

Public Service Company of Oklahoma

Northeastern Power Station

Rogers County

Solid Waste Permit No. none

Dear Ms. Parker-Witt:

Monitoring Well SP-10 is currently in the assessment monitoring program. Lithium was detected in SP-10 at concentrations of 0.245 mg/L on May 30, 2018 and 0.242 mg/L on July 30, 2018. A statistically significant level (SSL) was determined, on January 8, 2019, when the lower confidence limit (LCL) for lithium (0.263 mg/L) exceeded the groundwater protection standard (0.15 mg/L). Oklahoma Administrative Code (OAC) 252:517-9-6(g)(3)(B) allows AEP/Public Service Company of Oklahoma Northeastern Power Station (NPS) to demonstrate that a source other than the coal combustion residuals (CCR) unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

On March 12, 2019, by email, DEQ approved a 30-day extension for submittal of the alternate source demonstration (ASD) so that NPS could receive sample analyses from the lab and to gather additional information on the Bandera shale formation from analyses of cores from two (2) new boreholes drilled at the site. On May 1, 2019, the Department of Environmental Quality (DEQ) received, by email, an ASD for lithium in monitoring well SP-10 from NPS. The ASD was presented to DEQ by NPS in a meeting on May 29, 2019. DEQ requested revised figures and cross-sections that were presented during the meeting. A revised Figure 4 and Figure 12 were received by email on June 4, 2019. The cross-sections were received by email on June 5, 2019.

The ASD asserts that the statistically significant level (SSL) exceeding the groundwater protection standards is a natural variation in groundwater quality due to the release of lithium from the clay minerals within the shale lens underlying the Bottom Ash Pond (BAP) and is not due to a release from the BAP itself. Additionally, NPS contends that the low concentration of lithium in the surface water in the BAP and limited transport from the BAP to the screened interval in SP-10 do not support a release.

Ms. Jill Parker-Witt, P.E. American Electric Power July 8, 2019 Page 2 of 2

DEQ reviewed the ASD and made the following determination:

Elevated lithium concentrations were detected in downgradient monitoring well SP-10; however, lithium was not detected in elevated levels in upgradient monitoring well SP-5R even though boring logs from SP-5R show the monitoring well contains interbeds of dark limey shale within the screened interval. Also, SP-8, located near SP-10, and screened across a lower zone shale exhibits low concentrations of lithium. If the lithium at SP-10 was due to the presence of shale lenses within the screened interval of SP-10, then both SP-5R and SP-8 should exhibit elevated levels of lithium. The conceptual model that NPS proposed does not fit the actual groundwater sampling data.

NPS collected and analyzed a surface water sample from the BAP for comparison to data collected from SP-10 to support the claim that unless the BAP is directly connected to SP-10 through a fracture in the limestone, it is unlikely to affect the lithium concentration detected in SP-10. NPS did not sample and analyze the sediment in the BAP for lithium or other constituents to compare that data to the data collected from SP-10. The surface water sample may have a lower concentration of lithium than water that percolates through the sediment in the BAP and potentially reaches SP-10. DEQ does not believe enough data was presented to accept NPS's conclusion that the lithium at SP-10 was not due to a release from the BAP.

Should additional information be attained to support a revised ASD, DEQ will re-evaluate such a submittal. NPS is now required by OAC 252:517-9-6(g)(4) to initiate the assessment of corrective measures (ACM) as required by OAC 252:517-9-7. Please submit the proposed ACM plan and schedule for analyzing the lithium release and developing corrective action to address the release within ninety (90) days of receipt of this letter. Assessment monitoring for the BAP will continue.

If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely,

Hillary Young, P.E.

Chief Engineer

Land Protection Division

HY/ckh

American Electric Power 502 North Allen Avenue Shreveport, LA 71101 AEP.com

September 11, 2019

Via U.S. and electronic mail

Ms. Hillary Young
Oklahoma Department of Environmental Quality ("ODEQ")
707 North Robinson, P.O. Box 1677
Oklahoma City, OK 73101-1677

Re: Alternate Source Demonstration ("ASD") for lithium- Bottom Ash Pond Public Service Company of Oklahoma Northeastern Power Station (NPS)

Dear Ms. Young,

PSO received ODEQ's correspondence dated July 8, 2019 communicating that ODEQ could not conclude that NPS's bottom ash pond ("BAP") was not the source of lithium detected in the groundwater above the Groundwater Protective Standard (GWPS) based on the data presented. We appreciate ODEQ's consideration of PSO's ASD and understand that at this time, ODEQ has not approved the ASD. ODEQ's correspondence identified possible deficiencies in the ASD that could be developed further and ODEQ inferred that it would reconsider the ASD in light of additional information. PSO would like to provide clarification as well as additional data and information for ODEQ's reconsideration that an alternate source exists for lithium other than the BAP.

This letter will present the following lines of evidence in support of the existence of naturally occurring concentrations of groundwater lithium at the Site:

- Upgradient wells contain higher lithium concentrations than EPA's Regional Screening Levels (0.04 mg/L)
- Upgradient well SP-5R contains higher concentrations of lithium than upgradient well SP-4, even though SP-5R is farther from the BAP than SP-4
- Detection of a higher lithium concentration in the mineral formation (76 mg/kg) than in the BAP solids (15 mg/kg)
- Detection of a lower lithium concentration in the BAP sluiced water and BAP pore water than in the groundwater
- Leachability of the BAP sediments produced a lithium concentration equal to the method detection level (0.001 mg/L)
- The water chemistries of the BAP sediment, pore water, and pond water are similar but they are very different from SP-10's water chemistry, indicating the waters are not from the same source
- The spatial distribution of lithium in the groundwater indicates there is an increasing lithium concentration with depth and distance from the BAP, which does not conform to the principles of contaminate transport

A. Clarification of ASD submittal

After reviewing ODEQ's letter, PSO realized certain information in the ASD may not have been as evident and would benefit from further clarification. Specifically, PSO would like to provide additional clarification and information to address certain statements made by ODEQ in their letter.

The paragraph and statements for which PSO will provide further clarification are on page 2 of ODEQ's July 8, 2019 letter:

Elevated lithium concentrations were detected in down gradient monitoring well SP-10; however, *lithium was not detected in elevated levels in upgradient, monitoring well SP-5R* even though *boring logs from SP-5R show the monitoring well contains interbeds of dark limey shale within the screened interval.* Also SP-8, *located near SP-10, and*

screened across a lower zone shale exhibits low concentrations of lithium. If the lithium at SP-10 was due to the presence of shale lenses within the screened interval of SP-10, then both SP-5R and SP-8 should exhibit elevated levels of lithium. The conceptual model that NPS proposed does not fit the actual ground water sampling data. [emphasis added]

First, PSO would like to provide context to the statement: "...lithium was not detected in elevated levels in upgradient monitoring well SP-5R..." PSO is not certain what lithium concentration ODEQ is using but in the ASD PSO relies on EPA's Regional Screening level (RSL, 4-2019) for lithium which is 0.04 mg/L that supersedes the former EPA Region 3 (RBC Table), Region 6 (HHMSSL Table), and 9 (PRG Table) (see attached table). SP-5R is located approximately 2,000 feet upgradient (77 yrs travel time, given the estimated groundwater velocity of 0.071 ft/day or 26 ft/yr) from the BAP. During the collection of groundwater background data, SP-5R had lithium concentrations that ranged from 0.100 mg/L to 0.163 mg/L. Additionally during the collection of background data, SP-4 (located 100 feet upgradient of the BAP) had lithium concentrations that ranged from 0.0697 mg/l to 0.136 mg/L, less than that found in SP-5R. The lithium concentrations in these wells are 1.75 to 4 times greater than EPA's RSL. Therefore, PSO interprets the naturally occurring lithium concentrations in these upgradient, background wells to be "elevated" as compared to the EPA's RSL. The presence of "elevated" lithium in the upgradient wells, which has produced a GWPS of 0.15 mg/L (3.75 times the EPA's RLS), particularly with greater concentrations of lithium detected farther from the BAP, supports the conclusion that lithium is naturally occurring within the groundwater at the site.

ODEQ continues with the phrase: "...even though boring logs from SP-5R show that the monitoring well contains interbeds of dark limey shale within the screened interval." SP-5R was drilled initially to a depth of 35 ft but did not produce water therefore the well was re-drilled to a total depth of 75 feet with a screen interval of 34-75 ft bgs. [Top of sand pack at 31 ft bgs]. Moisture was encountered around 61 feet. The boring logs for SP-5R show the limey shale present at 4ft -12 ft bgs and then again from 30-35 ft bgs. The re-drilled log also indicates that SP-5R's screen interval contains very little limey shale and there is no mention in the re-drilled

log that the frequency of limey shale layers increasing with depth. The SP-5R boring log differs to the boring log for SP-10 that states that the frequency of shale layers does appear to increase with depth. Laboratory analysis of the limey shale material shows that it contains 76 mg/kg lithium (solids expressed in mg/kg; groundwater expressed as mg/L).

Therefore, lower groundwater lithium concentrations in SP-5R (ranging from 0.100 mg/L to 0.163 mg/L) can be expected with the presence of less lithium containing material within the screened interval of SP-5R than those concentrations detected in SP-10 (ranging from 0.278 mg/L to 0.329 mg/L) which was observed to have more lithium containing material. Even though it is not possible to identify the actual location where groundwater encounters the limey shale, this evidence further verifies that lithium resides in the geological formation and the lithium concentrations in groundwater vary based on the amount of mineral content of the formation within the screened intervals of the wells.

Finally, ODEQ states, "SP-8, located near SP-10, and screened across a lower zone shale exhibits low concentrations of lithium." SP-8 is located approximately 750 feet from SP-10 and is "nested" with SP-11. SP-10 is "nested" with SP-9. See figure below.

Since SP-8 is not within the CCR groundwater well network, SP-8 is not sampled on a regular basis. The available concentrations of lithium detected in SP-8 are listed below.

	Sample Date	Li (mg/l)
SP-8	11/03/16	0.337
SP-8	5/18/2017	0.128
SP-8	6/15/2017	0.0295*
SP-8	6/27/2017	0.0179*
SP-8	7/12/2017	0.0359*
SP-8	3/14/2019	0.780

The "lower concentrations" of lithium (denoted in the table by an asterisk) occurred during a time period when samples were collected temporally close together (12-28 days) only allowing enough time for groundwater to travel less than 2 feet through the lithology (given a groundwater velocity of 0.071 ft/day). The variation of groundwater lithium concentrations in SP-8 is attributed to the time allotted for the dissolution of lithium from the solid formation material into the groundwater. The longer the period between sampling events results in detecting higher lithium concentrations in SP-8 than those detected in SP-10, which is part of the CCR monitoring well network and is sampled more regularly.

As mentioned above, SP-8 (screen interval 59-71 ft bgs) is nested with SP-11(screen interval is 16-19 ft bgs) and these wells can be used to compare the lithium concentrations in the upper and lower groundwater bearing zones. Samples collected from these nested wells on 3/14/19 show the lithium concentrations in SP-11 (the shallower well) as 0.094 mg/L and in SP-8 (the deeper well) as 0.780 mg/L.

As noted above, SP-10 (screen interval of 40-50 ft bgs) is nested with SP-9 (screen interval of 65-75 ft. bgs). SP-9 is also not within the groundwater monitoring well network so it is not sampled on a regular basis. However, samples collected from SPs 9 and 10 on 3/14-15/19 show

that the shallower well SP-10 contained 0.286 mg/L lithium and the deeper well SP-9 contained 2.75 mg/L in the groundwater.

Because wells SPs 6 thru 9 were logged by reviewing the cuttings, the ability to accurately identify the lithology is limited. Therefore, borings BAP-B1 (total depth of 186 ft bgs) and BAP-B2 (total depth of 90 ft bgs) were advanced to clearly identify the vertical lithologies, which were presented in the ASD. BAP-B2 was located within 150 feet from SP-8 and screened between 59-71 ft bgs (which is the same screen interval of SP-8). Unfractured limestone was observed with alternating limestone and shale, not a uniform shale unit as described from SP-8's cuttings. The BAP-B1 boring demonstrates that limestone with interbedded clay material extends to 100 ft bgs at which point a shale unit was encountered.

Based on the principles of contaminate hydrogeology, the predominate transport mechanism is advection, where solutes are transported along with groundwater in the direction of decreasing hydraulic gradient. Additionally, solutes are transported through diffusion, where a solute in water moves from an area of greater concentration towards an area of less concentration, as long as a concentration gradient exists, even if the groundwater is not moving. Therefore, a release from a unit would produce a more concentrated zone of lithium closer to the source, and the concentration would decreased with distance. The extremely low groundwater flow velocity and low effective porosity at the Site would produce this type of contaminate distribution with higher concentrations of lithium in wells that have their screen interval set at the elevation closer to that of the BAP's bottom, if a release of lithium had occurred. However, the lithium concentration detected in the shallower zone (in wells SP 10 and 11) is less than that found in the deeper zone, (SPs 8 and 9).

Even though the deeper screened wells SP-6 (60-70 ft bgs) and SP-7 (70-80 ft bgs) are not nested with shallower screened wells SPs 1 and 2 (both at 24-35 ft bgs), they also provide evidence that the spatial distribution of groundwater lithium concentrations do not reflect the principles of contaminate transport. During the collection of the background data, the lithium concentration in shallow well SP-1 ranged from 0.003 mg/L to 0.009 mg/L and in SP-2 ranged from 0.05 mg/L to 0.11 mg/L. These concentrations are three (3) orders of magnitude lower than the lithium

concentrations detected in the deeper wells SP-6 (1.55 mg/L and 1.89 mg/L) and SP-7 (2.02 mg/L and 3.83 mg/L).

Additionally well MW-8D, which is located approximately 300 feet south and side gradient to groundwater flow from the BAP and 900 feet upgradient from the fly ash landfill, has a screen interval (50-60 ft bgs) which is approximately the same elevation as SP-10 screen interval. The soil boring for MW- 8D indicates that the shale beds become thicker after 29 ft bgs. Since MW-8D is located much farther from the BAP than SP-10, PSO expected that MW-8D's lithium concentration would be less than SP-10 even if a release from the BAP had occurred. However, the lithium concentrations detected in MW-8D during the collection of background data, ranged from 1.07-1.44 mg/L, which is an order of magnitude greater than what has been detected in SP-10.

All this spatially distributed data demonstrates that the shallow groundwater zones contain less lithium than the deeper zones and provides further support that the BAP is not the source of lithium detected in the groundwater monitoring well network.

B. New Information

ODEQ also stated that "NPS did not sample and analyze the sediment in the BAP for lithium or other constituents to compare that data to the data collected in SP-10." Therefore, PSO recently collected a sediment sample from the bottom of the BAP near SP-10. The sediment was evaluated using EPA test method 1312/6010B for the leachability of the sediment and EPA test method 6010B for the contents of the pore water. The results indicated that the sediment leached 0.001 mg/L lithium and the pore water contained 0.003 mg/L lithium. These concentrations are two (2) orders of magnitude below the concentrations of lithium detected in SP-10. See attached laboratory report. Additionally, the total lithium detected in the bottom ash solids was 15 mg/kg, which is much less than the lithium detected in the lithological minerals (78 mg/kg). The differences in these concentration also supports that the BAP is not the source of lithium detected within the groundwater monitoring well network. This new information was added to the piper diagrams presented in the ASD and demonstrates that the water chemistries of the BAP

sediment, pore water, and pond water are similar but they are very different from SP-10 water chemistry, indicating the waters are not from the same source.

These lines of evidence support the conclusion that the groundwater lithium concentrations are not due to a release from the BAP. The spatially distributed lithium concentrations detected within the groundwater monitoring well network demonstrate a natural variation in the groundwater more associated with a release of lithium from the minerals within the lithological shale lenses that are present within the screened intervals of the monitoring wells.

Based on these additional clarifications and the new information provided in this letter, PSO requests that ODEQ reconsider the agencies' conclusion that "the conceptual model that NPS proposed does not fit the actual groundwater sampling data."

Please do not hesitate to contact me if you have any questions or would like to discuss. I can be reached by email at: jcparker-witt@aep.com or by phone at: (318) 673-3816.

Sincerely,

Jill Parker-Witt, P.E.

AEP, Engineer Principle

Attachments

SCOTT A. THOMPSON Executive Director

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

July 8, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re: Alternate Source Demonstration for Lithium –Bottom Ash Pond

Public Service Company of Oklahoma

Northeastern Power Station

Rogers County

Solid Waste Permit No. none

Dear Ms. Parker-Witt:

Monitoring Well SP-10 is currently in the assessment monitoring program. Lithium was detected in SP-10 at concentrations of 0.245 mg/L on May 30, 2018 and 0.242 mg/L on July 30, 2018. A statistically significant level (SSL) was determined, on January 8, 2019, when the lower confidence limit (LCL) for lithium (0.263 mg/L) exceeded the groundwater protection standard (0.15 mg/L). Oklahoma Administrative Code (OAC) 252:517-9-6(g)(3)(B) allows AEP/Public Service Company of Oklahoma Northeastern Power Station (NPS) to demonstrate that a source other than the coal combustion residuals (CCR) unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

On March 12, 2019, by email, DEQ approved a 30-day extension for submittal of the alternate source demonstration (ASD) so that NPS could receive sample analyses from the lab and to gather additional information on the Bandera shale formation from analyses of cores from two (2) new boreholes drilled at the site. On May 1, 2019, the Department of Environmental Quality (DEQ) received, by email, an ASD for lithium in monitoring well SP-10 from NPS. The ASD was presented to DEQ by NPS in a meeting on May 29, 2019. DEQ requested revised figures and cross-sections that were presented during the meeting. A revised Figure 4 and Figure 12 were received by email on June 4, 2019. The cross-sections were received by email on June 5, 2019.

The ASD asserts that the statistically significant level (SSL) exceeding the groundwater protection standards is a natural variation in groundwater quality due to the release of lithium from the clay minerals within the shale lens underlying the Bottom Ash Pond (BAP) and is not due to a release from the BAP itself. Additionally, NPS contends that the low concentration of lithium in the surface water in the BAP and limited transport from the BAP to the screened interval in SP-10 do not support a release.

Ms. Jill Parker-Witt, P.E. American Electric Power July 8, 2019 Page 2 of 2

DEQ reviewed the ASD and made the following determination:

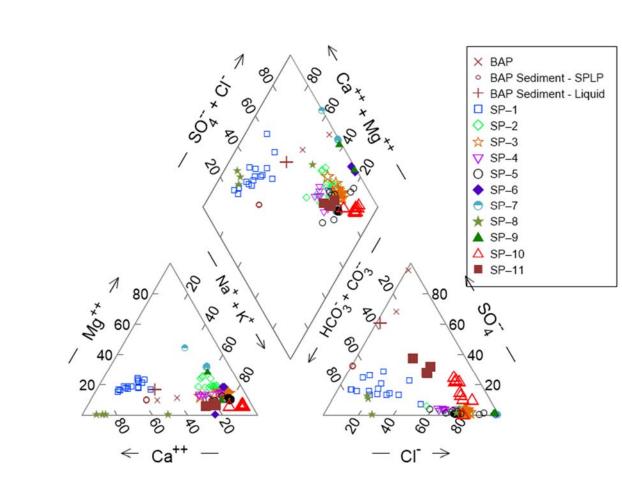
Elevated lithium concentrations were detected in downgradient monitoring well SP-10; however, lithium was not detected in elevated levels in upgradient monitoring well SP-5R even though boring logs from SP-5R show the monitoring well contains interbeds of dark limey shale within the screened interval. Also, SP-8, located near SP-10, and screened across a lower zone shale exhibits low concentrations of lithium. If the lithium at SP-10 was due to the presence of shale lenses within the screened interval of SP-10, then both SP-5R and SP-8 should exhibit elevated levels of lithium. The conceptual model that NPS proposed does not fit the actual groundwater sampling data.

NPS collected and analyzed a surface water sample from the BAP for comparison to data collected from SP-10 to support the claim that unless the BAP is directly connected to SP-10 through a fracture in the limestone, it is unlikely to affect the lithium concentration detected in SP-10. NPS did not sample and analyze the sediment in the BAP for lithium or other constituents to compare that data to the data collected from SP-10. The surface water sample may have a lower concentration of lithium than water that percolates through the sediment in the BAP and potentially reaches SP-10. DEQ does not believe enough data was presented to accept NPS's conclusion that the lithium at SP-10 was not due to a release from the BAP.

Should additional information be attained to support a revised ASD, DEQ will re-evaluate such a submittal. NPS is now required by OAC 252:517-9-6(g)(4) to initiate the assessment of corrective measures (ACM) as required by OAC 252:517-9-7. Please submit the proposed ACM plan and schedule for analyzing the lithium release and developing corrective action to address the release within ninety (90) days of receipt of this letter. Assessment monitoring for the BAP will continue.

If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely,


Hillary Young, P.E.

Chief Engineer

Land Protection Division

HY/ckh

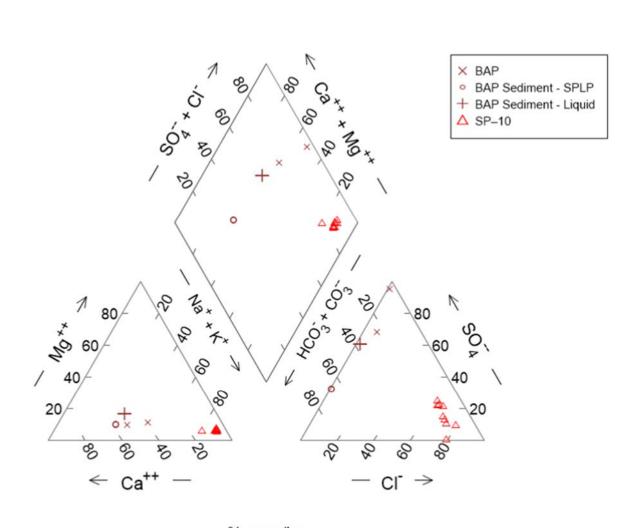
	Key: I	= IRIS; P = PPRTV; O = OPP	, A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; W = TEF a n = noncancer; * = where: n SL < 100X c SL; ** = where n SL < 10X c SL; SSL va	applied; E = RPF a	pplied; G = u	ser's guide Section 5	; M = mutagen; V = volatile; R = F	RBA applied;			
To	exicity and Chemical-specific Information		Contaminant	liues are based on	DAI - 1, III -	ceiling iiinit exceede	Screening Levels			Protection of G	round Water SSLs MCL-based
SFO e IUR e (mg/kg-day) ⁻¹ v (ug/m ³) ⁻¹ v	RfD _o	en GIABS ABS _d (mg/kg)	Analyte	CAS No.	Resident So (mg/kg)	il Industrial Soil key (mg/kg)	Resident Air Industria		MCL (ug/L)	SSL	SSL (mg/kg)
7 7 7 7 7 7	4.0E-04 P	1 0.1	Hexamethylphosphoramide	680-31-9	2.5E+01	n 3.3E+02	n	8.0E+00 n	() /	1.8E-03	n
	7.0E-01 I V 2.0E+00 P	1 1.4E+02 1 0.1	Hexane, N- Hexanedioic Acid	110-54-3 124-04-9	6.1E+02 1.3E+05	ns 2.5E+03 nm 1.6E+06	ns 7.3E+02 n 3.1E+0	03 n 1.5E+03 n 4.0E+04 n		1.0E+01 9.9E+00	n n
9.5E-03 P	7.0E-02 P 4.0E-04 P V 5.0E-03 I 3.0E-02 I V	1 1 3.3E+03	Hexanol, 1-,2-ethyl- (2-Ethyl-1-hexanol) Hexanone, 2-	104-76-7 591-78-6	7.3E+01 2.0E+02	c* 3.4E+02 n 1.3E+03	c 4.2E-01 n 1.8E+0 n 3.1E+01 n 1.3E+0			8.8E-03	n
	3.3E-02 I	1 0.1	Hexazinone	51235-04-2	2.1E+03	n 2.7E+04	n	6.4E+02 n		3.0E-01	n
	2.5E-02 I 1.7E-02 O	1 0.1 1 0.1	Hexythiazox Hydramethylnon	78587-05-0 67485-29-4	1.6E+03 1.1E+03	n 2.1E+04 n 1.4E+04	n n	1.1E+02 n 3.4E+02 n			n n
3.0E+00 4.9E-03 3.0E+00 4.9E-03	3.0E-05 P V	1 1.1E+05	Hydrazine Hydrazine Sulfate	302-01-2 10034-93-2	3.2E-02 2.3E-01	c* 1.4E-01 c 1.1E+00	c* 5.7E-04 c* 2.5E-0 c 5.7E-04 c 2.5E-0			2.2E-07	b*
	2.0E-02 I V 4.0E-02 C 1.4E-02 C V	1	Hydrogen Chloride	7647-01-0 7664-39-3	2.8E+07	nm 1.2E+08	nm 2.1E+01 n 8.8E+0	01 n 4.2E+01 n			
	2.0E-03 I V	1	Hydrogen Fluoride Hydrogen Sulfide	7783-06-4	3.1E+03 2.8E+06	nm 1.2E+07	nm 2.1E+00 n 8.8E+0	00 n 4.2E+00 n			
6.0E-02 P 6.1E-02 O	4.0E-02 P 2.5E-03 O	1 0.1 1 0.1	Hydroquinone Imazalil	123-31-9 35554-44-0	9.0E+00 8.9E+00	c 3.8E+01 c* 3.8E+01	c c*	1.3E+00 c 9.0E-01 c*		8.7E-04 1.5E-02	c c*
	2.5E-01 I 2.5E+00 O	1 0.1 1 0.1	Imazaquin Imazethapyr	81335-37-7 81335-77-5	1.6E+04 1.6E+05	n 2.1E+05	nm nm	4.9E+03 n 4.7E+04 n			n n
	1.0E-02 A	1	lodine	7553-56-2	7.8E+02	n 1.2E+04	n	2.0E+02 n		1.2E+01	n n
	4.0E-02 I 7.0E-01 P	1 0.1 1	Iprodione Iron	36734-19-7 7439-89-6	2.5E+03 5.5E+04	n 3.3E+04 n 8.2E+05	n nm	7.4E+02 n 1.4E+04 n			n n
9.5E-04 I	3.0E-01 I V 2.0E-01 I 2.0E+00 C	1 1.0E+04 1 0.1	Isobutyl Alcohol Isophorone	78-83-1 78-59-1	2.3E+04 5.7E+02	ns 3.5E+05 c* 2.4E+03	s c* 2.1E+03 n 8.8E+0	5.9E+03 n 03 n 7.8E+01 c*			n c*
J.JL=04	1.5E-02 I V	1	Isopropalin	33820-53-0	1.2E+03	n 1.8E+04	n	4.0E+01 n		9.2E-01	n
	2.0E+00 P 2.0E-01 P V 1.0E-01 I	1 0.1	Isopropanol Isopropyl Methyl Phosphonic Acid	67-63-0 1832-54-8	5.6E+03 6.3E+03	n 2.4E+04 n 8.2E+04	n 2.1E+02 n 8.8E+0	02 n 4.1E+02 n 2.0E+03 n		4.3E-01	n n
	5.0E-02 I 3.0E-01 A V	1 0.1	Isoxaben JP-7	82558-50-7 E1737665	3.2E+03 4.3E+08	n 4.1E+04 nm 1.8E+09	n nm 3.1E+02 n 1.3E+0	7.3E+02 n 03 n 6.3E+02 n			n
	8.0E-03 O	1 0.1	Lactofen	77501-63-4	5.1E+02	n 6.6E+03	n	1.0E+02 n			n
	2.0E-04 X 5.0E-05 P	1 0.1 1	Lactonitrile Lanthanum	78-97-7 7439-91-0	1.3E+01 3.9E+00	n 1.6E+02 п 5.8E+01	n n	4.0E+00 n 1.0E+00 n		8.1E-04	n
	2.1E-05 P 1.9E-05 P	1 0.1	Lanthanum Acetate Hydrate Lanthanum Chloride Heptahydrate	100587-90-4 10025-84-0	1.3E+00 1.5E+00	n 1.7E+01 n 2.2E+01	n n	4.2E-01 n 3.7E-01 n			
	2.8E-05 P		Lanthanum Chloride, Anhydrous	10099-58-8	2.2E+00	n 3.3E+01	n	5.7E-01 n			
	1.6E-05 P	1	Lanthanum Nitrate Hexahydrate Lead Compounds	10277-43-7	1.3E+00	n 1.9E+01	n	3.2E-01 n			
8.5E-03 C 1.2E-05 C 8.5E-03 C 1.2E-05 C		1 0.1	~Lead Phosphate ~Lead acetate	7446-27-7 301-04-2	8.2E+01 6.4E+01	c 3.8E+02 c 2.7E+02	c 2.3E-01 c 1.0E+0			1.8E-03	C
8.5E-03 C 1.2E-05 C		1 1 0.1	~Lead and Compounds ~Lead subacetate	7439-92-1 1335-32-6	4.0E+02 6.4E+01	G 8.0E+02 c 2.7E+02	G 1.5E-01 G c 2.3E-01 c 1.0E+0	1.5E+01 G	15	2.0F-03	1.4E+01
0.02-00 0 1.22-00 0	1.0E-07 I V 5.0E-06 P V	1 2.4E+00	~Tetraethyl Lead	78-00-2	7.8E-03	n 1.2E-01	n	1.3E-03 n		4.7E-06	n
	5.0E-06 P V 7.7E-03 O	1 3.8E+02 1 0.1	Linuron Lewisite	541-25-3 330-55-2	3.9E-01 4.9E+02	n 5.8E+00 n 6.3E+03	n n	9.0E-02 n 1.3E+02 n			n n
	2.0E-03 P 5.0E-04 I	1 1 0.1	Lithium MCPA	7439-93-2 94-74-6	1.6E+02 3.2E+01	n 2.3E+03 n 4.1E+02	n n	4.0E+01 n 7.5E+00 n			n n
	4.4E-03 O 1.0E-03 L	1 0.1	MCPP	94-81-5 93-65-2	2.8E+02 6.3E+01	n 3.6E+03	n	6.5E+01 n 1.6E+01 n		2.6E-02	n n
	2.0E-02 I	1 0.1	Malathion	121-75-5	1.3E+03	n 1.6E+04	n n	3.9E+02 n		1.0E-01	n n
	1.0E-01 7.0E-04 C 5.0E-01	1 0.1	Maleic Anhydride Maleic Hydrazide	108-31-6 123-33-1	6.3E+03 3.2E+04	n 8.0E+04 n 4.1E+05	n 7.3E-01 n 3.1E+0	00 n 1.9E+03 n 1.0E+04 n		3.8E-01 2.1E+00	n n
	1.0E-04 P 3.0E-02 H	1 0.1 1 0.1	Malononitrile Mancozeb	109-77-3 8018-01-7	6.3E+00 1.9E+03	n 8.2E+01 n 2.5E+04	n n	2.0E+00 n 5.4E+02 n			n n
	5.0E-03 I	1 0.1	Maneb	12427-38-2	3.2E+02	n 4.1E+03	n	9.8E+01 n			n
	1.4E-01 5.0E-05 2.4E-02 G 5.0E-05	1 0.04	Manganese (Diet) Manganese (Non-diet)	7439-96-5 7439-96-5	1.8E+03	n 2.6E+04	n 5.2E-02 n 2.2E-0			2.8E+01	n
	9.0E-05 H 3.0E-02 I	1 0.1 1 0.1	Mephosfolan Mepiquat Chloride	950-10-7 24307-26-4	5.7E+00 1.9E+03	n 7.4E+01 n 2.5E+04	n n	1.8E+00 n 6.0E+02 n			n n
1.1E-02 P	4.0E-03 P	1 0.1	Mercaptobenzothiazole, 2- Mercury Compounds	149-30-4	4.9E+01	c** 2.1E+02	C*	6.3E+00 c*		1.8E-02	5*
	3.0E-04 I 3.0E-04 G	0.07	~Mercuric Chloride (and other Mercury salts)	7487-94-7	2.3E+01	n 3.5E+02	n 3.1E-01 n 1.3E+0		2	0.05.00	4.05.01
	3.0E-04 I V	1	~Mercury (elemental) ~Methyl Mercury	7439-97-6 22967-92-6	1.1E+01 7.8E+00	ns 4.6E+01 n 1.2E+02	ns 3.1E-01 n 1.3E+0 n	2.0E+00 n	2	1.4E+01	n 1.0E-01 n
	8.0E-05 I 3.0E-05 I V	1 0.1 1	~Phenylmercuric Acetate Merphos	62-38-4 150-50-5	5.1E+00 2.3E+00	n 6.6E+01 n 3.5E+01	n n	1.6E+00 n 6.0E-01 n			n n
	1.0E-04 O 6.0E-02 I	1 0.1	Merphos Oxide Metalaxvl	78-48-8 57837-19-1	6.3E+00 3.8E+03	n 8.2E+01 n 4.9E+04	n n	2.8E-01 n 1.2E+03 n		1.4E-03	n n
	1.0E-04 3.0E-02 P V	1 4.6E+03	Methacrylonitrile	126-98-7	7.5E+00	n 1.0E+02	n 3.1E+01 n 1.3E+0	02 n 1.9E+00 n		4.3E-04	n
	5.0E-05 I 2.0E+00 I 2.0E+01 I V		Methamidophos Methanol	10265-92-6 67-56-1	3.2E+00 1.2E+05	n 4.1E+01 s 1.2E+06	n s 2.1E+04 n 8.8E+0	1.0E+00 n 04 n 2.0E+04 n			n n
	1.5E-03 O 2.5E-02 I	1 0.1 1 0.1	Methidathion Methomyl	950-37-8 16752-77-5	9.5E+01 1.6E+03	n 1.2E+03 n 2.1E+04	n n	2.9E+01 n 5.0E+02 n		7.1E-03	n n
4.9E-02 C 1.4E-05 C		1 0.1	Methoxy-5-nitroaniline, 2-	99-59-2	1.1E+01	c 4.7E+01	c 2.0E-01 c 8.8E-0	1 c 1.5E+00 c	40	5.3E-04	c
	5.0E-03 I 8.0E-03 P 1.0E-03 P V		Methoxychlor Methoxyethanol Acetate, 2-	72-43-5 110-49-6	3.2E+02 1.1E+02	n 4.1E+03 n 5.1E+02	n 1.0E+00 n 4.4E+0		40		n 2.2E+00 n
	5.0E-03 P 2.0E-02 I V 1.0E+00 X V	1 1.1E+05	Methoxyethanol, 2- Methyl Acetate	109-86-4 79-20-9	3.3E+02 7.8E+04	n 3.5E+03 ns 1.2E+06	n 2.1E+01 n 8.8E+0	01 n 2.9E+01 n 2.0E+04 n		5.9E-03 4.1E+00	n n
	1.02.00 A	1 2.3E+U4	inoury, rootato	13-20-3	7.0L104	.13 1.2L 100		2.01.104 11		7.1L100	

% meq/kg

Notes: Multiple events for each well are graphed where data are available.

Piper Plot – SPLP Results

Northeastern Bottom Ash Pond



AMERICAN ELECTRIC POWER

Figure **1a**

Columbus, Ohio

09-Aug-2019

% meq/kg

Notes: Multiple events for the BAP and SP-10 are included.

