

engineers | scientists | innovators

ALTERNATIVE SOURCE DEMONSTRATION REPORT

FEDERAL CCR RULE

Flint Creek Power Plant Primary Bottom Ash Pond Gentry, Arkansas

Prepared for

American Electric Power 1 Riverside Plaza

Columbus, Ohio 43215-2372

Prepared by

Geosyntec Consultants, Inc. 500 West Wilson Bridge Road, Suite 250 Worthington, Ohio 43085

Project CHA8495B

June 2024

TABLE OF CONTENTS

1.		RODUCTION AND SUMMARY	
	1.1	CCR Rule Requirements	
	1.2	Demonstration of Alternative Sources	2
2.	SUN	MMARY OF SITE CONDITIONS	3
	2.1	PBAP Design and Construction	3
	2.2	Regional Geology / Site Hydrogeology	
	2.3	Groundwater Monitoring Systems and Flow Conditions	3
3.	ALT	FERNATIVE SOURCE DEMONSTRATION	5
	3.1	Proposed Alternative Source	
		3.1.1 Monitoring Well AP-58A	5
		3.1.2 Monitoring Well AP-59	
	3.2	Sampling Requirements	7
4.	COI	NCLUSIONS AND RECOMMENDATIONS	8
5.	REF	FERENCES	9

LIST OF TABLES

Table 1:	Detection Monitoring Data Summary
Table 2:	AP-58A Relevant Parameter Comparison
Table 3:	AP-59 Relevant Parameter Comparison

LIST OF FIGURES

- Figure 1: PBAP Site Photograph
- Figure 2: Site Layout
- Figure 3: Piper Diagram
- Figure 4: AP-58 and AP-58A Boron and Chloride Comparison
- Figure 5: Sulfate Comparison to Background Monitoring Wells
- Figure 6: AP-59 Calcium v. Sulfate Scatter Plot
- Figure 7: AP-59 Iron Eh-pH Diagram
- Figure 8: Site Geology Illustration
- Figure 9: AP-59 TDS and Sulfate Time Series

LIST OF ATTACHMENTS

Attachment A: Geologic Cross Sections

Attachment B: AP-58, AP-58A, and AP-59 Boring Logs and Well Construction Diagrams

Attachment C: Potentiometric Surface Maps, Uppermost Aquifer. September 2023 and December 2023

Attachment D: Surface Water Samples Laboratory Analytical Report

Attachment E: Certification by a Qualified Professional Engineer

ACRONYMS AND ABBREVIATIONS

AEP	American Electric Power
ASD	alternative source demonstration
bgs	below ground surface
CCR	coal combustion residuals
CFR	Code of Federal Regulations
EPRI	Electric Power Research Institute
LPL	lower prediction limit
mg/L	milligrams per liter
PBAP	Primary Bottom Ash Pond
redox	oxidation-reduction
SSI	statistically significant increase
TDS	total dissolved solids
UPL	upper prediction limit
USEPA	United States Environmental Protection Agency

1. INTRODUCTION AND SUMMARY

This alternative source demonstration (ASD) report has been prepared to address statistically significant increases (SSIs) for boron, chloride, sulfate, and total dissolved solids (TDS) in the groundwater monitoring network for the Plant Primary Bottom Ash Pond (PBAP), located at the Flint Creek Power in Gentry, Arkansas, following the second semiannual detection monitoring event of 2023. The Flint Creek Power Plant has two coal combustion residuals (CCR) storage units, including the PBAP, which was certified as having all contained CCR removed by August 2023 and is now operated as a non-CCR wastewater pond.

Background groundwater values for the PBAP were originally calculated in January 2018 and have been updated intermittently in accordance with the *Statistical Analysis Plan* prepared for the Flint Creek Plant (Geosyntec Consultants, Inc. [Geosyntec] 2020a). For the most recent update in January 2022, revised upper prediction limits (UPLs) were calculated for each Appendix III parameter to represent background values (Geosyntec 2022a). Prediction limits were calculated based on a one-of-two retesting procedure in accordance with the Unified Guidance (United States Environmental Protection Agency [USEPA] 2009) and the statistical analysis plan developed for the site. With this procedure, an SSI is concluded only if both an initial sample and a resample reported results above the UPL or, in the case of pH, below the lower prediction limit (LPL). In practice, if the initial result was not above the UPL or was not below the LPL, a resample was not collected or analyzed.

The second semiannual detection monitoring event of 2023 at the PBAP was conducted in September (initial sampling event), and the results were compared to the calculated prediction limits. Where initial exceedances were identified, resampling was completed in December 2023. Following resampling, SSIs were identified for boron and chloride at downgradient compliance well AP-58A and for sulfate and TDS at downgradient compliance well AP-59 using intrawell analyses. No other SSIs were identified. A summary of the Appendix III analytical results for the downgradient compliance wells and the calculated prediction limits to which they were compared is provided in **Table 1**.

1.1 CCR Rule Requirements

USEPA regulations regarding detection monitoring programs for CCR landfills and surface impoundments provide owners and operators with the option to make an ASD when an SSI is identified:

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer . . . verifying the accuracy of the information in the report. (Code of Federal Regulations [CFR] Title 40, Section 257.94(e)(2)).

Pursuant to 40 CFR 257.94(e)(2), Geosyntec has prepared this ASD report to document that the identified SSIs at AP-58A and AP-59 should not be attributed to a release from the PBAP.

1.2 Demonstration of Alternative Sources

An evaluation was completed to assess alternative sources to which the identified SSI could be attributed. Alternative sources were identified from among five types, based on methodology provided by the Electric Power Research Institute (EPRI 2017):

- ASD Type I: Sampling Causes
- ASD Type II: Laboratory Causes
- ASD Type III: Statistical Evaluation Causes
- ASD Type IV: Natural Variation
- ASD Type V: Alternative Sources

A demonstration was conducted to show that the SSIs identified for boron and chloride at well AP-58A were based on a Type I cause (sampling issues) and not by a direct release from the PBAP. A demonstration was conducted to show that the SSI identified for sulfate and TDS at well AP-59 were based on Type IV causes (natural variation) and not by a direct release from the PBAP.