Piper Plot – SP-10 Northeastern Bottom Ash Pond

Figure 1b

Columbus, Ohio

09-Aug-2019

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 40115 Address: 502 N. Allen Avenue Contact: Jill Parker-Witt **Date Received:** 07/12/2019

Shreveport, LA 71101 Phone: (318) 673-3816

Fax: (318) 673-3960 AEP Sample ID: 226939 Collected Date: 07/10/2019 By: BW

Cust Sample ID: Sediment Location: NE BAP Sediment Sample Matrix: Liquid

Sample Desc.: BAP Sediment SPLP

SPLP	(226939)
_	

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes Tech
Aluminum	0.777	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Antimony	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Arsenic	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Barium	0.352	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Beryllium	< 0.001	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Boron	0.389	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Cadmium	< 0.001	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Calcium	24.3	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Chromium	< 0.001	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Cobalt	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Copper	0.004	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Iron	0.1	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Lead	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Lithium	0.001	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Magnesium	2.44	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Manganese	0.01	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Molybdenum	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Nickel	< 0.025	mg/L	0.025	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Potassium	0.703	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Selenium	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Silver	< 0.001	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Sodium	14.9	mg/L	0.01	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Strontium	0.327	mg/L	0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Thallium	< 0.005	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Tin	0.011	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB
Titanium	0.012	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40115 Date Received: 07/12/2019	C	ontact:	: SEP - Environmental (JP-W) : Jill Parker-Witt : (318) 673-3816		Address: 502 N. Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960				
Vanadium	0.023	mg/L	_ 0.001	1	EPA 1312/6010B 1996	07/25/2019 21:45		JDB	
Zinc	0.067	mg/L	0.005	1	EPA 1312/6010B 1996	07/25/2019 21:45		JDB	
Water (226939)	·								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech	
Alkalinity, Bicarbonate	101.24	mg/L	_ 5	1	SM 2320 B-2011	08/06/2019 15:30	H1	JTD	
Alkalinity, Carbonate	< 5	mg/L	_ 5	1	SM 2320 B-2011	08/06/2019 15:30	H1	JTD	
Alkalinity, Total	101.24	mg/L	_ 5	1	SM 2320 B-2011	08/06/2019 15:30	H1	JTD	
Chloride	0.839	mg/L	0.219	1	EPA 300.0	08/04/2019 5:20		GB	
Fluoride	0.458	mg/L	0.083	1	EPA 300.0	08/04/2019 5:20		GB	
Sulfate	38	mg/L	0.140	1	EPA 300.0	08/04/2019 5:20		GB	

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 40115 Address: 502 N. Allen Avenue **Date Received:** 07/12/2019

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Collected Date: 07/10/2019 By: BW AEP Sample ID: 226940

Cust Sample ID: Liquid portion Location: NE BAP Sediment Sample Matrix: Liquid Sample Desc.: BAP Sediment

Metals (226940)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes Tech
Aluminum	0.076	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Antimony	< 0.005	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Arsenic	< 0.005	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Barium	0.083	mg/L	0.001	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Beryllium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Boron	0.754	mg/L	0.01	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Cadmium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Calcium	85.7	mg/L	0.01	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Chromium	< 0.001	mg/L	0.001	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Cobalt	< 0.005	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Copper	0.004	mg/L	0.001	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Iron	< 0.01	mg/L	0.01	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Lead	< 0.005	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Lithium	0.003	mg/L	0.001	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Magnesium	17.4	mg/L	0.01	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Manganese	0.032	mg/L	0.001	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Molybdenum	0.027	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Nickel	< 0.025	mg/L	0.025	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Potassium	6.94	mg/L	0.01	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Selenium	0.005	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Silver	< 0.001	mg/L	0.001	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Sodium	99.9	mg/L	0.01	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Strontium	1.22	mg/L	0.001	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Thallium	< 0.005	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Tin	< 0.005	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB
Titanium	< 0.005	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40115 Date Received: 07/12/2019	C	Company: SEP - Environmental (JP-W) Contact: Jill Parker-Witt Phone: (318) 673-3816			Address: 502 N. Allen Avenue Shreveport, LA 71101 Fax: (318) 673-3960				
Vanadium	0.006	mg/L	_ 0.001	1	EPA 6010B 1996	07/25/2019 21:37		JDB	
Zinc	< 0.005	mg/L	0.005	1	EPA 6010B 1996	07/25/2019 21:37		JDB	
Water (226940)									
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech	
Alkalinity, Bicarbonate	399.2	mg/L	_ 5	1	SM 2320 B-2011	08/06/2019 15:30	H1	JTD	
Alkalinity, Carbonate	< 5	mg/L	_ 5	1	SM 2320 B-2011	08/06/2019 15:30	H1	JTD	
Alkalinity, Total	399.2	mg/L	_ 5	1	SM 2320 B-2011	08/06/2019 15:30	H1	JTD	
Chloride	14	mg/L	0.219	1	EPA 300.0	08/04/2019 5:58		GB	
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	08/04/2019 5:58		GB	
Sulfate	514	mg/L	0.140	1:10	EPA 300.0	08/04/2019 6:16		GB	

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40115 **Date Received**: 07/12/2019

Company: SEP - Environmental (JP-W)

Contact: Jill Parker-Witt

Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

Address: 502 N. Allen Avenue

Quality Control Data

* Quality control units are the same as reported analytical results

			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
8/6/2019	Alkalinity, Total			50	50.84	101.7						JTD
8/6/2019	Alkalinity, Total	227498	<5	50	52.62	105.2	50	47.14	94.3		2.5	JTD
7/25/2019	Aluminum	227041.1	<0.005	2	2.0229733	101.1	2	2.2242	111.2		0.0	JDB
7/25/2019	Aluminum	226939.1	<0.005	2	2.0229733	101.1	2	2.071639	103.6		0.4	JDB
7/25/2019	Antimony	227041.1	<0.005	0.8	0.8092462	101.2	0.8	0.7671843	95.9		0.5	JDB
7/25/2019	Antimony	226939.1	<0.005	0.8	0.8092462	101.2	0.8	0.8159776	102.0		0.2	JDB
7/25/2019	Arsenic	227041.1	<0.005	0.8	0.8086795	101.1	0.8	0.7758421	97.0		0.0	JDB
7/25/2019	Arsenic	226939.1	<0.005	0.8	0.8086795	101.1	0.8	0.8086275	101.1		0.1	JDB
7/25/2019	Barium	226939.1	<0.001	0.2	0.2080557	104.0	0.2	0.209543	104.8		0.1	JDB
7/25/2019	Barium	227041.1	<0.05	0.2	0.2080557	104.0	0.2	0.1829767	91.5		0.4	JDB
7/25/2019	Beryllium	226939.1	<0.001	0.2	0.2122779	106.1	0.2	0.2142832	107.1		0.3	JDB
7/25/2019	Beryllium	227041.1	<0.001	0.2	0.2122779	106.1	0.2	0.1992329	99.6		0.4	JDB
7/25/2019	Boron	226939.1	<0.01	0.3	0.2995651	99.9	0.3	0.2984183	99.5		0.7	JDB
7/25/2019	Boron	227041.1	<0.5	0.3	0.2995651	99.9	0.3	0.2855333	95.2		0.5	JDB
7/25/2019	Cadmium	227041.1	<0.001	0.2	0.2069934	103.5	0.2	0.1836838	91.8		0.6	JDB
7/25/2019	Cadmium	226939.1	<0.001	0.2	0.2069934	103.5	0.2	0.2061243	103.1		0.5	JDB
7/25/2019	Calcium	226939.1	<0.01	1	1.0087505	100.9	1	1.0243667	102.4		0.9	JDB
7/25/2019	Chromium	226939.1	<0.001	0.4	0.4116387	102.9	0.4	0.4125529	103.1		0.4	JDB
7/25/2019	Chromium	227041.1	<0.001	0.4	0.4116387	102.9	0.4	0.3867339	96.7		0.3	JDB
7/25/2019	Cobalt	226939.1	<0.005	0.2	0.2043482	102.2	0.2	0.2054714	102.7		0.4	JDB
7/25/2019	Cobalt	227041.1	<0.005	0.2	0.2043482	102.2	0.2	0.1839347	92.0		0.4	JDB
7/25/2019	Copper	227041.1	<0.001	0.3	0.3066399	102.2	0.3	0.2963301	98.8		0.1	JDB
7/25/2019	Copper	226939.1	<0.001	0.3	0.3066399	102.2	0.3	0.3109092	103.6		0.1	JDB
7/25/2019	Iron	227041.1	<0.5	3	3.1158893	103.9	150	159.28837	106.2		8.0	JDB
7/25/2019	Iron	226939.1	<0.01	3	3.1158893	103.9	3	3.1231158	104.1		1.0	JDB
7/25/2019	Lead	226939.1	<0.005	1	1.0430644	104.3	1	1.0416574	104.2		0.4	JDB
7/25/2019	Lead	227041.1	<0.005	1	1.0430644	104.3	1	0.9320653	93.2		0.6	JDB
7/25/2019	Lithium	227041.1	<0.001	0.2	0.2119096	106.0	0.2	0.2353987	117.7		0.1	JDB
7/25/2019	Lithium	226939.1	<0.001	0.2	0.2119096	106.0	0.2	0.2163799	108.2		0.4	JDB
7/25/2019	Magnesium	226939.1	<0.01	2	2.0868175	104.3	2	2.0877567	104.4		0.2	JDB
7/25/2019	Magnesium	227041.1	<0.5	2	2.0868175	104.3	2	1.9791333	99.0		0.6	JDB
7/25/2019	Manganese	227041.1	<0.001	0.2	0.2072869	103.6	0.2	0.16684	83.4		0.7	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 40115 Address: 502 N. Allen Avenue Report ID Contact: Jill Parker-Witt **Date Received:** 07/12/2019 Shreveport, LA 71101 **Phone:** (318) 673-3816 Fax: (318) 673-3960 7/25/2019 Manganese 226939.1 < 0.001 0.2 0.2072869 103.6 0.2 0.2077536 103.9 0.2 JDB 0.2076129 JDB 7/25/2019 Molybdenum 226939.1 < 0.005 0.2 0.2067657 103.4 0.2 103.8 0.4 7/25/2019 Molybdenum 227041.1 < 0.005 0.2 0.2067657 103.4 0.2 0.197727 98.9 0.5 JDB JDB 7/25/2019 Nickel 227041.1 < 0.025 0.5 0.5192594 103.9 0.5 0.46183 92.4 0.6 103.9 104.2 JDB 7/25/2019 Nickel 226939.1 < 0.025 0.5 0.5192594 0.5 0.5209379 0.6 7/25/2019 226939.1 < 0.01 10 9.3692109 93.7 10 9.4631223 94.6 0.2 JDB Potassium 93.7 10 11.11754 111.2 0.3 JDB 7/25/2019 Potassium 227041.1 < 0.01 10 9.3692109 7/25/2019 227041.1 < 0.005 2 1.9998495 100.0 2 1.991203 99.6 0.7 JDB Selenium 2 100.0 2 99.1 0.8 JDB 7/25/2019 Selenium 226939.1 < 0.005 1.9998495 1.9816300 7/25/2019 227041.1 < 0.001 0.075 0.0712930 95.1 0.075 0.0708639 94.5 0.2 JDB Silver 7/25/2019 Silver 226939.1 < 0.001 0.075 0.0712930 95.1 0.075 0.0714285 95.2 0.1 JDB 7/25/2019 < 0.01 3 104.6 3 2.4693667 82.3 JDB Sodium 226939.1 3.1384831 0.1 7/25/2019 3 104.6 3 79.2 JDB Sodium 227041.1 < 0.5 3.1384831 2.3746333 0.0 7/25/2019 226939.1 < 0.001 0.2 103.0 0.2 0.2081687 104.1 0.4 JDB Strontium 0.2059899 0.4171124 104.3 0.0 7/25/2019 Thallium 226939.1 < 0.005 0.4 0.4152040 103.8 0.4 JDB 7/25/2019 Thallium 227041.1 < 0.005 0.4 0.4152040 103.8 0.4 0.3682771 92.1 1.2 JDB 0.6930628 7/25/2019 Tin 226939.1 < 0.005 0.7 0.6995446 99.9 0.7 99.0 0.2 JDB 7/25/2019 227041.1 < 0.005 0.6995446 99.9 0.7 0.644164 92.0 0.2 JDB Tin 0.7 7/25/2019 < 0.005 0.2109341 105.5 0.2 0.2098874 104.9 0.2 JDB Titanium 227041.1 0.2 7/25/2019 226939.1 < 0.005 0.2 0.2109341 105.5 0.2 0.2124567 106.2 0.1 JDB Titanium JDB 7/25/2019 Vanadium 226939.1 < 0.001 0.3 0.3076519 102.6 0.3 0.3104754 103.5 0.4 7/25/2019 227041.1 < 0.001 0.3 0.3076519 102.6 0.3 0.2997157 99.9 0.6 JDB Vanadium 7/25/2019 0.2 104.6 0.2 0.2081374 104.1 0.3 JDB Zinc 226939.1 < 0.005 0.2091679

0.2

0.2091679

On 7/30/2019, Jill asked for us to add Chloride, Fluoride, and Sulfate.

227041.1

< 0.005

Code Code Description

Zinc

7/25/2019

H1 Sample analysis performed past holding time

08-Aug-19

Quality Assurance Officer

104.6

0.1851907

92.6

0.2

Report Date

0.1

JDB

Shreveport Chemical Laboratory (SCL)

Chain of Custody Record

JOB 7-15-19

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960 SHPLVEPSRI CHÉMICAL LABORATORY 102 N ALLEN AVE

PROJECT REMEMEDENT LA 71101

P: RED S: OUT 1: 42 NICO — 4528 X 12785472123914 5561 1500

	-T	19 71	EU EU EU EU	7E30A77410	
Container Type			Delivery Ty	pe	
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX	US Mail	Walk in	Shuttle
Other Box	Oth	er			
	Tracking	#			
Client 13 ryan White	_		Sample Mat	trix	
Received By 5/10	DGA	PCB Oil	Water	Oil	Soil
Received Date 7/12/19		~			
Open Date	Solid	Liquid	Othe	er	
Container Temp Read 28		Project I.	D		
Thermometer Serial #F04103		Project i.			_
Correction Factor	Were s	amples rece	ived on ice?	YES	NO
Corrected Temp 29.2					
Did container arrive in good condition?	YES	NO			
Did container arrive in good condition:	TLS	140			
Mes comple de compensation no coisce do	and the same of th				
Was sample documentation received?	YES	NO	2.7		-
	ch		_		
Was documentation filled out properly?	YES	(NO) 1	Date and 1.	me force	ollection not
	28/19/19		Silked	-	
Were samples labeled properly?	YES	NO			
Were correct containers used?	MES	NO			-
		-		9. W.S	
Were the pH's of samples appropriately checked?	YES	NOW			
vivore the private of earlipies appropriately effected:	163	(NO NO)	Ł		
Total number of comple containers					
Total number of sample containers	-				
Man and and the second		_		- 1- 0	1
Was any corrective action taken?	NO		ontacted	The second section is not a second section in the second section in the second section is not a second section in the second section in the second section is not a second section in the second section in the second section is not a second section in the second section in the second section is not a second section in the second section in the second section is not a second section in the second section in the second section is not a second section in the second section in the second section is not a second section in the second section in the second section is not a section in the second section is not a section in the second section in the second section is not a section in the section in the section is not a section in the section in the section is not a section in the section in the section is not a section in the section in the section is not a section in the section in the section is not a section in the section in the section is not a section in the section in the section is not a section in the section in the section is not a section in the section in the section is not a section in the section in the section is not a section in the section in the section in the section is not a section in the section in the section in the section is not a section in the section in the section in the section is not a section in the section in the section in the s	Ker Witt
		Date & T	. 15	7-12-1	7 1520
Comments Informed J: 11 that	No	Date	and t	in W	15
entered for Collection She	Said	She	would	contai	t the
Sampher and get that inform	nation	7 5	03 7-	12-19	

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station

Report Date: 2/25/2019

BA Sluice Water A

Sample Number: 190503-001 Date Collected: 02/11/2019 13:10 Date Received: 2/13/2019

		Data					
Parameter Res	ult Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	.60 ug/L		0.5	0.1	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Arsenic, As	.96 ug/L		0.5	0.2	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Barium, Ba	83 ug/L		0.5	0.1	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.2 ug/L	J	0.5	0.1	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	.08 ug/L	J	0.2	0.05	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Chromium, Cr 6	.87 ug/L		1	0.2	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Cobalt, Co 1	.41 ug/L		0.2	0.1	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Lead, Pb 1	.46 ug/L		0.5	0.1	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	0.7 ug/L		10	2	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Selenium, Se	4.8 ug/L		1	0.2	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Thallium, Tl <	0.5 ug/L	U	2	0.5	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Boron, B 0.	78 mg/L		0.02	0.005	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	8.4 mg/L		0.1	0.02	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Iron, Fe	.14 mg/L		0.05	0.01	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Lithium, Li 0.00	87 mg/L		0.001	0.00005	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Magnesium, Mg	6.3 mg/L		0.05	0.01	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Sodium, Na	06 mg/L		0.2	0.05	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Manganese, Mn 1	5.5 ug/L		0.5	0.1	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Potassium, K	.90 mg/L		0.2	0.05	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4
Strontium, Sr 1	.24 mg/L		0.001	0.0002	GES	02/19/2019 14:42	EPA 200.8-1994, Rev. 5.4

BA Sluice Water B

Sample Number: 190503-002 Date Collected: 02/11/2019 13:10 Date Received: 2/13/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Alkalinity, as CaCO3	156 mg/L		10	3	GES	02/15/2019 13:38	SM 2320B-2011
Bromide, Br	0.3 mg/L	J	0.5	0.1	CRJ	02/20/2019 22:21	EPA 300.1-1997, Rev. 1.0
Chloride, Cl	27.2 mg/L		0.1	0.03	CRJ	02/20/2019 22:21	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.42 mg/L		0.2	0.04	CRJ	02/20/2019 22:21	EPA 300.1-1997, Rev. 1.0
Residue, Filterable, TDS	726 mg/L		40	10	KAL	02/18/2019	SM 2540C-2011
Sulfate, SO4	351 mg/L		10	2	CRJ	02/20/2019 21:12	EPA 300.1-1997, Rev. 1.0

SP-10 -20190314

Sample Number: 190984-004 Date Collected: 03/14/2019 15:45 Date Received: 3/19/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	5.10 ug/L		4	0.8	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Arsenic, As	4.45 ug/L		4	1	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Barium, Ba	6780 ug/L		4	0.8	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.8 ug/L	U	4	0.8	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.4 ug/L	U	2	0.4	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	2300 ug/L		8	2	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	25.8 ug/L		2	0.8	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Lead, Pb	54.5 ug/L		4	0.8	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	95.3 ug/L		80	20	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 1 ug/L	U	8	1	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 4 ug/L	U	20	4	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Boron, B	1.14 mg/L		0.2	0.04	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	127 mg/L		8.0	0.1	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.286 mg/L		0.008	0.0004	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Magnesium, Mg	51.5 mg/L		0.4	0.08	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Sodium, Na	1320 mg/L		2	0.4	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Potassium, K	14.0 mg/L		2	0.4	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Strontium, Sr	17.8 mg/L		0.008	0.001	CTK	04/05/2019 20:32	EPA 200.8-1994, Rev. 5.4
Alkalinity, as CaCO3	520 mg/L		10	3	GES	03/21/2019 10:40	SM 2320B-2011
Bromide, Br	8.37 mg/L		1	0.2	CRJ	04/04/2019 17:49	EPA 300.1-1997, Rev. 1.0
Chloride, Cl	1970 mg/L		2	0.6	CRJ	04/04/2019 17:24	EPA 300.1-1997, Rev. 1.0
Fluoride, F	6.90 mg/L		0.3	0.07	CRJ	04/04/2019 17:49	EPA 300.1-1997, Rev. 1.0
Residue, Filterable, TDS	4230 mg/L		80	20	KAL	03/20/2019	SM 2540C-2011
Sulfate, SO4	16.3 mg/L		2	0.3	CRJ	04/04/2019 17:49	EPA 300.1-1997, Rev. 1.0

SP-10 Dissolved -20190314

HNO3 was added to the dissolved metals sample upon arrival.

Sample Number: 190984-004A Date Collected: 03/14/2019 15:45 Date Received: 3/19/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Iron, Fe	0.08 mg/L	J	0.4	0.08	CTK	04/05/2019 20:37	EPA 200.8-1994, Rev. 5.4
Manganese, Mn	33.6 ug/L		4	0.8	CTK	04/05/2019 20:37	EPA 200.8-1994, Rev. 5.4

HNO3 was added to the dissolved metals sample upon arrival.

Location: Northeastern Station Report Date: 4/9/2019

SP-9 -20190315

Acid was added tot the metals sample upon

arrival

Sample Number: 190984-013 Date Collected: 03/15/2019 10:20 Date Received: 3/19/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	2.25	ug/L		2	0.4	CTK	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4
Arsenic, As	9.33	ug/L		2	0.6	CTK	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4
Barium, Ba	686	ug/L		2	0.4	CTK	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 2	ug/L	U	10	2	CTK	04/08/2019 16:27	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	5.12	ug/L		1	0.2	CTK	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	22.9	ug/L		4	8.0	CTK	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	16.4	ug/L		1	0.4	CTK	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4
Lead, Pb	22.8	ug/L		10	2	CTK	04/08/2019 16:27	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	< 8	ug/L	U	40	8	CTK	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4
Selenium, Se	10.7	ug/L		4	0.6	CTK	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 10	ug/L	U	50	10	CTK	04/08/2019 16:27	EPA 200.8-1994, Rev. 5.4
Boron, B	1.76	mg/L		0.1	0.02	CTK	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	2980	mg/L		0.4	0.06	CTK	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4
Lithium, Li	2.75	mg/L		0.02	0.001	CTK	04/08/2019 16:27	EPA 200.8-1994, Rev. 5.4
Magnesium, Mg	1280	mg/L		0.2	0.04	CTK	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4
Sodium, Na	17400	mg/L		1	0.2	CTK	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4
Potassium, K	53.7	mg/L		1	0.2	CTK	04/05/2019 17:02	EPA 200.8-1994, Rev. 5.4
Strontium, Sr	264	mg/L		0.08	0.01	CTK	04/08/2019 16:17	EPA 200.8-1994, Rev. 5.4
Alkalinity, as CaCO3	918	mg/L		10	3	GES	03/21/2019 10:40	SM 2320B-2011
Bromide, Br	110	mg/L		5	1	CRJ	04/05/2019 02:31	EPA 300.1-1997, Rev. 1.0
Chloride, Cl	27200	mg/L		50	20	CRJ	04/05/2019 00:01	EPA 300.1-1997, Rev. 1.0
Fluoride, F	1.88	mg/L		2	0.4	CRJ	04/05/2019 02:31	EPA 300.1-1997, Rev. 1.0
Residue, Filterable, TDS	44400	mg/L		400	100	KAL	03/20/2019	SM 2540C-2011
Sample was analyzed with s	5mL (20x dilution) but the	residue we	eight still	exceeds 0	.2000g. Sample	e will not be re-analyzed	d. Sdw032519
Sulfate, SO4	613	mg/L		10	2	CRJ	04/05/2019 02:31	EPA 300.1-1997, Rev. 1.0

Acid was added tot the metals sample upon arrival.

- U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit
- J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Michael Ohlinger, Chemist

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station

Report Date: 6/14/2019

SP-6

Sample Number: 191628-001 Date Collected: 05/07/2019 14:10 Date Received: 5/10/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	12.2	ug/L		2	0.4	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4
Arsenic, As	2.06	ug/L		2	0.6	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4
Barium, Ba	38100	ug/L		2	0.4	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.4	ug/L	U	2	0.4	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.4	ug/L	J	1	0.2	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	4	ug/L	J	4	0.8	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	8.86	ug/L		1	0.4	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4
Lead, Pb	1	ug/L	J	2	0.4	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	75.8	ug/L		40	8	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4
Selenium, Se	1	ug/L	J	4	0.6	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 2	ug/L	U	10	2	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4
Boron, B	1.59	mg/L		0.1	0.02	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	1240	mg/L		0.4	0.06	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4
Lithium, Li	1.55	mg/L		0.004	0.0002	GES	06/04/2019 15:36	EPA 200.8-1994, Rev. 5.4

SP-7

Sample Number: 191628-002 Date Collected: 05/07/2019 13:40 Date Received: 5/10/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	1.25	ug/L		0.5	0.1	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Arsenic, As	3.30	ug/L		0.5	0.2	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Barium, Ba	244000	ug/L		0.5	0.1	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.1	ug/L	U	0.5	0.1	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.05	ug/L	U	0.2	0.05	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.6	ug/L	J	1	0.2	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	1.95	ug/L		0.2	0.1	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Lead, Pb	1	ug/L	J	4	8.0	GES	06/10/2019 15:41	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	17.0	ug/L		10	2	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.2	ug/L	U	1	0.2	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Thallium, TI	< 4	ug/L	U	20	4	GES	06/10/2019 15:41	EPA 200.8-1994, Rev. 5.4
Boron, B	1.33	mg/L		0.02	0.005	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	2470	mg/L		0.1	0.02	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Lithium, Li	2.02	mg/L		0.001	0.00005	GES	06/04/2019 15:41	EPA 200.8-1994, Rev. 5.4
Chloride, Cl	30900	mg/L		50	20	CRJ	05/22/2019 15:34	EPA 300.1-1997, Rev. 1.0
Fluoride, F	1	mg/L	J	2	0.4	CRJ	05/21/2019 17:49	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	3	mg/L	J	10	2	CRJ	05/21/2019 17:49	EPA 300.1-1997, Rev. 1.0

Location: Northeastern Station Report Date: 6/14/2019

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Michael Ohlinger, Chemist

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 7/17/2019

SP-6

Sample Number: 192191-001 Date Collected: 06/21/2019 14:30 Date Received: 6/25/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	1 ug/L	J	2	0.4	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Arsenic, As	3.88 ug/L		2	0.6	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Barium, Ba	29600 ug/L		2	0.4	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.4 ug/L	U	2	0.4	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.4 ug/L	J	1	0.2	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	< 0.8 ug/L	U	4	0.8	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	4.88 ug/L		1	0.4	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.8 ug/L	J	2	0.4	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	9 ug/L	J	40	8	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Selenium, Se	1 ug/L	J	4	0.6	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 2 ug/L	U	10	2	GES	07/15/2019 15:07	EPA 200.8-1994, Rev. 5.4
Boron, B	1.15 mg/L		0.1	0.02	DAM	07/15/2019 14:07	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	351 mg/L		0.3	0.04	DAM	07/15/2019 14:07	EPA 200.7-1994, Rev. 4.4
Lithium, Li	1.89 mg/L		0.03	0.009	DAM	07/15/2019 14:07	EPA 200.7-1994, Rev. 4.4

SP-7

Sample Number: 192191-002 Date Collected: 06/21/2019 14:50 Date Received: 6/25/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.8	ug/L	J	2	0.4	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Arsenic, As	9.77	ug/L		2	0.6	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Barium, Ba	292000	ug/L		2	0.4	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.4	ug/L	U	2	0.4	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.2	ug/L	U	1	0.2	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1	ug/L	J	4	8.0	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	2.85	ug/L		1	0.4	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Lead, Pb	< 0.4	ug/L	U	2	0.4	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	< 8	ug/L	U	40	8	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.6	ug/L	U	4	0.6	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Thallium, TI	< 2	ug/L	U	10	2	GES	07/15/2019 15:12	EPA 200.8-1994, Rev. 5.4
Boron, B	1.25	mg/L		0.1	0.02	DAM	07/15/2019 14:11	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	716	mg/L		0.3	0.04	DAM	07/15/2019 14:11	EPA 200.7-1994, Rev. 4.4
Lithium, Li	3.83	mg/L		0.03	0.009	DAM	07/15/2019 14:11	EPA 200.7-1994, Rev. 4.4
Chloride, Cl	30200	mg/L		50	20	CRJ	06/26/2019 17:51	EPA 300.1-1997, Rev. 1.0
Fluoride, F	1.72	mg/L		2	0.4	CRJ	06/26/2019 18:14	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	< 2	mg/L	U	10	2	CRJ	06/26/2019 18:14	EPA 300.1-1997, Rev. 1.0

Location: Northeastern Station Report Date: 7/17/2019

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Michael Ohlinger, Chemist

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Laboratory Report Number: L19012057

Dave Conover DOLAN LABORATORY 4001 Bixby Road Groveport, OH 43125

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories. Review and compilation of your report was completed by Microbac's Ohio Valley Division (OVD). If you have any questions, comments, or require further assistance regarding this report, please contact your service representative listed below.

Laboratory Contact: Stephanie Mossburg – Team Chemist/Data Specialist (740) 373-4071 Stephanie.Mossburg@microbac.com

I certify that all test results meet all of the requirements of the accrediting authority listed below. All results for soil samples are reported on a 'dry-weight' basis unless specified otherwise. Analytical results for water and wastes are reported on a 'as received' basis unless specified otherwise. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories. The reported results are related only to the samples analyzed as received.

This report was certified on February 07 2019

Leslie Bucina - Laboratory Manager

Leslie Buina

State of Origin: OH

Accrediting Authority: N/A ID:OH00218

QAPP: Microbac OVD

Microbac Laboratories * Ohio Valley Division
158 Starlite Drive, Marietta, OH 45750 * T: (740) 373-4071 F: (740) 373-4835 * www.microbac.com

Lab Report #: L19012057

Lab Project #: 2490.001

Project Name: DOLAN LABS

Lab Contact: Stephanie Mossburg

Record of Sample Receipt and Inspection

Comments/Discrepancies

This is the record of the shipment conditions and the inspection records for the samples received and reported as a sample delivery group (SDG). All of the samples were inspected and observed to conform to our receipt policies, except as noted below.

There were no discrepancies.

Discrepancy	Resolution

Coolers	Coolers										
Cooler #	Temperature Gun	Temperature	COC#	Airbill #	Temp Required?						
00115915	I	0.0		1Z5235750354470648	X						

Inspe	ction Checklist	, and the second
#	Question	Result
1	Were shipping coolers sealed?	Yes
2	Were custody seals intact?	NA
3	Were cooler temperatures in range of 0-6?	Yes
4	Was ice present?	Yes
5	Were COC's received/information complete/signed and dated?	Yes
6	Were sample containers intact and match COC?	Yes
7	Were sample labels intact and match COC?	Yes
8	Were the correct containers and volumes received?	Yes
9	Were samples received within EPA hold times?	Yes
10	Were correct preservatives used? (water only)	NA
11	Were pH ranges acceptable? (voa's excluded)	NA
12	Were VOA samples free of headspace (less than 6mm)?	NA

Lab Project #: 2490.001
Project Name: DOLAN LABS

Lab Contact: Stephanie Mossburg

Samples Received								
Client ID	Laboratory ID	Date Collected	Date Received					
190312-001	L19012057-01	01/28/2019 10:20	01/31/2019 10:58					

Workgroup #: WG694836

Lab Report #: L19012057
Lab Project #: 2490.001
Project Name: DOLAN LABS

Lab Contact: Stephanie Mossburg

Instrument: ICP-THERMO1

Prep Date: 02/04/2019 07:21

Certificate of Analysis

 Sample #:
 L19012057-01
 PrePrep Method:
 N/A

 Client ID:
 190312-001
 Prep Method:
 3051A

 Matrix:
 Solidwaste
 Analytical Method:
 6010B

 ical Method:
 6010B
 Cal Date:
 02/05/2019 13:13

 Analyst:
 PDM
 Run Date:
 02/05/2019 17:20

Sample Tag: 01 Units: mg/kg

Analyte	CAS#	Result	Qual	RL	MDL
Lithium, Total	7439-93-2	15.0		4.95	2.47

Microbac Laboratories Inc.

METHOD BLANK SUMMARY

Login Number:L19012057

Blank File ID:T1.020519.163605

Prep Date:02/04/19 07:21

Work Group: WG694836

Blank Sample ID: WG694609-03

Instrument ID: ICP-THERMO1

Method: 6010B

Analyzed Date: 02/05/19 16:36
Analyst: PDM

This Method Blank Applies To The Following Samples:

Client ID	Lab Sample ID	Lab File ID	Time Analyzed	TAG
LCS	WG694609-04	T1.020519.163905	02/05/19 16:39	01
190312-001	L19012057-01	T1.020519.172058	02/05/19 17:20	01

Report Name: BLANK_SUMMARY
PDF File ID: 6292203
Report generated 02/06/2019 14:00

Microbac Laboratories Inc. METHOD BLANK REPORT

Analytes	MDL	RL	Concentration	Dilution	Qualifier	
Lithium, Total	2.50	5.00	2.50	1	Ū	

MDL Method Detection Limit

RL Reporting/Practical Quantitation Limit

ND Analyte Not detected at or above reporting limit

* |Analyte concentration| > RL

Report Name:BLANK PDF ID: 6292204 06-FEB-2019 14:00

Microbac Laboratories Inc. LABORATORY CONTROL SAMPLE (LCS)

 Login Number:
 L19012057
 Run Date:
 02/05/2019
 Sample ID:
 WG694609-04

 Instrument ID:
 ICP-THERMO1
 Run Time:
 16:39
 Prep Method:
 3051A

 File ID:
 T1.020519.163905
 Analyst:
 Prep Method:
 6010B

 Workgroup (AAB#):
 WG694836
 Matrix:
 Soil
 Units:
 mg/kg

 QC Key:
 STD
 Lot#:
 STD91905
 Cal ID:
 ICP-TH-05-FEB-19

Analytes	Expected	Found	% Rec	LCS Limits	Q
Lithium, Total	25.0	26.4	106	80 - 120	

LCS - Modified 03/06/2008 PDF File ID:6292205 Report generated: 02/06/2019 14:00

Microbac

Microbac Laboratories Inc. MATRIX SPIKE AND MATRIX SPIKE DUP (MS/MSD)

Analyte	Parent	MS Spiked	MS Found	MS %Rec	MSD Spiked	MSD Found	MSD %Rec	%RPD	%Rec Limits	RPD Limit	Q
Lithium	9.64	19.0	26.1	86.3	18.2	28.8	105	10.2	80 - 120	20	

^{*} FAILS %REC LIMIT

NOTE: This is an internal quality control sample.

Microbac

WG_MS_MSD_DRYWT - Modified 05/26/2011 PDF File ID: 6292206 Report generated 02/06/2019 14:00

[#] FAILS RPD LIMIT

Microbac Laboratories Inc. Ohio Valley Division Analyst List February 7, 2019

	002 - REIC Consultants, Inc. WVDEP 060
003 - Sturm Environmental	004 - MICROBAC PITTSBURGH
005 - ES LABORATORIES	006 - ALCOSAN LABORATORIES
007 - ALS LABORATORIES	
010 - MICROBAC CHICAGOLAND	AC - AMBER R. CARMICHAEL
ACG - ALEX C. GEDON ADG - APRIL D. GREENE ALS - ADRIANE L. STEED	ADC - ANTHONY D. CANTER
ADG - APRIL D. GREENE	ADW - ALICIA D. WALKER
ALS - ADRIANE L. STEED AT - Asa R. Timmons	APH - ANDREW P. HOUT
AWE - ANDREW W. ESSIG	
BLG - BRENDA L. GREENWALT	
CAS - Craig A. Smith	CEB - CHAD E. BARNES
CLC - CHRYS L. CRAWFORD	COR - Corporate IT
CLC - CHRYS L. CRAWFORD CPD - CHAD P. DAVIS DIH - DEANNA I. HESSON	CSH - CHRIS S. HILL
DIH - DEANNA I. HESSON	DLB - DAVID L. BUMGARNER
DLP - DOROTHY L. PAYNE	DSM - DAVID S. MOSSOR
	EEA - EMILY E. ALLEN
EGS - EMILY G. SHILLING	EPT - ETHAN P. TIDD
ERP - ERIN R. PORTER JDH - JUSTIN D. HESSON JDW - JAMES D. WRIGHT	JAO - Jeff A. Ogle
JDH - JUSTIN D. HESSON	JDS - JARED D. SMITH
JDW - JAMES D. WRIGHT	JKP - JACQUELINE K. PARSONS
JLR - JIMMY L. RUSH	
JST - JOSHUA S. TAYLOR	JTP - JOSHUA T. PEMBERTON
JWR - JOHN W. RICHARDS	JYH - JI Y. HU
KAK - KATHY A. KIRBY	KEB - KATIE E. BARNES
KAK - KATHY A. KIRBY KEH - Katelyn E. Hoover KHR - KIM H. RHODES	KFR - KARISSA F. REYNOLDS
KHR - KIM H. RHODES	KKB - KERRI K. BUCK
KMC - KAYLA M. CHEVALIER	
KRA - KATHY R. ALBERTSON	
KWD - Kurtis W. Decker	LLS - LARRY L. STEPHENS
LSB - LESLIE S. BUCINA	LSJ - LAURA S. JONES
LSB - LESLIE S. BUCINA MAP - MARLA A. PORTER MMB - MAREN M. BEERY	MES - MARY E. SCHILLING
PDM - PIERCE D. MORRIS	PIT - MICROBAC WARRENDALE
RLB - BOB BUCHANAN	
RNP - RICK N. PETTY	SAV - SARAH A. VANDENBERG
	SLM - STEPHANIE L. MOSSBURG
TB - TODD BOYLE	TMM - TAMMY M. MORRIS
XXX - UNAVAILABLE OR SUBCONTRACT	ZTB - ZACH T. BARNES

Microbac Laboratories Inc. List of Valid Qualifiers February 07, 2019

Qualkey: STD_ND=U

Qualifier	Description
*	Surrogate or spike compound out of range
+	Correlation coefficient for the MSA is less than 0.995
<	Result is less than the associated numerical value.
>	Result is greater than the associated numerical value.
A	See the report narrative
В	Analyte present in method blank
B1	Target analyte detected in method blank at or above the method reporting limit
B3 B4	Target analyte detected in calibration blank at or above the method reporting limit
C C	The BOD unseeded dilution water blank exceeded 0.2 mg/L Confirmed by GC/MS
CG	Confluent growth
CT1	The cooler temperature at receipt exceeded regulatory guidance.
DL	Surrogate or spike compound was diluted out
E	Estimated concentration due to sample matrix interference
EDL	Elevated sample reporting limits, presence of non-target analytes
EMPC	Estimated Maximum Possible Concentration
F, S	Estimated result below quantitation limit; method of standard additions(MSA)
FL	Free Liquid
FP1	Did not ignite.
H1	Sample analysis performed past holding time.
1	Semiquantitative result (out of instrument calibration range)
J	The analyte was positively identified, but the quantitation was below the RL
J,B	Analyte detected in both the method blank and sample above the MDL.
J,CT1	Estimated. The cooler temperature at receipt exceeded the regulatory guidance.
J,H1	The analyte was positively identified, but the quantitation was below the RL. Sample analysis performed past holding time
J,P	Estimate; columns don't agree to within 40%
J,S	Estimated concentration; analyzed by method of standard addition (MSA) Sample reporting limits elevated due to matrix interference
L L1	The associated blank spike (LCS) recovery was above the laboratory acceptance limits.
L2	The associated blank spike (LCS) recovery was above the laboratory acceptance limits. The associated blank spike (LCS) recovery was below the laboratory acceptance limits.
M	Matrix effect; the concentration is an estimate due to matrix effect.
N	Tentatively identified compound(TIC)
NA	Not applicable
ND, S	Not detected; analyzed by method of standard addition (MSA)
ND,L	Not detected, sample reporting limit (RL) elevated due to interference
NF	Not found by library search
NFL	No free liquid
NI	Non-ignitable
NR	Analyte is not required to be analyzed
NS	Not spiked
P	Concentrations >40% difference between the two GC columns
Q	One or more quality control criteria failed. See narrative.
QNS RA	Quantity of sample not sufficient to perform analysis
RE	Reanalysis confirms reported results Reanalysis confirms sample matrix interference
S	Analyzed by method of standard addition (MSA)
SMI	Sample matrix interference on surrogate
SP	Reported results are for spike compounds only
TIC	Library Search Compound
TNTC	Too numerous to count
U	Not detected at or above adjusted sample detection limit
U,CT1	Not detected. The cooler temperature at receipt exceeded regulatory guidance.
Ú,H1	Not detected; sample analysis performed past holding time.
UJ	Undetected; the MDL and RL are estimated due to quality control discrepancies.
W	Post-digestion spike for furnace AA out of control limits
X	Exceeds regulatory limit
X, S	Exceeds regulatory limit; method of standard additions (MSA)
Y	This analyte is not on the laboratory's current scope of accreditation.
Z	Cannot be resolved from isomer - see below

Chain of Custody Record

Microbac Laboratories, Inc. 158 Starlite Dr. Marrietta, OH 45750

Phone: 740-373-4071 Fax: 740-373-4835

	ion:	Jason Blanton	Matrix & Preservative	Solids/Soil Cold						me:	ime:
	Microbac Information: Customer# Additional Labor		No. of Cont.	1 So						221000132389	
	Microbac In Customer# Additional La	Sampler:	Grab/ Comp.	Grab							
ľ	one #: (614) 836-4184 tact #: (614) 836-4221		Analysis Requested	Lithium					Microbac OVD	Received: 01/31/2019 10:58	Aranda Aranaca
	Contact Phone #: Billing Contact #:	Project ID:	Collected Date/Time	1/28/2019 10:20 AM						Date/Time: 1/ 3ດ / ເຖິ 7 ເວລ ໃຊາ	Date/Time:
	Michael Ohlinger AEP Dolan Lab 4001 Bixby Rd. Groveport, OH 43125 ments:	Routine	Sample Description	Northeastern Bottom Ash						July Ohly	
	Contact Name: Micha AEP I Address: 4001 Grove Additional Requirements:	Turn Around:	Sample ID	190312-001			:		and the same of th	Relinquished By:	Received By:

Cooler ID 387

COOLER TEMP >6° C LOG

	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6
SAMPLE ID	°C	°c	°C	°c	٥C	°C
				-		
				·		
		<u> </u>				
					- January	
	 	-	 		man market provide	-
			 			_
		100				· · · · · ·
		1				 _
	25					
	100					
	 		-			.,,
	 					

pH Lot # N

pH Exceptions

SAMPLE ID	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle
<u>_</u>						
·						
 			1,0			
			$\frac{1}{2}$			
					,	
		^				
	-					
				-		
				-		
		PKESER	VATIVE			
		EXCEP	VATIVE FIONS			
		N 1	ONE			

Document Control # 1957 Last 10-07-2016 _AS NOTED

Issued to: Document Master File

Table 1: Groundwater Data Summary Northeastern Plant - Landfill

							MW-8D						
Parameter	Unit	1/25/2017	3/15/2017	4/24-4/27/2017	5/18/2017	6/15-6/16/2017	6/27-6/28/2017	7/12-7/13/2017	8/4/2017	8/17/2017	8/30/2017	9/13/2017	10/11/2017
					!		Background						Detection
Antimony	mg/L	<0.00093 U	0.00500	0.00256 J	0.00713	0.0203	0.00467 J	0.00328 J	0.00232 J	0.00794	0.00508	0.00378 J	-
Arsenic	mg/L	0.00700	<0.00105 U	0.00448 J	0.0103	0.0134	0.00178 J	0.00270 J	0.00430 J	0.00580	0.00952	0.00704	-
Barium	mg/L	1.17	1.66	2.32	7.14	7.37	5.29	3.72	1.90	2.38	3.86	4.51	-
Beryllium	mg/L	<0.00002 U	<0.00002 U	0.000120 J	0.000460 J	0.000740 J	0.0000800 J	0.000130 J	0.000170 J	0.000220 J	0.000750 J	0.000450 J	-
Boron	mg/L	1.31	1.29	1.28	1.27	1.34	1.29	1.36	1.35	1.35	1.36	1.36	1.32
Cadmium	mg/L	0.00100	0.00200	0.000930 J	0.00507	0.00826	0.00254	0.00141	0.000970 J	0.00139	0.00275	0.00182	-
Calcium	mg/L	446	417	376	529	861	416	381	416	450	586	479	445
Chloride	mg/L	12000	13200	11200	14600	10200	11200	11800	11800	11300	12300	12300	11600
Chromium	mg/L	0.00400	0.00100	<0.00023 U	0.00894	0.0154	0.000590 J	<0.00023 U	0.00102	0.00175	0.0143	0.00662	-
Cobalt	mg/L	<0.00014 U	<0.00014 U	0.00145 J	0.00592	0.0108	0.00385 J	0.00235 J	0.00265 J	0.00273 J	0.00653	0.00430 J	-
Combined Radium	pCi/L	7.48	4.66	5.29	5.58	5.37	-	-	9.67	6.39	5.98	-	-
Fluoride	mg/L	<0.083 U	<0.083 U	0.240 J	<0.083 U	<0.083 U	<0.083 U	<0.083 U	<0.083 U	<0.083 U	<0.083 U	<0.083 U	<0.083 U
Lead	mg/L	<0.00068 U	<0.00068 U	0.000900 J	0.00659	0.00560	0.00231 J	0.00214 J	0.00282 J	0.00217 J	0.00511	0.00289 J	-
Lithium	mg/L	1.44	1.10	1.07	1.30	1.22	1.14	1.19	1.08	1.12	1.19	1.23	-
Mercury	mg/L	<0.000005 U	<0.000005 U	0.0000100 J	0.0000220 J	0.0000250	0.0000120 J	0.0000150 J	0.0000120 J	<0.000005 U	0.0000290	0.0000300	-
Molybdenum	mg/L	<0.005 U	<0.005 U	0.000910 J	0.00243 J	0.00281 J	0.00120 J	0.00168 J	0.00190 J	0.00191 J	0.00340 J	0.00453 J	-
Selenium	mg/L	0.00600	<0.00099 U	0.00391 J	0.00370 J	0.00371 J	0.00134 J	0.00578	0.00603	0.00605	0.00474 J	0.00466 J	-
Total Dissolved Solids	mg/L	20800	19000	20800	22300	20100	21000	21100	22200	22400	23000	23000	21900
Sulfate	mg/L	144	72.0	58.0	112	122	116	128	113	103	112	126	300
Thallium	mg/L	<0.00086 U	<0.00086 U	<0.00086 U	<0.00086 U	<0.00086 U	<0.00086 U	<0.00086 U	<0.00086 U	<0.00086 U	<0.00086 U	<0.00086 U	-
рН	SU	7.10	-	7.34	-	7.21	7.04	7.15	6.98	6.94	6.99	6.89	6.90

Notes:

mg/L: milligrams per liter pCi/L: picocuries per liter SU: standard unit

U: Non-detect value. Parameters which were not detected are shown as less than the method detection limit (MDL).

J: Estimated value. Parameter was detected in concentrations below the reporting limit

-: Not sampled

For statistical analysis, parameters which were not detected were replaced with the reporting limit.

Table 1: Groundwater Data Summary Northeastern Plant - Bottom Ash Pond

					1 (01 011	castern r lant	Dottom 1151	Tona						
							SP	-1						
Parameter	Unit	1/25/2017	3/13/2017	4/24-4/27/2017	5/18/2017	6/15-6/16/2017	6/27-6/28/2017	7/12-7/13/2017	8/4/2017	8/17/2017	8/30/2017	9/13/2017	9/20/2017	10/11/2017
							Background							Detection
Antimony	mg/L	0.005U*	0.005U*	0.00275J	0.00685	0.00114J	0.005U	0.00125J	0.005U	-	0.00209J	0.005U	0.005U	-
Arsenic	mg/L	0.005U*	0.005U*	0.00191J	0.00548	0.005U	0.005U	0.005U	0.00211J	-	0.00134J	0.005U	0.005U	-
Barium	mg/L	0.211	0.146	0.195	0.243	0.183	0.187	0.217	0.298	-	0.218	0.21	0.168	-
Beryllium	mg/L	0.001U*	0.001U*	0.0001J	0.00026J	0.00004J	0.001U	0.00009J	0.0001J	-	0.00014J	0.00009J	0.00005J	-
Boron	mg/L	0.298	0.186	0.202	0.284	0.242	0.232	0.287	0.299	-	0.25	0.369	0.331	0.35
Cadmium	mg/L	0.001U*	0.001U*	0.001U	0.00022J	0.001U	0.001U	0.001U	0.001U	-	0.001U	0.00008J	0.00011J	-
Calcium	mg/L	111	117	108	131	115	113	122	125	-	120	119	129	152
Chloride	mg/L	60	548	83	104	50	19	70	20	-	34	62	22	136
Chromium	mg/L	0.001U*	0.001U*	0.00084J	0.00255	0.001U	0.001U	0.00062J	0.00078J	-	0.00055J	0.00031J	0.001U	-
Cobalt	mg/L	0.005U*	0.005U*	0.00242J	0.00255J	0.00077J	0.00077J	0.00134J	0.00133J	-	0.00175J	0.00107J	0.00115J	-
Combined Radium	pCi/L	3.48	3.014	4.71	4.12	2.096	14.29	4.01	3.41	-	4.15	2.584	4.53	-
Fluoride	mg/L	1U*	4	1.02	1.3	0.6437J	0.582J	0.6283J	0.542J	-	0.581J	0.4042J	1U	1.4051
Lead	mg/L	0.005U*	0.005U*	0.00094J	0.00163J	0.005U	0.005U	0.00124J	0.00094J	-	0.005U	0.005U	0.005U	-
Lithium	mg/L	0.006	0.007	0.00789	0.00853	0.00407	0.00334	0.00395	0.00577	-	0.00468	0.00548	0.00318	-
Mercury	mg/L	0.000025U*	0.000025U*	0.000025U	0.000023J	0.000009J	0.000025U	0.000025U	0.000009J	-	0.000025U	0.000025U	0.000025U	-
Molybdenum	mg/L	0.011	0.016	0.01992	0.01677	0.00702	0.00642	0.00814	0.01996	-	0.01208	0.01465	0.00532	-
Selenium	mg/L	0.005U*	0.005U*	0.00485J	0.00651	0.00254J	0.00277J	0.00521	0.01196	-	0.00351J	0.00413J	0.005U	-
Total Dissolved Solids	mg/L	514	480	496	574	478	424	504	394	-	456	536	440	676
Sulfate	mg/L	66	30	60	60	48	48	56	52	-	59	54	62	58
Thallium	mg/L	0.002U*	0.002U*	0.002U	0.002U	0.002U	0.002U	0.00089J	0.002U	-	0.002U	0.002U	0.002U	-
pН	SU	7.52	-	7.56	-	9.34	11.09	9.84	8.72	7.94	7.73	8.19	7.33	7.36

Notes:

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Parameter was not present in concentrations above method detection limit and is reported as the reporting limit

-: Not sampled

^{*:} Parameter was not present in concentrations above method detection limit and is reported as the method detection limit

J: Estimated value. Component was detected in concentrations below the reporting limit

Table 1: Groundwater Data Summary Northeastern Plant - Bottom Ash Pond

							Dottom 1191							
							SP	-2						
Parameter	Unit	1/25/2017	3/13/2017	4/24-4/27/2017	5/18/2017	6/15-6/16/2017	6/27-6/28/2017	6/12-7/13/2017	8/4/2017	8/17/2017	8/30/2017	9/13/2017	9/20/2017	10/11/2017
							Background							Detection
Antimony	mg/L	0.005U*	0.005U*	0.00209J	0.00871	0.01134	0.00515	0.00474J	0.00351J	-	0.00295J	0.00267J	0.00264J	-
Arsenic	mg/L	0.011	0.005	0.00208J	0.00902	0.0055	0.0014J	0.00251J	0.00254J	-	0.00125J	0.00183J	0.00305J	-
Barium	mg/L	1.46	1.13	0.76	3.13	1.71	1.56	1.54	1.01	-	1.12	0.992	1.15	-
Beryllium	mg/L	0.001U*	0.001U*	0.00004J	0.00026J	0.00018J	0.00006J	0.00007J	0.00009J	-	0.00012J	0.00011J	0.0002J	-
Boron	mg/L	0.274	0.251	0.152	0.336	0.303	0.292	0.339	0.28	-	0.275	0.311	0.3	0.307
Cadmium	mg/L	0.001U*	0.001U*	0.001U	0.00018J	0.001U	0.001U	0.001U	0.00007J	-	0.001U	0.001U	0.00009J	-
Calcium	mg/L	108	82.6	62	117	108	98.5	111	147	-	86.8	91.8	129	91.9
Chloride	mg/L	607	37	527	1240	888	883	863	1064	-	1001	930	856	970
Chromium	mg/L	0.003	0.001	0.00024J	0.00287	0.00204	0.00129	0.00059J	0.00107	-	0.001U	0.001U	0.00346	-
Cobalt	mg/L	0.005U*	0.005U*	0.00087J	0.00277J	0.00251J	0.00182J	0.00123J	0.00108J	-	0.0008J	0.00087J	0.00255J	-
Combined Radium	pCi/L	6.89	9.96	8.98	26.48	22.16	-	-	16.34	-	14.48	14.89	-	-
Fluoride	mg/L	3	1	2.82	3	2.96	2.8408	3.581	2.788	-	4.0998	3.196	1.726	3.5881
Lead	mg/L	0.005U*	0.005U*	0.005U	0.00202J	0.005U	0.005U	0.00141J	0.005U	-	0.005U	0.005U	0.00091J	-
Lithium	mg/L	0.098	0.073	0.05305	0.111	0.103	0.09272	0.0961	0.09164	-	0.0931	0.09207	0.09111	-
Mercury	mg/L	0.000025U*	0.000025U*	0.000025U	0.000006J	0.000005J	0.000025U	0.000025U	0.000014J	-	0.000025U	0.000006J	0.000025U	-
Molybdenum	mg/L	0.019	0.023	0.02467	0.01163	0.02957	0.02962	0.03332	0.0394	-	0.03386	0.03761	0.03939	-
Selenium	mg/L	0.005U*	0.005U*	0.00204J	0.00616	0.03783	0.02241	0.02323	0.02336	-	0.01186	0.00987	0.00987	-
Total Dissolved Solids	mg/L	1786	1340	1242	2214	1912	1872	1846	2132	-	2192	1956	1778	2076
Sulfate	mg/L	21	70	27	15	61	58	58	57	-	47	43	37	41
Thallium	mg/L	0.002U*	0.002U*	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	-	0.002U	0.002U	0.002U	-
рН	SU	6.41	_	6.53	-	8.31	7.38	7.94	7.21	7.64	7.46	7.04	6.86	7.3

Notes:

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Parameter was not present in concentrations above method detection limit and is reported as the reporting limit

-: Not sampled

^{*:} Parameter was not present in concentrations above method detection limit and is reported as the method detection limit

J: Estimated value. Component was detected in concentrations below the reporting limit

Table 1: Groundwater Data Summary Northeastern Plant - Bottom Ash Pond

					1,01,		nt - Dottom 11	511 1 0114						
								SP-4						
Parameter	Unit	1/25/2017	3/15/2017	4/25-4/27/2017	5/18/2017	6/15-6/16/2017	6/27-6/28/2017	7/12-7/13/2017	8/4/2017	8/17/2017	8/30-8/31/2017	9/13/2017	9/20/2017	10/11/2017
							Backgroun	ıd						Detection
Antimony	mg/L	0.005U*	0.005U*	0.00136J	0.00204J	0.00174J	0.005U	0.00266J	0.00387J	0.005U	0.00245J	0.005U	0.0023J	-
Arsenic	mg/L	0.005U*	0.005U*	0.00172J	0.0055	0.00459J	0.00201J	0.01065	0.04498	0.01931	0.00913	0.01634	0.01395	-
Barium	mg/L	0.398	0.477	0.578	0.762	0.633	0.576	1.34	4.59	2.31	1.49	1.91	1.93	-
Beryllium	mg/L	0.001U*	0.001U*	0.00003J	0.00056J	0.00034J	0.00024J	0.00128	0.00497	0.00212	0.00126	0.00171	0.00177	-
Boron	mg/L	0.406	0.399	0.442	0.411	0.395	0.388	0.42	0.412	0.493	0.392	0.387	0.477	0.425
Cadmium	mg/L	0.001U*	0.001U*	0.0001J	0.00057J	0.001U	0.001U	0.00137	0.00655	0.00205	0.00166	0.00247	0.0019	-
Calcium	mg/L	57.7	67	58.8	296	118	110	648	1920	793	612	810	630	206
Chloride	mg/L	401	52	459	232	475	471	489	469	460	576	450	440	431
Chromium	mg/L	0.001U*	0.001U*	0.00064J	0.01073	0.00404	0.00298	0.02248	0.08415	0.04182	0.02581	0.03083	0.03455	-
Cobalt	mg/L	0.005U*	0.005U*	0.00101J	0.00549	0.00463J	0.00529	0.01064	0.04069	0.01786	0.01206	0.01771	0.01632	-
Combined Radium	pCi/L	4	3.57	2.566	6.37	4.18	9.64	5.79	4.04	6.71	8.09	5.92	-	-
Fluoride	mg/L	3	4	3.2	2.1	3.34	3.2489	3.863	3.078	3.049	4.086	3.199	1.747	3.7702
Lead	mg/L	0.005U*	0.005U*	0.005U	0.00365J	0.00139J	0.00096J	0.00847	0.03663	0.0107	0.00711	0.00892	0.0096	-
Lithium	mg/L	0.072	0.073	0.06973	0.07998	0.07422	0.07041	0.09243	0.136	0.111	0.0962	0.104	0.101	-
Mercury	mg/L	0.000025U*	0.000025U*	0.000025U	0.000015J	0.000025U	0.000025U	0.00001J	0.000058	0.00003	0.000021J	0.000029	0.000014J	-
Molybdenum	mg/L	0.005U*	0.005U*	0.0015J	0.00102J	0.00065J	0.00046J	0.005U	0.00503	0.00423J	0.00461J	0.00621	0.00702	-
Selenium	mg/L	0.005U*	0.005U*	0.005U	0.005U	0.00167J	0.005U	0.005U	0.00499J	0.00104J	0.00186J	0.00165J	0.005U	-
Total Dissolved Solids	mg/L	1122	1128	1128	846	1164	1388	1128	1150	1132	1400	1236	1208	1200
Sulfate	mg/L	37	38	41	50	36	37	36	50	75	74	88	90	78
Thallium	mg/L	0.002U*	0.002U*	0.00121J	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	-
рН	SU	7.72	-	6.96	-	8.25	8.1	8.05	7.66	7.82	7.61	7.71	7.17	7.44

Notes:

mg/L: milligrams per liter pCi/L: picocuries per liter SU: standard unit

U: Parameter was not present in concentrations above method detection limit and is reported as the reporting limit

^{*:} Parameter was not present in concentrations above method detection limit and is reported as the method detection limit

J: Estimated value. Component was detected in concentrations below the reporting limit

^{-:} Not sampled

Table 1: Groundwater Data Summary Northeastern Plant - Bottom Ash Pond

					- 10- 000		Dottom 11911 1							
							SP-5							
Parameter	Unit	1/25/2017	3/15/2017	4/25-4/27/2017	5/18/2017	6/15-6/16/2017	6/27-6/28/2017	/12-7/13/201	8/4/2017	8/17/2017	8/30/2017	9/13/2017	9/20/2017	10/11/2017
							Background							Detection
Antimony	mg/L	0.005U*	0.005U*	0.005U	0.005U	0.00202J	0.005U	0.005U	0.005U	0.00163J	0.005U	0.005U	0.005U	-
Arsenic	mg/L	0.012	0.013	0.01703	0.02942	0.0137	0.01265	0.01724	0.0216	0.01911	0.01947	0.02036	0.02077	-
Barium	mg/L	1.65	1.59	1.61	2.27	2.05	1.79	1.88	1.8	1.89	1.93	1.93	1.88	-
Beryllium	mg/L	0.001U*	0.001U*	0.00003J	0.00023J	0.00011J	0.00002J	0.00006J	0.00009J	0.00004J	0.00011J	0.0001J	0.00005J	-
Boron	mg/L	0.233	0.236	0.245	0.319	0.231	0.224	0.261	0.256	0.293	0.252	0.232	0.257	0.61
Cadmium	mg/L	0.001U*	0.001U*	0.001U	0.001U	0.001U	0.001U	0.001U	0.001U	0.001U	0.001U	0.00016J	0.001U	-
Calcium	mg/L	52.4	61.7	53.8	79.1	57.1	53	53.8	61.3	52	57.3	55.6	53.7	71
Chloride	mg/L	500	62	674	1834	607	636	640	638	661	652	644	729	630
Chromium	mg/L	0.001U*	0.001	0.00033J	0.00341	0.00142	0.0003J	0.0005J	0.00169	0.001U	0.00116	0.00062J	0.001U	-
Cobalt	mg/L	0.005U*	0.005U*	0.00088J	0.00232J	0.00144J	0.00101J	0.0011J	0.00132J	0.001J	0.0012J	0.001J	0.00097J	-
Combined Radium	pCi/L	10.09	9.65	10.27	15.3	10.27	15.84	12.21	11.6	10.95	12.47	10.62	10.5	-
Fluoride	mg/L	3	4	3.06	4	3	2.835	3.156	2.889	3.258	3.5698	2.797	1.535	3.7844
Lead	mg/L	0.005U*	0.005U*	0.005U	0.00236J	0.005U	0.00076J	0.0009J	0.00144J	0.005U	0.005U	0.005U	0.00106J	-
Lithium	mg/L	0.114	0.112	0.112	0.163	0.109	0.1	0.111	0.119	0.106	0.112	0.11	0.111	-
Mercury	mg/L	0.000025U*	0.000025U*	0.000016J	0.000025U	0.000016J	0.000025U	0.000025U	0.000015J	0.000025U	0.000009J	0.000025U	0.000025U	-
Molybdenum	mg/L	0.005U*	0.005U*	0.00116J	0.005U	0.005U	0.005U	0.005U	0.00127J	0.005U	0.005U	0.005U	0.005U	-
Selenium	mg/L	0.005U*	0.005U*	0.005U	0.005U	0.005U	0.005U	0.00114J	0.005U	0.005U	0.005U	0.005U	0.005U	-
Total Dissolved Solids	mg/L	1354	1420	1436	3008	1368	1156	1388	1372	1378	1424	1452	1312	1368
Sulfate	mg/L	10	10	9	8	7	8	7	8	6	7	6	6	5
Thallium	mg/L	0.002U*	0.002U*	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	-
pН	SU	7.99	-	7.54	-	8.28	8.22	8.18	7.86	8.19	7.69	8.43	7.44	7.52

Notes:

mg/L: milligrams per liter

pCi/L: picocuries per liter

SU: standard unit

U: Parameter was not present in concentrations above method detection limit and is reported as the reporting limit

-: Not sampled

^{*:} Parameter was not present in concentrations above method detection limit and is reported as the method detection limit

J: Estimated value. Component was detected in concentrations below the reporting limit

Table 1: Groundwater Data Summary Northeastern Plant - Bottom Ash Pond

								110	tireaster	i i i i i i i i i i i i i i i i i i i	ottom Asii i (, iiu									
						SP-10										SP-11					
Parameter	Unit	7/12-7/13/2017	8/4/2017	8/17/2017	8/30/2017	9/13/2017	9/20/2017	9/27/2017	10/4/2017	10/11/2017	7/12-7/13/2017	8/4/2017	8/17/2017	8/30/2017	9/13/2017	9/20/2017	9/27/2017	10/4/2017	10/11/2017	10/31/2017	11/8/2017
					Backgro	und				Detection				Backgro	und					Detection	
Antimony	mg/L	0.00462J	0.00251J	0.005U	0.005U	0.005U	0.00116J	0.00157J	0.00127J	-	0.00943	0.0047J	0.005U	0.00429J	0.0024J	0.00773	0.00689	0.00444J	-	-	-
Arsenic	mg/L	0.005U	0.00243J	0.005U	0.00566	0.00942	0.01392	0.01531	0.0043J	-	0.00399J	0.00182J	0.005U	0.0012J	0.00366J	0.01214	0.0075	0.00847	-	-	-
Barium	mg/L	1.9	0.33	0.282	0.279	0.266	0.399	0.928	0.664	-	0.194	0.09874	0.08342	0.09307	0.108	0.24	0.269	0.347	-	-	-
Beryllium	mg/L	0.001U	0.00003J	0.001U	0.00006J	0.00007J	0.00003J	0.00004J	0.00003J	-	0.00022J	0.00007J	0.001U	0.00007J	0.00008J	0.00039J	0.00039J	0.00035J	-	-	-
Boron	mg/L	0.965	1.08	1.09	1.09	1.1	1.08	1.07	1.1	1.03	0.839	0.543	0.453	0.428	0.447	0.469	0.447	0.531	0.446	-	-
Cadmium	mg/L	0.001U	0.001U	0.001U	0.001U	0.001U	0.001U	0.001U	0.001U	-	0.0014	0.00044J	0.001U	0.00034J	0.00009J	0.0027	0.00301	0.00249	-	-	-
Calcium	mg/L	53	83.1	91.4	81.8	76.9	64.6	65.7	52.3	58.4	742	272	171	161	190	1220	1170	1110	479	-	-
Chloride	mg/L	1844	1616	1700	1932	1592	1946	1784	1553	1934	568	567	789	683	628	690	759	744	824	-	-
Chromium	mg/L	0.11	0.00244	0.001U	0.00109	0.00046J	0.00072J	0.00207	0.00036J	-	0.01852	0.00525	0.001U	0.00276	0.00257	0.0313	0.03271	0.02949	-	-	-
Cobalt	mg/L	0.00596	0.00474J	0.005U	0.00427J	0.00241J	0.00219J	0.00371J	0.00402J	-	0.00976	0.00652	0.005U	0.00385J	0.00321J	0.01462	0.01437	0.01199	-	-	-
Combined Radium	pCi/L	17.23	1.153	0.995	0.763	0.774	1.062	1.723	3.226	-	-	25.367	0.947	0.438	2.685	4.2	-	2.817	-	0.857	1.423
Fluoride	mg/L	6.502	1U	1U	10.2663	7.028	1U	5	5.11	7.3938	2.386	3.355	4.52	4.1325	3.359	2.016	3	2.9	4.4661	-	-
Lead	mg/L	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.005U	0.00087J	-	0.00516	0.00201J	0.005U	0.00123J	0.005U	0.00816	0.00858	0.00705	-	-	-
Lithium	mg/L	0.278	0.284	0.317	0.306	0.315	0.292	0.329	0.279	-	0.04698	0.0877	0.08931	0.08933	0.105	0.13	0.129	0.146	-	-	-
Mercury	mg/L	0.000006J	0.000029	0.000027	0.000019J	0.000013J	0.000016J	0.000013J	0.000015J	-	0.000009J	0.000023J	0.000007J	0.000008J	0.000009J	0.000027	0.000048	0.000047	-	-	-
Molybdenum	mg/L	0.934	0.129	0.04543	0.03035	0.01628	0.01358	0.03593	0.02919	-	0.06127	0.06641	0.0515	0.04433	0.03616	0.0469	0.04861	0.04214	-	-	-
Selenium	mg/L	0.00567	0.00882	0.005U	0.00256J	0.00311J	0.00238J	0.00384J	0.005U	-	0.00595	0.00626	0.005U	0.00249J	0.00155J	0.00546	0.00747	0.00327J	-	-	-
Total Dissolved Solids	mg/L	3416	5142	5678	5264	5168	4424	4516	3660	4060	2880	3076	3308	2732	2420	2336	2428	2288	2322	-	-
Sulfate	mg/L	294	761	915	834	738	544	419	286	188	798	870	741	541	515	329	332	305	223	-	-
Thallium	mg/L	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	-	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	0.002U	-	-	-
рН	SU	6.74	7.6	7.82	7.58	8.34	7.07	7.77	7.37	6.99	7.35	7.89	6.94	7.61	7.21	7.24	7.18	7.52	7.03	-	-

Notes:

mg/L: milligrams per liter pCi/L: picocuries per liter

SU: standard unit

-: Not sampled

U: Parameter was not present in concentrations above method detection limit and is reported as the reporting limit

^{*:} Parameter was not present in concentrations above method detection limit and is reported as the method detection limit

J: Estimated value. Component was detected in concentrations below the reporting limit

TABLE 2NORTHEASTERN STATION 3 & 4

NON-HAZARDOUS INDUSTRIAL WASTE (NHIW) LANDFILL MONITORING WELL/PIEZOMETER CONSTRUCTION DETAILS

Well Number	Latitude	Longitude	Ground Surface Elevation	Top of Casing Elevation	Borehole Depth ft.bls	Date Installed	Screen Material	Well Diameter inches	Top of Screen Depth ft. bls	Top of Screen Elevation ft. msl	Bottom of Screen Depth ft. bls	Bottom of Screen Elevation ft. msl
MW-3D	36° 25' 00.14299"	95° 41' 44.01366"	627.66	630.65	60	2/21/2008	PVC	2	49.7	580.95	60	567.66
MW-6D	36° 24' 54.41869"	95° 41' 51.01306"	633.72	636.66	55	10/23/2008	PVC	2	44.92	591.74	55.22	578.50
MW-7D	36° 25' 06.30327"	95° 41' 47.03123"	623.74	626.46	55	10/22/2008	PVC	2	45.25	581.21	55.55	568.19
MW-8D	36° 25' 04.35228"	95° 42' 10.11303"	626.04	629.32	60	10/21/2008	PVC	2	49.95	579.37	60.25	565.79
MW-9D	36° 24' 50.88110"	95° 41' 54.22530"	633.90	637.04	60	4/6/2010	PVC	2	49.7	587.34	60	573.90
MW-15	36° 24' 48.0816"	95° 41' 56.4658"	634.34	637.71	71	2/23/2016	PVC	2	61.05	576.66	71.45	562.89

TABLE 2

NORTHEASTERN STATION 3 & 4 BOTTOM ASH POND

MONITORING WELL/PIEZOMETER CONSTRUCTION DETAILS

Well Number	Latitude	Longitude	Ground Surface Elevation	Top of Casing Elevation	Borehole Depth ft.bls	Date Installed	Screen Material	Well Diameter inches	Top of Screen Depth ft. bls	Top of Screen Elevation ft. msl	Bottom of Screen Depth ft. bls	Bottom of Screen Elevation ft. msl
SP-1	36° 25' 03.77705"	95° 42' 14.44814"	618.26	621.26	35	4/5/2011	PVC	2	24.7	596.56	35	583.26
SP-2	36° 25' 06.44515"	95° 42' 26.73557"	614.49	617.49	35	4/5/2011	PVC	2	24.9	592.59	35.2	579.29
SP-3	36° 25' 23.91757"	95° 42' 27.02763"	618.02	621.02	35	4/5/2011	PVC	2	24.6	596.42	34.9	583.12
SP-4	36° 25' 23.73526"	95° 42' 06.38375"	636.16	639.16	35	4/6/2011	PVC	2	25	614.16	35.3	600.86
SP-5	36° 25' 43.92075"	95° 42' 14.32901"	628.17	631.17	35	4/6/2011	PVC	2	24.9	606.27	35.2	592.97
SP-5R*	36° 25' 43.92075"	95° 42' 14.32901"	628.17	631.17	75	4/11/2012	PVC	2	34.7	596.47	75	553.17
SP-6	36° 25' 08.5783"	95° 42' 05.0916"	638.08	641.35	71	3/3/2016	PVC	2	60.41	580.94	70.81	567.27
SP-7	36° 25' 05.8073"	95° 42' 17.9217"	613.39	616.84	81	3/7/2016	PVC	2	70.35	546.49	80.75	532.64
SP-8	36° 25' 11.8762"	95° 42' 32.2316"	611.51	614.89	71	3/8/2016	PVC	2	60.45	554.44	70.85	540.66
SP-9	36° 25' 19.3270"	95° 42' 34.0978"	614.00	617.24	75	3/10/2016	PVC	2	65.22	552.02	75.62	538.38

^{*} SP-5R replaced SP-5

SCOTT A. THOMPSON Executive Director

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

October 29, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re:

Alternate Source Demonstration for Lithium -Bottom Ash Pond

Public Service Company of Oklahoma

Northeastern Power Station

Rogers County

Solid Waste Permit No. none

Dear Ms. Parker-Witt:

On July 8, 2019, DEQ denied the alternate source demonstration (ASD) for lithium in the Bottom Ash Pond (BAP) that was submitted by AEP/Public Service Company of Oklahoma Northeastern Power Station (NPS) to demonstrate that a source other than the coal combustion residuals (CCR) unit caused the lithium statistically significant level (SSL) detected in monitoring well SP-10. DEQ stated in the letter that if additional information was attained to support a revised ASD, DEQ would re-evaluate the revised ASD.

On September 13, 2019, NPS submitted a revised ASD that addressed concerns DEQ had with the ASD which proposed naturally occurring concentrations of lithium in groundwater are the source of the SSL in SP-10.

In the revised ASD, NPS questioned DEQ's statement in the July 8, 2019 letter that the lithium concentration in monitoring well SP-5R was "not elevated". To clarify, DEQ's meaning of elevated level in the July 8, 2019 letter meant the concentration of lithium detected in SP-5R was not elevated when compared to lithium levels in the lower zone as measured in SP-6, SP-7 and SP-10. Similarly lithium in SP-8, which is screened in the lower zone, was not elevated leading DEQ to question the conceptual model which proposes the clay mineral in lower zone shales is the source of elevated lithium.

NPS sampled and analyzed the sediment, leachate and pore water in the BAP to compare to the data collected from SP-10. The results showed lithium in the sediment leachate and pore water measured 1 μ g/L and 3 μ g/L, respectively, compared to 286 μ g/L measured in SP-10 on March 14, 2019. The lithium concentration of the sluice water (5.87 μ g/L) entering the BAP was also much lower than that in SP-10. DEQ agrees that the low concentration of lithium in the BAP as well as the different water chemistry as depicted in the Piper diagram furthers the proposal that the BAP is not a direct source of the lithium SSL in SP-10.

Ms. Jill Parker-Witt, P.E. American Electric Power October 29, 2019 Page 2 of 2

DEQ reviewed the additional information concerning SP-5R and SP-8 provided in the revised ASD. DEQ accepts that the elevated lithium concentration detected in SP-10 may be produced from the shale lenses within the screened interval of SP-10.

The new data presented in both ASDs depicts a new conceptual model that still does not completely fit with all of the groundwater sampling data. Please contact DEQ to arrange a time to discuss modifying the groundwater monitoring network.

DEQ accepts the revised ASD as submitted. The BAP may return to assessment monitoring in accordance with OAC 252:517-9-6(g)(3)(B). NPS must include the revised ASD in the annual groundwater monitoring and corrective action report required by OAC 252:517-9-1(e).

If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely,

Hillary Young, P.

Chief Engineer

Land Protection Division

HY/ckh

APPENDIX IV

Notices of groundwater monitoring programs are included in this appendix.

Northeastern Power Station

Notice of Initiating an Assessment of Corrective Measures

CCR Unit - Bottom Ash Pond

As required by OAC 252:517-9-6(g)(5), this is a notification that an Assessment of Corrective Measures was initiated on July 8, 2019 for Northeastern Power Station's Bottom Ash Pond due to the statistically significant level detected above the established groundwater protection standard for lithium. This notification is being placed in the plant's operating record, as required by OAC 252:517-19-1(h)(9).

BOUNDLESS ENERGY"

Rev 1 - Rescinded by ODEQ on November 4, 2019

Northeastern Power Station

Notice of Initiating an Assessment of Corrective Measures

CCR Unit – Bottom Ash Pond

As required by OAC 252:517-9-6(g)(5), this is a notification that an Assessment of Corrective Measures was initiated on July 8, 2019 for Northeastern Power Station's Bottom Ash Pond due to the statistically significant level detected above the established groundwater protection standard for lithium. This notification is being placed in the plant's operating record, as required by OAC 252:517-19-1(h)(9).

BOUNDLESS ENERGY"

SCOTT A THOMPSON **Executive Director**

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

November 4, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re:

Assessment of Corrective Measures Plan and Schedule for Analyzing an Environmental

Release for Lithium -Bottom Ash Pond Public Service Company of Oklahoma

Northeastern Power Station

Rogers County

Solid Waste Permit No. none

Dear Ms. Parker-Witt:

On July 8, 2019, the Oklahoma Department of Environmental Quality (DEQ) denied the May 1, 2019 alternate source demonstration (ASD) for lithium in the Bottom Ash Pond (BAP). Accordingly, AEP/Public Service Company of Oklahoma Northeastern Power Station (NPS) submitted, by email on October 5, 2019, the Assessment of Corrective Measures Plan and Schedule for Analyzing an Environmental Release (ACM)" as required by Oklahoma Administrative Code (OAC) 252:517-9-6(g)(4).

On September 13, 2019, NPS submitted a revised ASD that addressed concerns DEQ had with the May 1, 2019 ASD. In a letter dated October 29, 2019, DEQ approved the revised ASD.

With the approval of the revised ASD, OAC 252:517-9-6(g)(3)(B) allows NPS to continue monitoring in accordance with the assessment monitoring program. NPS is no longer required to initiate the assessment of corrective measures requirements; therefore, the ACM is withdrawn.

If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely,

Hillary Young, P.

Chief Engineer

Land Protection Division

HY/ckh

APPENDIX V

Field Sheets and Laboratory Report for this reporting period

SAMPLED BY: KMcDonald . DATE: 5/30/18

Well Identification Number	SP-1	SP-2	SP-3	SP-4	SP-5	SP-6
Sample Identification	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Elevation of Top of Casing (ft. NGVD)	621.26	617.49	621.02	639.16	631.17	641,35
Depth to Water (ft)	16.69	22.15	18.38	15,29	5,80	26,98
Water Level Elevation (ft. NGVD)					F	
Measured Depth Total Depth of Well (ft.)	37.99	38.19	37.90	38.30	78.30 -78.30	73.93
Height of Water Column (ft.)				g.		
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)						
Water Removed From Well (gallons)	-			~	downser	<u> </u>
Method of Removal	-	-	~			<u></u>
Was Well Purged Dry?					_	
pH (standard units)			-			
Temperature (°C)		/				
Conductivity (µmhos/cc)	_					
Turbidity (NTU)	-	1	_			
Appearance		~	_	_		_
Odor		FilmShipshouten	_	_	~	
Purge Time - Begin		-	_		~	
Purge Time - End			_	_	_	
Sample Time	<u> </u>	_	~		_	
Sample Date		_	<i></i>	_	6	

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KMcDonald . DATE: 5/30/18

Well Identification Number	SP-7	SP-8	SP-9	SP-10	SP-11	
Sample Identification	Gauge	Gauge	Gauge	Gauge	Gauge	
Elevation of Top of Casing (ft. NGVD)	616,84	614,89	617,24	617,52	615,17	
Depth to Water (ft)	24.00	5,74	72,58	15.13	12,64	
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	84.02	74.06	78.82	54.10	34,51	
Height of Water Column (ft.)						
Well Size (I.D.) (inches)	2	2	2	2	2	
Volume of Water in Well (gallons)						
Water Removed From Well (gallons)	~	(description	<u> </u>	·	·	
Method of Removal	<u> </u>			·		
Was Well Purged Dry?	_	_				
pH (standard units)				Parameter		
Temperature (°C)	_	-	-		7	
Conductivity (µmhos/cc)						
Turbidity (NTU)	_		_	~		
Appearance			_		-	
Odor	_	_	_	~	_	
Purge Time - Begin	_	_				
Purge Time - End				<u>`</u>		
Sample Time	-		_	-		
Sample Date	~)	7		

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY:____

Kmm Milonail . DATE: 07/30-31/18

Well Identification Number	SP-1	SP-2	SP-3	SP-4	", SP-5"	SP-6
Sample Identification	E COLE BIII & DV	COUR MARE IN	NA	CCR THE&IV	OCTE LEGISTA	NA
Elevation of Top of Casing (ft.) NGVD)	621.26	617.49	621.02	639.16	631.17	641.35
Depth to Water (ft)	18.04	27,02	,	20,41	8,53	
Water Level Elevation (ff. NGVD)						11000
Measured Depth Total Depth of Well (ft.)	37.99	38.19	37.90	38.30	78.00	73.93
Height of Water Column (ft.)	19.95	11.17		17,89	69,47	
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons):	3,25	1,82	***************************************	2,92	11,32	
Water Removed From Well (gallons)	10.0	5,5	,	8,25	22.5	Section Control line
Method of Removal	Pump	Pump		Pump	Pump	-
Was Well Purged Dry?	No	Yes		Yes	Yrs	
pH (standard units)	7.04	7.85	**************************************	7,55	8,02	
Température (%C)	20186	21,23		22,07	19,10	-
Conductivity (µmhos/cc)	711	1770	***************************************	1960	2440	- The state of the
Turbidity (NTU)	28,5	20,2		23,2	18,5	-
Appearance	CHAR	Coppan	d commence of the same of the	CIENA	CLIAN	
Odor a	Nort	NUN-		NUNG	pur (-	-
Purge Time - Begin	-	7 minus		5		-
Purge Time - End		Передоского.	_		L	
Sample Time	1516	1442	_	1320	1605	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Sample Date	07/30/18 BAP DUP	07/30/18		07/30/18	07/30/18	Total Carried

<u>U'''</u>	
For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KINNY MIDGARI J. DATE: 07/30-31/18

Well Identification Number	'SP-7	SP-8	SP-9	/SP-10	** (SP-11)	
Sample Identification	NA	NA	NA	CON MOASIN	COUR TOUGHT	
Elevation of Top of Casing (ft.) NGVD)	616.84	614.89	617.24	617.52	615.17	
Depth to Water (ff)				8,13	16,41	=
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	84.02	74.06	78.82	54.10	34.51	
Height of Water Column (ft.)				45,97	18:10	
Well-Size (LD.) (inches)	2	2	2	2	2	
Volume of Water in Well (gallons)				7,49	2,95	
Water Removed From Well (gallons)			-	23.0	6,75	
Method of Removal	-	1	119	Pump	Pump	
Was Well Burged Dry?		4	Parameter.	N_0	Yrs	
pH (standard units)			*	7.62	7,74	
Temperature (°C)				21,08	20,53	
Conductivity (µmhos/ce)			Parameter	5610	2470	
Tuebidity (NTU)				120.00	128	
Appearance				BLACKUS H TIMT	SUBHTLY TURBIA	
Odor	-		-	Superin	Nunt	
Purge Time - Begin	-	-			4	
Purge Time - End		-			_	
Sample Time	<u>_</u>		,	1350	1417	
Sample Date	<u> </u>			07/30/18	07/30/18	

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: Kinny McDorard . DATE: 02/27/19

Well Identification Number	SP-1	SP-2	SP-4	SP-5	SP-10	SP-11
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Samples	Appendix III & IV					
Depth to Water (ft)	16.58	20,86	13.09	4,81	20,12	11.15
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	37.99	38.19	38.30	78.00	54.10	34.51
Height of Water Column (ft.)	21.41	17.33	25,2/	73,19	33.98	23,36
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	3,49	2,82	4,11	11.93	5.54	3,81
Water Removed From Well (gallons)	1300	7.0	9,5	26,25	20,0	9.0
Method of Removal	Pump	Pump	Pump	Pump	Pimp	PMP
Was Well Purged Dry?	No	Yts	YES	YES	No	YES
pH (standard units)	7.34	7.62	7,37	7,70	7,79	7.74
Temperature (°C)	19,25	20,37	18.82	19.41	20.04	19.81
Conductivity (µmhos/cc)	812	1564	1840	3200	3722	1809
Turbidity (NTU)	20,2	30,6	21.4	8.6	74.6	128
Appearance	Clean	CHAN	CUAN	Cuan	Climan	SLIGHTLY TYPBIP
Odor	Nont	NONE	None	Nort	SUPPHUR F	MATERSIO M
Ohio Containers	250 mL Unpres 250mL HNO3 3 x 1L HNO3					
Shreveport Containers	250 mL Unpres 250mL HNO3					
Sample Time	1550	1515	1620	1645	1420	1445
Sample Date	02/27/19	02/27/19	02/27/19	02/27/19	02/27/19	1445

For 2" well multiply by 0.163
For 4" well multiply by 0.653

DUPLICATE.