2. SUMMARY OF SITE CONDITIONS

Descriptions of the Flint Creek PBAP design and construction, regional geology and site hydrogeology, and groundwater monitoring systems and flow conditions are presented below.

2.1 PBAP Design and Construction

As described by Terracon (2023), the PBAP is a 42.8-acre CCR surface impoundment located south of the power plant which was formerly operated as a CCR ash pond. It was constructed from 1974 to 1978 with an approximately 820-foot long cross-valley dam consisting of compacted clayey soil. While it was operational as a CCR surface impoundment, it was used primarily to manage bottom ash. The PBAP ceased receipt of CCR on November 30, 2022, and commenced closure by removal of CCR materials in accordance with the certified closure plan (American Electric Power [AEP] 2022). CCR material removal from the PBAP was completed on August 20, 2023. A photograph showing the condition of the PBAP shortly before completion of CCR removal is provided in **Figure 1**.

2.2 Regional Geology / Site Hydrogeology

As described by Terracon (2017), the PBAP is positioned in an area of the Ozark Plateaus Province that has undergone regional-scale uplift followed by significant incision by rivers, resulting in hilly topography. It is underlain by the Mississippian-aged Boone Formation, which consists primarily of limestone and chert. Locally, the stratigraphy consists of a 30- to 50-foot-thick weathered residuum of the Boone Formation, consisting of heavily-weathered limestone with chert nodules and iron-rich clay, and the underlying massive cherty limestone of the Boone Formation.

The Boone Formation is underlain by the Mississippian-aged St. Joe Member, which is a lightgrey crystalline limestone that has not experienced significant physical or chemical weathering and is distinct from the Boone Formation due to its lack of chert and clay.

The Boone residuum, the underlying Boone Formation cherty limestone, and the underlying St. Joe Member collectively comprise a single hydrostatic unit known as the Boone–St. Joe Aquifer. This aquifer is underlain by the Chattanooga Shale, a black, fissile shale that acts as a barrier to vertical flow from the aquifer unit above.

Geologic cross sections near the PBAP presented by Terracon (2023) are provided as **Attachment A**. These cross sections show the Boone residuum (described as a silty clay on the cross sections) and cherty limestone Boone Formation underlying the clayey berm of the PBAP.

Three distinct zones of groundwater flow have been identified within the Boone–St. Joe Aquifer at the site: Uppermost, Intermediate, and Deep (AEP 2023). Perched groundwater is occasionally present within upper unconsolidated soils but is not continuous throughout the site and does not constitute an aquifer unit. All monitoring wells in the PBAP monitoring well network monitor the uppermost aquifer, which is defined as the upper portion of the Boone Formation (Terracon 2023).

2.3 Groundwater Monitoring Systems and Flow Conditions

The monitoring well network (**Figure 2**) includes three upgradient background wells (AP-51, AP-53, and AP-54) and three downgradient compliance wells (AP-58A, AP-59, and AP-60).

Monitoring well AP-59 is screened entirely within competent limestone, as was monitoring well AP-58 (see cross sections in **Attachment A** and on the boring log and well construction diagrams provided in **Attachment B**). Monitoring well AP-58 was found to be irreparably damaged during a sampling event in September 2022 and was replaced in November 2022 by AP-58A. Following the discovery of damage to the AP-58 well casing, the well was plugged and monitoring well AP-58A was installed approximately 10 feet south of AP-58's location and screened at the same interval (AP-58 was screened from 58.45 to 68.45 feet below ground surface [bgs], and AP-58A is screened from 61.30 to 71.30 feet bgs) (**Attachment B**). One thin fracture/void was noted at 22 feet bgs within the screened interval of AP-59. No structural features were noted within the screened intervals of AP-58A.

Potentiometric maps showing groundwater flow contours for the Uppermost Aquifer during the September 2023 initial sampling and December 2023 resampling events are provided as **Attachment C**. The groundwater flow direction is generally to the west and northwest. Hydraulic connectivity within the Uppermost Aquifer was determined by Terracon (2023) to be related to multiple factors including lithology, rock type, layer thickness, and degree of bedrock fracture. Seasonal variability in the groundwater flow direction and hydraulic gradient has not been observed since the monitoring well network was installed.

3. ALTERNATIVE SOURCE DEMONSTRATION

The methods used to assess possible alternative sources of the SSIs for boron and chloride at AP-58A and the SSIs for sulfate and TDS at AP-59 and the proposed alternative sources for these SSIs are described below.

3.1 Proposed Alternative Source

3.1.1 Monitoring Well AP-58A

An initial review of groundwater sampling field forms identified an alternative source for the boron and chloride SSIs at AP-58A due to Type I (sampling) issues. As discussed in Section 2.3, well AP-58A was installed in November 2022 after it was discovered in September 2022 that well AP-58 was irreparably damaged. Boring logs and well construction diagrams for both AP-58 and AP-58A are provided in **Attachment B**. Well AP-58A is located approximately 10 feet south of previous well AP-58 and screened at approximately the same elevation. Thus, groundwater collected from AP-58A should reflect conditions previously observed at former well AP-58.

A Piper diagram, which represents the relative concentrations of major cations and anions in the groundwater, was created to visualize groundwater geochemistry at both AP-58 and AP-58A (Figure 3). The diagram indicates that groundwater samples from AP-58 did not begin to show consistency within major ion chemistry until around August 2019 (as indicated by the solid red symbols on the Piper diagram), at which point the monitoring well had equilibrated with the aquifer approximately 3.5 years after it was installed in February 2016. The groundwater composition for the first three samples collected from AP-58A (December 2022 through September 2023) appears similar to AP-58 during the first sampling event completed after its installation in February 2016 (October 2016). The relative concentration of anions in the December 2023 sample collected from AP-58A (one year after well installation) are nearly identical to samples collected from AP-58 one year after installation of the well but before the groundwater had equilibrated (March 2017 through June 2019, Figure 3). These results suggest that both AP-58 and AP-58A require(d) time after installation to equilibrate with the aquifer before the collected samples are representative of stable geochemical conditions. These findings suggest that geochemical trends at AP-58A consistent with those observed at AP-58 are expected to continue to occur over the next one to two years. Similar trends after installation have been observed for boron and chloride at AP-58 and AP-58A to date (Figure 4).

A comparison of concentrations of relevant parameters from various PBAP samples to both groundwater concentrations at AP-58A and the established intrawell UPLs supports the position that the SSIs observed at AP-58A should not be attributed to the PBAP. Two surface water samples with sample IDs of 'BAP' and 'BAP – Near Stop Log' were collected from the PBAP in March 2020. The PBAP was dewatered and removal of CCR from the PBAP was completed prior to the September and December 2023 sampling events associated with the second semiannual detection monitoring event of 2023. Therefore, the 2020 surface water samples are a fair basis of comparison for 2023 monitoring event groundwater conditions. The laboratory analytical report for the March 2020 surface water sampling event is provided as **Attachment D**. Reported values of boron and chloride from the PBAP samples are shown compared to the AP-58A UPL and recent samples from AP-58A (**Table 2**). Boron and chloride concentrations were greater in AP-58A groundwater samples than in both samples collected from the PBAP.

PBAP is not a source of the apparent elevated concentrations of boron and chloride in AP-58A groundwater.

3.1.2 Monitoring Well AP-59

An initial review of groundwater sampling field forms, site geochemistry, site historical data, and laboratory and statistical analyses did not identify alternative sources for sulfate and TDS at AP-59 due to Type I (sampling causes), Type II (laboratory causes), or Type III (statistical evaluation causes) issues. Further, an initial review of site geochemistry did not identify evidence of any Type V (alternative) impacts. As described below, the SSIs observed at monitoring well AP-59 have been attributed to natural variation within the underlying geology, which is a Type IV cause. The specific source of naturally occurring sulfate at AP-59 is oxidative dissolution of pyrite within the aquifer material at the site, as described in previous ASDs prepared for sulfate at AP-59 (Geosyntec 2023a, Geosyntec 2023b, Geosyntec 2024).

Sulfate concentrations at background wells AP-53 and AP-54, which are located upgradient of the PBAP and AP-59, have historically been similar to or greater than those observed at AP-59 (**Figure 5**). Sulfate concentrations from the most recent sampling event completed in September 2023 at AP-53 (58.9 milligrams per liter [mg/L]) and AP-54 (53.6 mg/L) are both comparable to concentrations reported for AP-59 (55.1 mg/L). Both upgradient wells and AP-59 have demonstrated considerable variability in sulfate concentrations since monitoring began in 2016 (**Figure 5**), suggest that aqueous sulfate concentrations fluctuate over time across the site and these fluctuations should not be attributed to the PBAP.

Regional groundwater quality of the Boone–St. Joe Limestone Aquifer in Benton County, Arkansas (the county in which the PBAP is located) has previously been studied (Ogden 1979). A total of 253 groundwater samples from wells in Benton County screened within the Boone–St. Joe Aquifer were sampled and analyzed as part of the study. These samples revealed variability in sulfate concentrations, with many wells containing greater sulfate concentrations than those observed within the PBAP monitoring network.

Ogden (1979) identified a positive correlation between sulfate and calcium concentrations in groundwater. This relationship was also observed in AP-59 groundwater data since monitoring began in 2016 (**Figure 6**). Ogden hypothesized that this relationship is likely a product of iron-sulfide mineral oxidation. Oxidation of pyrite within the Boone–St. Joe Aquifer would yield sulfuric acid as a reaction product, the dissociation of which would result in an increase in aqueous sulfate and hydrogen ions (decrease in groundwater pH) which would in turn cause dissolution of the calcite that makes up the limestone aquifer. Oxidation-reduction (redox) conditions of AP-59 groundwater favor the thermodynamic stability of iron oxyhydroxides (**Figure 7**), indicating that iron sulfide minerals, if present in aquifer solids, would be expected to undergo this oxidation reaction. AP-59 groundwater Eh values (a measurement of redox conditions) from recent monitoring events have been greater than average (more oxygenated), which would thermodynamically favor greater amounts of dissolution of existing pyrite in aquifer materials. The dissolution of this pyrite would contribute aqueous sulfate ions to groundwater via the mechanism described above.

Limestone lithologies present at compliance monitoring wells were evaluated to develop the geologic conceptual site model for previous ASD reports and geochemical investigations (Geosyntec 2020b; included in AEP 2021). Limestone at downgradient well locations was

determined to be unpassivated and capable of buffering incoming acidic waters via dissolution of calcite (Geosyntec 2018, Geosyntec 2019, Geosyntec 2021a, Geosyntec 2021b, Geosyntec 2022b). This illustrated conceptual site model is shown on **Figure 8**. If iron sulfide oxidation reactions were occurring in the limestone near AP-59, increases in aqueous sulfate and calcium would be expected. Increases in calcium are occasionally observed at AP-59, as documented in previous ASD reports for this well (Geosyntec 2021b).

A comparison of sulfate concentrations measured in surface water samples collected in March 2020 from locations within the PBAP also supports the position that the recent elevated concentrations of sulfate at AP-59 should not be attributed to the PBAP (**Attachment D**). Reported sulfate concentrations were 39.5 mg/L (sample ID – BAP) and 16.2 mg/L (sample ID – BAP Near Stop Log) for the samples collected from the PBAP prior to CCR removal (**Table 3**). Both of these samples contain sulfate concentrations lower than the UPL for sulfate at AP-59 (50.1 mg/L) and the two samples from the recent detection monitoring event for the PBAP that triggered the SSI (68.3 mg/L and 55.1 mg/L) (**Table 3**). Lower concentrations of sulfate in the PBAP water than in groundwater at downgradient compliance well AP-59 indicate that the PBAP is not anticipated to act as a source for the recent elevated sulfate concentrations in groundwater.

In addition to sulfate, an SSI for TDS was identified at monitoring well AP-59. TDS concentrations at well AP-59 are displayed on **Figure 9**. TDS is the summation of all ions in a water sample, with major ions comprising the majority of TDS in most natural waters (Boyd, 2019). Sulfate comprises an average of 21% of the TDS mass at AP-59; for the December 2023 sample, 55.1 mg/L of sulfate contributed 20% of the total mass of 270 mg/L of TDS which was reported. The December 2023 sample contained 4 mg/L TDS greater than the intrawell UPL of 266 mg/L (**Table 1**), which can be accounted for by variations in the sulfate component. As shown on **Figure 9**, recent increases in sulfate concentrations at AP-59 appear to be at least partially driven by sulfate concentrations, which are likely associated with the aquifer solids as discussed above. Therefore, the SSI identified for TDS is likely also associated with the increase in aqueous sulfate concentrations from the aquifer solids and not due to a release from the PBAP.