SAMPLED BY: Ktory Mc Deracd . DATE: 02/77/19

Well Identification Number	SP-6	SP-7		
Activities	Gauge	Gauge		
Samples	Appendix III & IV	Appendix III & IV		
Depth to Water (ft)	44,80	23.11		
Water Level Elevation (ft. NGVD)				
Measured Depth Total Depth of Well (ft.)	73.93	84.02		
Height of Water Column (ft.)	29,13	60.91		
Well Size (I.D.) (inches)	2	2		
Volume of Water in Well (gallons)	4.75	9.93		
Water Removed From Well (gallons)	4,25	8.5		
Method of Removal	Pump	Pump		
Was Well Purged Dry?	Yts	YFS		
pH (standard units)				
Temperature (°C)				
Conductivity (µmhos/cc)	J	_		
Turbidity (NTU)	~	_		
Appearance		-		
Odor	-	_		
Ohio Containers	250 mL Unpres 250mL HNO3 3 x 1L HNO3	250 mL Unpres 250mL HNO3 3 x 1L HNO3		
Shreveport Containers	250 mL Unpres 250mL HNO3	250 mL Unpres 250mL HNO3		
Sample Time	Name and American			
Sample Date	~	_		

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: King Mi Donald . DATE: 06/20/19

Well Identification Number	SP-1	SP-2	SP-4	SP-5	SP-10	SP-11
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Samples	Appendix III & IV					
Depth to Water (ft)	16.88	23,31	22,53	4.82	12,32	4.72
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	37.99	38.19	38.30	78.00	54.10	34.51
Height of Water Column (ft.)	21,11	14.88	15.77	73.18	41.78	29.79
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	3,44	2,43	2,57	11.93	6,81	4,86
Water Removed From Well (gallons)	12,0	6,25	4,0	24,0	18.75	8.25
Method of Removal	Pump	Pump	Pump	Pump	Pump	Pimp
Was Well Purged Dry?	No	Yts	Yts	Yes	Yts	YES
pH (standard units)	7.09	6,79	7,12	7,33	7.78	6,84
Temperature (°C)	20,0	19.6	20,5	21,2	19.8	21.7
Conductivity (µmhos/cc)	690	3040	1710	6620	7270	1420
Turbidity (NTU)	28.7	40,2	57.1	20,7	701	113
Appearance	Cifan	CHAN	5216HTLY TURBIO	Culan	SUBITILY TURDID	SUIGHTU9 TUNDID
Odor	Non 6	NON (-	None	NONE	Nont	None
Ohio Containers	250 mL Unpres 250mL HNO3 3 x 1L HNO3					
Shreveport Containers	250 mL Unpres 250mL HNO3					
Sample Time	1620	1955	1650	1715	1515	1535
Sample Date	06/20/19	06/20/19	06/20/19	06/20/19	06/20/19	06/20/19

DUPLICATE

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KANNY MC DENALD . DATE: 06/20-21/19

Well Identification Number	SP-6	SP-7			
Activities	Gauge	Gauge			
Samples	Appendix III & IV	Appendix III & IV			
Depth to Water (ft)	59,07	32,84			
Water Level Elevation (ft. NGVD)					
Measured Depth Total Depth of Well (ft.)	73.93	84.02			
Height of Water Column (ft.)	14.86	51.18	e	¥	
Well Size (I.D.) (inches)	2	2			
Volume of Water in Well (gallons)	2,42	8,34			
Water Removed From Well (gallons)	2,0	7,0			
Method of Removal	Pump	Pump			
Was Well Purged Dry?	YES	4+5			
pH (standard units)	6.78	6.83			
Temperature (°C)	20,7	22,8			
Conductivity (µmhos/cc)	19030	2/220			
Turbidity (NTU)	78,2	50,6			
Appearance	Clian	Clan			
Odor	NON-	nont			
Ohio Containers	250 mL Unpres 250mL HNO3 3 x 1L HNO3	250 mL Unpres 250mL HNO3 3 x 1L HNO3			
Shreveport Containers	250 mL Unpres 250mL HNO3	250 mL Unpres 250mL HNO3			
Sample Time	1430	1450			
Sample Date	06/21/19	06/21/19			

METALS UNLY METALSTWA

For 2" well multiply by	0.163
For 4" well multiply by	0.653

SAMPLED BY: KINNY MIDERALD /MATT HAMILTON DATE: 08/26/19

Well Identification Number	SP-1	SP-2	SP-4	SP-5	SP-10	SP-11
Activities	Gauge	Gauge	Gauge	Gauge	Gauge	Gauge
Samples	Appendix III & IV					
Depth to Water (ft)	17.51	28,43	25,00	6.39	3,85	14.60
Water Level Elevation (ft. NGVD)						
Measured Depth Total Depth of Well (ft.)	37.99	38.19	38.30	78.00	54.10	34.51
Height of Water Column (ft.)	20,48	9.76	13,30	71.61	50,25	19,91
Well Size (I.D.) (inches)	2	2	2	2	2	2
Volume of Water in Well (gallons)	3,34	1,59	2.17	11.67	8.19	3,25
Water Removed From Well (gallons)	12.0	4,0	6,0	28.25	18.25	5.0
Method of Removal	Pump	Pump	Pomp	Pump	Pump	Pump
Was Well Purged Dry?	NO	Yts	Yts	Yts	Yes	YES
pH (standard units)	9,01	8,54	8.78	8,80	8187	8,86
Temperature (°C)	21.91	23,35	22,81	23,24	23,02	22,69
Conductivity (µmhos/cc)	899	4390	2200	2930	6620	1560
Turbidity (NTU)	78:1	196	199	935	24.4	128
Appearance	Cum	crem	SUCHTEY	CLEAN	CLEM DEACHTINY	SLIGHTLY
Odor	Nont	Work	Nort	Nont	NONT	None
Ohio Containers	250mL HNO3 3 x 1L HNO3					
Shreveport Containers	1L Unpres 250mL HNO3	1L Unpres 250mL HNO3	1L Unpres 250mL HNO3	1L Unpres 250mL HNO3	1L Unpres 250mL HNO3	1L Unpres 250mL HNO3
Sample Time	1650	1640	1705	1720	1622	1635
Sample Date	08/26/19	08/20/19	08/26/19	08/26/19		

For 2" well multiply by	0.163
For 4" well multiply by	0.653

BAP BUPLICATE

SAMPLED BY: Konny Mi Donald /MHTT HAMILTON DATE: 08/26/19

Well Identification Number	SP-3			
Activities	Gauge			
Samples	NA			
Depth to Water (ft)	16.28			
Water Level Elevation (ft. NGVD)				
Measured Depth Total Depth of Well (ft.)	37.90			
Height of Water Column (ft.)	21.62			
Well Size (I.D.) (inches)	2			
Volume of Water in Well (gallons)	7,52			
Water Removed From Well (gallons)				
Method of Removal	_			
Was Well Purged Dry?)			
pH (standard units))			
Temperature (°C)				
Conductivity (µmhos/cc)	-			
Turbidity (NTU)	_			
Appearance				
Odor		ā		
Ohio Containers	_			
Shreveport Containers	~			
Sample Time	-			
Sample Date	_			

For 2" well multiply by	0.163
For 4" well multiply by	0.653

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37761 Address: 502 N. Allen Avenue **Date Received:** 06/01/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 216828 Bv: KM **Collected Date:** 05/30/2018 Cust Sample ID: SP-1 Matrix: Water **Location:** Northeastern Power Plant

Sample Desc.: Coal Combustion Residuals (CCr)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 5:16	U	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 5:16	U	JDB
Barium	0.19	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 5:16		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 5:16	U	JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 5:16	U	JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 5:16	U	JDB
Cobalt	0.00053	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 5:16	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 5:16	U	JDB
Lithium	0.00785	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 5:16		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 9:11	U	LNM
Molybdenum	0.01639	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 5:16		JDB
Selenium	0.00423	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 5:16	J	JDB
Thallium	0.002	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 20:40		JDB
Mata: (040000)	1		-1	1		1		_1

Water (216828)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Fluoride	1.2525	mg/L	0.083	1	EPA 300.0	06/06/2018 2:26		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37761 Address: 502 N. Allen Avenue **Date Received:** 06/01/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 216829 **Collected Date:** 05/30/2018 Cust Sample ID: SP-2 **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCr)

Metals (216829)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.0013	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 5:21	J	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 5:21	U	JDB
Barium	0.869	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 5:21		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 5:21	U	JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 5:21	U	JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 5:21	U	JDB
Cobalt	0.00055	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 5:21	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 5:21	U	JDB
Lithium	0.04039	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 5:21		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 9:27	U	LNM
Molybdenum	0.02646	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 5:21		JDB
Selenium	0.00216	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 5:21	J	JDB
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 20:46	U	JDB
Water (216829)			1	<u> </u>			1	
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Fluoride	3 4972	ma/l	0.083	1	FPA 300 0	06/06/2018 5:15		GB

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Fluoride	3.4972	mg/L	0.083	1	EPA 300.0	06/06/2018 5:15		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37761 Address: 502 N. Allen Avenue Report ID **Date Received:** 06/01/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 216830 **Collected Date:** 05/30/2018 Matrix: Water Cust Sample ID: SP-4 **Location:** Northeastern Power Plant

Sample Desc.: Coal Combustion Residuals (CCr)

Metals (216830)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	0.00514	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 5:59		JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 5:59	U	JDB
Barium	0.268	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 5:59		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 5:59	U	JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 5:59	U	JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 5:59	U	JDB
Cobalt	0.00049	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 5:59	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 5:59	U	JDB
Lithium	0.06851	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 5:59		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 9:30	U	LNM
Molybdenum	0.0037	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 5:59	J	JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 5:59	U	JDB
Thallium	0.00162	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 5:59	J	JDB

Water (216830)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Fluoride	4.169	mg/L	0.083	1	EPA 300.0	06/06/2018 5:34		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37761 Address: 502 N. Allen Avenue **Date Received:** 06/01/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 216831 **Collected Date:** 05/30/2018 Matrix: Water Cust Sample ID: SP-5R **Location:** Northeastern Power Plant

Sample Desc.: Coal Combustion Residuals (CCr)

NЛ	eta	le i	(21	69	3	1	١
IVI	eta	15	ızı	ססו	ы		1

		Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
0.00121	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 6:04	J	JDB
0.02886	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 6:04		JDB
1.76	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 6:04		JDB
< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 6:04	U	JDB
< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 6:04	U	JDB
< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 6:04	U	JDB
0.00088	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 6:04	J	JDB
< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 6:04	U	JDB
0.102	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 6:04		JDB
< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 9:43	U	LNM
< 0.00029	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 6:04	U	JDB
< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 6:04	U	JDB
< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 20:56	U	JDB
	1.76 < 0.00002 < 0.00007 < 0.00023 0.00088 < 0.00068 0.102 < 0.000005 < 0.00029 < 0.00099	0.02886 mg/L 1.76 mg/L < 0.00002 mg/L < 0.00007 mg/L < 0.00023 mg/L 0.00088 mg/L < 0.00068 mg/L 0.102 mg/L < 0.00005 mg/L < 0.00029 mg/L < 0.00099 mg/L	0.02886 mg/L 0.00105 1.76 mg/L 0.00015 < 0.00002	0.02886 mg/L 0.00105 1 1.76 mg/L 0.00015 1 < 0.00002	0.02886 mg/L 0.00105 1 EPA 6010B 1996 1.76 mg/L 0.00015 1 EPA 6010B 1996 < 0.00002	0.02886 mg/L 0.00105 1 EPA 6010B 1996 07/11/2018 6:04 1.76 mg/L 0.00015 1 EPA 6010B 1996 07/11/2018 6:04 < 0.00002	0.02886 mg/L 0.00105 1 EPA 6010B 1996 07/11/2018 6:04 1.76 mg/L 0.00015 1 EPA 6010B 1996 07/11/2018 6:04 < 0.00002

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Fluoride	4.1115	mg/L	0.083	1	EPA 300.0	06/06/2018 5:53		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37761 Address: 502 N. Allen Avenue Contact: Jill Parker-Witt **Date Received:** 06/01/2018

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 216832 **Collected Date:** 05/30/2018 Cust Sample ID: SP-10 **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCr)

Metals (216832)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 6:09	U	JDB
Arsenic	0.0089	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 6:09		JDB
Barium	2.55	mg/L	0.0075	1:50	EPA 6010B 1996	07/10/2018 21:02		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 6:09	U	JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 6:09	U	JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 6:09	U	JDB
Cobalt	0.00083	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 6:09	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 6:09	U	JDB
Lithium	0.245	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 6:09		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 9:45	U	LNM
Molybdenum	0.00294	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 6:09	J	JDB
Selenium	0.00226	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 6:09	J	JDB
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 21:02	U	JDB
Water (216832)	1		-1					. "

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Fluoride	7.333	mg/L	0.083	1	EPA 300.0	06/06/2018 6:12		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37761 Address: 502 N. Allen Avenue **Date Received:** 06/01/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 216833 **Collected Date:** 05/30/2018 Cust Sample ID: SP-11 **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCr)

Metals (216833)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 6:15	U	JDB
Arsenic	0.0053	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 6:15		JDB
Barium	0.16	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 6:15		JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 6:15	U	JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 6:15	U	JDB
Chromium	0.00034	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 6:15	J	JDB
Cobalt	0.00161	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 6:15	J	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 6:15	U	JDB
Lithium	0.04956	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 6:15		JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 9:48	U	LNM
Molybdenum	0.00327	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 6:15	J	JDB
Selenium	0.00143	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 6:15	J	JDB
Thallium	< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 21:07	U	JDB
Water (216833)	1		1	1				-

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Fluoride	3.574	mg/L	0.083	1	EPA 300.0	06/06/2018 6:30		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37761 Address: 502 N. Allen Avenue **Date Received:** 06/01/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 216834 **Collected Date:** 05/30/2018 Cust Sample ID: DUPLICATE BAP **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCr)

Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 6:20	U	JDB
0.00995	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 6:20		JDB
2.5	mg/L	0.0075	1:50	EPA 6010B 1996	07/10/2018 21:23		JDB
< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 6:20	U	JDB
< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 6:20	U	JDB
< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 6:20	U	JDB
0.00118	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 6:20	J	JDB
< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 6:20	U	JDB
0.247	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 6:20		JDB
< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 9:51	U	LNM
0.00289	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 6:20	J	JDB
0.00193	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 6:20	J	JDB
< 0.043	mg/L	0.043	1:50	EPA 6010B 1996	07/10/2018 21:23	U	JDB
Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
7.4008	mg/L	0.083	1	EPA 300.0	06/06/2018 6:49		GB
	< 0.00093	< 0.00093	< 0.00093	< 0.00093	< 0.00093	< 0.00093 mg/L 0.00093 1 EPA 6010B 1996 07/11/2018 6:20 0.00995 mg/L 0.00105 1 EPA 6010B 1996 07/11/2018 6:20 2.5 mg/L 0.0075 1:50 EPA 6010B 1996 07/10/2018 21:23 < 0.00002	< 0.00093 mg/L 0.00093 1 EPA 6010B 1996 07/11/2018 6:20 U 0.00995 mg/L 0.00105 1 EPA 6010B 1996 07/11/2018 6:20 U 2.5 mg/L 0.0075 1:50 EPA 6010B 1996 07/10/2018 21:23 U < 0.00002

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 37761 Address: 502 N. Allen Avenue **Date Received:** 06/01/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 216835 **Collected Date:** 05/30/2018 Cust Sample ID: EQUIPMENT BLANK BAP **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCr)

Motole (216925)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	< 0.00093	mg/L	0.00093	1	EPA 6010B 1996	07/11/2018 6:26	U	JDB
Arsenic	< 0.00105	mg/L	0.00105	1	EPA 6010B 1996	07/11/2018 6:26	U	JDB
Barium	< 0.00015	mg/L	0.00015	1	EPA 6010B 1996	07/11/2018 6:26	U	JDB
Beryllium	< 0.00002	mg/L	0.00002	1	EPA 6010B 1996	07/11/2018 6:26	U	JDB
Cadmium	< 0.00007	mg/L	0.00007	1	EPA 6010B 1996	07/11/2018 6:26	U	JDB
Chromium	< 0.00023	mg/L	0.00023	1	EPA 6010B 1996	07/11/2018 6:26	U	JDB
Cobalt	< 0.00014	mg/L	0.00014	1	EPA 6010B 1996	07/11/2018 6:26	U	JDB
Lead	< 0.00068	mg/L	0.00068	1	EPA 6010B 1996	07/11/2018 6:26	U	JDB
Lithium	< 0.00013	mg/L	0.00013	1	EPA 6010B 1996	07/11/2018 6:26	U	JDB
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/06/2018 9:53	U	LNM
Molybdenum	< 0.00029	mg/L	0.00029	1	EPA 6010B 1996	07/11/2018 6:26	U	JDB
Selenium	< 0.00099	mg/L	0.00099	1	EPA 6010B 1996	07/11/2018 6:26	U	JDB
Thallium	< 0.00086	mg/L	0.00086	1	EPA 6010B 1996	07/11/2018 6:26	U	JDB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37761

Company: SEP - Environmental (JP-W)

,

Address: 502 N. Allen Avenue Shreveport, LA 71101

Date Received: 06/01/2018

Contact: Jill Parker-Witt
Phone: (318) 673-3816

Fax: (318) 673-3960

Quality Control Data

* Quality control units are the same as reported analytical results

			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
7/11/2018	Antimony	217448.1	<0.00093	8.0	0.7833788	97.9	0.8	0.7646954	95.6		1.2	JDB
7/11/2018	Antimony	217438.1	<0.00093	8.0	0.7863861	98.3	0.8	0.7518081	94.0		1.2	JDB
7/11/2018	Antimony	216859.1	<0.00093	8.0	0.7863861	98.3	0.8	0.7762676	97.0		0.2	JDB
7/11/2018	Antimony	216849.1	<0.00093	8.0	0.7840294	98.0	0.8	0.7162960	89.5		1.2	JDB
7/11/2018	Antimony	216839.1	<0.00093	8.0	0.7840294	98.0	0.8	0.7474474	93.4		0.5	JDB
7/11/2018	Antimony	216829.1	0.002111	8.0	0.7743853	96.8	0.8	0.7694967	96.2		1.8	JDB
7/11/2018	Antimony	216607.1	0.011666	8.0	0.80691	100.9	0.8	0.770316	96.3		1.2	JDB
7/11/2018	Arsenic	216829.1	<0.00105	8.0	0.782387	97.8	0.8	0.7688641	96.1		2.1	JDB
7/11/2018	Arsenic	216607.1	<0.00105	8.0	0.82209	102.8	8.0	0.7777993	97.2		1.9	JDB
7/11/2018	Arsenic	216839.1	<0.00105	8.0	0.7814274	97.7	0.8	0.7482348	93.5		0.5	JDB
7/11/2018	Arsenic	216849.1	<0.00105	8.0	0.7814274	97.7	8.0	0.7282816	91.0		0.2	JDB
7/11/2018	Arsenic	216859.1	<0.00105	8.0	0.7609157	95.1	8.0	0.7596461	95.0		1.1	JDB
7/11/2018	Arsenic	217438.1	<0.00105	8.0	0.7609157	95.1	0.8	0.7475921	93.4		1.0	JDB
7/11/2018	Arsenic	217448.1	<0.00105	8.0	0.7674074	95.9	0.8	0.7729410	96.6		0.4	JDB
7/11/2018	Barium	216829.1	<0.00015	0.2	0.1947964	97.4	0.2	0.1845827	92.3		2.2	JDB
7/11/2018	Barium	217448.1	<0.00015	0.2	0.1989253	99.5	0.2	0.185726	92.9		0.7	JDB
7/11/2018	Barium	216607.1	<0.00015	0.2	0.20727	103.6	0.2	0.1924270	96.2		0.3	JDB
7/11/2018	Barium	216839.1	<0.00015	0.2	0.1970746	98.5	0.2	0.1812223	90.6		0.6	JDB
7/11/2018	Barium	216849.1	<0.00015	0.2	0.1970746	98.5	0.2	0.1860327	93.0		1.0	JDB
7/11/2018	Barium	216859.1	<0.00015	0.2	0.1993587	99.7	0.2	0.18852	94.3		0.9	JDB
7/11/2018	Barium	217438.1	<0.00015	0.2	0.1993587	99.7	0.2	0.174301	87.2		1.0	JDB
7/11/2018	Beryllium	216859.1	<0.00002	0.2	0.1940843	97.0	0.2	0.1945641	97.3		0.8	JDB
7/11/2018	Beryllium	216607.1	<0.00002	0.2	0.20674	103.4	0.2	0.1968008	98.4		1.3	JDB
7/11/2018	Beryllium	216829.1	<0.00002	0.2	0.1942471	97.1	0.2	0.1962412	98.1		1.8	JDB
7/11/2018	Beryllium	217448.1	<0.00002	0.2	0.1940919	97.0	0.2	0.1934906	96.7		1.2	JDB
7/11/2018	Beryllium	216849.1	<0.00002	0.2	0.1940796	97.0	0.2	0.1873301	93.7		0.2	JDB
7/11/2018	Beryllium	217438.1	<0.00002	0.2	0.1940843	97.0	0.2	0.1922127	96.1		1.5	JDB
7/11/2018	Beryllium	216839.1	<0.00002	0.2	0.1940796	97.0	0.2	0.1927375	96.4		0.3	JDB
7/11/2018	Cadmium	216607.1	<0.00007	0.2	0.20786	103.9	0.2	0.1958449	97.9		1.2	JDB
7/11/2018	Cadmium	216829.1	<0.00007	0.2	0.1957450	97.9	0.2	0.1938799	96.9		1.9	JDB
7/11/2018	Cadmium	217448.1	<0.00007	0.2	0.192313	96.2	0.2	0.1923029	96.2		1.2	JDB
7/11/2018	Cadmium	217438.1	<0.00007	0.2	0.1929989	96.5	0.2	0.1909662	95.5		1.5	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

Page 9 of 11

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 37761 Company: SEP - Environmental (JP-W) Address: 502 N. Allen Avenue

Date Received: 06/01/20	18 Contact:	Jill Parke	er-Witt				Sh	reveport,	LA 71101	
		(318) 67	3-3816					18) 673-39		
7/11/2018 Cadmium	216859.1	<0.00007	0.2	0.1929989	96.5	0.2	0.188907	94.5	0.9	JDB
7/11/2018 Cadmium	216849.1	<0.00007	0.2	0.1944529	97.2	0.2	0.1806458	90.3	0.3	JDB
7/11/2018 Cadmium	216839.1	<0.00007	0.2	0.1944529	97.2	0.2	0.1925503	96.3	0.4	JDB
7/11/2018 Chromium	217438.1	<0.00023	0.4	0.3798332	95.0	0.4	0.3749093	93.7	1.5	JDB
7/11/2018 Chromium	217448.1	<0.00023	0.4	0.3790240	94.8	0.4	0.3807842	95.2	1.2	JDB
7/11/2018 Chromium	216859.1	<0.00023	0.4	0.3798332	95.0	0.4	0.3793229	94.8	0.8	JDB
7/11/2018 Chromium	216839.1	<0.00023	0.4	0.3813157	95.3	0.4	0.3769947	94.2	0.4	JDB
7/11/2018 Chromium	216849.1	<0.00023	0.4	0.3813157	95.3	0.4	0.3663764	91.6	0.1	JDB
7/11/2018 Chromium	216607.1	<0.00023	0.4	0.40533	101.3	0.4	0.3840149	96.0	1.3	JDB
7/11/2018 Chromium	216829.1	<0.00023	0.4	0.3823525	95.6	0.4	0.3856683	96.4	1.9	JDB
7/11/2018 Cobalt	216849.1	<0.00014	0.2	0.1930186	96.5	0.2	0.1832919	91.6	0.2	JDB
7/11/2018 Cobalt	216607.1	<0.00014	0.2	0.20521	102.6	0.2	0.1938551	96.9	1.6	JDB
7/11/2018 Cobalt	216839.1	<0.00014	0.2	0.1930186	96.5	0.2	0.1875445	93.8	0.5	JDB
7/11/2018 Cobalt	216859.1	<0.00014	0.2	0.1937297	96.9	0.2	0.1911424	95.6	0.9	JDB
7/11/2018 Cobalt	217438.1	<0.00014	0.2	0.1937297	96.9	0.2	0.1871922	93.6	1.3	JDB
7/11/2018 Cobalt	217448.1	<0.00014	0.2	0.1928593	96.4	0.2	0.1864234	93.2	1.3	JDB
7/11/2018 Cobalt	216829.1	<0.00014	0.2	0.1923129	96.2	0.2	0.1914518	95.7	2.1	JDB
6/6/2018 Fluoride			10	10	100.0					GB
6/6/2018 Fluoride	216846	<0.083	10	11	110.0	10	9.8	98.0	0.0	GB
6/6/2018 Fluoride	216828	<0.083	10	10	100.0	10	10	100.0	9.4	GB
6/6/2018 Fluoride		<0.083								GB
6/6/2018 Fluoride			10	11	110.0					GB
7/11/2018 Lead	216607.1	<0.00068	1	1.0379	103.8	1	0.9737756	97.4	1.3	JDB
7/11/2018 Lead	216829.1	<0.00068	1	0.9724599	97.2	1	0.9687459	96.9	1.9	JDB
7/11/2018 Lead	216839.1	<0.00068	1	0.9682329	96.8	1	0.9390272	93.9	0.4	JDB
7/11/2018 Lead	216849.1	<0.00068	1	0.9682329	96.8	1	0.9115634	91.2	0.5	JDB
7/11/2018 Lead	216859.1	<0.00068	1	0.9628089	96.3	1	0.9529827	95.3	0.9	JDB
7/11/2018 Lead	217448.1	<0.00068	1	0.9668009	96.7	1	0.947151	94.7	1.1	JDB
7/11/2018 Lead	217438.1	<0.00068	1	0.9628089	96.3	1	0.9349115	93.5	1.6	JDB
7/11/2018 Lithium	216607.1	<0.00013	0.2	0.20529	102.6	0.2	0.2014402	100.7	1.3	JDB
7/11/2018 Lithium	216859.1	<0.00013	0.2	0.2031312	101.6	0.2	0.2094512	104.7	0.3	JDB
7/11/2018 Lithium	216849.1	<0.00013	0.2	0.2006665	100.3	0.2	0.20681	103.4	0.4	JDB
7/11/2018 Lithium	216839.1	<0.00013	0.2	0.2006665	100.3	0.2	0.2114136	105.7	0.1	JDB
7/11/2018 Lithium	217438.1	<0.00013	0.2	0.2031312	101.6	0.2	0.2139790	107.0	1.2	JDB
7/11/2018 Lithium	216829.1	<0.00013	0.2	0.1975821	98.8	0.2	0.2088078	104.4	1.9	JDB
7/11/2018 Lithium	217448.1	<0.00013	0.2	0.2009675	100.5	0.2	0.2102503	105.1	0.3	JDB

The results apply only to the samples as received in the laboratory. The analyses used to obtain the results meet NELAC requirement, if applicable. No part of this work may be altered in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information and retrieval systems - without written permission of AEPAnalytical Chemistry Services.

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 37761 Report ID Address: 502 N. Allen Avenue Contact: Jill Parker-Witt **Date Received: 06/01/2018** Shreveport, LA 71101 Phone: (318) 673-3816 Fax: (318) 673-3960 6/6/2018 216848.1 < 0.00000 0.001 0.000875 87.5 0.001 0.0008819 88.2 15.3 LNM Mercurv 6/6/2018 216858 1 < 0.00000 0.001 0.0009016 90.2 0.0008205 49 I NM Mercurv 0.001 82 1 6/6/2018 216838.1 <0.00000 0.001 0.00094 94.0 0.0008853 88.5 LNM 0.001 0.3 Mercury 6/6/2018 Mercury 216828.1 < 0.00000 0.001 0.00094 94.0 0.001 0.0008283 82.8 22 LNM 7/11/2018 Molybdenum 216859.1 < 0.00029 0.2 0.1906861 95.3 0.2 0.1931350 96.6 1.0 JDB JDB 7/11/2018 Molybdenum 216849.1 < 0.00029 0.2 0.1905412 95.3 0.2 0.1843829 922 0.5 0.1867393 12 JDB 7/11/2018 Molvbdenum 216839.1 < 0.00029 02 0.1905412 95.3 0.2 93.4 JDB 7/11/2018 Molybdenum 216829.1 < 0.00029 0.1908355 95.4 0.2 0.1943824 97.2 19 94.8 0.2 97.7 1.0 JDB 7/11/2018 Molvbdenum 217448.1 < 0.00029 0.2 0.1895818 0.1953099 7/11/2018 Molybdenum 217438.1 < 0.00029 02 0.1906861 95.3 0.2 0.1700057 85.0 1.0 JDB 101.9 0.2 95.8 1.0 JDB 7/11/2018 Molvbdenum 216607.1 < 0.00029 0.2 0.20379 0.1916946 JDB 7/11/2018 Selenium 217438.1 < 0.00099 2 1.9186359 95.9 2 1.6210683 81.1 4.8 7/11/2018 Selenium 216829.1 0.001256 2 94.9 2 94.0 JDB 1.8985201 1.8805748 1.8 7/11/2018 216839.1 < 0.00099 2 1.9077373 95.4 2 1.8568667 92.8 0.2 JDB Selenium 7/11/2018 216849.1 < 0.00099 2 1.9077373 95.4 2 1.8317404 91.6 0.8 JDB Selenium 7/11/2018 217448.1 < 0.00099 2 1.9079876 95.4 2 1.8855788 94.3 1.5 JDB Selenium 2 < 0.00099 2 95.9 93 7 0.8 JDB 7/11/2018 Selenium 216859.1 1.9186359 1.8739280 7/11/2018 216607.1 0.001565 2 99 2 2 1.8985007 94.9 1.6 JDB Selenium 1.98493 7/10/2018 Thallium 216607 1 < 0.043 0.4 0.41188 103.0 0.4 0.3833643 95.8 0.6 JDB

0.4

0.4

0.4

0.4

0.4

0.4

0.385064

0.3845709

0.386014

0.386014

0.386145

0.3845709

96.3

96 1

96.5

96.5

96.5

96.1

0.4

0.4

0.4

0.4

0.4

0.4

Code Code Description

Thallium

Thallium

Thallium

Thallium

Thallium

Thallium

7/10/2018

7/10/2018

7/11/2018

7/11/2018

7/11/2018

7/11/2018

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

216829.1

216849.1

217438.1

216859.1

217448.1

216839.1

< 0.043

< 0.043

<0.00086

< 0.00086

<0.00086

< 0.043

U Analyte concentration below MDL.

Andra D. Wellace

aboratory Manager

13-Jul-18

Report Date

0.3749285

0.3579218

0.359684

0.3752547

0.3536909

0.3594548

93.7

89.5

89.9

93.8

88.4

89.9

1.4

0.1

1.6

1 1

1.0

0.1

JDB

JDB

JDB

JDB

JDB

JDB

Shreveport, LA 71101		- RELOS	T 1	rograi	m: Co	al Con	nbustion F	Program: Coal Combustion Residuals (CCR)	CCR)		
Jonathan Barnhill (318-673-3803) Contacts: John Davis (318-673-3811)						Site Contact:	ntact:			Date:	For Lab Use Only: COC/Order#:
Project Name: Northeastern PP CCR	Analysis T	urnaround	Analysis Turnaround Time (in Calendar Days)	lendar D	avs)		500 mL	Field-filter		Three	 100 A
Contact Name: Jill Parker-Witt	71	esults nee	Results needed by July 18, 2018	18, 2018			bottle,	bottle, then	bottle,	10th*) 1	10/12/10
``							HNO3	HNO3	0-6C	pH<2, HNO3	())
Sampler(s): Kenneth McDonald						;	Cd, Cr, Io, Se,	ıd Mn		28	
			Sample Type			oler(s) Initial	As, Ba, Be, Pb, Li, Hg, I	olved Fe a	oride	226, Ra-2	
Sample Identification	Date	ш	G=Grab)	Matrix	Cont.	Sa	SI Ce TI	d	FI	R	Sample Specific Notes:
SP-1	5/30/2018	1003	ဓ	GW	2		×		×		214838.1-2168312
SP-2	5/30/2018	947	G	GW	2		×		×		1
SP-4	5/30/2018	900	G	GW	2		×		×		ı
SP-5R	5/30/2018	1538	G	GW	2		×		×		216831.1 - 216831.2
SP-10	5/30/2018	920	G	GW	2		×		×		1
SP-11	5/30/2018	934	G	GW	2		×		×		26833.1-216833.2
DUPLICATE BAP	5/30/2018	920	G	GW	2		×		×		216834.1-216834-2
EQUIPMENT BLANK BAP	5/30/2018	1008	G	8	_		×				
Preservation Used: 1= kce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	NO3; 5=NaO	H; 6= Oth	er_]; F= fi	F= filter in field	ield	4	F4	1	4	
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th s	ample.									
Special Instructions/QC Requirements & Comments:	<u></u>	1	Results needed by July 16,	පත්වත් ර්	rdabra	E 20198*	Binb				
Relinquished by: KAM	Company A611-	-119		Date/Time	73%	8001.81	Received by:				Date/Time:
Relinquished by:	Company:			Date/Time:	ne:		Received by:				Date∕Time:
Relinquished by:	Company			Date/Time:	ne:		Received in	Received in Laboratory by:	> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Date/Time:

Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave.

Chain of Custody Record

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type	Delivery Type
Ce Chest Bag Action Pak PCB Mailer Bottle	UPS FEDEX US Mail Walk in Shuttle
Other	Other
	Tracking #
Client VE	Sample Matrix
Received By	DGA PCB Oil Water Oil Soil
Received Date	
Open Date	Solid Liquid Other
Container Temp Read 3.0%	Project I.D. 37761
Correction Factor Thermometer Serial #F04103 + 1.2	Were samples received on ice? YES NO
Corrected Temp	P(
6/1/10	VES NO
Did container arrive in good condition?	NO NO
Was sample documentation received?	NO NO
Was documentation filled out properly?	NO NO
Were samples labeled properly?	VES NO
Were correct containers used?	YES NO
Were the pH's of samples appropriately checked?	NO Metals Plt: L2
Total number of sample containers 15	•
Was any corrective action taken?	Person Contacted Date & Time
Comments	
	- =
	(4-4)

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 7/18/2018

SP-1

Sample Number: 181864-001 Date Collected: 05/30/2018 10:03 Date Received: 6/6/2018

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	2.52	pCi/L	0.17	0.46	jls	7/1/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	1.12	pCi/L	0.19	0.21	jls	7/5/2018	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the established range of 30-110%.

SP-2

Sample Number: 181864-002 Date Collected: 05/30/2018 09:47 Date Received: 6/6/2018

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	4.89	pCi/L	0.19	0.45	jls	7/1/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	2.96	pCi/L	0.29	0.18	jls	7/5/2018	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the established range of 30-110%.

SP-4

Sample Number: 181864-003 Date Collected: 05/30/2018 09:00 Date Received: 6/6/2018

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	2.32	pCi/L	0.14	0.37	jls	7/1/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.866	pCi/L	0.18	0.23	jls	7/5/2018	SW-846 9315-1986,Rev. 0

SP-5R

Sample Number: 181864-004 Date Collected: 05/30/2018 15:38 Date Received: 6/6/2018

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	4.79	pCi/L	0.18	0.39	jls	7/1/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	4.36	pCi/L	0.38	0.22	jls	7/5/2018	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the established range of 30-110%.

SP-10

Sample Number: 181864-005 Date Collected: 05/30/2018 09:20 Date Received: 6/6/2018

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.16	pCi/L	0.12	0.36	jls	7/1/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	4.9	pCi/L	0.39	0.19	jls	7/5/2018	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the established range of 30-110%.

SP-11

Sample Number: 181864-006 Date Collected: 05/30/2018 09:34 Date Received: 6/6/2018

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	0.812	pCi/L	0.16	0.50	jls	7/1/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.522	pCi/L	0.13	0.20	jls	7/5/2018	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the established range of 30-110%.

Michael Ohlinger, Chemist

Muhael S. Ollinger

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

4001 Bixby Road

Groveport, Ohio 43125				Progra	am: C	oal Con	nbustion	Program: Coal Combustion Residuals (CCR)	Is (CCR)			
Contacts: Michael Ohlinger (614-836-4184)					Ñ	Site Contact:	<u>t</u> :			Date:		For Lab Use Only:
Dave Conover (614-836-4219)												COC/Order #:
	Analysis Turnaround Time (in Calendar Days)	naround 7	Time (in Cale	ındar Day	/s)			i				
Project Name: Northeastern PP CCR						14	250 mL	Three (six everv	1 L +	40 mL Glass	Field-filter	
Contact Name: Jill Parker-Witt							bottle,	10th*)		vial or 250 mL PTFE lined	250 mL bottle, then	17/8/8/
Contact Phone: 318-673-3816								1L bottles, pH<2, HNO3	0-6C	bottle, HCL**, pH<2	pH<2, HNO3	
Sampler(s): Kenneth McDonald	Need	d results b	Need results by July 18, 2018	118			'qa '	228	SO4, alinity			
Sample Identification	Sample S Date	Sample (Sample Type (C=Comp,	Matrix	# of Cont.	sampler(s) Initi	Be, Cd, Cr, Cc Mo, Se, TL and Ma, K, Mg	Pa-226, Ra-	TDS, F, CI, S	Бŀ	ł bevlossib M bevlossib	Samila Snavifir Notes
SP-1	-	+-	#	111	8			×				Cariple Openio 10065.
SP-2	5/30/2018	947	g	GW	ю			×				
SP-4	5/30/2018	006	ပ	GW	6			×				
SP-5R	5/30/2018	1538	O	GW	က			×				
SP-10	5/30/2018	920	O	GW	9			×				
SP-11	5/30/2018	934	9	GW	3			×				
		\exists		\exists	\dashv							
Preservation Used: 1= lce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	103; 5=NaOH; 6	3= Other		; F = filter in field	in field		4	4	1	2	F 4	
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th sam	ple.		,			:	,				

** HCI must be Trace Metal Grade for Mercury analysis when samples cannot be delivered to the laboratory within 48 hours of sampling.

Special Instructions/QC Requirements & Comments:

****NEED RUSULTS BY JULY 18, 2018****

Date/Time:	Date/Time:	Date/Time:
Received by:	Received by:	Received in Laboratory by:
Date/Time; //8/1/0	Date/Time:	Date/Time:
Company: FA GLF	Company:	Company:
Relinquished by: A	Relinquished by:	Relinquished by:

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Dolan, Rev. 2, 11/02/16

Sample Receipt Form Posts, 11 30 15

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS REDEX USPS
	Other
Plant/Customer Northwatern	Number of Plastic Containers: 2
Opened By M50	Number of Glass Containers:
Date/Time 6/6/13 4:26PM	Number of Mercury Containers:
	or N/A Initial:on ice / no ice
\(\text{(IR Gun Ser# \frac{17.0779030}{2000 \text{Expir.} \frac{11.06.19}{2000 \text{17.000}}	
	Comments
	Comments
	If RUSH, who was notified?
pH (15 min) Cr^{-1} (pres) NO_2 or N (24 hr)	IO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? (Y)/ N	Comments
Were samples labeled properly?	Comments
Were correct containers used?	Comments
Was pH checked & Color Coding done? Y	N or N/A Initial & Date: MSO 6/6/17
- Was Add'l Preservative needed? Y\N f	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N	Comments (See Prep Book
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 18 1864 Initial & I	Date & Time :
Logged by	nts:
616	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 38096 Address: 502 N. Allen Avenue Contact: Jill Parker-Witt **Date Received:** 08/01/2018

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 218125 Bv: KM **Collected Date:** 07/30/2018 Cust Sample ID: SP-1 Matrix: Water Location: Northeastern P.P.

Metals (2	218125)
-----------	---------

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 9:45	U	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18

Water ((218125)

Water (210123)				1				
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	46	mg/L	0.219	1	EPA 300.0	08/07/2018 18:36	M7	GB
Fluoride	0.9863	mg/L	0.083	1	EPA 300.0	08/07/2018 18:36	J	GB
Solids, Total Dissolved (TDS)	1060	mg/L	2	1	SM 2540 C-2011	08/02/2018 14:00		LBH
Sulfate	63	mg/L	0.140	1	EPA 300.0	08/07/2018 18:36	M7	GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38096 Address: 502 N. Allen Avenue Report ID

Contact: Jill Parker-Witt **Date Received:** 08/01/2018 Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 218126 **Collected Date:** 07/30/2018 Cust Sample ID: SP-2 Matrix: Water **Location:** Northeastern P.P.