3.2 Sampling Requirements

The ASD described above supports the position that the identified SSIs for boron and chloride at downgradient well AP-58A are due to sampling issues, that the identified SSIs for sulfate and TDS at downgradient well AP-59 are a product of natural variation within the uppermost aquifer, and that none of the identified SSIs are due to a release from the Flint Creek PBAP. Therefore, the unit will remain in the detection monitoring program. Groundwater at the unit will continue to be sampled for Appendix III parameters.

4. CONCLUSIONS AND RECOMMENDATIONS

The preceding information serves as the ASD prepared in accordance with 40 CFR 257.94(e)(2) and supports the position that the SSIs for boron and chloride at AP-58A and for sulfate and TDS at AP-59 during the second semiannual detection monitoring event of 2023 should be attributed to natural variation or sampling issues and not to a release from the Flint Creek PBAP. Therefore, no further action is warranted, and the Flint Creek PBAP will remain in the detection monitoring program. Certification of this ASD by a qualified professional engineer is provided in **Attachment E**.

5. REFERENCES

- AEP. 2021. Annual Groundwater Monitoring Report. Flint Creek Power Plant Primary Bottom Ash Pond CCR Management Unit. American Electric Power. January.
- AEP. 2022. Notification of Intent to Close a CCR Unit. Flint Creek Plant Primary Bottom Ash Pond. American Electric Power. November.
- AEP. 2023. Third Quarter 2023 Groundwater Analysis Report. Southwestern Electric Power Company. Flint Creek Power Station. Class 3N Landfill. Gentry, Arkansas. American Electric Power. December.
- AEP. 2024. Annual Groundwater Monitoring Report. Southwestern Electric Power Company. Flint Creek Power Plant. Primary Bottom Ash Pond CCR Management Unit. American Electric Power. January.
- Boyd, C.E. 2019. Dissolved Solids. In: Water Quality. Springer, Cham. p. 83-118.
- EPRI. 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites. 3002010920. Electric Power Research Institute. October.
- Geosyntec. 2018. Alternative Source Demonstration Report, Federal CCR Rule. Primary Bottom Ash Pond – Flint Creek Plant. Geosyntec Consultants, Inc. April.
- Geosyntec. 2019. Alternative Source Demonstration Report, Federal CCR Rule. Primary Bottom Ash Pond – Flint Creek Plant. Geosyntec Consultants, Inc. November.
- Geosyntec. 2020a. Statistical Analysis Plan. Geosyntec Consultants, Inc. October.
- Geosyntec. 2020b. *Flint Creek PBAP Geochemical Investigation Results*. Geosyntec Consultants, Inc. December.
- Geosyntec. 2021a. Alternative Source Demonstration Report, Federal CCR Rule. Primary Bottom Ash Pond – Flint Creek Plant. Geosyntec Consultants, Inc. August.
- Geosyntec. 2021b. Alternative Source Demonstration Report, Federal CCR Rule. Primary Bottom Ash Pond – Flint Creek Plant. Geosyntec Consultants, Inc. November.
- Geosyntec. 2022a. *Statistical Analysis Summary. Primary Bottom Ash Pond Flint Creek Plant.* Geosyntec Consultants, Inc. January.
- Geosyntec. 2022b. Alternative Source Demonstration Report, Federal CCR Rule. Primary Bottom Ash Pond – Flint Creek Plant. Geosyntec Consultants, Inc. February.
- Geosyntec. 2023a. Alternative Source Demonstration Report, Federal CCR Rule. Primary Bottom Ash Pond – Flint Creek Plant. Geosyntec Consultants, Inc. February.
- Geosyntec. 2023b. Alternative Source Demonstration Report, Federal CCR Rule. Primary Bottom Ash Pond – Flint Creek Plant. Geosyntec Consultants, Inc. September.
- Geosyntec. 2024. Alternative Source Demonstration Report, Federal CCR Rule. Primary Bottom Ash Pond – Flint Creek Plant. Geosyntec Consultants, Inc. April.

- Ogden, A.E. 1979. *Hydrogeologic and Geochemical Investigation of the Boone-St. Joe Limestone Aquifer in Benton County, Arkansas.* Arkansas Water Resources Center. Publication No. PUB-0068.
- Terracon. 2023. Groundwater Monitoring Network for CCR Compliance. SWEPCO Flint Creek Primary Bottom Ash Pond. October.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance. United States Environmental Protection Agency. EPA 530/R-09-007.

TABLES

Table 1. Detection Monitoring Data EvalationFlint Creek - Primary Bottom Ash Pond

Amelate	TT. 14	Description	AP-58A		AP-59		AP-60
Analyte	Unit	Description	9/19/2023	12/27/2023	9/19/2023	12/27/2023	9/18/2023
Boron	mg/L	Intrawell Background Value (UPL)	0.2	276	0.3	368	1.68
DOIOII	mg/L	Analytical Result	1.03	0.65	0.301		0.697
Calcium	mg/L	Intrawell Background Value (UPL)	86	5.8	53	3.9	49.9
Calcium	mg/L	Analytical Result	22.6		51.6		40.6
Chloride mg		Intrawell Background Value (UPL)	1().2	18	17.4	
Cillonde	mg/L	Analytical Result	26.7	20.3	14.6		11.0
Fluoride	mg/L	Intrawell Background Value (UPL)	1.00		0.765		0.681
Thuomae	mg/L	Analytical Result	0.54		0.42		0.17
		Intrawell Background Value (UPL)	8	.7	7	.6	10.8
pH	SU	Intrawell Background Value (LPL)	6	.2	6	.7	6.5
		Analytical Result	7.6		7.1		7.9
Sulfate	mg/L	Intrawell Background Value (UPL)	90.3		50.1		190
Sunate	mg/L	Analytical Result	146	83	68.3	55.1	63.7
Total Dissolved	mg/L	Intrawell Background Value (UPL)	3.	33	2	66	397
Solids	mg/L	Analytical Result	370	300	290	270	260

Notes:

1. Bold values exceed the background value.

2. Background values are shaded gray.

3. AP-58A analytical results are compared to intrawell prediction limits calculated using AP-58 background data, as insufficient data is available from AP-58A to calculate prediction limits at this time.