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 9:48	U	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18

Water ((21	81	26)
	•			

Water (210120)			1	1		1		_
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	268	mg/L	0.219	1	EPA 300.0	08/08/2018 19:33	M7	GB
Fluoride	2.6556	mg/L	0.083	1	EPA 300.0	08/07/2018 19:33		GB
Solids, Total Dissolved (TDS)	1006	mg/L	2	1	SM 2540 C-2011	08/02/2018 14:00		LBH
Sulfate	30	mg/L	0.140	1	EPA 300.0	08/07/2018 19:33	M7	GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38096 Address: 502 N. Allen Avenue Report ID **Date Received:** 08/01/2018

Contact: Jill Parker-Witt Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 218127 Bv: KM **Collected Date:** 07/30/2018 Cust Sample ID: SP-4 Matrix: Water **Location:** Northeastern P.P.

Metals	(218127)
--------	----------

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	0.000006	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 9:51	J	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18

Water ((218127)	١

Water (210121)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	521	mg/L	0.219	1:10	EPA 300.0	08/07/2018 23:56	M7	GB
Fluoride	< 0.083	mg/L	0.083	1	EPA 300.0	08/07/2018 23:19	U	GB
Solids, Total Dissolved (TDS)	1180	mg/L	2	1	SM 2540 C-2011	08/02/2018 14:00		LBH
Sulfate	70	mg/L	0.140	1:10	EPA 300.0	08/07/2018 23:56	M7	GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38096 Address: 502 N. Allen Avenue Report ID

Contact: Jill Parker-Witt **Date Received:** 08/01/2018 Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 218128 Bv: KM **Collected Date:** 07/30/2018 Cust Sample ID: SP-5R Matrix: Water Location: Northeastern P.P.

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 9:54	U	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18

Water ((21	81	28)
	•			_

Water (210120)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	793	mg/L	0.219	1:10	EPA 300.0	08/08/2018 0:53	M7	GB
Fluoride	4.3905	mg/L	0.083	1	EPA 300.0	08/08/2018 0:15		GB
Solids, Total Dissolved (TDS)	1480	mg/L	2	1	SM 2540 C-2011	08/03/2018 16:00		LBH
Sulfate	4	mg/L	0.140	1	EPA 300.0	08/08/2018 0:15	M7	GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 38096 Company: SEP - Environmental (JP-W) Address: 502 N. Allen Avenue

Date Received: 08/01/2018 Contact: Jill Parker-Witt Shreveport, LA 71101

AEP Sample ID: 218129 Collected Date: 07/30/2018 By: KM
Cust Sample ID: SP-10 Location: Northeastern P.P. Matrix: Water

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	0.000006	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 9:56	J	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18

Water (2 10 120)							
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes Tech
Chloride	2283	mg/L	0.219	1:100	EPA 300.0	08/08/2018 2:08	GB
Fluoride	8.9991	mg/L	0.083	1	EPA 300.0	08/08/2018 1:12	GB
Solids, Total Dissolved (TDS)	3632	mg/L	2	1	SM 2540 C-2011	08/03/2018 16:00	LBH
Sulfate	75	mg/L	0.140	1	EPA 300.0	08/08/2018 1:12	GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38096 Address: 502 N. Allen Avenue Report ID

Contact: Jill Parker-Witt **Date Received:** 08/01/2018 Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 218130 Bv: KM **Collected Date:** 07/30/2018 Cust Sample ID: SP-11 Matrix: Water **Location:** Northeastern P.P.

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	0.000005	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 9:59	J	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18

Water ((218130))

Water (210130)				, , ,		1		
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	234	mg/L	0.219	1:100	EPA 300.0	08/08/2018 3:42		GB
Fluoride	3.7832	mg/L	0.083	1	EPA 300.0	08/08/2018 2:46		GB
Solids, Total Dissolved (TDS)	996	mg/L	2	1	SM 2540 C-2011	08/03/2018 16:00		LBH
Sulfate	79	mg/L	0.140	1	EPA 300.0	08/08/2018 2:46		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38096 Address: 502 N. Allen Avenue Report ID Contact: Jill Parker-Witt **Date Received:** 08/01/2018

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

AEP Sample ID: 218131 Bv: KM **Collected Date:** 07/30/2018 Matrix: Water Cust Sample ID: Duplicate BAP **Location:** Northeastern P.P.

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 10:02	U	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18

Water ((218131)	١
		_

water (218131)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	46	mg/L	0.219	1	EPA 300.0	08/08/2018 12:52		GB
Fluoride	0.9535	mg/L	0.083	1	EPA 300.0	08/08/2018 12:52	J	GB
Solids, Total Dissolved (TDS)	438	mg/L	2	1	SM 2540 C-2011	08/03/2018 16:00		LBH
Sulfate	63	mg/L	0.140	1	EPA 300.0	08/08/2018 12:52		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 38096 Address: 502 N. Allen Avenue Report ID Contact: Jill Parker-Witt **Date Received:** 08/01/2018

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

Bv: KM AEP Sample ID: 218132 **Collected Date:** 07/30/2018 Cust Sample ID: Equipment Blank BAP Location: Northeastern P.P. Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Motole (219122)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Antimony	Q18	mg/L	0.00093	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Arsenic	Q18	mg/L	0.00105	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Barium	Q18	mg/L	0.00015	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Beryllium	Q18	mg/L	0.00002	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Boron	Q18	mg/L	0.00028	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cadmium	Q18	mg/L	0.00007	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Calcium	Q18	mg/L	0.0096	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Chromium	Q18	mg/L	0.00023	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Cobalt	Q18	mg/L	0.00014	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lead	Q18	mg/L	0.00068	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Lithium	Q18	mg/L	0.00013	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	08/03/2018 10:10	U	LNM
Molybdenum	Q18	mg/L	0.00029	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Selenium	Q18	mg/L	0.00099	1	EPA 6010B 1996	08/01/2018 10:04		Q18
Thallium	Q18	mg/L	0.00086	1	EPA 6010B 1996	08/01/2018 10:04		Q18

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

: 38096 Report ID

Date Received: 08/01/2018

Company: SEP - Environmental (JP-W)

Address: 502 N. Allen Avenue Shreveport, LA 71101

Contact: Jill Parker-Witt Phone: (318) 673-3816

Fax: (318) 673-3960

Quality Control Data

* Quality control units are the same as reported analytical results

	Quanty control units are the same as reported analytical results												
			Blank		Standard			Spike		Surrogate	Duplicate %		
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech	
8/7/2018	Chloride	218155	<0.219	20	20	100.0	20	11	55.0		0.0	GB	
8/7/2018	Chloride		<0.219									GB	
8/7/2018	Chloride			20	20	100.0						GB	
8/8/2018	Chloride		<0.219									GB	
8/8/2018	Chloride			20	20	100.0						GB	
8/8/2018	Chloride	218155	<0.219	20	20	100.0	20	11	55.0		0.0	GB	
8/7/2018	Fluoride			10	11	110.0						GB	
8/7/2018	Fluoride		<0.083									GB	
8/7/2018	Fluoride	218155	<0.083	10	11	110.0	10	10	100.0		0.0	GB	
8/8/2018	Fluoride			10	11	110.0						GB	
8/8/2018	Fluoride		<0.083									GB	
8/8/2018	Fluoride	218155	<0.083	10	11	110.0	10	10	100.0		0.0	GB	
8/3/2018	Mercury	218132.1	<0.00000	0.001	0.0008533	85.3	0.001	0.0010354	103.5		10.6	LNM	
8/2/2018	Solids, Total Dissolved (TDS)	218126	<2	95.33	100	104.9	1892	1926	101.8		1.4	LBH	
8/3/2018	Solids, Total Dissolved (TDS)	218133	<2	95.33	102	107.0	2212	2168	98.0		1.9	LBH	
8/7/2018	Sulfate	218155	<0.140	20	18	90.0	20	11	55.0		0.0	GB	
8/7/2018	Sulfate		<0.140									GB	
8/7/2018	Sulfate			20	18	90.0						GB	
8/8/2018	Sulfate			20	18	90.0						GB	
8/8/2018	Sulfate		<0.140									GB	
8/8/2018	Sulfate	218155	<0.140	20	18	90.0	20	11	55.0		0.0	GB	

Code Description Code

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

M7 Matrix spike recovery was low.

U Analyte concentration below MDL.

andra D. Wallace

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 10/11/2018

SP-1

Sample Number: 182917-001 Date Collected: 07/30/2018 15:16 Date Received: 8/23/2018

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.69	ug/L		0.2	0.05	GES	09/26/2018 15:47	EPA 200.8-1994, Rev. 5.4
Arsenic, As	0.93	ug/L		0.2	0.05	GES	09/26/2018 15:47	EPA 200.8-1994, Rev. 5.4
Barium, Ba	174	ug/L		0.5	0.1	GES	09/26/2018 15:47	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.06	ug/L	J	0.1	0.02	GES	09/26/2018 15:47	EPA 200.8-1994, Rev. 5.4
Boron, B	0.397	mg/L		0.02	0.005	GES	09/26/2018 15:47	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.08	ug/L	J	0.1	0.02	GES	09/26/2018 15:47	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	130	mg/L		0.1	0.02	GES	09/26/2018 15:47	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1.83	ug/L		0.2	0.04	GES	09/26/2018 15:47	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.676	ug/L		0.1	0.02	GES	09/26/2018 15:47	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.354	ug/L		0.1	0.02	GES	09/26/2018 15:47	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00615	mg/L		0.001	0.0003	GES	09/26/2018 15:47	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	17.1	ug/L		0.5	0.1	GES	09/26/2018 15:47	EPA 200.8-1994, Rev. 5.4
Selenium, Se	5.8	ug/L		0.5	0.2	GES	09/26/2018 15:47	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.09	ug/L	J	0.2	0.05	GES	09/26/2018 15:47	EPA 200.8-1994, Rev. 5.4

SP-2

Sample Number: 182917-002 Date Collected: 07/30/2018 14:42 Date Received: 8/23/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	1.21 ug/L		0.2	0.05	GES	09/26/2018 17:12	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.42 ug/L		0.2	0.05	GES	09/26/2018 17:12	EPA 200.8-1994, Rev. 5.4
Barium, Ba	656 ug/L		0.5	0.1	GES	09/26/2018 17:12	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.05 ug/L	J	0.1	0.02	GES	09/26/2018 17:12	EPA 200.8-1994, Rev. 5.4
Boron, B	0.276 mg/L		0.02	0.005	GES	09/26/2018 17:12	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.08 ug/L	J	0.1	0.02	GES	09/26/2018 17:12	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	117 mg/L		0.1	0.02	GES	09/26/2018 17:12	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	< 0.04 ug/L	U	0.2	0.04	GES	09/26/2018 17:12	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.400 ug/L		0.1	0.02	GES	09/26/2018 17:12	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.245 ug/L		0.1	0.02	GES	09/26/2018 17:12	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0346 mg/L		0.001	0.0003	GES	09/26/2018 17:12	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	26.1 ug/L		0.5	0.1	GES	09/26/2018 17:12	EPA 200.8-1994, Rev. 5.4
Selenium, Se	2.9 ug/L		0.5	0.2	GES	09/26/2018 17:12	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.06 ug/L	J	0.2	0.05	GES	09/26/2018 17:12	EPA 200.8-1994, Rev. 5.4

SP-4

Sample Number: 182917-003 Date Collected: 07/30/2018 13:20 Date Received: 8/23/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.37 ug/L		0.05	0.01	GES	09/26/2018 16:27	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.14 ug/L		0.05	0.01	GES	09/26/2018 16:27	EPA 200.8-1994, Rev. 5.4
Barium, Ba	303 ug/L		0.1	0.02	GES	09/26/2018 16:27	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.078 ug/L		0.02	0.004	GES	09/26/2018 16:27	EPA 200.8-1994, Rev. 5.4
Boron, B	0.399 mg/L		0.005	0.001	GES	09/26/2018 16:27	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.07 ug/L		0.02	0.005	GES	09/26/2018 16:27	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	164 mg/L		0.02	0.004	GES	09/26/2018 16:27	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.562 ug/L		0.05	0.007	GES	09/26/2018 16:27	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.497 ug/L		0.02	0.004	GES	09/26/2018 16:27	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.356 ug/L		0.02	0.004	GES	09/26/2018 16:27	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0627 mg/L		0.0002	0.00006	GES	09/26/2018 16:27	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	3.63 ug/L		0.1	0.02	GES	09/26/2018 16:27	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.7 ug/L		0.1	0.03	GES	09/26/2018 16:27	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.05 ug/L	J	0.05	0.01	GES	09/26/2018 16:27	EPA 200.8-1994, Rev. 5.4

SP-5R

Sample Number: 182917-004 Date Collected: 07/30/2018 16:05 Date Received: 8/23/2018

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.05	ug/L	J	0.05	0.01	GES	09/26/2018 16:32	EPA 200.8-1994, Rev. 5.4
Arsenic, As	47.3	ug/L		0.05	0.01	GES	09/26/2018 16:32	EPA 200.8-1994, Rev. 5.4
Barium, Ba	2140	ug/L		0.1	0.02	GES	09/26/2018 16:32	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.052	ug/L		0.02	0.004	GES	09/26/2018 16:32	EPA 200.8-1994, Rev. 5.4
Boron, B	0.246	mg/L		0.005	0.001	GES	09/26/2018 16:32	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.02	ug/L	J	0.02	0.005	GES	09/26/2018 16:32	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	131	mg/L		0.02	0.004	GES	09/26/2018 16:32	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.082	ug/L		0.05	0.007	GES	09/26/2018 16:32	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.482	ug/L		0.02	0.004	GES	09/26/2018 16:32	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.415	ug/L		0.02	0.004	GES	09/26/2018 16:32	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0946	mg/L		0.0002	0.00006	GES	09/26/2018 16:32	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	1.17	ug/L		0.1	0.02	GES	09/26/2018 16:32	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.1	ug/L		0.1	0.03	GES	09/26/2018 16:32	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.02	ug/L	J	0.05	0.01	GES	09/26/2018 16:32	EPA 200.8-1994, Rev. 5.4

SP-10

Sample Number: 182917-005 Date Collected: 07/30/2018 13:50 Date Received: 8/23/2018

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.34 ug/L		0.1	0.02	GES	09/26/2018 16:37	EPA 200.8-1994, Rev. 5.4
Arsenic, As	7.61 ug/L		0.1	0.02	GES	09/26/2018 16:37	EPA 200.8-1994, Rev. 5.4
Barium, Ba	2330 ug/L		0.2	0.04	GES	09/26/2018 16:37	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.043 ug/L		0.04	0.008	GES	09/26/2018 16:37	EPA 200.8-1994, Rev. 5.4
Boron, B	1.17 mg/L		0.01	0.002	GES	09/26/2018 16:37	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.02 ug/L	J	0.04	0.01	GES	09/26/2018 16:37	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	227 mg/L		0.04	0.008	GES	09/26/2018 16:37	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.06 ug/L	J	0.1	0.01	GES	09/26/2018 16:37	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	2.16 ug/L		0.04	0.008	GES	09/26/2018 16:37	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.102 ug/L		0.04	0.008	GES	09/26/2018 16:37	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.242 mg/L		0.0004	0.0001	GES	09/26/2018 16:37	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	18.5 ug/L		0.2	0.04	GES	09/26/2018 16:37	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.09 ug/L	J	0.2	0.06	GES	09/26/2018 16:37	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.04 ug/L	J	0.1	0.02	GES	09/26/2018 16:37	EPA 200.8-1994, Rev. 5.4

SP-11

Sample Number: 182917-006 Date Collected: 07/30/2018 14:17 Date Received: 8/23/2018

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.35	ug/L		0.05	0.01	GES	09/26/2018 16:42	EPA 200.8-1994, Rev. 5.4
Arsenic, As	4.22	ug/L		0.05	0.01	GES	09/26/2018 16:42	EPA 200.8-1994, Rev. 5.4
Barium, Ba	539	ug/L		0.1	0.02	GES	09/26/2018 16:42	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.029	ug/L		0.02	0.004	GES	09/26/2018 16:42	EPA 200.8-1994, Rev. 5.4
Boron, B	0.280	mg/L		0.005	0.001	GES	09/26/2018 16:42	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.04	ug/L		0.02	0.005	GES	09/26/2018 16:42	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	124	mg/L		0.02	0.004	GES	09/26/2018 16:42	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.379	ug/L		0.05	0.007	GES	09/26/2018 16:42	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	5.12	ug/L		0.02	0.004	GES	09/26/2018 16:42	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.404	ug/L		0.02	0.004	GES	09/26/2018 16:42	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0370	mg/L		0.0002	0.00006	GES	09/26/2018 16:42	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	8.85	ug/L		0.1	0.02	GES	09/26/2018 16:42	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.7	ug/L		0.1	0.03	GES	09/26/2018 16:42	EPA 200.8-1994, Rev. 5.4
Thallium, TI	0.03	ug/L	J	0.05	0.01	GES	09/26/2018 16:42	EPA 200.8-1994, Rev. 5.4

Duplicate BAP

Sample Number: 182917-007 Date Collected: 07/30/2018 15:16 Date Received: 8/23/2018

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.68	ug/L		0.05	0.01	GES	09/26/2018 16:47	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.07	ug/L		0.05	0.01	GES	09/26/2018 16:47	EPA 200.8-1994, Rev. 5.4
Barium, Ba	175	ug/L		0.1	0.02	GES	09/26/2018 16:47	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.101	ug/L		0.02	0.004	GES	09/26/2018 16:47	EPA 200.8-1994, Rev. 5.4
Boron, B	0.162	mg/L		0.005	0.001	GES	09/26/2018 16:47	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.09	ug/L		0.02	0.005	GES	09/26/2018 16:47	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	151	mg/L		0.02	0.004	GES	09/26/2018 16:47	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.582	ug/L		0.05	0.007	GES	09/26/2018 16:47	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	1.11	ug/L		0.02	0.004	GES	09/26/2018 16:47	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.824	ug/L		0.02	0.004	GES	09/26/2018 16:47	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00561	mg/L		0.0002	0.00006	GES	09/26/2018 16:47	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	11.8	ug/L		0.1	0.02	GES	09/26/2018 16:47	EPA 200.8-1994, Rev. 5.4
Selenium, Se	5.8	ug/L		0.1	0.03	GES	09/26/2018 16:47	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.062	ug/L		0.05	0.01	GES	09/26/2018 16:47	EPA 200.8-1994, Rev. 5.4

Equipment Blank BAP

Sample Number: 182917-008 Date Collected: 07/30/2018 16:20 Date Received: 8/23/2018

Parameter	Result	Unite	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
1 didilicter	Nesun	Office	Quai	1/1	IIIDL		Analysis Date/Time	Metriod
Antimony, Sb	< 0.01	ug/L	U	0.05	0.01	GES	09/26/2018 16:52	EPA 200.8-1994, Rev. 5.4
Arsenic, As	0.01	ug/L	J	0.05	0.01	GES	09/26/2018 16:52	EPA 200.8-1994, Rev. 5.4
Barium, Ba	< 0.02	ug/L	U	0.1	0.02	GES	09/26/2018 16:52	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.004	ug/L	U	0.02	0.004	GES	09/26/2018 16:52	EPA 200.8-1994, Rev. 5.4
Boron, B	0.013	mg/L		0.005	0.001	GES	09/26/2018 16:52	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.005	ug/L	U	0.02	0.005	GES	09/26/2018 16:52	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	< 0.004	mg/L	U	0.02	0.004	GES	09/26/2018 16:52	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	< 0.007	ug/L	U	0.05	0.007	GES	09/26/2018 16:52	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.01	ug/L	J	0.02	0.004	GES	09/26/2018 16:52	EPA 200.8-1994, Rev. 5.4
Lead, Pb	< 0.004	ug/L	U	0.02	0.004	GES	09/26/2018 16:52	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00009	mg/L	J	0.0002	0.00006	GES	09/26/2018 16:52	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	0.07	ug/L	J	0.1	0.02	GES	09/26/2018 16:52	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.03	ug/L	U	0.1	0.03	GES	09/26/2018 16:52	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.01	ug/L	J	0.05	0.01	GES	09/26/2018 16:52	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

Michael Ohlinger, Chemist

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave.

Chain of Custody Record

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type	Delivery Type						
Ge Chest Bag Action Pak PCB Mailer Bottle	UPS	FEDEX	US Mail	Walk in	Shuttle		
Other	Othe						
	Tracking #	ŧ					
Client Jill Parker - With	1	-	ample Matri	×	The second		
Received By JTP	DGA	PCB Oil	Water	Oil	Soil		
Received Date 8///8							
Open Date	— Solid	Liquid	Other				
Container Temp Read Thermometer Senal #F04103	_	Project I.D.	3809	6	_		
Correction Factor +/.2	Were sa	amples receive	d on ice?	YES	NO		
Corrected Temp 4.2							
Did container arrive in good condition?	YES	NO					
				2.000			
Was sample documentation received?	YES	NO			170		
Was documentation filled out properly?	YES	NO					
Were samples labeled properly?	YES	NO .			-		
Were correct containers used?	YES	NO .					
Were the pH's of samples appropriately checked?	YES	NO					
Total number of sample containers		•					
Was any corrective action taken?	NO	Person Con Date & Tim	-		7,0		
Comments		Date & Hill					
Comments							

Sample ID	Analysis	рН	Preservative Added / Lot #
<u> 5p1</u>	metals		
Sp-2	1		
Sp-4	1		
Sp-SR	4		
Sp-10	Y .		
<u>Sp-11</u>		1	
Duplicate Bap	1		
Equipment Blank By	7		
	11 199		
			/
			,
			/
			/
			/
-			/
			1
	· · · · · · · · · · · · · · · · · · ·		

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 10/11/2018

SP-1

Sample Number: 182697-001 Date Collected: 07/30/2018 15:16 Date Received: 8/9/2018

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	2.07	pCi/L	0.20	0.59	jls	8/27/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.986	pCi/L	0.15	0.13	jls	8/30/2018	SW-846 9315-1986,Rev. 0

SP-2

Sample Number: 182697-002 Date Collected: 07/30/2018 14:42 Date Received: 8/9/2018

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	7.42	pCi/L	0.21	0.45	jls	8/27/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	2.19	pCi/L	0.19	0.12	jls	8/30/2018	SW-846 9315-1986,Rev. 0

SP-4

Sample Number: 182697-003 Date Collected: 07/30/2018 13:20 Date Received: 8/9/2018

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	3.15	pCi/L	0.18	0.48	jls	8/27/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	1.7	pCi/L	0.20	0.14	jls	8/30/2018	SW-846 9315-1986,Rev. 0

SP-5R

Sample Number: 182697-004 Date Collected: 07/30/2018 16:05 Date Received: 8/9/2018

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	6.62	pCi/L	0.24	0.57	jls	8/27/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	4.66	pCi/L	0.28	0.099	jls	8/30/2018	SW-846 9315-1986,Rev. 0

SP-10

Sample Number: 182697-005 Date Collected: 07/30/2018 13:50 Date Received: 8/9/2018

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	0.98	pCi/L	0.17	0.54	jls	8/27/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	6.91	pCi/L	0.39	0.13	jls	8/30/2018	SW-846 9315-1986,Rev. 0

SP-11

Sample Number: 182697-006 Date Collected: 07/30/2018 14:17 Date Received: 8/9/2018

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	0.701	pCi/L	0.16	0.50	jls	8/27/2018	SW-846 9320-2014,Rev. 1.0
Radium-226	0.249	pCi/L	0.062	0.10	jls	8/30/2018	SW-846 9315-1986,Rev. 0

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Michael Ohlinger, Chemist

Michael & Ollinger

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Chain of Custody Record

Dolan Chemical Laboratory (DCL)

4001 Bixby Road				כ	naln	or cu	Stody	shain of Custody Record	5					
Groveport, Ohio 43125				Progr	am: Co	oal Comb	Sustion !	Program: Coal Combustion Residuals (CCR)	(CCR)					
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					ισ.	Site Contact:	 			Date:			For Lab Use Only: COC/Order #:	
	Analysis Tu	urnaround 1	Analysis Turnaround Time (in Calendar Days)	andar Day	(s)	_						_		
Project Name: Northeastern PP CCR						25		Three (six everv	1 L +		Field-filter		401101	_
Contact Name: Jill Parker-Witt						정 전 전	bottle,				250 mL bottle, then		(0×0)	
Contact Phone: 318-673-3816						īĪ		1L bottles, pH<2, HNO3	Cool, 0-6C	bottle, HCL", pH<2	pH<2, HNO3			_
Sampler(s): Kenneth McDonald	Neec	results by	Need results by October 11, 2018	2018		'eg 's								
						Α,								_
				\vdash		' 4 S '	٦.							_
	45	- 0			jo #	mpler(s Ca, Li, 2, Cd, C	7, 56, T 10, Se, T	.522-e	nd Br,	6	vlossi vloss			
Sample Identification	Date	Time	G=Grab)	Matrix	Cont.	' 8	W			Н		_	Sample Specific Notes:	_
SP-1	7/30/2018	1516	9	GW	9			×						
SP-2	7/30/2018	1442	O	GW	60			×						1
SP-4	7/30/2018	1320	O	GW	60			×						-
SP-5R	7/30/2018	1605	ŋ	GW	e			×						I
SP-10	7/30/2018	1350	ŋ	Q.W	8			×						
SP-11	7/30/2018	1417	ŋ	Q.W	e			×				-		
														Т
														1
														1
														Т .
														T
														T
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	103; 5=NaOH;	6= Other		; F = filter in field	in field		4	4	-	2	F4			
* Civil Dodding marred for an illustral for Doding	404	1												_

Six 1L Bottles must be collected for Radium for every 10th sample.

** HCI must be Trace Metal Grade for Mercury analysis when samples cannot be delivered to the laboratory within 48 hours of sampling.

Special Instructions/QC Requirements & Comments:

****NEED RUSULTS BY OCTOBER 11, 2018****

Relinquished by:	Company:	Date/Lime:	Received by:	Date/Time:	
Relinquished by:	Compa	Date/Time:	Received by:	Date/Time:	
Relinquished by:	Company:	Date/Time:	Received in Laboratory by Bellette	Date/Jime / 2018 1448	7

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Dolan, Rev. 2, 1/102/16

MED WATER & WASTE SAMPLE RECEIPT FORM

	Package Type	Delivery Type
	Cooler Box Bag Envelope	PONY UPS FEDEX USPS
	M C	Other
	Plant/Customer Northlaster	Other
		Number of Glass Containers:
		Number of Mercury Containers:
1	The state of the s	or N/A Initial:on ice / no ice
F		If No, specify each deviation:
	× 1.	Comments
		Comments
	Requested turnaround:	If RUSH, who was notified?
	pH (15 min) Cr ⁺⁶ (pres) NO ₂ or N (24 hr)	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
	Was COC filled out properly?	Comments
	Were samples labeled properly? Y N	Comments
		Comments
	Was pH checked & Color Coding done? Y	N or N/A Initial & Date: $9-17$
		Yes: By whom & when: (See Prep Book)
	Is sample filtration requested? Y N	Comments(See Prep Book)
	Was the customer contacted? If Yes:	Person Contacted:
	Lab ID# 182697 Initial &	Date & Time :
	Langad by Alas	ents:
	1/60	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 39173 Address: 502 N. Allen Avenue Contact: Jill Parker-Witt **Date Received: 02/06/2019**

Shreveport, LA 71101

Phone: (318) 673-3816 Fax: (318) 673-3960

By: KM AEP Sample ID: 222481 Collected Date: 02/04/2019 Cust Sample ID: SP-1 Location: Northeastern P.S. Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Water (222481)

Water (ZZZ-TOT)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	Q18	mg/L	0.219	1	EPA 300.0	02/06/2019 14:39	Q18	Q18
Fluoride	Q18	mg/L	0.083	1	EPA 300.0	02/06/2019 14:39	Q18	Q18
Solids, Total Dissolved (TDS)	460	mg/L	2	1	SM 2540 C-2011	02/08/2019 14:00		GB
Sulfate	Q18	mg/L	0.140	1	EPA 300.0	02/06/2019 14:39	Q18	Q18

AEP Sample ID: 222482 **Collected Date: 02/04/2019** Bv: KM Cust Sample ID: SP-10 Matrix: Water Location: Northeastern P.S.

Sample Desc.: Coal Combustion Residuals (CCR)

Water (222482)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	Q18	mg/L	0.219	1:100	EPA 300.0	02/06/2019 14:39	Q18	Q18
Fluoride	< Q18	mg/L	0.083	1	EPA 300.0	02/06/2019 14:39	Q18	Q18
Solids, Total Dissolved (TDS)	3440	mg/L	2	1	SM 2540 C-2011	02/08/2019 9:45		GB
Sulfate	Q18	mg/L	0.140	1	EPA 300.0	02/06/2019 14:39	Q18	Q18

			Q	uality Cor	ntrol Data							
		* Quality	control unit	ts are the san	ne as reporte	d analytical 1	results					
			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
2/8/2019	Solids, Total Dissolved (TDS)	222448	<2	584	558	95.5					0.0	GB

Q18 Analysis was performed by a contracted Laboratory. See attached report.

Gonathan Boundill	26-Feb-19
$^{\mathcal{O}}$ Quality Assurance Officer	Report Date

Form COC-04, Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Sh		Relinquished by John John John	Relinquished by:	Special Instructions/QC Requirements & Comments	* Six 1L Bottles must be collected for Radium for every 10th sample.	Preservation Used: 1= lce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other				SP-10	SP-1	Sample Identification	Sampler(s): Kenneth McDonald	Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816	Contacts: John Davis (318-673-3811)	Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave. Shreveport , LA 71101
d for Coal Co	Company: V	Company:	Company:	ts:	every 10th sa	NO3; 5=NaOI				2/4/2019	2/4/2019	Sample S		Analysis Turnaround Time (in Calendar Days) Routine (28 days for Monitoring Wells)		
ombustion		& Common of the	11		ample.	ન; 6= Othe				1450		Sample (C		alysis Turnaround Time (in Calendar Days Routine (28 days for Monitoring Wells)		
Residual										G		Sample Type (C=Comp, G=Grab)		ime (in Cak for Monito		
(CCR) Sa	Date/Time;	Date/Time: こん・/ら	Date/Time: 0 2/06 / 19			; F= filte				GW		Matrix C		endar Day		Cha
mpling - S		1436	9 1400			F= filter in field						Control Sampler(s) Ini	tials	s	Site	in of (
	Received in	Received by:	Receives:hy			4						Mercury		500 mL bottle, pH<2, HNO3	Site Contact:	Chain of Custody Record
ont, Rev. 1, 1/10/17	Received in Laboratory by:	y:	A Sold			F4						dissolved Fo	and Mn	Field-filter 500 mL bottle, then pH<2, HNO3		/ Recor
) ×	(1/2			1				×	×	TDS, Fluor Chloride, S	ride, Sulfate	1 L bottle, Cool, 0-6C		, G
						4						Ra-226, Ra	ı-228	Three (six every 10th*) 1 L bottles, pH<2, HNO3	Date:	Ser
						-1870									-	2/6
	2/6/19 14:39	Date/Time:	Date/Time: 14c6							222482	18heet	Sample Specific Notes:		Mc#39173	For Lab Use Only:	6/19

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type	Delivery Type
Ice Chest Bag Action Pak PCB Mailer Bottle	UPS FEDEX US Mail Walk in Shuttle
Other	Other
	Tracking #
Client J. 11 Parker - Witt	Sample Matrix
Received By	DGA PCB Oil Water Oil Soil
Received Date <u>Z/6//9</u> Open Date	
Container Temp Read /	Project I.D. 39/73
Correction Factor	Were samples received on ice? (YES) NO
Corrected Temp	
Did container arrive in good condition?	(YES) NO
Was sample documentation received?	(YES) NO
Was documentation filled out properly?	VES NO
vad dodamentation mied out property.	110
Were samples labeled properly?	(PES) NO
Were correct containers used?	NO NO
More the pulls of complex environments in checked?	VIES (1) ALL
Were the pH's of samples appropriately checked?	YES (NO N)14
Total number of sample containers Z	
	_
Was any corrective action taken?	NO Person Contacted
Comments	Date & Time
Comments	
2	
	-

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 2/26/2019

SP-1 222481

Sample Number: 190575-001 Date Collected: 02/04/2019 14:35 Date Received: 2/20/2019

Parameter		Data Qual RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	46.6 mg/L	0.1	0.03	CRJ	02/21/2019 16:51	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.97 mg/L	0.2	0.04	CRJ	02/21/2019 16:51	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	71.4 mg/L	1	0.2	CRJ	02/21/2019 16:51	EPA 300.1-1997, Rev. 1.0

SP-10 222482

Sample Number: 190575-002 Date Collected: 02/04/2019 14:50 Date Received: 2/20/2019

Parameter		ata ual RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	1720 mg/L	2	0.6	CRJ	02/21/2019 17:37	EPA 300.1-1997, Rev. 1.0
Fluoride, F	6.08 mg/L	0.2	0.04	CRJ	02/21/2019 17:59	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	10.1 mg/L	1	0.2	CRJ	02/21/2019 17:59	EPA 300.1-1997, Rev. 1.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

Michael Ohlinger, Chemist

Muhael & Ollinger

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

502 N. Allen Ave.
Shreveport, LA 71101
Phone 318-673-3802
FAX 318-673-3960

CHAIN OF CUSTODY

		ノナンクケー	1 100-	COC 39173	REMARKS	Due: 3/1/2019										
					Number									RECEIVED BY	RECEIVED BY	
DUESTED														DATE/TIME	DATE/TIME	_
ANALYSIS REQUESTED		.00	E A	nide EP	Flon	× ×	× ×							BY (SIGN)	BY (SIGN)	
				© ₩		- X	×			 -				RELINQUISHED BY (SIGN)	RELINQUISHED BY (SIGN)	
			318-673-3803		SAMPLE 1.D.	222481	222482									ント・と
FAX NO.		PHONE NO.			SAMPLE SOURCE & DESCRIPTION	SP-1	SP-10							DATE/TIME RECEIVED BY	DATE/TIME RECEIVED BY	61.02.2
	Northeastern CCR	(Please Print)	Jonathan Barnhill	RE)	TIME SAMPLE	14:35	14:50							San J. el		or 7000
OPCO/PLANT NAME		CONTACT PERSON		SAMPLER(SIGNATU	DATE	4-Feb-19	4-Feb-19							BELINDUISHED BY SIGN)	REDNOUISHED BY (RECEIVED FOR LABORATOR

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type							
Cooler Box Bag Envelope	PONY UPS FedEX USPS							
T.	Other							
	Number of Plastic Containers:							
Opened By	Number of Glass Containers:							
Date/Time 2-2019 7:45	Number of Mercury Containers:							
Were all temperatures within 0-6°C? (Y) N (IR Gun Ser# 18135 443 Expir. 6-12-20)	or N/A Initial: SHon ice / no ice							
	Comments							
Was Chain of Custody received? N	Comments							
Requested turnaround:	If RUSH, who was notified?							
pH (15 min) Cr ⁺⁶ (pres) NO ₂ or N (24 hr)	IO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)							
Was COC filled out properly?	Comments							
Were samples labeled properly? Y N	Comments							
Were correct containers used? / N	Comments							
Was pH checked & Color Coding done? Y	N or N/A Initial & Date: SM 7-20-19							
- Was Add'l Preservative needed? Y	Yes: By whom & when: (See Prep Book)							
Is sample filtration requested? Y / N	Comments (See Prep Book)							
Was the customer contacted? If Yes:	Person Contacted:							
Lab ID# 190575 Initial & I	Date & Time :							
Logged by Commercial	nts:							
Reviewed by MS								

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 2/14/2019

SP-1

Sample Number: 190448-001 Date Collected: 02/04/2019 14:35 Date Received: 2/8/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.354 mg/L		0.05	0.009	GES	02/12/2019 20:06	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	150 mg/L		0.2	0.03	GES	02/12/2019 20:06	EPA 200.8-1994, Rev. 5.4

SP-10

Sample Number: 190448-002 Date Collected: 02/04/2019 14:50 Date Received: 2/8/2019

Parameter	Result Units	Data Qual RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	1.17 mg/L	0.05	0.009	GES	02/12/2019 21:36	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	144 mg/L	0.2	0.03	GES	02/12/2019 21:36	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Michael Ohlinger, Chemist

Muhael & Ollinger

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road	·			S S	ain of	Custod	hain of Custody Record	ō.				
Groveport, Ohio 43125					20	2 OF 2 SAMPLING	ING			0000		
Contacts: Dave Conover (614-836-4184)					Site	Site Contact:			Date:		For Lab Use Only: COC/Order #:	
Project Name: Northeastern PP CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816	Analysis © Ro	Turnaround utine (28 da)	Analysis Turnaround Time (in Calendar Days)	endar Da ng Wells	ys)	250 mL bottle, pH<2, HNO3	Field-filter 250 mL bottle, then pH<2, HNO3	1 L bottle, Cool, 0-6C	Three (six every 10th*) L bottles, pH<2, HNO3		190448	
Sampler(s): Kenny McDonald					slait		d, Cr, Mg, Mn,	70 8	1-228			
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	Cont. Sampler(s) Ini	Boron, Calci	Dissolved B, Ba, Be, Ca, C Co, Fe, K, Li,	TDS, F, CI,	Ra-226, Ra		Sample Specific Notes:	
SP-1	2/4/2019	1435	9	GW	-	×						
SP-10	2/4/2019	1450	ß	GW	-	×						
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	INO3; 5=Na	OH; 6= Oth	her]; F= fil	filter in field	4	F4	1	4			
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th	sample.										

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

2:30Pm

Date/Time:

Received in Laboratory by:

Date/Time:

Company:

Relinquished by:

Received by:

Date/Time: 02/66/19 1400 Pate/Time: R

Company:

Relinquished by:

Relinquished by:

Special Instructions/QC Requirements & Comments:

Company:

Received by:

Date/Time:

Date/Time:

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FEDEX USPS
	Other
Plant/Customer Northerntern	Number of Plastic Containers:
Opened By MSO	Number of Glass Containers:,
	Number of Mercury Containers:
1 m m m 11 m m	or N/A nitial :on ice / no ice
	Comments
Was Chain of Custody received? N Requested turnaround:	Comments If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO₂ or N (24 hr)	IO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled properly? N	Comments
Were correct containers used? &/ N	Comments
Was pH checked & Color Coding done?	ON or N/A Initial & Date: Mo 2/8/19
	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID#	Date & Time :
Logged by Commer	nts: Plant intoj date/ time not
Reviewed by /// ((

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Date Received: 02/28/2019

AEP ANALYTICAL CHEMISTRY SERVICES Analysis Report

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 39318 Company: SEP - Environmental (JP-W)

Contact: Jill Parker-Witt

Address: 502 N. Allen Avenue Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

AEP Sample ID: 223109 Collected Date: 02/27/2019 By: KM
Cust Sample ID: SP-1 Location: Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (223109)

Mictais (ZZO105)								l l
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 14:30	U	LNM
Water (223109)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	532	mg/L	2	1	SM 2540 C-2011	03/02/2019 14:02		JTD

AEP Sample ID: 223110 Collected Date: 02/27/2019 By: KM
Cust Sample ID: SP-2 Location: Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (223110)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 14:39	U	LNM
Water (223110)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids Total Dissolved (TDS)	932	ma/l	2	1	SM 2540 C-2011	03/02/2019 14:02		JTD

AEP Sample ID: 223111 Collected Date: 02/27/2019 By: KM

Cust Sample ID: SP-4 Location: Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (223111)

Parameter	value	Onit	Det. Limit	Dil./Conc.	wethod	Analysis Date/Time	Codes	recn
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 14:42	U	LNM
Water (223111)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	1122	mg/L	2	1	SM 2540 C-2011	03/02/2019 16:00		JTD

Dot Limit Dil/Cono

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 39318 Address: 502 N. Allen Avenue **Date Received:** 02/28/2019 Shreveport, LA 71101

Contact: Jill Parker-Witt

Phone: (318) 673-3816 Fax: (318) 673-3960

By: KM AEP Sample ID: 223112 Collected Date: 02/27/2019 Cust Sample ID: SP-5 **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (223112

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 14:45	U	LNM
Water (223112)			•					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	1530	mg/L	2	1	SM 2540 C-2011	03/02/2019 16:00		JTD

AEP Sample ID: 223113 Collected Date: 02/27/2019 Bv: KM Location: Northeastern Power Plant Cust Sample ID: SP-10 Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Motale (223113)

Wietais (225115)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 14:48	U	LNM
Water (223113)							•	
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	3504	mg/L	2	1	SM 2540 C-2011	03/02/2019 16:00		JTD

By: KM AEP Sample ID: 223114 Collected Date: 02/27/2019

Cust Sample ID: SP-11 **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (223114)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 14:51	U	LNM
Water (223114)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	1168	mg/L	2	1	SM 2540 C-2011	03/02/2019 16:00		JTD

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) Report ID : 39318

Contact: Jill Parker-Witt

Address: 502 N. Allen Avenue Shreveport, LA 71101

Date Received: 02/28/2019 Phone: (318) 673-3816

Fax: (318) 673-3960

Collected Date: 02/27/2019 AEP Sample ID: 223115 Cust Sample ID: Duplicate BAP

By: KM **Location:** Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (223115)

ivictais (EES i iS)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 14:54	U	LNM
Water (223115)							,	
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	3632	mg/L	2	1	SM 2540 C-2011	03/02/2019 16:00		JTD

Collected Date: 02/27/2019 By: KM AEP Sample ID: 223116

Cust Sample ID: Equipment Blank BAP Location: Northeastern Power Plant Matrix: Water

Sample Desc.: Coal Combustion Residuals (CCR)

Metals (223116)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	03/06/2019 14:57	U	LNM

		* Quality		•	ntrol Data ne as reported		results					
			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
3/6/2019	Mercury	223139.2	<0.00000	0.001	0.0008521	85.2	0.001	0.000892	89.2		2.0	LNM
3/6/2019	Mercury	223107.2	<0.00000	0.001	0.00097	97.0	0.001	0.0009418	94.2		3.4	LNM
3/6/2019	Mercury	223097.2	<0.00000	0.001	0.00097	97.0	0.001	0.0008259	82.6		2.5	LNM
3/2/2019	Solids, Total Dissolved (TDS)	223111	<2	99.33	100	100.7	2806	2794	99.6		3.2	JTD
3/2/2019	Solids, Total Dissolved (TDS)	223110	<2	99.33	98	98.7	2806	2766	98.6		3.4	JTD

Code Description Code

Analyte concentration below MDL.