--: not measured

LPL: lower prediction limit

mg/L: milligrams per liter

SU: standard units

UPL: upper prediction limit

Geosyntec Consultants

Table 2. AP-58A Relevant Parameter ComparisonFlint Creek - Primary Bottom Ash Pond

Source	Samula Data	Parameter			
Source	Sample Date	Boron	Chloride		
AP-58A UPL	N/A	0.276	10.2		
BAP	2/25/2020	0.246	11.0		
BAP Near Stop Log	2/25/2020	0.0688	7.92		
AP-58A	9/19/2023	1.03	26.7		
AP-58A	12/27/2023	0.65	20.3		

Notes:

1. All parameters are shown in units of milligrams per liter.

2. Results greater than the AP-58A UPL are highlighted in red and results lower than the AP-58A UPL are highlighted in green.

3. AP-58A analytical results are compared to intrawell prediction limits calculated using AP-58 background data, as insufficient data is available from AP-58A to calculate prediction limits at this time.

BAP: Bottom Ash Pond

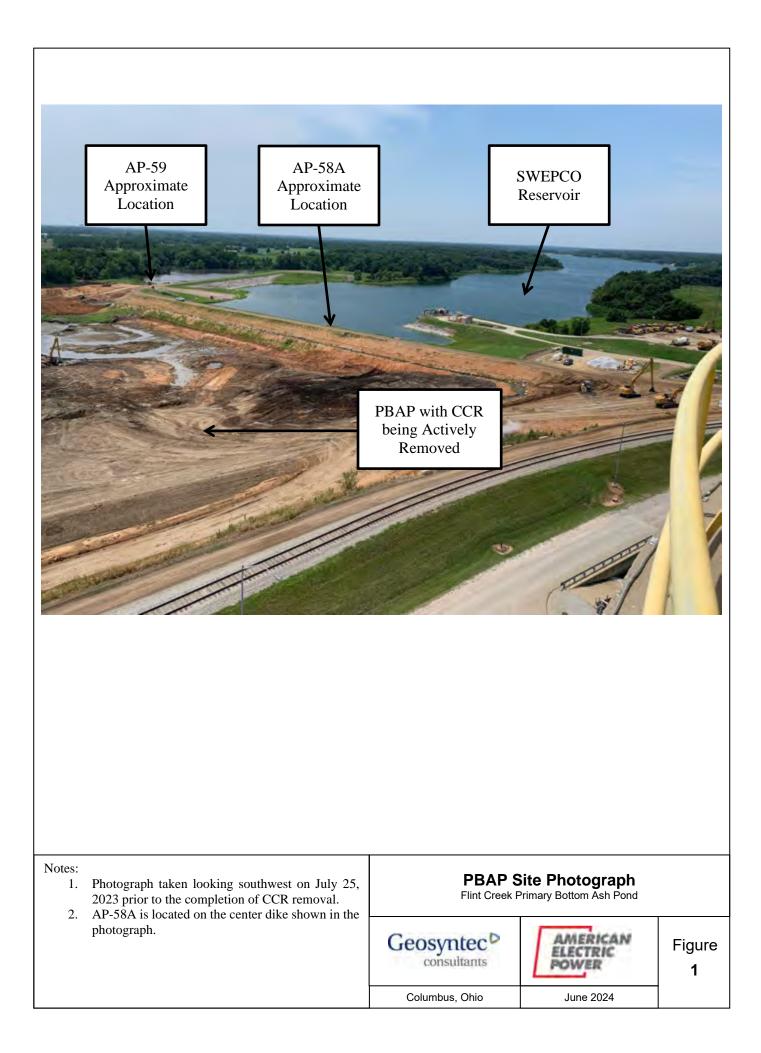
UPL: upper prediction limit

Table 3. AP-59 Relevant Parameter ComparisonFlint Creek - Primary Bottom Ash Pond

Sauraa	Sampla Data	Parameter				
Source	Sample Date	Sulfate	TDS			
AP-59 UPL	N/A	50.1	266			
BAP	2/25/2020	39.5	217			
BAP Near Stop Log	2/25/2020	16.2	155			
AP-59	9/19/2023	68.3	290			
AP-59	12/27/2023	55.1	270			

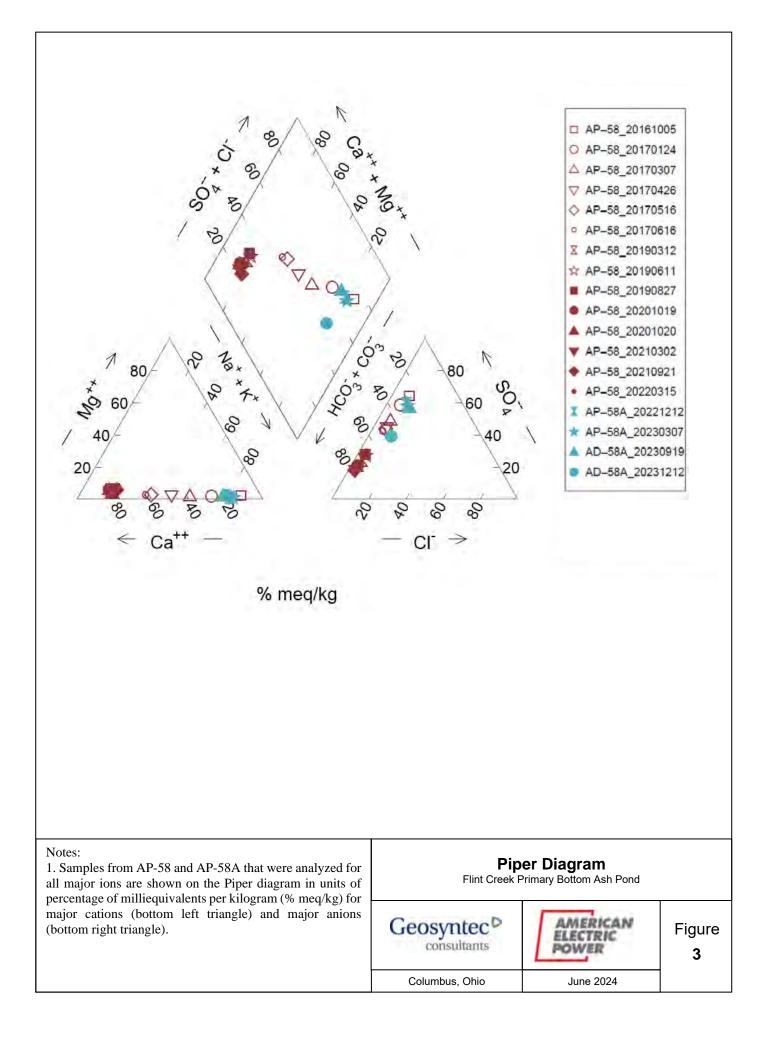
Notes:

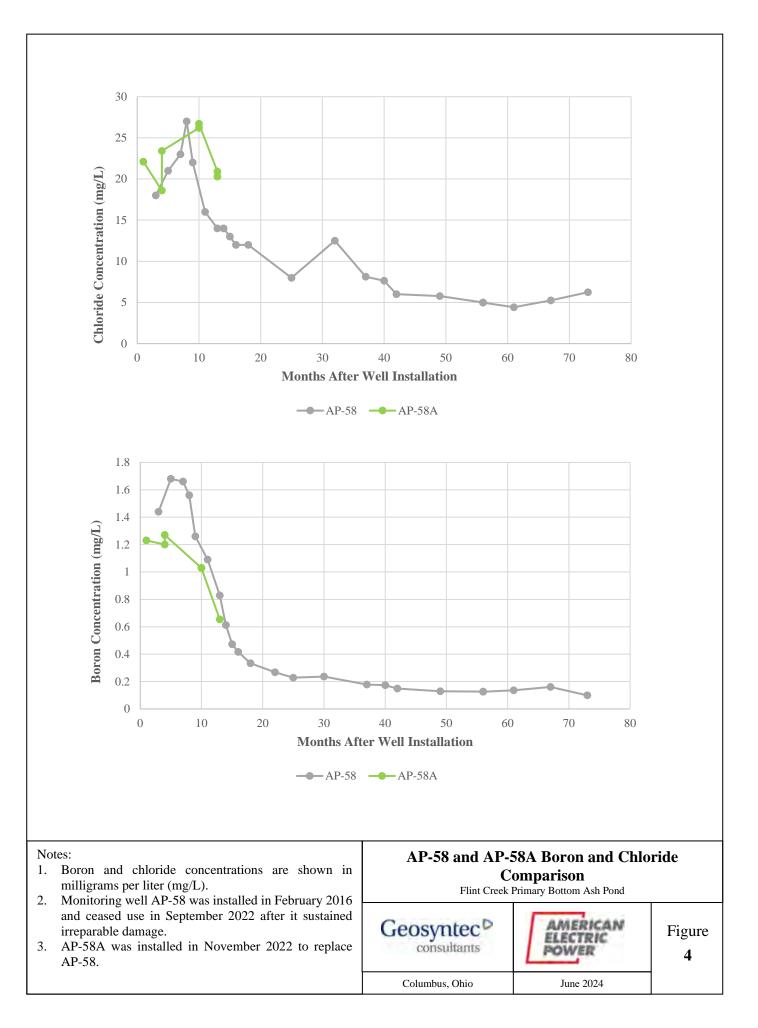
1. All results are shown in milligrams per liter (mg/L).


2. Results greater than the AP-59 UPL are highlighted in red and results lower than the AP-59 UPL are highlighted in green.