Quality Assurance Officer

15-Apr-19 Report Date

Shreveport, LA 71101			P	rogram	: Coal (Combus	stion R	Program: Coal Combustion Residuals ((CCR)	2	Z	2-28-19	
Contacts: John Davis (318-673-3811)					Site	Site Contact:	••			Date:		For Lab Use Only: COC/Order #	
Project Name: Northeastern PP CCR						25	250 mL	Field-filter		Three		Or A source	
Contact Name: Jill Parker-Witt	Analysis T	Analysis Turnaround Time (in Calendar Days)	Time (in Cal	endar Day	/s)			bottle, then		(six every 10th") 1		81565 4.00	
Contact Phone: 318-673-3816	© Rou	 Routine (28 days for Monitoring Wells) 	s for Monito	ring Wells		<u> </u>	HNO3	HNO3	0-6C	L bottles, pH<2, HNO3			
Sampler(s): Kenneth McDonald					<u> </u>			nd Mn		28			
				-	Initials			l Fe ar		Ra-22			
Sample Identification	Sample Date	Sample (Sample Type (C=Comp, G=Grab)	Matrix C	C # of of Sampler(s) !		Mercury	dissolved	TDS	Ra-226, R		Sample Specific Notes:	
SP-1	2/27/2019	1550	G	GW	2		×		×			723/09,1-223/09,2	
SP-2	2/27/2019	1515	G	GW	2		×		×	:		- 273110.	
SP-4	2/27/2019	1620	G	GW	2		×		×			1	
SP-5	2/27/2019	1645	G	GW	2		×		×			1-	
SP-10	2/27/2019	1420	G	GW	2		×		×			223113.1-223113. 2	
SP-11	2/27/2019	1445	G	GW	2		×		×				
DUPLICATE BAP	2/27/2019	1420	G	GW	2		×		×				
EQUIPMENT BLANK BAP	2/27/2019	1640	G	8			×					971622	
					-								
							+						
	103; 5=NaO	H; 6= Othe		; F= filte	F= filter in field		4	F4	1	4			
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th sa	ample.											
Special Instructions/AC Requirements & Comments:	ý.												
WAR	Company:	4		Date/Time: 02/28/19	19 1855		Received by:			:		Date/Time:	
Reinquished by:	Company:		-	Date/Time:		Recei	Received by:					Date/Time:	
Relinquished by:	Company:			Date/Time:		Recei	ved in La		ay ×			Date/Time:	
Form CUC-04, AEP Chain of Custody (CUC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	for Coal Co	mbustion	Residual (CCR) Sar	npling - s	hrevepo	rt, Rev. 1	, 1/10/17					

Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave.

Chain of Custody Record

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

		Delivery Typ	<i>,</i> C	
UPS	FEDEX	US Mail	Walk in	Shuttle
Othe	er			
Tracking #	1			
	***	Sample Mate	rix	
DGA	PCB Oil	Water	Oil	Soil
		0.11		
— Solid	Liquid	Other	·	
	Project I.I	. <u>393</u>	18	_
Were sa	amples receiv	ved on ice?	YES	NO
YES	NO	· -		
(FES)	NO			
YES	NO	-		
YES	NO			
YES	NO			1
YES	NO			
_				
(NO)				
1172				
	Tracking # DGA Solid Were sa YES YES YES YES	Tracking # DGA PCB Oil Solid Liquid Project I.I Were samples receive VES NO VES NO VES NO VES NO Person Co Date & Ti	Tracking # Sample Mater DGA PCB Oil Water Solid Liquid Other Project I.D. 393 Were samples received on ice? VES NO VES NO VES NO Person Contacted Date & Time	Tracking # Sample Matrix DGA PCB Oil Water Oil Solid Liquid Other Project I.D. 39318 Were samples received on ice? YES VES NO VES NO VES NO VES NO Person Contacted Date & Time

Sample ID	Analysis	рН	Preservative Added / Lot #
_5p-1	Mercury	62	
<u>Sp-z</u>			<i></i>
<u>Sp-4</u>			
<u>Sp-10</u>			
<u>Sp-11</u>			/
Du 0 13aP			
Dup Bap Egwip Bap		V	/
			,
-	- HALLO		/
The second secon		S)	
	-		
		, 	,
	·		
			<i></i>
		. ———	<i></i>
	(m)		<i></i>

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 4/15/2019

SP-1

Sample Number: 190788-001 Date Collected: 02/27/2019 15:50 Date Received: 3/5/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	42.7 mg/L		0.1	0.03	CRJ	03/21/2019 02:51	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.80 mg/L		0.2	0.04	CRJ	03/21/2019 02:51	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	87.1 mg/L		1	0.2	CRJ	03/21/2019 02:51	EPA 300.1-1997, Rev. 1.0

SP-2

Sample Number: 190788-002 Date Collected: 02/27/2019 15:15 Date Received: 3/5/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	351	mg/L		1	0.3	CRJ	03/20/2019 23:48	EPA 300.1-1997, Rev. 1.0
Fluoride, F	2.68	mg/L		0.2	0.04	CRJ	03/21/2019 02:05	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	26.1	mg/L		1	0.2	CRJ	03/21/2019 02:05	EPA 300.1-1997, Rev. 1.0

Sp-4

Sample Number: 190788-003 Date Collected: 02/27/2019 16:20 Date Received: 3/5/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	470 mg/L		1	0.3	CRJ	03/20/2019 23:25	EPA 300.1-1997, Rev. 1.0
Fluoride, F	3.26 mg/L		0.2	0.04	CRJ	03/21/2019 01:42	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	61.5 mg/L		1	0.2	CRJ	03/21/2019 01:42	EPA 300.1-1997, Rev. 1.0

SP-5

Sample Number: 190788-004 Date Collected: 02/27/2019 16:45 Date Received: 3/5/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	739 mg/L		1	0.3	CRJ	03/20/2019 23:02	EPA 300.1-1997, Rev. 1.0
Fluoride, F	3.08 mg/L		0.2	0.04	CRJ	03/21/2019 00:33	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	1.6 mg/L		1	0.2	CRJ	03/21/2019 00:33	EPA 300.1-1997, Rev. 1.0

SP-10

Sample Number: 190788-005 Date Collected: 02/27/2019 14:20 Date Received: 3/5/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	1740 mg/L		2	0.6	CRJ	03/20/2019 22:39	EPA 300.1-1997, Rev. 1.0
Fluoride, F	5.59 mg/L		0.3	0.07	CRJ	03/21/2019 00:56	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	6.9 mg/L		2	0.3	CRJ	03/21/2019 00:56	EPA 300.1-1997, Rev. 1.0

SP-11

Sample Number: 190788-006 Date Collected: 02/27/2019 14:45 Date Received: 3/5/2019

		Data				
Parameter	Result Units	Qual RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	241 mg/L	1	0.3	CRJ	03/20/2019 21:30	EPA 300.1-1997, Rev. 1.0
Fluoride, F	3.44 mg/L	0.2	0.04	CRJ	03/20/2019 21:53	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	95.1 mg/L	1	0.2	CRJ	03/20/2019 21:53	EPA 300.1-1997, Rev. 1.0

Duplicate BAP

Sample Number: 190788-007 Date Collected: 02/27/2019 14:20 Date Received: 3/5/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Chloride, Cl	1730 mg/L		5	2	CRJ	03/25/2019 16:26	EPA 300.1-1997, Rev. 1.0
Fluoride, F	5.73 mg/L		0.2	0.04	CRJ	03/20/2019 20:44	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	7.6 mg/L		1	0.2	CRJ	03/20/2019 20:44	EPA 300.1-1997, Rev. 1.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

Michael Ohlinger, Chemist

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road Graveout, Ohio 44125				Ch Ch	ain c	of Cus	stody	Chain of Custody Record	_ (i			
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)				1001	<u>s</u>	Site Contact:	ct:	osinnais)		Date:		For Lab Use Only: COC/Order #:
Project Name: Northeastern PP BAP CCR Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816	Analysis 6 Rou	Furnaround	Analysis Turnaround Time (in Calendar Days)	lendar Da	lys)		250 mL bottle, pH<2, HNO3	Field-filter 250 mL bottle, then pH<2, HNO3	250 mL bottle, Cool, 0-6C	Three (six every 10th*) L bottles, pH<2, HNO3		190788
Sampler(s): Kenny McDonald						slaif	wn	Ct,	Sulfate	8ZZ-F		
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Inl	Boron, Calci	Dissolved B, Co, Fe, K, Li, Co, Re, K, Li	Fluoride, Chloride,	Ka-226, Ra		Sample Specific Notes:
SP-1	2/27/2019	1550	ŋ	GW	-				×			
SP-2	2/27/2019	1515	Ö	GW	~				×			
4-98	2/27/2019	1620	Ŋ	GW	-				×			
SP-5	2/27/2019	1645	O	GW	-				×			
SP-10	2/27/2019	1420	_S	GW	-				×			
SP-11	2/27/2019	1445	G	GW	-				×			
DUPLICATE BAP	2/27/2019	1420	g	GW	-				×			
											\neg	
					\neg							
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	INO3; 5=Na	OH; 6= Oth	her	; F= fil	; F= filter in field	ple	4	F4	-	4		
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th	sample.									,	
Special Instructions/QC Requirements & Comments:	ıts:											
Relinquished by:	Company: FALL	CA61,		Date/Tim	e: 4//	9 1400 R	Date/Time: 4/16/1/6/Received by:					Date/Time:
Relinquished by:	Company:			Date/Time:	 	E.	Received by:					Date/Time:
Relinquished by:	Company:			Date/Time:	<u></u>	<u> ~ </u>	eceived in	Received in Eaboratory by:	25	0		Date Kline: 17 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	rd for Coal	Combustic	n Residual	(CCR)	ampling	g - Shreve	sport, Rev.	1, 1/10/17				

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer Northeus tim	Number of Plastic Containers:
Opened By TWB	Number of Glass Containers:
	Number of Mercury Containers:
Were all temperatures within 0-6°C2 Y/N (IR Gun Ser#181354432, Expir. 12-20	or N/A Initial:
Was container in good condition? 4/ N	Comments
Was Chain of Custody received? 🕢 N	Comments
Requested turnaround: Kout Ne	If RUSH, who was notified?
pH (15 min) Cr ⁺⁶ (pres) NO₂ or No₂ (24 hr)	O ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? Y/N	Comments
Were samples labeled properly? \(\forall \) N	Comments
	Comments
Was pH checked & Color Coding done? Y)	N or N/A Initial & Date: MSJ JWB 3/5/19
- Was Add'l Preservative needed? Y	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 190788 Initial & D	ate & Time:
Logged byComment	s:
Reviewed by MCC	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 4/15/2019

SP-1

Sample Number: 190826-001 Date Collected: 02/27/2019 15:50 Date Received: 3/7/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.6 ug/L	J	1	0.2	CTK	04/05/2019 18:19	EPA 200.8-1994, Rev. 5.4
Arsenic, As	0.7 ug/L	J	1	0.3	CTK	04/05/2019 18:19	EPA 200.8-1994, Rev. 5.4
Barium, Ba	168 ug/L		1	0.2	CTK	04/05/2019 18:19	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.2 ug/L	U	1	0.2	CTK	04/05/2019 18:19	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.1 ug/L	U	0.5	0.1	CTK	04/05/2019 18:19	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	2.72 ug/L		2	0.4	CTK	04/05/2019 18:19	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	< 0.2 ug/L	U	0.5	0.2	CTK	04/05/2019 18:19	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.2 ug/L	J	1	0.2	CTK	04/05/2019 18:19	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	10 ug/L	J	20	4	CTK	04/05/2019 18:19	EPA 200.8-1994, Rev. 5.4
Selenium, Se	2.8 ug/L		2	0.3	CTK	04/05/2019 18:19	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 1 ug/L	U	5	1	CTK	04/05/2019 18:19	EPA 200.8-1994, Rev. 5.4
Boron, B	0.200 mg/L		0.05	0.009	CTK	04/05/2019 18:19	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	122 mg/L		0.2	0.03	CTK	04/05/2019 18:19	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00641 mg/L		0.002	0.0001	CTK	04/05/2019 18:19	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	2.39	pCi/L	0.18	0.49	jls	4/2/2019	SW-846 9320-2014,Rev. 1.0
The LRB result (0.99	pCi/L) exceeds th	ne critical valu	e of 0.95 pCi/L.				
Radium-226	0.666	pCi/L	0.12	0.17	jls	3/26/2019	SW-846 9315-1986,Rev. 0

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-2

Sample Number: 190826-002 Date Collected: 02/27/2019 15:15 Date Received: 3/7/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	1.39 ug/L		1	0.2	CTK	04/05/2019 18:24	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.29 ug/L		1	0.3	CTK	04/05/2019 18:24	EPA 200.8-1994, Rev. 5.4
Barium, Ba	841 ug/L		1	0.2	CTK	04/05/2019 18:24	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.2 ug/L	U	1	0.2	CTK	04/05/2019 18:24	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.1 ug/L	U	0.5	0.1	CTK	04/05/2019 18:24	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	4.30 ug/L		2	0.4	CTK	04/05/2019 18:24	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	< 0.2 ug/L	U	0.5	0.2	CTK	04/05/2019 18:24	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.3 ug/L	J	1	0.2	CTK	04/05/2019 18:24	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	25.8 ug/L		20	4	CTK	04/05/2019 18:24	EPA 200.8-1994, Rev. 5.4
Selenium, Se	3.7 ug/L		2	0.3	CTK	04/05/2019 18:24	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 1 ug/L	U	5	1	CTK	04/05/2019 18:24	EPA 200.8-1994, Rev. 5.4
Boron, B	0.116 mg/L		0.05	0.009	CTK	04/05/2019 18:24	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	94.0 mg/L		0.2	0.03	CTK	04/05/2019 18:24	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0329 mg/L		0.002	0.0001	CTK	04/05/2019 18:24	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	3.65	pCi/L	0.19	0.49	jls	4/2/2019	SW-846 9320-2014,Rev. 1.0
The LRB result (0.99)	pCi/L) exceeds th	ne critical valu	e of 0.95 pCi/L.				
Radium-226	2.11	pCi/L	0.22	0.14	jls	3/26/2019	SW-846 9315-1986,Rev. 0

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Sp-4

Sample Number: 190826-003 Date Collected: 02/27/2019 16:20 Date Received: 3/7/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.3 ug/L	J	1	0.2	CTK	04/05/2019 18:29	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1 ug/L	J	1	0.3	CTK	04/05/2019 18:29	EPA 200.8-1994, Rev. 5.4
Barium, Ba	276 ug/L		1	0.2	CTK	04/05/2019 18:29	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.2 ug/L	U	1	0.2	CTK	04/05/2019 18:29	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.1 ug/L	U	0.5	0.1	CTK	04/05/2019 18:29	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	5.71 ug/L		2	0.4	CTK	04/05/2019 18:29	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	< 0.2 ug/L	U	0.5	0.2	CTK	04/05/2019 18:29	EPA 200.8-1994, Rev. 5.4
Lead, Pb	< 0.2 ug/L	U	1	0.2	CTK	04/05/2019 18:29	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	< 4 ug/L	U	20	4	CTK	04/05/2019 18:29	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.6 ug/L	J	2	0.3	CTK	04/05/2019 18:29	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 1 ug/L	U	5	1	CTK	04/05/2019 18:29	EPA 200.8-1994, Rev. 5.4
Boron, B	0.370 mg/L		0.05	0.009	CTK	04/05/2019 18:29	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	85.6 mg/L		0.2	0.03	CTK	04/05/2019 18:29	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0602 mg/L		0.002	0.0001	CTK	04/05/2019 18:29	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method	
Radium-228	2.65	pCi/L	0.18	0.46	jls	4/2/2019	SW-846 9320-2014,Rev. 1.0	
The LRB result (0.99 pCi/L) exceeds the critical value of 0.95 pCi/L.								
Radium-226	0.494	pCi/L	0.10	0.13	jls	3/26/2019	SW-846 9315-1986,Rev. 0	

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-5

Sample Number: 190826-004 Date Collected: 02/27/2019 16:45 Date Received: 3/7/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.2 ug/L	U	1	0.2	CTK	04/05/2019 18:34	EPA 200.8-1994, Rev. 5.4
Arsenic, As	25.7 ug/L		1	0.3	CTK	04/05/2019 18:34	EPA 200.8-1994, Rev. 5.4
Barium, Ba	2130 ug/L		1	0.2	CTK	04/05/2019 18:34	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.2 ug/L	U	1	0.2	CTK	04/05/2019 18:34	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.1 ug/L	U	0.5	0.1	CTK	04/05/2019 18:34	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	2 ug/L	J	2	0.4	CTK	04/05/2019 18:34	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.3 ug/L	J	0.5	0.2	CTK	04/05/2019 18:34	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.7 ug/L	J	1	0.2	CTK	04/05/2019 18:34	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	< 4 ug/L	U	20	4	CTK	04/05/2019 18:34	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.3 ug/L	U	2	0.3	CTK	04/05/2019 18:34	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 1 ug/L	U	5	1	CTK	04/05/2019 18:34	EPA 200.8-1994, Rev. 5.4
Boron, B	0.233 mg/L		0.05	0.009	CTK	04/05/2019 18:34	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	72.8 mg/L		0.2	0.03	CTK	04/05/2019 18:34	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.102 mg/L		0.002	0.0001	CTK	04/05/2019 18:34	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	0.472	pCi/L	0.22	0.54	jls	4/2/2019	SW-846 9320-2014,Rev. 1.0
The LRB result (0.99 p	Ci/L) exceeds th	ne critical valu	e of 0.95 pCi/L.				
Radium-226	6.23	pCi/L	0.35	0.12	jls	3/26/2019	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the established range of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-10

Sample Number: 190826-005 Date Collected: 02/27/2019 14:20 Date Received: 3/7/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	2 ug/L	J	2	0.4	СТК	04/05/2019 18:39	EPA 200.8-1994, Rev. 5.4
Arsenic, As	3.48 ug/L		2	0.6	CTK	04/05/2019 18:39	EPA 200.8-1994, Rev. 5.4
Barium, Ba	5810 ug/L		2	0.4	CTK	04/05/2019 18:39	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.4 ug/L	U	2	0.4	CTK	04/05/2019 18:39	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.2 ug/L	U	1	0.2	CTK	04/05/2019 18:39	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1 ug/L	J	4	0.8	CTK	04/05/2019 18:39	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	< 0.4 ug/L	U	1	0.4	CTK	04/05/2019 18:39	EPA 200.8-1994, Rev. 5.4
Lead, Pb	< 0.4 ug/L	U	2	0.4	CTK	04/05/2019 18:39	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	< 8 ug/L	U	40	8	CTK	04/05/2019 18:39	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.6 ug/L	U	4	0.6	CTK	04/05/2019 18:39	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 2 ug/L	U	10	2	CTK	04/05/2019 18:39	EPA 200.8-1994, Rev. 5.4
Boron, B	1.16 mg/L		0.1	0.02	CTK	04/05/2019 18:39	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	92.6 mg/L		0.4	0.06	CTK	04/05/2019 18:39	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.275 mg/L		0.004	0.0002	CTK	04/05/2019 18:39	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.25	pCi/L	0.14	0.43	jls	4/2/2019	SW-846 9320-2014,Rev. 1.0
The LRB result (0.99 p	Ci/L) exceeds th	ne critical valu	e of 0.95 pCi/L. The N	MSD recovery (58.84%) is outside	the established range of 60	-140%.
Radium-226	14.1	pCi/L	0.55	0.12	jls	3/26/2019	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the established range of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-11

Sample Number: 190826-006 Date Collected: 02/27/2019 14:45 Date Received: 3/7/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.2 ug/L	U	1	0.2	CTK	04/05/2019 18:44	EPA 200.8-1994, Rev. 5.4
Arsenic, As	8.83 ug/L		1	0.3	CTK	04/05/2019 18:44	EPA 200.8-1994, Rev. 5.4
Barium, Ba	529 ug/L		1	0.2	CTK	04/05/2019 18:44	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.2 ug/L	U	1	0.2	CTK	04/05/2019 18:44	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.1 ug/L	U	0.5	0.1	CTK	04/05/2019 18:44	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.7 ug/L	J	2	0.4	CTK	04/05/2019 18:44	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.720 ug/L		0.5	0.2	CTK	04/05/2019 18:44	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.2 ug/L	J	1	0.2	CTK	04/05/2019 18:44	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	6 ug/L	J	20	4	CTK	04/05/2019 18:44	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.3 ug/L	U	2	0.3	CTK	04/05/2019 18:44	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 1 ug/L	U	5	1	CTK	04/05/2019 18:44	EPA 200.8-1994, Rev. 5.4
Boron, B	0.375 mg/L		0.05	0.009	CTK	04/05/2019 18:44	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	49.6 mg/L		0.2	0.03	CTK	04/05/2019 18:44	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0580 mg/L		0.002	0.0001	CTK	04/05/2019 18:44	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method		
Radium-228	1.35	pCi/L	0.19	0.58	jls	4/2/2019	SW-846 9320-2014,Rev. 1.0		
The LRB result (0.99	The LRB result (0.99 pCi/L) exceeds the critical value of 0.95 pCi/L.								
Radium-226	0.46	pCi/L	0.10	0.15	jls	3/26/2019	SW-846 9315-1986,Rev. 0		

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Duplicate BAP

Sample Number: 190826-007 Date Collected: 02/27/2019 14:20 Date Received: 3/7/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	1 ug/L	J	2	0.4	CTK	04/05/2019 18:49	EPA 200.8-1994, Rev. 5.4
Arsenic, As	3.20 ug/L		2	0.6	CTK	04/05/2019 18:49	EPA 200.8-1994, Rev. 5.4
Barium, Ba	5770 ug/L		2	0.4	CTK	04/05/2019 18:49	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.4 ug/L	U	2	0.4	CTK	04/05/2019 18:49	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.2 ug/L	U	1	0.2	CTK	04/05/2019 18:49	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1 ug/L	J	4	8.0	CTK	04/05/2019 18:49	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	< 0.4 ug/L	U	1	0.4	CTK	04/05/2019 18:49	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.7 ug/L	J	2	0.4	CTK	04/05/2019 18:49	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	< 8 ug/L	U	40	8	CTK	04/05/2019 18:49	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.6 ug/L	U	4	0.6	CTK	04/05/2019 18:49	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 2 ug/L	U	10	2	CTK	04/05/2019 18:49	EPA 200.8-1994, Rev. 5.4
Boron, B	1.17 mg/L		0.1	0.02	CTK	04/05/2019 18:49	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	91.9 mg/L		0.4	0.06	CTK	04/05/2019 18:49	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.272 mg/L		0.004	0.0002	CTK	04/05/2019 18:49	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Equipment Blank BAP

Sample Number: 190826-008 Date Collected: 02/27/2019 16:40 Date Received: 3/7/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.2 ug/L	U	1	0.2	CTK	04/05/2019 18:54	EPA 200.8-1994, Rev. 5.4
Arsenic, As	< 0.3 ug/L	U	1	0.3	CTK	04/05/2019 18:54	EPA 200.8-1994, Rev. 5.4
Barium, Ba	0.7 ug/L	J	1	0.2	CTK	04/05/2019 18:54	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.2 ug/L	U	1	0.2	CTK	04/05/2019 18:54	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.1 ug/L	U	0.5	0.1	CTK	04/05/2019 18:54	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.5 ug/L	J	2	0.4	CTK	04/05/2019 18:54	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	< 0.2 ug/L	U	0.5	0.2	CTK	04/05/2019 18:54	EPA 200.8-1994, Rev. 5.4
Lead, Pb	< 0.2 ug/L	U	1	0.2	CTK	04/05/2019 18:54	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	< 4 ug/L	U	20	4	CTK	04/05/2019 18:54	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.3 ug/L	U	2	0.3	CTK	04/05/2019 18:54	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 1 ug/L	U	5	1	CTK	04/05/2019 18:54	EPA 200.8-1994, Rev. 5.4
Boron, B	< 0.009 mg/L	U	0.05	0.009	CTK	04/05/2019 18:54	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	0.06 mg/L	J	0.2	0.03	CTK	04/05/2019 18:54	EPA 200.8-1994, Rev. 5.4
Lithium, Li	< 0.0001 mg/L	U	0.002	0.0001	CTK	04/05/2019 18:54	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

Michael Ohlinger, Chemist

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Chain of Custody Record

Dolan Chemical Laboratory (DCL) 4001 Bixby Road Groveport, Ohio 43125

Program: Coal Combustion Residuals (CCR)

Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)					J)	Site Contact:	ict:			Date:	For La	For Lab Use Only:
Project Name: Northeastern PP BAP CCR							250 mL	Field-filter 250 mL	250 ml	Three (six every	2	20816
Contact Name: Jill Parker-Witt	Analysis	Turnaround	Analysis Turnaround Time (in Calendar Days)	lendar Da	ıys)		bottle,	Ľ.		10th") 1	2	2
Contact Phone: 318-673-3816	6 Rou	ıtine (28 day	 Routine (28 days for Monitoring Wells) 	ring Wells			HNO3	pH<2, HNO3	Cool, 0-6C	L bottles, pH<2, HNO3		
Sampler(s): Kenny McDonald	1						, Ba, Be, o, Li, Mo,	d, Cr, Mg, Mn,	ulfate	822-		
Sample Identification	Sample Date	Sample	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	finl (s)19lqms8	8, Ca, Sb, As Cd, Cr, Co, Pl Se, TL	Dissolved B, Co, Fe, K, Li, Co, Fe, K, Li,	Fluoride, Chloride, S	Ra-226, Ra	Sample	Sample Specific Notes:
SP-1	2/27/2019	1550	9	GW	4		×			×		10
SP-2	2/27/2019	1515	G	GW	4		×			×		
SP-4	2/27/2019	1620	9	GW	4		×			×		
SP-5	2/27/2019	1645	9	GW	4		×			×		
SP-10	2/27/2019	1420	9	GW	7		×			×		
SP-11	2/27/2019	1445	g	GW	4		×			×		
DUPLICATE BAP	2/27/2019	1420	9	GW	1		×					
EQUIPMENT BLANK BAP	2/27/2019	1640	g	GW	-		×					
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	HNO3; 5=Nac	1H; 6= Oth	her	; F=fil	ilter in field	eld	4	F4	+	4		
* Six 1L Bottles must be collected for Radium for every 10th sample.	r every 10th :	sample.										

Six 1L Bottles must be collected for Radium for every 10th sample.

Special Instructions/QC Requirements & Comments:

Relinquished by: [ATT]	Company:	Date/Time; // 9 / 4 00	Received by:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received by:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received in Laboratory by:	Date/Time: 0} (04 / (9 / // 40
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR)	ord for Coal Combustion Residual	I (CCR) Sampling - Shrey	Sampling - Shreveport, Rev. 1, 1/10/17	

MATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer NormenStern PP	Number of Plastic Containers: 29
Opened By Sussan	Number of Glass Containers:
	Number of Mercury Containers:
Were all temperatures within 0-6°C? Y / N (IR Gun Ser# 18135 443 Expir. 612-20	or N/A Initial:on ice / no ice
Was container in good condition? (Y) N	Comments
Was Chain of Custody received? (Y) / N Requested turnaround:	Comments If RUSH, who was notified?
	NO ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly?	Comments
Were samples labeled properly? \(\hat{N}\)/ N	Comments
Were correct containers used? ()/ N	Comments
Was pH checked & Color Coding done?	N or N/A Initial & Date: 16-16 03/07/19
- Was Add'l Preservative needed? Y /N If	Yes: By whom & when: (See Prep Book)
Is sample filtration requested? Y / (N)	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
Lab ID# 190826 Initial &	Date & Time :
I amount for	nts:
Reviewed by 1950	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Address: 502 N. Allen Avenue

Shreveport, LA 71101

Report ID : 40009 Company: SEP - Environmental (JP-W)

Contact: Jill Parker-Witt

Filone: (310) 073-3010

AEP Sample ID: 226451 Collected Date: 06/20/2019 By: KM
Cust Sample ID: SP-1 Location: Northeastern PP CCR Matrix: Water

Sample Desc.:

Date Received: 06/24/2019

Metals	(226451)
--------	----------

motalo (220-101)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.00001	mg/L	0.000005	1	EPA 7470A 1994	06/27/2019 16:15	J	LNM
Water (226451)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	452	mg/L	2	1	SM 2540 C-2011	06/24/2019 17:53		JTD

AEP Sample ID: 226452 Collected Date: 06/20/2019 By: KM

Cust Sample ID: SP-2 Location: Northeastern PP CCR Matrix: Water

Sample Desc.:

Metals (226452)

WCtais (ZZO+OZ)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/27/2019 16:25	U	LNM
Water (226452)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	1044	mg/L	2	1	SM 2540 C-2011	06/24/2019 17:53		JTD

Cust Sample ID: SP-4 Location: Northeastern PP CCR Matrix: Water

Sample Desc.:

Metals (226453)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.000007	mg/L	0.000005	1	EPA 7470A 1994	06/27/2019 16:28	J	LNM
Water (226453)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	1128	mg/L	2	1	SM 2540 C-2011	06/24/2019 17:53		JTD

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 40009 Address: 502 N. Allen Avenue Report ID **Date Received:** 06/24/2019

Contact: Jill Parker-Witt

Shreveport, LA 71101 Fax: (318) 673-3960

Phone: (318) 673-3816

By: KM

AEP Sample ID: 226454 Cust Sample ID: SP-5

Collected Date: 06/20/2019

Matrix: Water

Method

Location: Northeastern PP CCR

Sample Desc.:

Metals (226454) Parameter Value Unit Det. Limit Dil./Conc. Method **Analysis Date/Time** Codes Tech FPA 7470A 1994 0.000008 mq/L 0.000005 06/27/2019 16:32 LNM

Water (226454)

Mercury

Parameter Value Unit Det. Limit Dil./Conc. Method **Analysis Date/Time** Codes Tech Solids, Total Dissolved (TDS) 1428 2 1 SM 2540 C-2011 06/24/2019 17:53 JTD mg/L

Collected Date: 06/20/2019 By: KM AEP Sample ID: 226455 Cust Sample ID: SP-10

Location: Northeastern PP CCR Matrix: Water

Sample Desc.:

Metals (226455)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.00001	mg/L	0.000005	1	EPA 7470A 1994	06/27/2019 16:35	J	LNM
Water (226455)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	3512	mg/L	2	1	SM 2540 C-2011	06/24/2019 17:53		JTD

By: KM AEP Sample ID: 226456 **Collected Date: 06/20/2019**

Unit

Value

Cust Sample ID: SP-11 Location: Northeastern PP CCR Matrix: Water

Sample Desc.:

Metals (226456)

Parameter

Mercury	0.00001	mg/L	0.000005	1	EPA 7470A 1994	06/27/2019 16:38	J	LNM
Water (226456)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	1000	mg/L	2	1	SM 2540 C-2011	06/24/2019 17:53		JTD

Det. Limit Dil./Conc.

Analysis Date/Time | Codes | Tech

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40009

Company: SEP - Environmental (JP-W)

Address: 502 N. Allen Avenue

Date Received: 06/24/2019

Contact: Jill Parker-Witt

Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

AEP Sample ID: 226457

Collected Date: 06/20/2019

By: KM

Cust Sample ID: Duplicate BAP

Location: Northeastern PP CCR

Matrix: Water

Sample Desc.:

Metals	(226457)

Motale (220-101)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	0.000007	mg/L	0.000005	1	EPA 7470A 1994	06/27/2019 16:41	J	LNM
Water (226457)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Solids, Total Dissolved (TDS)	466	mg/L	2	1	SM 2540 C-2011	06/26/2019 13:56		JTD

AEP Sample ID: 226458

Collected Date: 06/20/2019

Bv: KM

Cust Sample ID: Equipment Blank BAP

Location: Northeastern PP CCR

Matrix: Water

1002

Sample Desc.:

Metals (226458)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	06/27/2019 16:44	U	LNM

		* Quality		•	ntrol Data ne as reporte		results					
			Blank		Standard			Spike		Surrogate	Duplicate %	
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
6/27/2019	Mercury	226449.1	<0.00000	0.001	0.00096	96.0	0.001	0.0009542	95.4		0.4	LNM
6/24/2019	Solids, Total Dissolved (TDS)		<2	100.6	96	95.4	1022	1010	98.8		4.6	JTD

91.5

1000

100.6

Code Code Description

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

<2

226457

U Analyte concentration below MDL.

6/26/2019 Solids, Total Dissolved (TDS)

17-Jul-19

100.2

Quality Assurance Officer

1.7

JTD

Shreveport, LA 71101				rogran	n. Coa	Comb	ustion R	Program: Coal Combustion Residuals (CCR)	CCR)			
Jonathan Barnhill (318-673-3803) Contacts: John Davis (318-673-3811)				c c	S	Site Contact:	act:			Date:	COC/Order #:	or Lab Use Only:
Project Name: Northeastern PP CCR							250 mL	Field-filter 500 mL	250 ml	Three (six every	40009	Ž,
Contact Name: Jill Parker-Witt	Analysis T	urnaround	Analysis Turnaround Time (in Calendar Days)	lendar Da	ıys)		bottle, pH<2,	bottle, then		10th*) 1		
Contact Phone: 318-673-3816	© Nee	Need Results by July 12	by July 12			_	HNO3	HNO3	0-6C	pH<2, HNO3		
Sampler(s): Kenneth McDonald						S		nd Mn		28		
						Initial		l Fe aı		Ra-2:		
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) I	Mercury	dissolved	TDS	Ra-226, F	Sam	Sample Specific Notes:
SP-1	6/20/2019	1620	G	GW	2		×		×		2264	51.1-226451.2
SP-2	6/20/2019	1555	ര	GW	2		×		×		22645	2.1-226452.7
SP-4	6/20/2019	1650	G	GW	2		×		×		226453	.1-226458.2
SP-5	6/20/2019	1715	G	GW	2		×		×		226454	1-226454.2
SP-10	6/20/2019	1515	G	GW	2		×		×		226455.	1-226455,2
SP-11	6/20/2019	1535	ഹ-	GW	2		×		×		226456.1	1-226456.2
DUPLICATE BAP	6/20/2019	1620	G	GW	2		×		×		226457.	1-226457.2
EQUIPMENT BLANK BAP	6/20/2019	1725	G	8			×				226458	
Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	NO3; 5=Na0	H; 6= Oth	er	; F= fil	F= filter in field	ā	4	F4	1	4		
* Six 1L Bottles must be collected for Radium for every 10th sample.	every 10th s	ample.										
Special Instructions/QC Requirements & Comments:	ts:											
	* * * *	**** NEED		SUL	IST	r A8	RESULTS BY JULY 12	12				4
Relinquished by: // And	Company: CAULF	2194		Date/Time: 06/24/19	1/19 10	1008 R	Received by:				Date/Time:	
Relinquished by:	Company:			Date/Time:	e.	ź	Received by:				Date/Time:	
Relinquished by:	Company:	5		Date/Time:	ë	~ ZI	ecerved in I	91	Johnson	aan	Date/Time:	124/19 10:15
Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17	d for Coal C	ombustio	n Residual	(CCR) S	ampling	- Shrev	eport, Rev	- 1				

Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave.