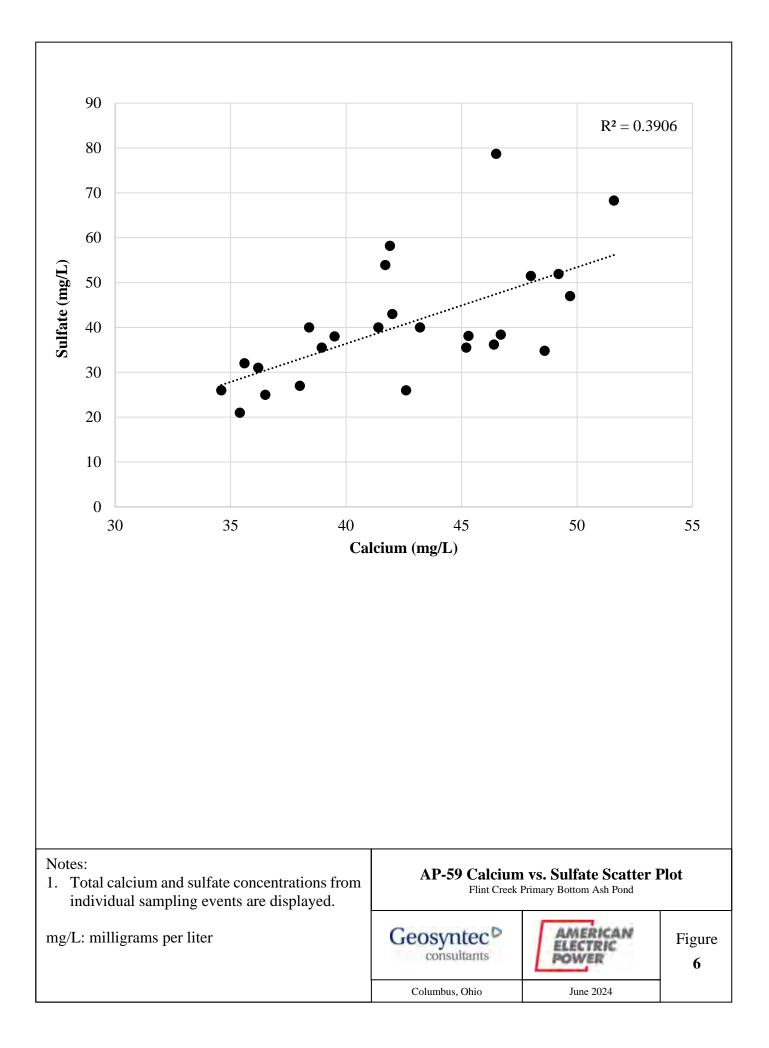
BAP: Bottom Ash Pond

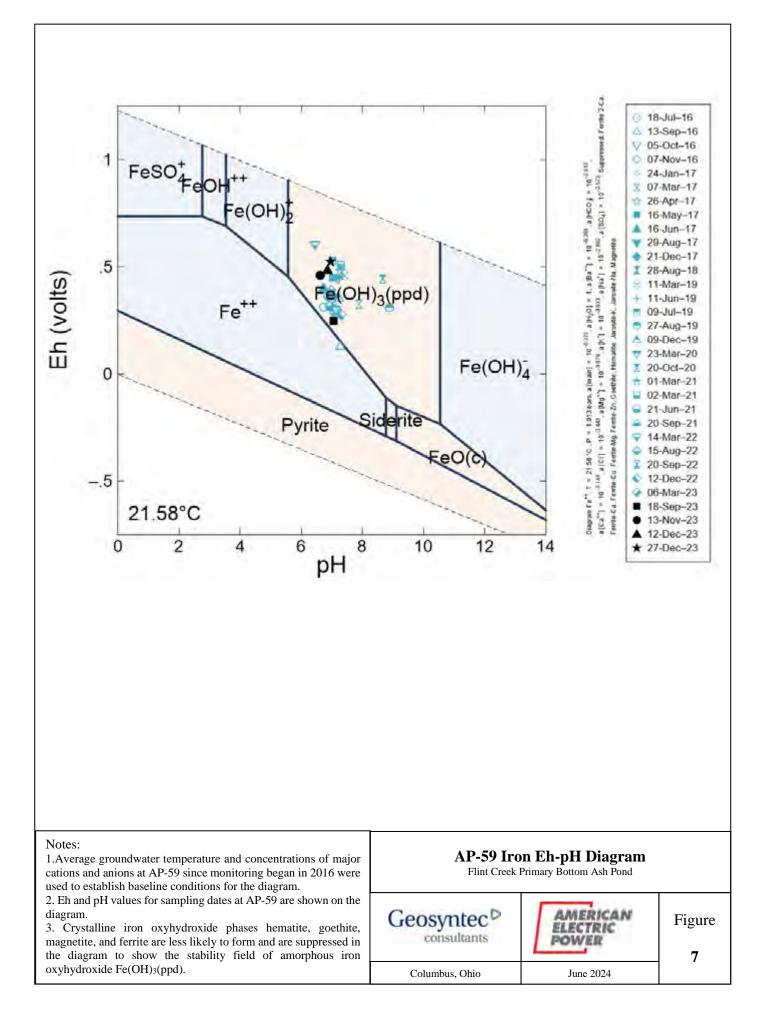
TDS: total dissolved solids