Chain of Custody Record

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

Container Type	1]	Delivery Typ	e	
Bag Action Pak PCB Mailer Bottle	UPS	FEDEX	US Mail	Walk in	Shuttle
Other	Othe	r			
	Tracking #				
Client Sill Parker - Witt	4		ample Matr	rix	1970
Received By Rose Ha Dohnison	DGA	PCB Oil	Water	Oil	Soil
Received Date Open Date 06-24-2019 06-24-2019	Solid	Liquid	Other		EI
Container Temp Read		Project I.D			•
Correction Factor Thermometer Serial #F04103 +1.2	_ Were sa	mples receive	ed on ice? (VES	NO
Corrected Temp 2.2					
Did container arrive in good condition?	YES	NO			
Was sample documentation received?	YES	NO			
Was documentation filled out properly?	(YÈS)	NO			
Were samples labeled properly?	YES	NO			
Were correct containers used?	(ES)	NO			74
Were the pH's of samples appropriately checked?	YES	NO			
Total number of sample containers	_				C 100
Was any corrective action taken?	NO	Person Cor		<u>,</u>	
Comments		Date & Tin	ne		
·	116			ai F	
	-52	ť			

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 7/12/2019

SP-1

Sample Number: 192190-001 Date Collected: 06/20/2019 16:20 Date Received: 6/25/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.198 mg/L		0.1	0.02	DAM	07/09/2019 16:23	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	126 mg/L		0.3	0.04	DAM	07/09/2019 16:23	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.03 mg/L	J	0.03	0.009	DAM	07/09/2019 16:23	EPA 200.7-1994, Rev. 4.4
Antimony, Sb	0.93 ug/L		0.5	0.1	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.44 ug/L		0.5	0.2	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Barium, Ba	242 ug/L		0.5	0.1	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.2 ug/L	J	0.5	0.1	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.1 ug/L	J	0.2	0.05	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.7 ug/L	J	1	0.2	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	5.54 ug/L		0.2	0.1	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.650 ug/L		0.5	0.1	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	12.1 ug/L		10	2	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Selenium, Se	9.9 ug/L		1	0.2	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.5 ug/L	U	2	0.5	GES	06/28/2019 22:01	EPA 200.8-1994, Rev. 5.4
Chloride, Cl	25.2 mg/L		0.04	0.01	CRJ	06/27/2019 00:44	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.77 mg/L		0.06	0.01	CRJ	06/27/2019 00:44	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	61.4 mg/L		0.4	0.06	CRJ	06/27/2019 00:44	EPA 300.1-1997, Rev. 1.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	2.033	pCi/L	0.18	0.52	ttp	7/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	0.712	pCi/L	0.12	0.14	sdw	7/9/2019	SW-846 9315-1986,Rev. 0

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-2

Sample Number: 192190-002 Date Collected: 06/20/2019 15:55 Date Received: 6/25/2019

		Data					
Parameter Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B 0.109	mg/L		0.1	0.02	DAM	07/09/2019 16:26	EPA 200.7-1994, Rev. 4.4
Calcium, Ca 58.2	mg/L		0.3	0.04	DAM	07/09/2019 16:26	EPA 200.7-1994, Rev. 4.4
Lithium, Li 0.062	mg/L		0.03	0.009	DAM	07/09/2019 16:26	EPA 200.7-1994, Rev. 4.4
Antimony, Sb 1.34	ug/L		0.5	0.1	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Arsenic, As 1.43	ug/L		0.5	0.2	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Barium, Ba 868	ug/L		0.5	0.1	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Beryllium, Be 0.1	ug/L	J	0.5	0.1	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd 0.09	ug/L	J	0.2	0.05	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Chromium, Cr 0.9	ug/L	J	1	0.2	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Cobalt, Co 0.434	ug/L		0.2	0.1	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Lead, Pb 0.4	ug/L	J	0.5	0.1	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo 25.0	ug/L		10	2	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Selenium, Se 2.9	ug/L		1	0.2	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Thallium, TI < 0.5	ug/L	U	2	0.5	GES	06/28/2019 23:33	EPA 200.8-1994, Rev. 5.4
Chloride, Cl 357	mg/L		1	0.3	CRJ	06/26/2019 20:31	EPA 300.1-1997, Rev. 1.0
Fluoride, F 2.69	mg/L		0.2	0.04	CRJ	06/27/2019 01:07	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4 28.5	mg/L		1	0.2	CRJ	06/27/2019 01:07	EPA 300.1-1997, Rev. 1.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	4.47	pCi/L	0.19	0.44	ttp	7/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	3.47	pCi/L	0.25	0.12	sdw	7/9/2019	SW-846 9315-1986,Rev. 0

The carrier recovery (125.22%) is outside the established range of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Sp-4

Sample Number: 192190-003 Date Collected: 06/20/2019 16:50 Date Received: 6/25/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.325	mg/L		0.1	0.02	DAM	07/09/2019 16:53	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	56.4	mg/L		0.3	0.04	DAM	07/09/2019 16:53	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.068	mg/L		0.03	0.009	DAM	07/09/2019 16:53	EPA 200.7-1994, Rev. 4.4
Antimony, Sb	0.3	ug/L	J	0.5	0.1	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Arsenic, As	0.83	ug/L		0.5	0.2	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Barium, Ba	337	ug/L		0.5	0.1	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
The MS/MSD is outside the accepta	able rang	e of 75-1	125%. The F	RPD betv	ween the N	MS/MSD exceed	ls 20%.	
Beryllium, Be	< 0.1	ug/L	U	0.5	0.1	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.07	ug/L	J	0.2	0.05	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1.06	ug/L		1	0.2	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.388	ug/L		0.2	0.1	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Lead, Pb	1.07	ug/L		0.5	0.1	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	2	ug/L	J	10	2	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.4	ug/L	J	1	0.2	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.5	ug/L	U	2	0.5	GES	06/28/2019 23:38	EPA 200.8-1994, Rev. 5.4
Chloride, Cl	450	mg/L		1	0.3	CRJ	06/26/2019 20:54	EPA 300.1-1997, Rev. 1.0
Fluoride, F	3.24	mg/L		0.2	0.04	CRJ	06/27/2019 01:52	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	58.0	mg/L		1	0.2	CRJ	06/27/2019 01:52	EPA 300.1-1997, Rev. 1.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	2.931	pCi/L	0.19	0.51	ttp	7/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	0.82	pCi/L	0.12	0.11	sdw	7/9/2019	SW-846 9315-1986,Rev. 0

The carrier recovery (124.33%) is outside the established range of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-5

Sample Number: 192190-004 Date Collected: 06/20/2019 17:15 Date Received: 6/25/2019

		Data					
Parameter Res	It Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B 0.2)2 mg/L		0.1	0.02	DAM	07/09/2019 16:57	EPA 200.7-1994, Rev. 4.4
Calcium, Ca 48	.5 mg/L		0.3	0.04	DAM	07/09/2019 16:57	EPA 200.7-1994, Rev. 4.4
Lithium, Li 0.1	I1 mg/L		0.03	0.009	DAM	07/09/2019 16:57	EPA 200.7-1994, Rev. 4.4
Antimony, Sb < 0	.1 ug/L	U	0.5	0.1	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Arsenic, As 59	.9 ug/L		0.5	0.2	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Barium, Ba 24	I0 ug/L		0.5	0.1	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Beryllium, Be < 0	.1 ug/L	U	0.5	0.1	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd < 0.)5 ug/L	U	0.2	0.05	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	.8 ug/L	J	1	0.2	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Cobalt, Co 0.5	98 ug/L		0.2	0.1	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Lead, Pb 0.7)1 ug/L		0.5	0.1	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	2 ug/L	U	10	2	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Selenium, Se < 0	.2 ug/L	U	1	0.2	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Thallium, Tl < 0	.5 ug/L	U	2	0.5	GES	06/28/2019 23:44	EPA 200.8-1994, Rev. 5.4
Chloride, Cl 6	75 mg/L		1	0.3	CRJ	06/26/2019 21:17	EPA 300.1-1997, Rev. 1.0
Fluoride, F 3.	06 mg/L		0.2	0.04	CRJ	06/27/2019 02:15	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	.9 mg/L	J	1	0.2	CRJ	06/27/2019 02:15	EPA 300.1-1997, Rev. 1.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	5.967	pCi/L	0.23	0.54	ttp	7/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	7.01	pCi/L	0.54	0.23	sdw	7/9/2019	SW-846 9315-1986,Rev. 0

The carrier recovery (111.55%) is outside the established range of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-10

Sample Number: 192190-005 Date Collected: 06/20/2019 15:15 Date Received: 6/25/2019

			Data					
Parameter Res	ult	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B 0.	916	mg/L		0.1	0.02	DAM	07/09/2019 17:01	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	0.3	mg/L		0.3	0.04	DAM	07/09/2019 17:01	EPA 200.7-1994, Rev. 4.4
Lithium, Li 0.	290	mg/L		0.03	0.009	DAM	07/09/2019 17:01	EPA 200.7-1994, Rev. 4.4
Antimony, Sb	.65	ug/L		0.5	0.1	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Arsenic, As	.66	ug/L		0.5	0.2	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Barium, Ba 3	380	ug/L		0.5	0.1	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.1	ug/L	U	0.5	0.1	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd < 0	.05	ug/L	U	0.2	0.05	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	.76	ug/L		1	0.2	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Cobalt, Co 0.	7 43	ug/L		0.2	0.1	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.3	ug/L	J	0.5	0.1	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	9	ug/L	J	10	2	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.2	ug/L	U	1	0.2	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Thallium, TI <	0.5	ug/L	U	2	0.5	GES	06/28/2019 23:49	EPA 200.8-1994, Rev. 5.4
Chloride, Cl 1	780	mg/L		5	2	CRJ	06/26/2019 22:03	EPA 300.1-1997, Rev. 1.0
Fluoride, F	.40	mg/L		0.3	0.07	CRJ	06/27/2019 03:01	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	0.3	mg/L		2	0.3	CRJ	06/27/2019 03:01	EPA 300.1-1997, Rev. 1.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.4	pCi/L	0.14	0.39	ttp	7/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	25	pCi/L	1.1	0.25	sdw	7/9/2019	SW-846 9315-1986,Rev. 0

The carrier recovery (145.83%) is outside the established range of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-11

Sample Number: 192190-006 Date Collected: 06/20/2019 15:35 Date Received: 6/25/2019

	Decell Helic		Data					
Parameter Re	sult	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B 0	550	mg/L		0.1	0.02	DAM	07/09/2019 17:13	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	5.6	mg/L		0.3	0.04	DAM	07/09/2019 17:13	EPA 200.7-1994, Rev. 4.4
Lithium, Li 0	047	mg/L		0.03	0.009	DAM	07/09/2019 17:13	EPA 200.7-1994, Rev. 4.4
Antimony, Sb	0.3	ug/L	J	0.5	0.1	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.18	ug/L		0.5	0.2	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Barium, Ba	169	ug/L		0.5	0.1	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.1	ug/L	U	0.5	0.1	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.06	ug/L	J	0.2	0.05	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	3.71	ug/L		1	0.2	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Cobalt, Co 0	948	ug/L		0.2	0.1	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Lead, Pb 0	719	ug/L		0.5	0.1	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	< 2	ug/L	U	10	2	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.3	ug/L	J	1	0.2	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.5	ug/L	U	2	0.5	GES	06/28/2019 23:54	EPA 200.8-1994, Rev. 5.4
Chloride, Cl	137	mg/L		1	0.3	CRJ	06/26/2019 22:26	EPA 300.1-1997, Rev. 1.0
Fluoride, F	.67	mg/L		0.2	0.04	CRJ	06/27/2019 03:24	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	203	mg/L		10	2	CRJ	06/26/2019 22:26	EPA 300.1-1997, Rev. 1.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	0.42	pCi/L	0.18	0.61	ttp	7/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	0.39	pCi/L	0.11	0.20	sdw	7/9/2019	SW-846 9315-1986,Rev. 0

The carrier recovery (147.78%) is outside the established range of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Duplicate BAP

Sample Number: 192190-007 Date Collected: 06/20/2019 16:20 Date Received: 6/25/2019

Parameter	Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	0.208	mg/L		0.1	0.02	DAM	07/09/2019 17:42	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	119	mg/L		0.3	0.04	DAM	07/09/2019 17:42	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.034	mg/L		0.03	0.009	DAM	07/09/2019 17:42	EPA 200.7-1994, Rev. 4.4
Antimony, Sb	0.91	ug/L		0.5	0.1	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.31	ug/L		0.5	0.2	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Barium, Ba	216	ug/L		0.5	0.1	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.2	ug/L	J	0.5	0.1	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.1	ug/L	J	0.2	0.05	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.7	ug/L	J	1	0.2	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	4.87	ug/L		0.2	0.1	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.600	ug/L		0.5	0.1	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	11.1	ug/L		10	2	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Selenium, Se	8.7	ug/L		1	0.2	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.5	ug/L	U	2	0.5	GES	06/28/2019 23:59	EPA 200.8-1994, Rev. 5.4
Chloride, Cl	28.9	mg/L		0.1	0.03	CRJ	06/26/2019 19:23	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.82	mg/L		0.2	0.04	CRJ	06/26/2019 19:23	EPA 300.1-1997, Rev. 1.0
Sulfate, SO4	63.6	mg/L		1	0.2	CRJ	06/26/2019 19:23	EPA 300.1-1997, Rev. 1.0

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Equipment Blank BAP

Sample Number: 192190-008 Date Collected: 06/20/2019 17:25 Date Received: 6/25/2019

Parameter	Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Boron, B	< 0.02	mg/L	U	0.1	0.02	DAM	07/09/2019 17:46	EPA 200.7-1994, Rev. 4.4
Calcium, Ca	0.07	mg/L	J	0.3	0.04	DAM	07/09/2019 17:46	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.03	mg/L	J	0.03	0.009	DAM	07/09/2019 17:46	EPA 200.7-1994, Rev. 4.4
Antimony, Sb	< 0.02	ug/L	U	0.1	0.02	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Arsenic, As	< 0.03	ug/L	U	0.1	0.03	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Barium, Ba	0.41	ug/L		0.1	0.02	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.02	ug/L	U	0.1	0.02	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.01	ug/L	U	0.05	0.01	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.07	ug/L	J	0.2	0.04	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	< 0.02	ug/L	U	0.05	0.02	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Lead, Pb	< 0.02	ug/L	U	0.1	0.02	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	< 0.4	ug/L	U	2	0.4	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Selenium, Se	< 0.03	ug/L	U	0.2	0.03	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1	ug/L	U	0.5	0.1	GES	06/29/2019 00:04	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

Jessica Stalnaker, Chemist Sr

Email jlstalnaker@aep.com Tel. 614-836-4229
Fax 614-836-4168 Audinet 8-210-4229

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Relinquished by:	Relinquished by: '	Relinquished by:	**** NE	Special Instructions/QC Requirements & Comments:	SIX IL DOUBS must be conected for Kadium for eyery from Sample.	Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other			EQUIPMENT BLANK BAP	DUPLICATE BAP	SP-11	SP-10	SP-5	SP-4	SP-2	SP-1	Sample Identification	Sampler(s): Kenny McDonald	Contact Phone: 318-673-3816	Contact Name: Jill Parker-Witt	Project Name: Northeastern PP BAP CCR	Contacts: Dave Conover (614-836-4219)	Michael Ohlinger (614-836-4184)	Granner Ohio 43425	Dolan Chemical Laboratory (DCL)
Company:	Company:	0	NEED RE	ıts:	every rom s	NO3; 5=NaC			6/20/2019	6/20/2019	6/20/2019	6/20/2019	6/20/2019	6/20/2019	6/20/2019	6/20/2019	Sample Date		• Nee	Analysis T					
		4	ESUL		sample.)H; 6= Oth			1725	1620	1535	1515	1715	1650	1555	1620	Sample Time		Neec Results by Luly 12	urnaround					
			RESULTS BY JULY 12			er		ì	G	G	G	G	G	G	G	G	Sample Type (C=Comp, G=Grab)		by Luly 12	Analysis Turnaround Time (in Calendar Days)					
Date/Time:	Date/Time:	Date/Time:	UL Y			; F= fl			GW	GW	GW	GW	GW	GW	GW	GW	Matrix			ilendar Da			riogiaiii.		유
1e:	1e:	19 14	LY 1			F= filter in field			_		4	4	4	4	4	œ	# of			ays)		1 9			iain c
71	71	1400	2			d											Sampler(s) Init	ials							of Cu
Neceived in	Received by:	Received by:				4			×	×	×	×	×	×	×	×	B, Ca, Sb, As Cd, Cr, Co, P Se, TL	, Ba, Be, b, Li, Mo,	HNO3	pH<2,	250 mL	į į	onstron F		stody
Received in Laboratory by:	7	.7				F4						:					Dissolved B, Ba, Be, Ca, C Co, Fe, K, Li, Mo, Na, Pb, S	d, Cr, Mg, Mn,	HNO3 -	bottle, then pH<2,	Field-filter 250 mL		Site Contact:	ociduals A	Chain of Custody Record
6				:		_											Fluoride, Chloride, S	ulfate	0-6C	bottle, Cool.			CCZ)		<u>o</u>
						4					×	×	×	×	×	×	Ra-226, Ra	-228	pH<2, HNO3	10th*) 1 L bottles.	Three (six every	Care	l Data:		
				•																					
Dail Oal	Dai	Dai																			1000-02	8			
Date/Time:	Date/Time:	Date/Time:													1.11		Sample Sp			1 8 1	12-02	COC/Order #:	F2: 12b		
0.80																	Sample Specific Notes:			((n	TOI LAD OSE OIIIY.	Ila Oale		

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

Relinquished by: Relinquished by: Preservation Used: 1= Ice, 2= HCi; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other_ Project Name: Northeastern PP BAP CCR Relinquished by: Special Instructions/QC Requirements & Comments: Sampler(s): Kenny McDonald Contact Phone: Contact Name: Six 1L Bottles must be collected for Radium for every 10th sample. Contacts: Groveport, Ohio 43125 Dave Conover (614-836-4219) Sample Identification Michael Ohlinger (614-836-4184) 4001 Bixby Road DUPLICATE BAP Jill Parker-Witt 318-673-3816 SP-11 SP-10 SP-4 SP-2 SP-5 Company: Company: Sample Date 6/20/2019 6/20/2019 6/20/2019 6/20/2019 6/20/2019 6/20/2019 6/20/2019 Analysis Turnaround Time (in Calendar Days) Need Results by July 12 **** NEED RESULTS BY JULY 12 Sample Time 1515 1715 1650 1555 1620 1535 1620 Sample Type (C=Comp, G=Grab) G **G** 0 0 G G G Program: Coal Combustion Residuals (CCR) Matrix Date/Time: Date/Time: GW GW GW GW GW GW. GW F= filter in field **Chain of Custody Record** # of Cont. _ _ --> -1400 Site Contact: Sampler(s) Initials Received in Laboratory by: Received by: Received by: bottle, 250 mL pH<2, HNO3 Boron, Calcium bottle, then Field-filter 250 mL Dissolved B, Sb, As, pH<2, HNO3 Ba, Be, Ca, Cd, Cr, F4 Co, Fe, K, Li, Mg, Mn, Mo, Na, Pb, Se, Sr, Tl 250 mL bottle, Cool, 0-6C Fluoride, × × × × × × × Chloride, Sulfate (six every 10th*) L bottles, pH<2, HNO3 Three Ra-226, Ra-228 Date: Date/Time: Date/Time: COC/Order #: Date/Time: Sample Specific Notes: For Lab Use Only:

Dolan Chemical Laboratory (DCL)

Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17

WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
	Number of Plastic Containers:
N .	Number of Glass Containers:
Date/Time 6.25/19 10:3/	Number of Mercury Containers:
(IR Gun Ser# (1743 17 L, Expir. 10-10-10)	- If No, specify each deviation:
Was container in good condition? Y N	Comments
Was Chain of Custody received? / N (Comments
Requested turnaround: 1 W V V V	If RUSH, who was notified?
pH (15 min) Cr [∞] (pres.) NO₂ or NO (2.4 hr)	O ₃ (48 hr) ortho-PO ₄ (48 hr) Hg-diss (pres) (48 hr)
Was COC filled out properly? YN C	Comments
	Comments
Were correct containers used?	
	N or N/A Initial & Date: A +3 M (6-25
- Was Add'l Preservative needed? Y NH Y	es: By whom & when: (See Prep Book)
Is sample filtration requested? Y / N C	Comments (See Prep Book)
	Person Contacted:
	ate & Time :
Logged byComments	
Reviewed by	
(-)	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer.

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 10/10/2019

SP-1

Sample Number: 192952-001 Date Collected: 08/26/2019 16:50 Date Received: 9/4/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.43 ug/L		0.1	0.02	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Arsenic, As	0.73 ug/L		0.1	0.03	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Barium, Ba	160 ug/L		0.2	0.05	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.08 ug/L	J	0.1	0.02	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.09 ug/L		0.05	0.01	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1.49 ug/L		0.2	0.04	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.481 ug/L		0.05	0.02	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.835 ug/L		0.2	0.05	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	5.86 ug/L		2	0.4	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Selenium, Se	3.4 ug/L		0.2	0.03	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.1 ug/L	J	0.5	0.1	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Boron, B	0.124 mg/L		0.05	0.02	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	120 mg/L		0.05	0.02	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00285 mg/L		0.0002	0.00005	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.41	pCi/L	0.16	0.47	ttp	9/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	1.34	pCi/L	0.20	0.18	sdw	9/10/2019	SW-846 9315-1986,Rev. 0

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-2

Sample Number: 192952-002 Date Collected: 08/26/2019 16:40 Date Received: 9/4/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	1.22	ug/L		0.1	0.02	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.53	ug/L		0.1	0.03	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Barium, Ba	1220	ug/L		1	0.2	KAN	09/23/2019 16:11	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.07	ug/L	J	0.1	0.02	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.05	ug/L		0.05	0.01	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.701	ug/L		0.2	0.04	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.568	ug/L		0.05	0.02	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.334	ug/L		0.2	0.05	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	22.3	ug/L		2	0.4	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Selenium, Se	3.7	ug/L		0.2	0.03	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.1	ug/L	J	0.5	0.1	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Boron, B	0.173	mg/L		0.05	0.02	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	211	mg/L		0.05	0.02	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0582	mg/L		0.0002	0.00005	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	5.62	pCi/L	0.22	0.52	ttp	9/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	3.1	pCi/L	0.26	0.13	sdw	9/10/2019	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the acceptable limit of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Sp-4

Date Collected: 08/26/2019 17:05 Date Received: 9/4/2019 Sample Number: 192952-003

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.25	ug/L		0.1	0.02	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.64	ug/L		0.1	0.03	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Barium, Ba	359	ug/L		0.2	0.05	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
The MS/MSD is outside the accept	otable limit o	f 75-125%	6. The R	PD betwe	en the MS	S/MSD exceeds	20%.	
Beryllium, Be	0.101	ug/L		0.1	0.02	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.05	ug/L		0.05	0.01	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1.01	ug/L		0.2	0.04	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	1.07	ug/L		0.05	0.02	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.596	ug/L		0.2	0.05	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	2	ug/L	J	2	0.4	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.6	ug/L		0.2	0.03	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1	ug/L	U	0.5	0.1	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Boron, B	0.365	mg/L		0.05	0.02	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	182	mg/L		0.05	0.02	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
The MS is outside the acceptable	limit of 75-1	25%. The	RPD be	etween the	e MS/MSE	exceeds 20%.		
Lithium, Li	0.0554	mg/L		0.0002	0.00005	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	2.23	pCi/L	0.18	0.52	ttp	9/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	1.01	pCi/L	0.16	0.18	sdw	9/10/2019	SW-846 9315-1986,Rev. 0

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "onesigma" which has the same units of measurement as the result.

SP-5R

Sample Number: 192952-004 Date Collected: 08/26/2019 17:20 Date Received: 9/4/2019

Danamatan	Danult IIn	Data	D.	MDI	Amalusia Du	Analysis Data/Time	Mathad
Parameter	Result Un	nits Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.06 ug/	g/L J	0.1	0.02	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Arsenic, As	49.3 ug/	J/L	0.1	0.03	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Barium, Ba	2340 ug/	J/L	1	0.2	KAN	09/23/2019 16:21	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.06 ug/	ı/L J	0.1	0.02	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.02 ug/	g/L J	0.05	0.01	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.335 ug/	J/L	0.2	0.04	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.485 ug/	J/L	0.05	0.02	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.545 ug/	J/L	0.2	0.05	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	1 ug/	ı/L J	2	0.4	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.1 ug/	ı/L J	0.2	0.03	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1 ug/	ı/L U	0.5	0.1	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Boron, B	0.220 mg	g/L	0.05	0.02	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	128 mg	g/L	0.05	0.02	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0928 mg	g/L	0.0002	0.00005	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	5.99	pCi/L	0.20	0.41	ttp	9/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	5.57	pCi/L	0.36	0.15	sdw	9/10/2019	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the acceptable limit of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-10

Sample Number: 192952-005 Date Collected: 08/26/2019 16:22 Date Received: 9/4/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.61	ug/L		0.1	0.02	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Arsenic, As	3.00	ug/L		0.1	0.03	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Barium, Ba	3060	ug/L		1	0.2	KAN	09/23/2019 16:26	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.08	ug/L	J	0.1	0.02	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.03	ug/L	J	0.05	0.01	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1.61	ug/L		0.2	0.04	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	1.06	ug/L		0.05	0.02	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.449	ug/L		0.2	0.05	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	8.22	ug/L		2	0.4	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.4	ug/L		0.2	0.03	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1	ug/L	U	0.5	0.1	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Boron, B	1.03	mg/L		0.05	0.02	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	216	mg/L		0.05	0.02	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.241	mg/L		0.0002	0.00005	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.17	pCi/L	0.13	0.38	ttp	9/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	6.94	pCi/L	0.39	0.14	sdw	9/10/2019	SW-846 9315-1986,Rev. 0

The RPD between the sample and duplicate result exceed 25%. The carrier recovery is outside the acceptable limit of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-11

Sample Number: 192952-006 Date Collected: 08/26/2019 16:35 Date Received: 9/4/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.37	ug/L		0.1	0.02	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Arsenic, As	6.30	ug/L		0.1	0.03	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Barium, Ba	492	ug/L		0.2	0.05	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.04	ug/L	J	0.1	0.02	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.13	ug/L		0.05	0.01	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1.47	ug/L		0.2	0.04	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	2.73	ug/L		0.05	0.02	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.764	ug/L		0.2	0.05	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	5.70	ug/L		2	0.4	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.8	ug/L		0.2	0.03	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1	ug/L	U	0.5	0.1	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Boron, B	0.304	mg/L		0.05	0.02	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	139	mg/L		0.05	0.02	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0337	mg/L		0.0002	0.00005	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	0.583	pCi/L	0.15	0.48	ttp	9/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	1.04	pCi/L	0.16	0.16	sdw	9/10/2019	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the acceptable limit of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Duplicate BAP

Sample Number: 192952-007 Date Collected: 08/26/2019 16:22 Date Received: 9/4/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.38	ug/L		0.1	0.02	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Arsenic, As	2.93	ug/L		0.1	0.03	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Barium, Ba	3190	ug/L		1	0.2	KAN	09/23/2019 18:14	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.04	ug/L	J	0.1	0.02	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.01	ug/L	J	0.05	0.01	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.836	ug/L		0.2	0.04	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.369	ug/L		0.05	0.02	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.1	ug/L	J	0.2	0.05	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	4.01	ug/L		2	0.4	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.1	ug/L	J	0.2	0.03	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1	ug/L	U	0.5	0.1	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Boron, B	1.06	mg/L		0.05	0.02	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	213	mg/L		0.05	0.02	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.249	mg/L		0.0002	0.00005	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Equipment Blank

Sample Number: 192952-008 Date Collected: 08/26/2019 17:00 Date Received: 9/4/2019

Parameter	Result U	Dat Inits Qu		MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.02 uc		0.1	0.02	KAN	09/26/2019 13:53	EPA 200.8-1994. Rev. 5.4
• •	,	J	_				
Arsenic, As	< 0.03 ug	g/L U	0.1	0.03	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Barium, Ba	0.26 ug	g/L	0.2	0.05	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.02 ug	g/L U	0.1	0.02	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.01 ug	g/L U	0.05	0.01	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.04 ug	g/L J	0.2	0.04	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	< 0.02 ug	g/L U	0.05	0.02	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Lead, Pb	< 0.05 ug	g/L U	0.2	0.05	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	< 0.4 ug	g/L U	2	0.4	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.03 ug	g/L J	0.2	0.03	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1 ug	g/L U	0.5	0.1	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Boron, B	0.087 m	ng/L	0.05	0.02	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	0.03 m	ng/L J	0.05	0.02	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00009 m	ng/L J	0.0002	0.00005	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

BAP CCR

Michael Ohlinger, Chemist

Muhael S. Ollinger

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Relinquished by: Special Instructions/QC Requirements & Comments: Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17 Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Relinquished by: Relinquished by: Sampler(s): Contact Phone: Project Name: Northeastern PP BAP CCR Six 1L Bottles must be collected for Radium for every 10th sample. Contacts: Dolan Chemical Laboratory (DCL) EQUIPMENT BLANK BAP Kenny McDonald/Matt Hamilton Dave Conover (614-836-4219) Groveport, Ohio 43125 Sample Identification Michael Ohlinger (614-836-4184) DUPLICATE BAP 4001 Bixby Road 318-673-3816 SP-10 SP-5R SP-2 SP-4 SP-1 **** RESULTS DUE OCTOBER 12 Company: CM 616 Company: Company: 8/26/2019 8/26/2019 8/26/2019 8/26/2019 8/26/2019 8/26/2019 8/26/2019 8/26/2019 Sample Analysis Turnaround Time (in Calendar Days) RESULTS DUE OCTOBER 12 Sample Time 1700 1622 1720 1705 1635 1640 1650 1622 Type (C=Comp, G=Grab) Sample **6** 0 G **6** G G **a** G Program: Coal Combustion Residuals (CCR) Date(Time: 0 8/30//9 1400 Matrix Date/Time: Date/Time: GW GW GW GW GW. GW GW GW F= filter in field **Chain of Custody Record** # of Cont. Sampler(s) Initials Received in Laboratory by: Received by: Received by: 250 mL B, Ca, Sb, As, Ba, Be, pH<2, bottle, Cd, Cr, Co, Pb, Li, Mo 4 × × × × × × × 250 mL bottle, then Dissolved B, Sb, As, Field-filter pH<2, HNO3 Ba, Be, Ca, Cd, Cr, F4 Co, Fe, K, Li, Mg, Mn, Mo, Na, Pb, Se, Sr, Tl 250 mL bottle, Cool, 0-6C Fluoride, Chloride, Sulfate (six every 10th*) L bottles, pH<2, HNO3 Ra-226, Ra-228 4 × \times × \times × \times Date: Date/Time: Date/Time: COC/Order #: Sample Specific Notes: For Lab Use Only: Z

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type
Cooler Box Bag Envelope	PONY UPS FedEX USPS
	Other
Plant/Customer Northeastern	Number of Plastic Containers:
Opened By M50	Number of Glass Containers:
·	Number of Mercury Containers:
Were all temperatures within 0-6°C? Y/N	or N/A Initialon ice / no ice
L (IR Gun Ser#101731132, Expir. W11220	-\f-No_specify each deviation:
	Comments
Was Chain of Custody received? (Y/N	Comments
	If RUSH , who was notified?O ₃ (48 hr)
(24 hr)	O ₃ (46 fil) Onno-PO ₄ (48 fir) Hg-diss (pres) (48 hr)
Was COC filled out properly? () / N	Comments
	Comments No date time of collection
Were correct containers used?	Comments
Was pH checked & Color Coding done? Y/	N or N/A Initial & Date: MGK 5UB
- Was Add'l Preservative needed? Y / 🕅 If	Yes; By whom & when: (See Prep Book)
Is sample filtration requested? Y / N	Comments (See Prep Book)
Was the customer contacted? If Yes:	Person Contacted:
lah ID#	ate & Time
Logged by MSO 19	bels suy "SP-5" bottle
Reviewed by SM	

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40446 Company: SEP - Environmental (JP-W)

Contact: Jill Parker-Witt

Address: 502 N. Allen Avenue Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

AEP Sample ID: 228531

Date Received: 08/29/2019

Collected Date: 08/26/2019

By: KM/MH

Cust Sample ID: SP-1 Sample Desc.: CCR Location: Northeastern PP

Matrix: Water

Metals (228531)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.00005	mg/L	0.000005	1	EPA 7470A 1994	09/06/2019 12:59	U	LNM
Water (228531)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	9	mg/L	0.219	1	EPA 300.0	09/01/2019 11:12		GB
Fluoride	0.525	mg/L	0.083	1	EPA 300.0	09/01/2019 11:12	J	GB
Solids, Total Dissolved (TDS)	438	mg/L	2	1	SM 2540 C-2011	08/30/2019 12:00		JTD
Sulfate	48	mg/L	0.140	1	EPA 300.0	09/01/2019 11:12		GB

AEP Sample ID: 228532 Collected Date: 08/26/2019 By: KM/MH
Cust Sample ID: SP-2 Location: Northeastern PP Matrix: Water

Sample Desc.: CCR

Metals (228532)

wietais (220032)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/06/2019 13:02	U	LNM
Water (228532)						_		
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	1072	mg/L	0.219	1:10	EPA 300.0	09/01/2019 14:00		GB
Fluoride	2.685	mg/L	0.083	1	EPA 300.0	09/01/2019 13:41		GB
Solids, Total Dissolved (TDS)	2246	mg/L	2	1	SM 2540 C-2011	08/30/2019 12:00		JTD
Sulfate	14	mg/L	0.140	1	EPA 300.0	09/01/2019 13:41		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40446 Company: SEP - Environmental (JP-W)

Contact: Jill Parker-Witt

Address: 502 N. Allen Avenue Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

AEP Sample ID: 228533

Collected Date: 08/26/2019

By: KM/MH

Cust Sample ID: SP-4
Sample Desc.: CCR

Date Received: 08/29/2019

Location: Northeastern PP Matrix: Water

Metals (228533)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/06/2019 14:29	U	LNM
Water (228533)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	458	mg/L	0.219	1:10	EPA 300.0	09/01/2019 15:15		GB
Fluoride	2.990	mg/L	0.083	1	EPA 300.0	09/01/2019 14:56		GB
Solids, Total Dissolved (TDS)	1170	mg/L	2	1	SM 2540 C-2011	08/30/2019 12:00		JTD
Sulfate	61	mg/L	0.140	1	EPA 300.0	09/01/2019 14:56		GB

AEP Sample ID: 228534 Collected Date: 08/26/2019 By: KM/MH
Cust Sample ID: SP-5 Location: Northeastern PP Matrix: Water

Sample Desc.: CCR

Metals (228534)

WELAIS (220004)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/06/2019 14:32	U	LNM
Water (228534)			•					
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	697	mg/L	0.219	1:10	EPA 300.0	09/01/2019 15:53		GB
Fluoride	2.789	mg/L	0.083	1	EPA 300.0	09/01/2019 15:34		GB
Solids, Total Dissolved (TDS)	1450	mg/L	2	1	SM 2540 C-2011	08/30/2019 12:00		JTD
Sulfate	3	mg/L	0.140	1	EPA 300.0	09/01/2019 15:34		GB

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 40446 Report ID

Contact: Jill Parker-Witt

Address: 502 N. Allen Avenue Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

AEP Sample ID: 228535

Date Received: 08/29/2019

Collected Date: 08/26/2019

Bv: KM/MH

By: KM/MH

Cust Sample ID: SP-10 Sample Desc.: CCR

Location: Northeastern PP

Matrix: Water

Metals (228535)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/06/2019 14:35	U	LNM
Water (228535)			·			•		
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	1939	mg/L	0.219	1:10	EPA 300.0	09/01/2019 16:30		GB
Fluoride	4.874	mg/L	0.083	1:10	EPA 300.0	09/01/2019 16:30		GB
Solids, Total Dissolved (TDS)	3446	mg/L	2	1	SM 2540 C-2011	08/30/2019 12:00		JTD
Sulfate	29	mg/L	0.140	1	EPA 300.0	09/01/2019 16:11		GB

AEP Sample ID: 228536 **Collected Date:** 08/26/2019 Cust Sample ID: SP-11 Location: Northeastern PP Matrix: Water

Sample Desc.: CCR

Motals (228536)

Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/06/2019 14:38	U	LNM
		·					·
Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
129	mg/L	0.219	1:10	EPA 300.0	09/01/2019 17:08		GB
2.225	mg/L	0.083	1	EPA 300.0	09/01/2019 16:49		GB
970	mg/L	2	1	SM 2540 C-2011	08/30/2019 12:00		JTD
122	mg/L	0.140	1:10	EPA 300.0	09/01/2019 17:08		GB
	< 0.000005 Value 129 2.225 970	< 0.000005 mg/L Value Unit 129 mg/L 2.225 mg/L 970 mg/L	Value Unit Det. Limit 129 mg/L 0.219 2.225 mg/L 0.083 970 mg/L 2	Value Unit Det. Limit Dil./Conc. 129 mg/L 0.219 1:10 2.225 mg/L 0.083 1 970 mg/L 2 1	Value Unit Det. Limit Dil./Conc. Method 129 mg/L 0.219 1:10 EPA 300.0 2.225 mg/L 0.083 1 EPA 300.0 970 mg/L 2 1 SM 2540 C-2011	Value Unit Det. Limit Dil./Conc. Method Analysis Date/Time 129 mg/L 0.219 1:10 EPA 300.0 09/01/2019 17:08 2.225 mg/L 0.083 1 EPA 300.0 09/01/2019 16:49 970 mg/L 2 1 SM 2540 C-2011 08/30/2019 12:00	Value Unit Det. Limit Dil./Conc. Method Analysis Date/Time Codes 129 mg/L 0.219 1:10 EPA 300.0 09/01/2019 17:08 2.225 mg/L 0.083 1 EPA 300.0 09/01/2019 16:49 970 mg/L 2 1 SM 2540 C-2011 08/30/2019 12:00

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Company: SEP - Environmental (JP-W) : 40446 Report ID

Contact: Jill Parker-Witt

Shreveport, LA 71101

Phone: (318) 673-3816

Fax: (318) 673-3960

Address: 502 N. Allen Avenue

AEP Sample ID: 228537 **Collected Date:** 08/26/2019 Cust Sample ID: Duplicate BAP

Location: Northeastern PP

Bv: KM/MH

Sample Desc.: CCR

Date Received: 08/29/2019

Matrix: Water

Metals (228537)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/06/2019 14:41	U	LNM
Water (228537)								
Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Chloride	1922	mg/L	0.219	1:10	EPA 300.0	09/01/2019 17:45		GB
Fluoride	4.791	mg/L	0.083	1:10	EPA 300.0	09/01/2019 17:45		GB
Solids, Total Dissolved (TDS)	3498	mg/L	2	1	SM 2540 C-2011	08/30/2019 12:00		JTD
Sulfate	30	mg/L	0.140	1	EPA 300.0	09/01/2016 17:26		GB

By: KM/MH AEP Sample ID: 228538 **Collected Date:** 08/26/2019 Cust Sample ID: Equipment Blank BAP Location: Northeastern PP Matrix: Water

Sample Desc.: CCR

Metals (228538)

Parameter	Value	Unit	Det. Limit	Dil./Conc.	Method	Analysis Date/Time	Codes	Tech
Mercury	< 0.000005	mg/L	0.000005	1	EPA 7470A 1994	09/06/2019 14:44	U	LNM

502 North Allen Ave. Shreveport, LA 71101 Phone: (318) 673-3802 Fax: (318) 673-3960

Report ID : 40446

Date Received: 08/29/2019

Company: SEP - Environmental (JP-W)

.... (0.

Address: 502 N. Allen Avenue Shreveport, LA 71101

Contact: Jill Parker-Witt Phone: (318) 673-3816

Fax: (318) 673-3960

Quality Control Data

* Quality control units are the same as reported analytical results

			Blank		Standard			Spike		Surrogate	Duplicate %	,
Date	Parameter	Sample ID	Value *	Value *	Recovery*	%	Value *	Recovery*	%	% Recovery	Difference	Tech
9/1/2019	Chloride	228531		25	23	92.0	25	25	100.0		0.0	GB
9/1/2019	Chloride		<0.219									GB
9/1/2019	Chloride	228539.1		25	23	92.0	25	33	132.0		0.0	GB
9/1/2019	Fluoride	228531		6	5.8	96.7	6	5.9	98.3		0.0	GB
9/1/2019	Fluoride		<0.083									GB
9/1/2019	Fluoride	228539.1		6	5.8	96.7	6	6.1	101.7		0.0	GB
9/6/2019	Mercury	228512.2	<0.00000	0.001	0.0009894	98.9	0.001	0.0012053	120.5		1.9	JDB
9/6/2019	Mercury	228502.2	<0.00000	0.001	0.00104	104.0	0.001	0.0011859	118.6		0.8	JDB
9/6/2019	Mercury	228492.2	<0.00000	0.001	0.00104	104.0	0.001	0.0009299	93.0		9.5	JDB
9/6/2019	Mercury	228522.2	0.0000068	0.001	0.0010355	103.6	0.001	0.001099	109.9		3.5	JDB
9/6/2019	Mercury	228552.1	<0.00000	0.001	0.0009375	93.7	0.001	0.0009907	99.1		1.3	JDB
9/6/2019	Mercury	228532.2	0.0000068	0.001	0.0010355	103.6	0.001	0.0011589	115.9		4.2	JDB
8/30/2019	Solids, Total Dissolved (TDS)	228494	<2	50	46	92.0	1018	1008	99.0		1.8	JTD
9/1/2019	Sulfate	228539.1		25	23	92.0	50	59	118.0		0.0	GB
9/1/2019	Sulfate	228531		25	23	92.0	25	27	108.0		2.0	GB
9/1/2019	Sulfate		<0.140									GB

Date required: 10/12/19

Code Code Description

J Concentration estimated. Analyte was detected between the Method Detection Limit (MDL) and Minimum Quantitation Limit (MQL).

U Analyte concentration below MDL.

10-Oct-19

ity Assurance Officer

Report Date

Relinquished by: Company: Date/Time: Received in June 1997 Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev.	Relinquished by:	Relinquished by Manual Co		Special Instructions/QC Requirements & Comments:	Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other * Six 11 Bottles must be collected for Radjum for every 10th sample.				EQUIPMENT BLANK BAP 8/	DUPLICATE BAP 8/	SP-11 8/	SP-10 8/	SP-5	SP-4 8/	SP-2 8/	SP-1 8/	Sample Identification S	Sampler(s): Kenneth McDonald/Matt Hamilton	Contact Name: Jill Parker-Witt Contact Phone: 318-673-3816	Project Name: Northeastern PP CCR	Contacts:	Shreveport Chemical Laboratory (SCL) 502 N. Allen Ave. Shreveport , LA 71101
Company:	mpany:	Company:	**		3; 5=NaOH	L			8/26/2019	8/26/2019	8/26/2019	8/26/2019	8/26/2019	8/26/2019	8/26/2019	8/26/2019	Sample S Date		RESULTS DUE OCTOBER 12	nalveis Tii		
ombustion		Ċ	RES		t; 6= Oth	L			1700	1622	1635	1622	1720	1705	1640	1650	Sample Time		ILTS DUI		2	3
n Residua		:	RESULTS DUE		9				G	G	G	ଜ	G	G	G	ര	Sample Type (C=Comp, G=Grab)		E OCTOE	Time (in Ca	_	\$.
Date/Time:	Date/Time:	Date/Time:	S DL						8	GW	GW	GW	GW	GW	GW	GW	Matrix		3ER 12	lendar D		Cha Program:
ne: Samplin	ne:	e/Time:			F= filter in field	L				2	2	2	2	2	2	2	# of Cont.		3	avs)	T (0	n: Coa
g - Shre		148	CTC		Ple			_									Sampler(s) In	itials			Site Contact:	of Cu
Received in	Received by:	Received by:	OCTOBER		4				×	×	×	×	×	×	×	×	Mercury		pH<2, HNO3	250 mL	lact:	Istody bustion F
beboratory by	77		12		4.												dissolved F	e and Mn	pH<2, HNO3	Field-filter 500 mL		Chain of Custody Record
D y					_					×	×	×	×	×	×	×	CHLORIDE FLUORIDE SULFATE,	5	Cool, 0-6C			(CCR)
Paller					4												Ra-226, R	a-228	L bottles, pH<2, HNO3	Three (six every	Date:	ei e
5	_										\vdash							2710				
Date/Time: 8 - 29 - 19 11: 45	Date/Ilme:	Date/Time:							228538	3	228536.14.2	228535.14.2	8534.14.2	228533.10.2	228532.14.2	228531.10.2	Sample Specific Notes:			04+04 000	COC/Order #:	

SHREVEPORT CHEMICAL LABORATORY

502 N. Allen Ave. **Shreveport**, LA 71101 Phone 318-673-3802 FAX 318-673-3960

PROJECT RECEIPT FORM

	Delivery Type
) UPS	FEDEX US Mail Walk in Shuttle
Othe	er
Tracking #	#
	Sample Matrix
LE DGA	PCB Oil Water Oil Soil
Solid	Liquid Other
_	Project I.D. Coc. 40446
Were sa	amples received on ice? YES NO
(YES)	NO
YES	NO
VES	NO
VES	NO
YES	NO
E	NO
2	
NO	Person Contacted
	Date & Time
	Tracking at DGA Solid Were s VES VES VES VES

Sample ID	Analysis	pH Presei	vative Added / Lot #
SP-1	Meta LS	12	
SP-2			
50. Sp-3			
Sp-4			
Sp-5			
Sp-10			
SP-11			
DBPI: CAKBA	P		
Equipment Blank	BAP 1		
1			
<u> </u>			
<u> </u>			
			J

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F: 614-836-4168, Audinet 210-4168 http://aepenv/labs

Water Analysis

Location: Northeastern Station Report Date: 10/10/2019

SP-1

Sample Number: 192952-001 Date Collected: 08/26/2019 16:50 Date Received: 9/4/2019

Parameter	Result Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.43 ug/L		0.1	0.02	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Arsenic, As	0.73 ug/L		0.1	0.03	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Barium, Ba	160 ug/L		0.2	0.05	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.08 ug/L	J	0.1	0.02	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.09 ug/L		0.05	0.01	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1.49 ug/L		0.2	0.04	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.481 ug/L		0.05	0.02	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.835 ug/L		0.2	0.05	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	5.86 ug/L		2	0.4	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Selenium, Se	3.4 ug/L		0.2	0.03	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.1 ug/L	J	0.5	0.1	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Boron, B	0.124 mg/L		0.05	0.02	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	120 mg/L		0.05	0.02	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00285 mg/L		0.0002	0.00005	KAN	09/26/2019 11:24	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.41	pCi/L	0.16	0.47	ttp	9/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	1.34	pCi/L	0.20	0.18	sdw	9/10/2019	SW-846 9315-1986,Rev. 0

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-2

Sample Number: 192952-002 Date Collected: 08/26/2019 16:40 Date Received: 9/4/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	1.22	ug/L		0.1	0.02	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.53	ug/L		0.1	0.03	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Barium, Ba	1220	ug/L		1	0.2	KAN	09/23/2019 16:11	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.07	ug/L	J	0.1	0.02	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.05	ug/L		0.05	0.01	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.701	ug/L		0.2	0.04	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.568	ug/L		0.05	0.02	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.334	ug/L		0.2	0.05	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	22.3	ug/L		2	0.4	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Selenium, Se	3.7	ug/L		0.2	0.03	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	0.1	ug/L	J	0.5	0.1	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Boron, B	0.173	mg/L		0.05	0.02	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	211	mg/L		0.05	0.02	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0582	mg/L		0.0002	0.00005	KAN	09/26/2019 11:29	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	5.62	pCi/L	0.22	0.52	ttp	9/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	3.1	pCi/L	0.26	0.13	sdw	9/10/2019	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the acceptable limit of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Sp-4

Date Collected: 08/26/2019 17:05 Date Received: 9/4/2019 Sample Number: 192952-003

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.25	ug/L		0.1	0.02	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1.64	ug/L		0.1	0.03	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Barium, Ba	359	ug/L		0.2	0.05	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
The MS/MSD is outside the accepta	able limit	of 75-125%	. The R	PD betwe	en the MS	S/MSD exceeds	20%.	
Beryllium, Be	0.101	ug/L		0.1	0.02	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.05	ug/L		0.05	0.01	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1.01	ug/L		0.2	0.04	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	1.07	ug/L		0.05	0.02	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.596	ug/L		0.2	0.05	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	2	ug/L	J	2	0.4	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.6	ug/L		0.2	0.03	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1	ug/L	U	0.5	0.1	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Boron, B	0.365	mg/L		0.05	0.02	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	182	mg/L		0.05	0.02	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4
The MS is outside the acceptable lin	mit of 75-	125%. The	RPD be	etween the	e MS/MSD	exceeds 20%.		
Lithium, Li	0.0554	mg/L		0.0002	0.00005	KAN	09/26/2019 11:34	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method	
Radium-228	2.23	pCi/L	0.18	0.52	ttp	9/9/2019	SW-846 9320-2014,Rev. 1.0	
Radium-226	1.01	pCi/L	0.16	0.18	sdw	9/10/2019	SW-846 9315-1986,Rev. 0	

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "onesigma" which has the same units of measurement as the result.

SP-5R

Sample Number: 192952-004 Date Collected: 08/26/2019 17:20 Date Received: 9/4/2019

Danamatan	Danult IIn	Data	D.	MDI	Amalusia Du	Analysis Data/Time	Mathad
Parameter	Result Un	nits Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.06 ug/	g/L J	0.1	0.02	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Arsenic, As	49.3 ug/	J/L	0.1	0.03	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Barium, Ba	2340 ug/	J/L	1	0.2	KAN	09/23/2019 16:21	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.06 ug/	ı/L J	0.1	0.02	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.02 ug/	g/L J	0.05	0.01	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.335 ug/	J/L	0.2	0.04	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.485 ug/	J/L	0.05	0.02	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.545 ug/	J/L	0.2	0.05	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	1 ug/	ı/L J	2	0.4	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.1 ug/	ı/L J	0.2	0.03	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1 ug/	ı/L U	0.5	0.1	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Boron, B	0.220 mg	g/L	0.05	0.02	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	128 mg	g/L	0.05	0.02	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0928 mg	g/L	0.0002	0.00005	KAN	09/26/2019 11:40	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	5.99	pCi/L	0.20	0.41	ttp	9/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	5.57	pCi/L	0.36	0.15	sdw	9/10/2019	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the acceptable limit of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-10

Sample Number: 192952-005 Date Collected: 08/26/2019 16:22 Date Received: 9/4/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.61 ug/L		0.1	0.02	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Arsenic, As	3.00 ug/L		0.1	0.03	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Barium, Ba	3060 ug/L		1	0.2	KAN	09/23/2019 16:26	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.08 ug/L	J	0.1	0.02	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.03 ug/L	J	0.05	0.01	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1.61 ug/L		0.2	0.04	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	1.06 ug/L		0.05	0.02	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.449 ug/L		0.2	0.05	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	8.22 ug/L		2	0.4	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.4 ug/L		0.2	0.03	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1 ug/L	U	0.5	0.1	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Boron, B	1.03 mg/L		0.05	0.02	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	216 mg/L		0.05	0.02	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.241 mg/L		0.0002	0.00005	KAN	09/26/2019 13:38	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	1.17	pCi/L	0.13	0.38	ttp	9/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	6.94	pCi/L	0.39	0.14	sdw	9/10/2019	SW-846 9315-1986,Rev. 0

The RPD between the sample and duplicate result exceed 25%. The carrier recovery is outside the acceptable limit of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

SP-11

Sample Number: 192952-006 Date Collected: 08/26/2019 16:35 Date Received: 9/4/2019

		Data					
Parameter	Result Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.37 ug/L		0.1	0.02	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Arsenic, As	6.30 ug/L		0.1	0.03	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Barium, Ba	492 ug/L		0.2	0.05	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.04 ug/L	J	0.1	0.02	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.13 ug/L		0.05	0.01	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	1.47 ug/L		0.2	0.04	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	2.73 ug/L		0.05	0.02	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.764 ug/L		0.2	0.05	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	5.70 ug/L		2	0.4	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.8 ug/L		0.2	0.03	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1 ug/L	U	0.5	0.1	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Boron, B	0.304 mg/L		0.05	0.02	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	139 mg/L		0.05	0.02	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.0337 mg/L		0.0002	0.00005	KAN	09/26/2019 13:43	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Radiochemistry*	Result	Units	UNC* (+ / -)	MDA*	Analysis By	Analysis Date/Time	Method
Radium-228	0.583	pCi/L	0.15	0.48	ttp	9/9/2019	SW-846 9320-2014,Rev. 1.0
Radium-226	1.04	pCi/L	0.16	0.16	sdw	9/10/2019	SW-846 9315-1986,Rev. 0

The carrier recovery is outside the acceptable limit of 30-110%.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Duplicate BAP

Sample Number: 192952-007 Date Collected: 08/26/2019 16:22 Date Received: 9/4/2019

			Data					
Parameter	Result	Units	Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.38	ug/L		0.1	0.02	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Arsenic, As	2.93	ug/L		0.1	0.03	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Barium, Ba	3190	ug/L		1	0.2	KAN	09/23/2019 18:14	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	0.04	ug/L	J	0.1	0.02	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.01	ug/L	J	0.05	0.01	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.836	ug/L		0.2	0.04	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.369	ug/L		0.05	0.02	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.1	ug/L	J	0.2	0.05	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	4.01	ug/L		2	0.4	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.1	ug/L	J	0.2	0.03	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1	ug/L	U	0.5	0.1	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Boron, B	1.06	mg/L		0.05	0.02	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	213	mg/L		0.05	0.02	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.249	mg/L		0.0002	0.00005	KAN	09/26/2019 13:48	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Equipment Blank

Sample Number: 192952-008 Date Collected: 08/26/2019 17:00 Date Received: 9/4/2019

Parameter	Result U	Dat Inits Qu		MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	< 0.02 uc		0.1	0.02	KAN	09/26/2019 13:53	EPA 200.8-1994. Rev. 5.4
• •	,	J	_				
Arsenic, As	< 0.03 ug	g/L U	0.1	0.03	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Barium, Ba	0.26 ug	g/L	0.2	0.05	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.02 ug	g/L U	0.1	0.02	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.01 ug	g/L U	0.05	0.01	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.04 ug	g/L J	0.2	0.04	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	< 0.02 ug	g/L U	0.05	0.02	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Lead, Pb	< 0.05 ug	g/L U	0.2	0.05	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	< 0.4 ug	g/L U	2	0.4	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.03 ug	g/L J	0.2	0.03	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Thallium, Tl	< 0.1 ug	g/L U	0.5	0.1	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Boron, B	0.087 m	ng/L	0.05	0.02	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	0.03 m	ng/L J	0.05	0.02	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4
Lithium, Li	0.00009 m	ng/L J	0.0002	0.00005	KAN	09/26/2019 13:53	EPA 200.8-1994, Rev. 5.4

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit

BAP CCR

Michael Ohlinger, Chemist

Muhael S. Ollinger

Email msohlinger@aep.com Tel.

Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

J: Analyte was positively identified, though the quantitation was below Reporting Limit.

^{*}The Required Detection Limit (RDL) is equivalent to the RL and for Radium-226 and Radium-228, the RDL is calculated to be 1.0 pCi/L. The Minimal Detectable Activity (MDA) listed with these results is sample specific and empirical. The combined standard uncertainty (UNC) is a counting uncertainty representing "one-sigma" which has the same units of measurement as the result.

Relinquished by: Special Instructions/QC Requirements & Comments: Form COC-04, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Shreveport, Rev. 1, 1/10/17 Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Relinquished by: Relinquished by: Sampler(s): Contact Phone: Project Name: Northeastern PP BAP CCR Six 1L Bottles must be collected for Radium for every 10th sample. Contacts: Dolan Chemical Laboratory (DCL) EQUIPMENT BLANK BAP Kenny McDonald/Matt Hamilton Dave Conover (614-836-4219) Groveport, Ohio 43125 Sample Identification Michael Ohlinger (614-836-4184) DUPLICATE BAP 4001 Bixby Road 318-673-3816 SP-10 SP-5R SP-2 SP-4 SP-1 **** RESULTS DUE OCTOBER 12 Company: CM 616 Company: Company: 8/26/2019 8/26/2019 8/26/2019 8/26/2019 8/26/2019 8/26/2019 8/26/2019 8/26/2019 Sample Analysis Turnaround Time (in Calendar Days) RESULTS DUE OCTOBER 12 Sample Time 1700 1622 1720 1705 1635 1640 1650 1622 Type (C=Comp, G=Grab) Sample **6** 0 G **6** G G **a** G Program: Coal Combustion Residuals (CCR) Date(Time: 0 8/30//9 1400 Matrix Date/Time: Date/Time: GW GW GW GW GW. GW GW GW F= filter in field **Chain of Custody Record** # of Cont. Sampler(s) Initials Received in Laboratory by: Received by: Received by: 250 mL B, Ca, Sb, As, Ba, Be, pH<2, bottle, Cd, Cr, Co, Pb, Li, Mo 4 × × × × × × × 250 mL bottle, then Dissolved B, Sb, As, Field-filter pH<2, HNO3 Ba, Be, Ca, Cd, Cr, F4 Co, Fe, K, Li, Mg, Mn, Mo, Na, Pb, Se, Sr, Tl 250 mL bottle, Cool, 0-6C Fluoride, Chloride, Sulfate (six every 10th*) L bottles, pH<2, HNO3 Ra-226, Ra-228 4 × \times × \times × \times Date: Date/Time: Date/Time: COC/Order #: Sample Specific Notes: For Lab Use Only: Z

AEP WATER & WASTE SAMPLE RECEIPT FORM

Package Type	Delivery Type				
Cooler Box Bag Envelope	PONY UPS FedEX USPS				
	Other				
Plant/Customer Northeastern	Number of Plastic Containers:				
Opened By M50	Number of Glass Containers:				
·	Number of Mercury Containers:				
Were all temperatures within 0-6°C? Y/N	or N/A Initialon ice / no ice				
L (IR Gun Ser#101731132, Expir. W11220	- H-No specify each deviation:				
	Comments				
Was Chain of Custody received? (Y/N	Comments				
	If RUSH , who was notified?O ₃ (48 hr)				
(24 hr)	O ₃ (46 fil) Ortho-PO ₄ (48 fir) Hg-diss (pres) (48 fir)				
Was COC filled out properly? () / N	Comments				
	Comments No date time of collection				
Were correct containers used?	Comments				
Was pH checked & Color Coding done? Y/	N or N/A Initial & Date MGK JUB				
- Was Add'l Preservative needed? Y / 🕅 If	Yes; By whom & when: (See Prep Book)				
Is sample filtration requested? Y / N	Comments (See Prep Book)				
Was the customer contacted? If Yes:	Person Contacted				
lah ID#	ate & Time				
Logged by MSO 19	bels suy "SP-5" bottle				
Reviewed by SM					

REMINDER: Document the pertinent sample integrity information and deviations in sample receipt (as noted above) in the "Notes" field in the LIMS to be included on the report to the customer

APPENDIX VI

ODEQ Correspondence

SCOTT A THOMPSON **Executive Director**

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

March 19, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re: Request for a Thirty (30) Day Extension for an Alternate Source Demonstration Submittal

Public Service Company of Oklahoma

Northeastern Power Station - Bottom Ash Pond

Rogers County

Solid Waste Permit No. none

Dear Ms. Parker-Witt:

On March 11, 2019, the Department of Environmental Quality (DEQ) received a request by email from AEP/Public Service Company of Oklahoma Northeastern Power Station (NPS) for a thirty (30) day extension for the submittal of an alternate source demonstration (ASD) for lithium in monitoring well SP-10.

NPS requested the extension since analytical results from samples sent to the lab have not been received. Additionally, NPS is drilling a boring near the Bottom Ash Pond to gather additional information on the Bandera shale formation which may contribute to the ASD.

DEQ approved the extension by email on March 12, 2019 (enclosed). This letter is a confirmation of the email.

If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely.

Hillary Young, P.E.

Chief Engineer

Land Protection Division

HY/ckh

Enclosure

File Copy: Solid Waste Permit No. 3566010

Cindy Hailes

From:

Hillary Young

Sent:

Tuesday, March 12, 2019 11:15 AM

To: Cc: Jill Parker Witt Cindy Hailes

Subject:

RE: ASD for Lithium at NE BAP - 30 day extension request

Hi Jill:

Your request for a 30-day extension is granted. If you have any questions, please feel free to give me or Cindy a call.

Thank you, Hillary Young

Hillary Young, P.E. Chief Engineer Land Protection Division Oklahoma Department of Environmental Quality 707 N. Robinson, P.O. Box 1677 Oklahoma City, OK 73101-1677 Office: (405) 702-5188

Office: (405) 702-518 Fax: (405) 702-5101

From: Jill Parker Witt [mailto:jcparker-witt@aep.com]

Sent: Monday, March 11, 2019 3:25 PM

To: Hillary Young **Cc:** Cindy Hailes

Subject: ASD for Lithium at NE BAP - 30 day extension request

Hillary:

We are working on an ASD for the bottom ash pond out at Northeastern PS.

At the moment our consultants have two outstanding pieces of data we need for the ASD:

- cation exchange capacity (CEC) and thin section petrography data from the mineralogy lab. These samples were delivered to the lab on 2/20/19 and we are waiting on results.
- A better understanding of where we are within the geologic column, they are mobilizing back to the site today (3/11/19) to advance an additional boring near the BAP with the hope of definitively tagging the Bandera shale formation.

We currently have the following pieces of evidence to support our ASD:

SCOTT A. THOMPSON Executive Director

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

March 21, 2019

CERTIFIED MAIL RETURN RECEIPT REQUESTED

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re:

Annual Groundwater Monitoring Report – Bottom Ash Pond

Public Service Company of Oklahoma-Northeastern Power Station

Rogers County

Solid Waste Permit No. none

Dear Ms. Parker-Witt:

On January 31, 2019, the Department of Environmental Quality (DEQ) received the Annual Groundwater Monitoring Report for the Bottom Ash Pond CCR Management Unit (Report) at Northeastern Power Station (NPS). The statistical analyses were received by email on February 21, 2019 and analytical data was received by email on March 15, 2019. Oklahoma Administrative Code (OAC) 252:517-9-1(e) requires NPS to prepare the annual groundwater monitoring and corrective action report to document the status of the coal combustion residual (CCR) surface impoundment.

Monitoring wells SP-4 and SP-5R are upgradient wells. Downgradient monitoring wells are SP-1, SP-2, SP-10 and SP-11. Groundwater velocity was calculated in the monitoring wells surrounding the BAP and ranged from 1.0 ft/yr in SP-10 to 5.8 ft/yr in SP-2 during the May 30, 2018 and July 30, 2018 sampling events respectively. This represents a range in residence times within the wells of 61.4 days to 10.6 days, respectively. Groundwater flow is in a southwesterly direction.

The statistical analysis included in the Report was for detection monitoring events conducted on October 11, 2017 and January 22, 2018. NPS conducted assessment monitoring on May 30, 2018 and July 30, 2018 and the statistical analyses summary (SAS) was submitted in a separate document on February 21, 2019.

Both detection monitoring events results were statistically analyzed and the upper prediction limit (UPL) for all constituents, and a lower prediction limit (LPL) for pH, were calculated based on a one-of-two retesting procedure. A statistically significant increase (SSI) is determined if both samples in the series of two exceed the UPL.

The assessment monitoring events results were statistically analyzed and groundwater protection standards (GWPS) were established for the OAC 252:517 Appendix B parameters. The data was assessed for statistically significant levels (SSLs) where the entire confidence interval exceeds the

Ms. Jill Parker-Witt, P.E. American Electric Power – Northeastern Power Station March 21, 2019 Page 2 of 2

GWPS. An SSL for lithium (0.263 mg/L) in monitoring well SP-10 was determined and NPS notified DEQ by email on February 21, 2019. NPS is currently conducting an alternative source demonstration for the lithium SSL.

The Report and SAS are accepted as submitted. The Report, SAS and notification were placed on the facility's publicly accessible internet site. If you have any questions, please contact Ms. Cynthia Hailes, P.E. at (405) 702-5114.

Sincerely,

Hillary Young, P.E

Chief Engineer

Land Protection Division

SCOTT A THOMPSON Executive Director

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

April 5, 2019

Elizabeth Gunter
Counsel for Public Service Company of Oklahoma
Public Service Company of Oklahoma
1 Riverside Plaza
Columbus, OH 43215

RE: Financial Assurance - Corporate Financial Test

Facility: Northeastern Power Station Coal Ash Landfill; Permit Number: 3566010; and Bottom Ash Pond (currently in the permit application process)

Rogers County, Oklahoma

Dear Ms. Gunter:

As required by Oklahoma Administrative Code (OAC) 252:517-17-3: Duty to maintain financial assurance, this letter acknowledges that DEQ has received Public Service Company of Oklahoma's (PSO's) 2019 Corporate Financial Test mechanism. PSO is the owner/operator of the Northcastern Power Station Coal Ash Landfill (Landfill), Permit No. 3566016, and the Bottom Ash Pond. The mechanism has been determined to be satisfactory at this time. Importantly however, DEQ may require additional information at any time if it appears PSO no longer satisfies its financial assurance obligation as owner/operator of the Landfill and the Bottom Ash Pond. DEQ reserves any and all rights it has to pursue enforcement actions or proceedings under applicable law with regard to PSO's financial assurance obligations, if the obligations are found to be inadequate.

PSO has certified the following cost estimates are assured through the company's 2019 Corporate Financial Test mechanism dated March 7, 2019:

Bottom Ash Pond:

- Closure:

 $$9,393,690 \times 3\% = $9,675,501$

Post-Closure:

 $1,189,415 \times 3\% = 1,225,097$

- Total:

\$10,900,598

Landfill (Permit No. 3566016);

- Closure:

 $3,969,964 \times 3\% = 4,089,062$

- Post-Closure:

\$5,821,984 x 3% = \$5,996,644

- Total

\$10,085,706

Thank you for ensuring PSO has met its 2019 financial assurance obligations for the Landfill and Bottom Ash Pond. If you have any questions, please contact Carol Bartlett at (405) 702-5109.

Sincerely,

Hillary Young, P.E.

Chief Engineer

Land Protection Division

HY/cb

SCOTT A. THOMPSON Executive Director

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

April 11, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power – Northeastern Power Station P.O. Box 220 Oologah, OK 74053-0220 RECEIVED BY

APR 1 5 2019

NORTHEASTERN STATION 3 OOLOGAH, OKLAHOMA

Re:

Alternative Closure Requirements

Public Service Company of Oklahoma, Northeastern Power Station

Rogers County

Dear Ms. Parker-Witt:

The Oklahoma Department of Environmental Quality (DEQ) received the Alternative Closure Requirements (ACR) – Bottom Ash Pond (BAP) for the existing coal combustion residuals (CCR) surface impoundment on December 10, 2018 from Public Service Company of Oklahoma's Northeastern Power Station (NPS). In response to the DEQ letter dated November 5, 2018, it is NPS's intent to pursue closure according to the alternate closure requirements in Oklahoma Administrative Code (OAC) 252:517-15-8(b) since the BAP did not meet the five (5) feet separation from groundwater requirement of OAC 252:517-5-1(a).

OAC 252:517-15-8 (b) allows the BAP to continue to receive CCR provided NPS certifies it will cease operation of Unit 3 and complete closure by October 17, 2028; and documents no alternative CCR disposal capacity is available on-site or off-site. The ACR states that NPS must continue to wet-sluice the bottom ash to the BAP due to the absence of alternative disposal capacity. NPS evaluated the other existing surface impoundments and determined they do not have the capacity to receive the 1.7 million gallons per day of ash management water and do not meet the construction requirements of OAC 252:517, so they cannot accept the CCR and process waters currently managed in the BAP. Further, no piping exists in which this wastewater stream could be transported to an offsite treatment facility and transporting this volume of CCR wastewater via trucking is not physically possible. Also, the on-site CCR ash landfill is not permitted to accept the process waters.

NPS is requesting approval under OAC 252:517-15-8(b) "Permanent cessation of a coal fired boiler(s) by a date certain" to continue management of CCR and non-CCR materials in the BAP until the required closure date of Unit 3, its only remaining coal fired boiler. On February 8, 2013, a settlement agreement was signed between NPS and the Department of Justice which set a closure date of December 31, 2026 for the coal-fired boiler Unit 3. Consequently, NPS certifies in the ACR that it will cease operation of Unit 3 by December 31, 2026, per the settlement agreement, and close the BAP according to OAC 252:517-15-8(b)(1) and (3).

DEQ accepts that NPS has met the requirements of OAC 252:517-15-8 and approves the ACR. With this approval, the Closure Plan of the Tier II Permit Application for the BAP, submitted to

Ms. Jill Parker-Witt, P.E. American Electric Power – Northeastern Power Station April 11, 2019 Page 2 of 2

DEQ on July 26, 2018, must be revised to reflect the alternative closure timeline and details of how closure will be completed by October 17, 2028.

If you have any questions, please contact Ms. Cindy Hailes of my staff at (405) 702-5114.

Sincerely,

Hillary Young, P. E

Chief Engineer

Land Protection Division

HY/ckh

cc: Christi Williams, Environmental Complaints & Local Services – Tulsa DEQ Office Mark Barton, Plant Manager, American Electric Power-Northeastern Power Station Sam Miller, American Electric Power-Northeastern Power Station

SCOTT A. THOMPSON Executive Director

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

July 8, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re: Alternate Source Demonstration for Lithium –Bottom Ash Pond Public Service Company of Oklahoma Northeastern Power Station Rogers County Solid Waste Permit No. none

Dear Ms. Parker-Witt:

Monitoring Well SP-10 is currently in the assessment monitoring program. Lithium was detected in SP-10 at concentrations of 0.245 mg/L on May 30, 2018 and 0.242 mg/L on July 30, 2018. A statistically significant level (SSL) was determined, on January 8, 2019, when the lower confidence limit (LCL) for lithium (0.263 mg/L) exceeded the groundwater protection standard (0.15 mg/L). Oklahoma Administrative Code (OAC) 252:517-9-6(g)(3)(B) allows AEP/Public Service Company of Oklahoma Northeastern Power Station (NPS) to demonstrate that a source other than the coal combustion residuals (CCR) unit caused the contamination, or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

On March 12, 2019, by email, DEQ approved a 30-day extension for submittal of the alternate source demonstration (ASD) so that NPS could receive sample analyses from the lab and to gather additional information on the Bandera shale formation from analyses of cores from two (2) new boreholes drilled at the site. On May 1, 2019, the Department of Environmental Quality (DEQ) received, by email, an ASD for lithium in monitoring well SP-10 from NPS. The ASD was presented to DEQ by NPS in a meeting on May 29, 2019. DEQ requested revised figures and cross-sections that were presented during the meeting. A revised Figure 4 and Figure 12 were received by email on June 4, 2019. The cross-sections were received by email on June 5, 2019.

The ASD asserts that the statistically significant level (SSL) exceeding the groundwater protection standards is a natural variation in groundwater quality due to the release of lithium from the clay minerals within the shale lens underlying the Bottom Ash Pond (BAP) and is not due to a release from the BAP itself. Additionally, NPS contends that the low concentration of lithium in the surface water in the BAP and limited transport from the BAP to the screened interval in SP-10 do not support a release.

Ms. Jill Parker-Witt, P.E. American Electric Power July 8, 2019 Page 2 of 2

DEQ reviewed the ASD and made the following determination:

Elevated lithium concentrations were detected in downgradient monitoring well SP-10; however, lithium was not detected in elevated levels in upgradient monitoring well SP-5R even though boring logs from SP-5R show the monitoring well contains interbeds of dark limey shale within the screened interval. Also, SP-8, located near SP-10, and screened across a lower zone shale exhibits low concentrations of lithium. If the lithium at SP-10 was due to the presence of shale lenses within the screened interval of SP-10, then both SP-5R and SP-8 should exhibit elevated levels of lithium. The conceptual model that NPS proposed does not fit the actual groundwater sampling data.

NPS collected and analyzed a surface water sample from the BAP for comparison to data collected from SP-10 to support the claim that unless the BAP is directly connected to SP-10 through a fracture in the limestone, it is unlikely to affect the lithium concentration detected in SP-10. NPS did not sample and analyze the sediment in the BAP for lithium or other constituents to compare that data to the data collected from SP-10. The surface water sample may have a lower concentration of lithium than water that percolates through the sediment in the BAP and potentially reaches SP-10. DEQ does not believe enough data was presented to accept NPS's conclusion that the lithium at SP-10 was not due to a release from the BAP.

Should additional information be attained to support a revised ASD, DEQ will re-evaluate such a submittal. NPS is now required by OAC 252:517-9-6(g)(4) to initiate the assessment of corrective measures (ACM) as required by OAC 252:517-9-7. Please submit the proposed ACM plan and schedule for analyzing the lithium release and developing corrective action to address the release within ninety (90) days of receipt of this letter. Assessment monitoring for the BAP will continue.

If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely,

Hillary Young, P.E.

Chief Engineer

Land Protection Division

SCOTT A. THOMPSON Executive Director

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

October 11, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re:

Annual CCR Fugitive Dust Control Report – OAC 252:517-13-1(b)(6)

Public Service Company of Oklahoma

Northeastern Power Station Ash Landfill and Bottom Ash Pond

Rogers County

Solid Waste Permit No. 3566010

Dear Ms. Parker-Witt:

On September 12, 2019, the Department of Environmental Quality (DEQ) received the Annual CCR Fugitive Dust Control Report (Report) from Northeastern Power Station (NPS). Oklahoma Administrative Code (OAC) 252:517-13-1(c) requires the Report to be submitted to DEQ and placed in the facility's operating record in accordance with OAC 252:517-19-1(g)(1). The Report has also been placed on the facility's publicly accessible Internet site as required by OAC 252:517-19-1(g)(2). The Landfill is a permitted CCR landfill that accepts CCR generated on-site. The Bottom Ash Pond accepts bottom ash from Unit 3 that is wet sluiced to the surface impoundment for removal and segregation. The permit application for the BAP is currently under review by DEQ.

The Report meets the requirements of OAC 252:517-13-1(c) and is accepted as submitted.

If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely,

Hillary Young, P.E.

Chief Engineer

Land Protection Division

RECEIVED OCT 1 8 2019

SCOTT A. THOMPSON Executive Director

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

October 11, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re: Notification of SSL – Bottom Ash Pond

Public Service Company of Oklahoma

Northeastern Power Station

Rogers County

Solid Waste Permit No. none

Dear Ms. Parker-Witt:

In a letter dated September 9, 2019, the Oklahoma Department of Environmental Quality (DEQ) was notified by American Electric Power/Public Service Company of Oklahoma Northeastern Power Station (NPS) that a statistically significant level (SSL) for lithium for the Bottom Ash Pond (BAP) had been determined.

Oklahoma Administrative Code (OAC) 252:517-19-1(h)(8) requires NPS, within 30 days of detecting one or more constituents in OAC 252:517 Appendix B at statistically significant levels above the groundwater protection standard, to prepare and submit a notification meeting the requirements of OAC 252:517-9-6(g) to DEQ and place it in the facility operating record. NPS has met these requirements.

NPS has initiated the assessment of corrective measures as required by OAC 252:517-9-7 to address lithium exceedances of the groundwater protection standard in monitoring well SP-10.

The notification is accepted as submitted. If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely,

Hillary Young, P.E. Chief Engineer

Land Protection Division

SCOTT A. THOMPSON Executive Director

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT

October 15, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re: Notification of Assessment of Corrective Measures – Bottom Ash Pond

Public Service Company of Oklahoma

Northeastern Power Station

Rogers County

Solid Waste Permit No. none

Dear Ms. Parker-Witt:

In a letter dated September 5, 2019, the Oklahoma Department of Environmental Quality (DEQ) was notified by American Electric Power/Public Service Company of Oklahoma Northeastern Power Station (NPS) that the notification of assessment of corrective measures, addressing a statistically significant level (SSL) for lithium for the Bottom Ash Pond (BAP), had been placed in the operating record on August 7, 2019.

Oklahoma Administrative Code (OAC) 252:517-19-1(h)(9) requires NPS, within 30 days of initiating the assessment of corrective measures requirements, to prepare and submit a notification meeting the requirements of OAC 252:517-9-6(g)(5) to DEQ and place it in the facility operating record. NPS has met these requirements. NPS also met the requirements of OAC 252:517-19-3(h)(7) by placing the notification on NPS's CCR website.

The notification is accepted as submitted. If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely,

Hillary Young, P.E.

Chief Engineer

Land Protection Division

SCOTT A. THOMPSON Executive Director

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

October 29, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re:

Alternate Source Demonstration for Lithium -Bottom Ash Pond

Public Service Company of Oklahoma

Northeastern Power Station

Rogers County

Solid Waste Permit No. none

Dear Ms. Parker-Witt:

On July 8, 2019, DEQ denied the alternate source demonstration (ASD) for lithium in the Bottom Ash Pond (BAP) that was submitted by AEP/Public Service Company of Oklahoma Northeastern Power Station (NPS) to demonstrate that a source other than the coal combustion residuals (CCR) unit caused the lithium statistically significant level (SSL) detected in monitoring well SP-10. DEQ stated in the letter that if additional information was attained to support a revised ASD, DEQ would re-evaluate the revised ASD.

On September 13, 2019, NPS submitted a revised ASD that addressed concerns DEQ had with the ASD which proposed naturally occurring concentrations of lithium in groundwater are the source of the SSL in SP-10.

In the revised ASD, NPS questioned DEQ's statement in the July 8, 2019 letter that the lithium concentration in monitoring well SP-5R was "not elevated". To clarify, DEQ's meaning of elevated level in the July 8, 2019 letter meant the concentration of lithium detected in SP-5R was not elevated when compared to lithium levels in the lower zone as measured in SP-6, SP-7 and SP-10. Similarly lithium in SP-8, which is screened in the lower zone, was not elevated leading DEQ to question the conceptual model which proposes the clay mineral in lower zone shales is the source of elevated lithium.

NPS sampled and analyzed the sediment, leachate and pore water in the BAP to compare to the data collected from SP-10. The results showed lithium in the sediment leachate and pore water measured 1 μ g/L and 3 μ g/L, respectively, compared to 286 μ g/L measured in SP-10 on March 14, 2019. The lithium concentration of the sluice water (5.87 μ g/L) entering the BAP was also much lower than that in SP-10. DEQ agrees that the low concentration of lithium in the BAP as well as the different water chemistry as depicted in the Piper diagram furthers the proposal that the BAP is not a direct source of the lithium SSL in SP-10.

Ms. Jill Parker-Witt, P.E. American Electric Power October 29, 2019 Page 2 of 2

DEQ reviewed the additional information concerning SP-5R and SP-8 provided in the revised ASD. DEQ accepts that the elevated lithium concentration detected in SP-10 may be produced from the shale lenses within the screened interval of SP-10.

The new data presented in both ASDs depicts a new conceptual model that still does not completely fit with all of the groundwater sampling data. Please contact DEQ to arrange a time to discuss modifying the groundwater monitoring network.

DEQ accepts the revised ASD as submitted. The BAP may return to assessment monitoring in accordance with OAC 252:517-9-6(g)(3)(B). NPS must include the revised ASD in the annual groundwater monitoring and corrective action report required by OAC 252:517-9-1(e).

If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely,

Hillary Young, P.

Chief Engineer

Land Protection Division

SCOTT A THOMPSON Executive Director

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

November 4, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re:

Assessment of Corrective Measures Plan and Schedule for Analyzing an Environmental

Release for Lithium –Bottom Ash Pond Public Service Company of Oklahoma

Northeastern Power Station

Rogers County

Solid Waste Permit No. none

Dear Ms. Parker-Witt:

On July 8, 2019, the Oklahoma Department of Environmental Quality (DEQ) denied the May 1, 2019 alternate source demonstration (ASD) for lithium in the Bottom Ash Pond (BAP). Accordingly, AEP/Public Service Company of Oklahoma Northeastern Power Station (NPS) submitted, by email on October 5, 2019, the Assessment of Corrective Measures Plan and Schedule for Analyzing an Environmental Release (ACM)" as required by Oklahoma Administrative Code (OAC) 252:517-9-6(g)(4).

On September 13, 2019, NPS submitted a revised ASD that addressed concerns DEQ had with the May 1, 2019 ASD. In a letter dated October 29, 2019, DEQ approved the revised ASD.

With the approval of the revised ASD, OAC 252:517-9-6(g)(3)(B) allows NPS to continue monitoring in accordance with the assessment monitoring program. NPS is no longer required to initiate the assessment of corrective measures requirements; therefore, the ACM is withdrawn.

If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely,

Hillary Young, P.E

Chief Engineer

Land Protection Division

SCOTT A. THOMPSON Executive Director

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

December 19, 2019

Ms. Jill Parker-Witt, P.E. American Electric Power 502 North Allen Avenue Shreveport, LA 71101

Re:

Fugitive Dust Control Plan Revision 4 – OAC 252:517-13-1(b)(6)

Public Service Company of Oklahoma

Northeastern Power Station Ash Landfill and Bottom Ash Pond

Rogers County

Solid Waste Permit No. 3566010

Dear Ms. Parker-Witt:

On October 21, 2019, the Department of Environmental Quality (DEQ) received the Fugitive Dust Control Plan Rev. 4 from Northeastern Power Station (NPS). Oklahoma Administrative Code (OAC) 252:517-13-1(b)(6) allows amendment of the written Coal Combustion Residuals (CCR) fugitive dust control plan at any time provided the revised plan is approved by DEQ then placed in the facility's operating record in accordance with OAC 252:517-19-1(g)(1).

The August 2019 revisions are summarized in Appendix E. No regulatory or technical revisions were made.

DEQ accepts the Fugitive Dust Control Plan – Revision 4. Please notify DEQ when the revised Dust Control Plan has been placed in the operating record per OAC 252:517-19-2 (c) and on the facility's publically accessible internet site per OAC 252:517-19-3-(d).

If you have any questions, please contact Ms. Cindy Hailes at (405) 702-5114.

Sincerely,

Hillary Young, P. Chief Engineer

Land Protection Division