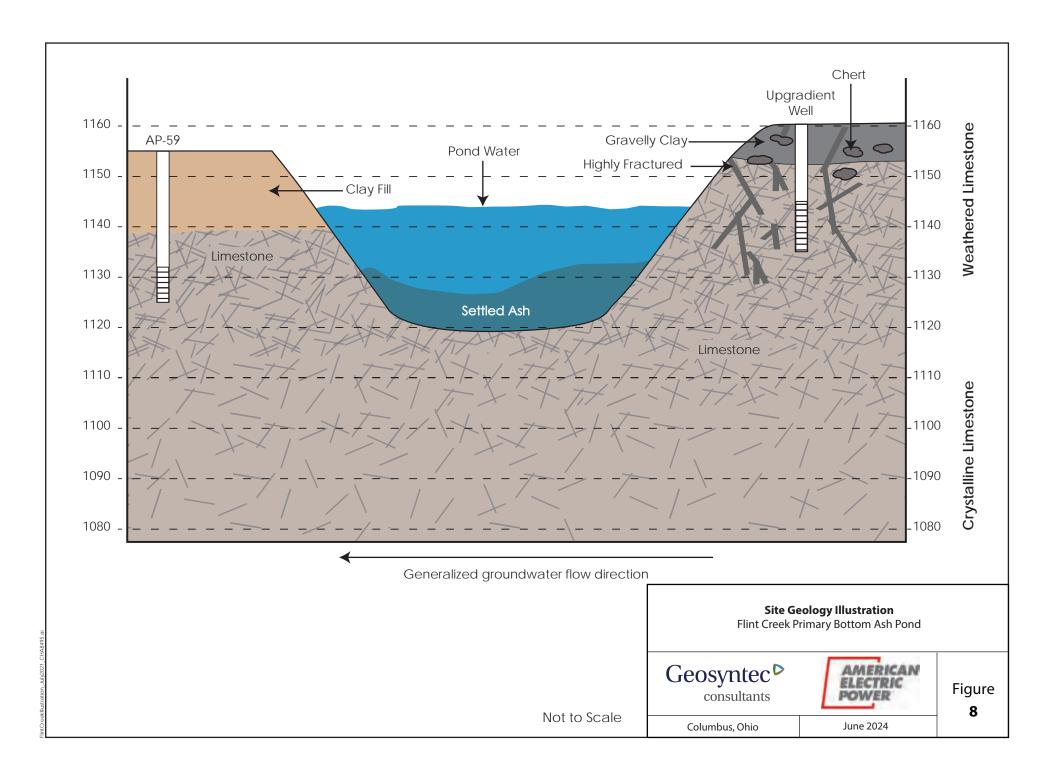

UPL: upper prediction limit

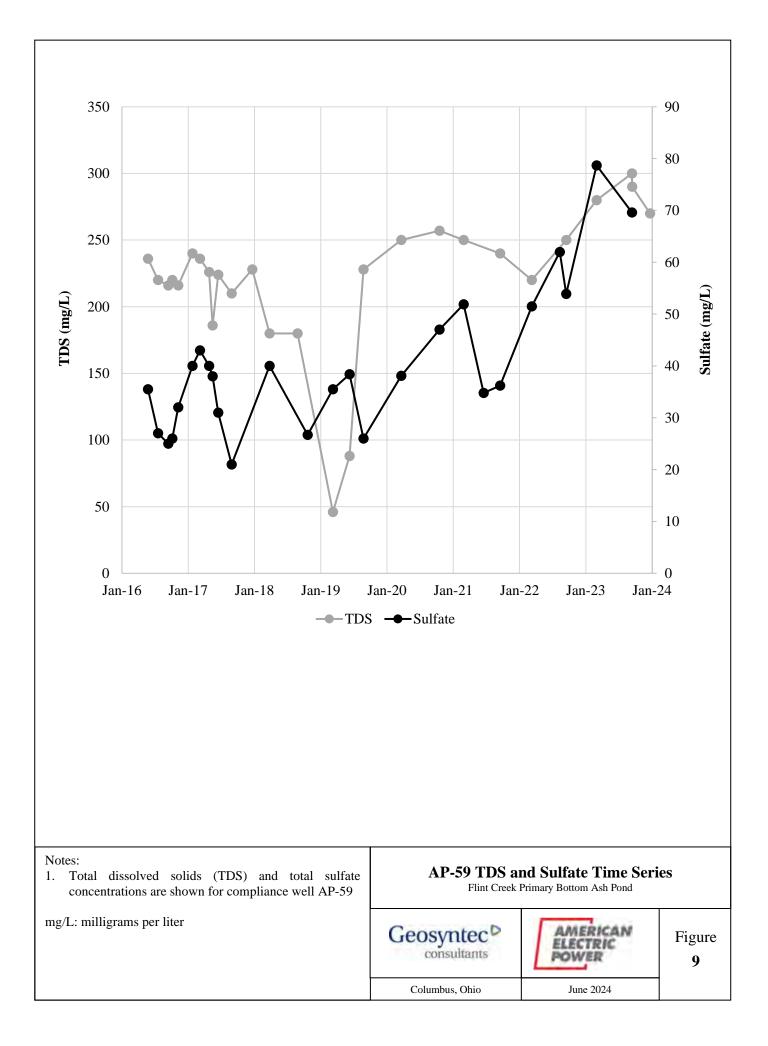

FIGURES

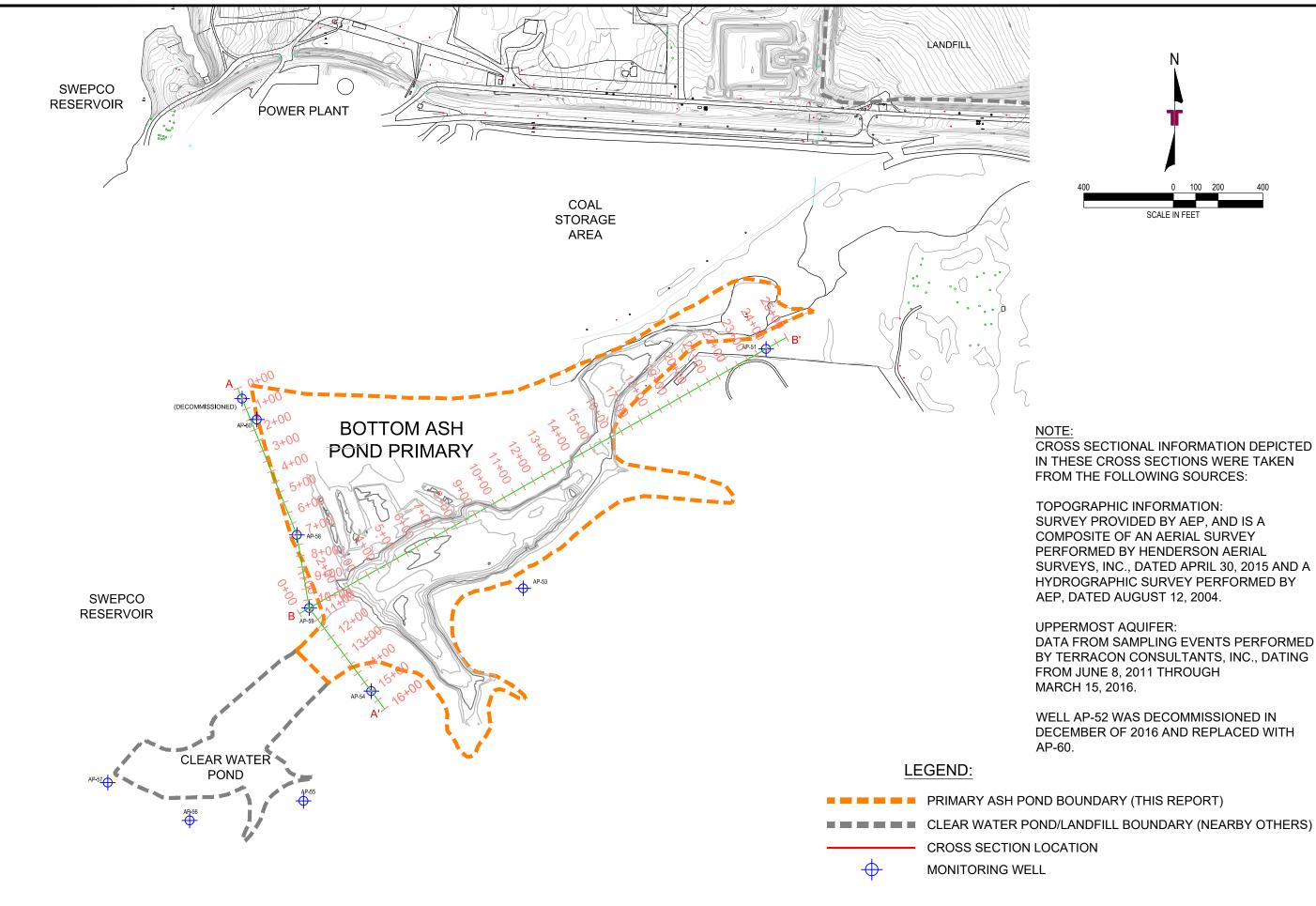


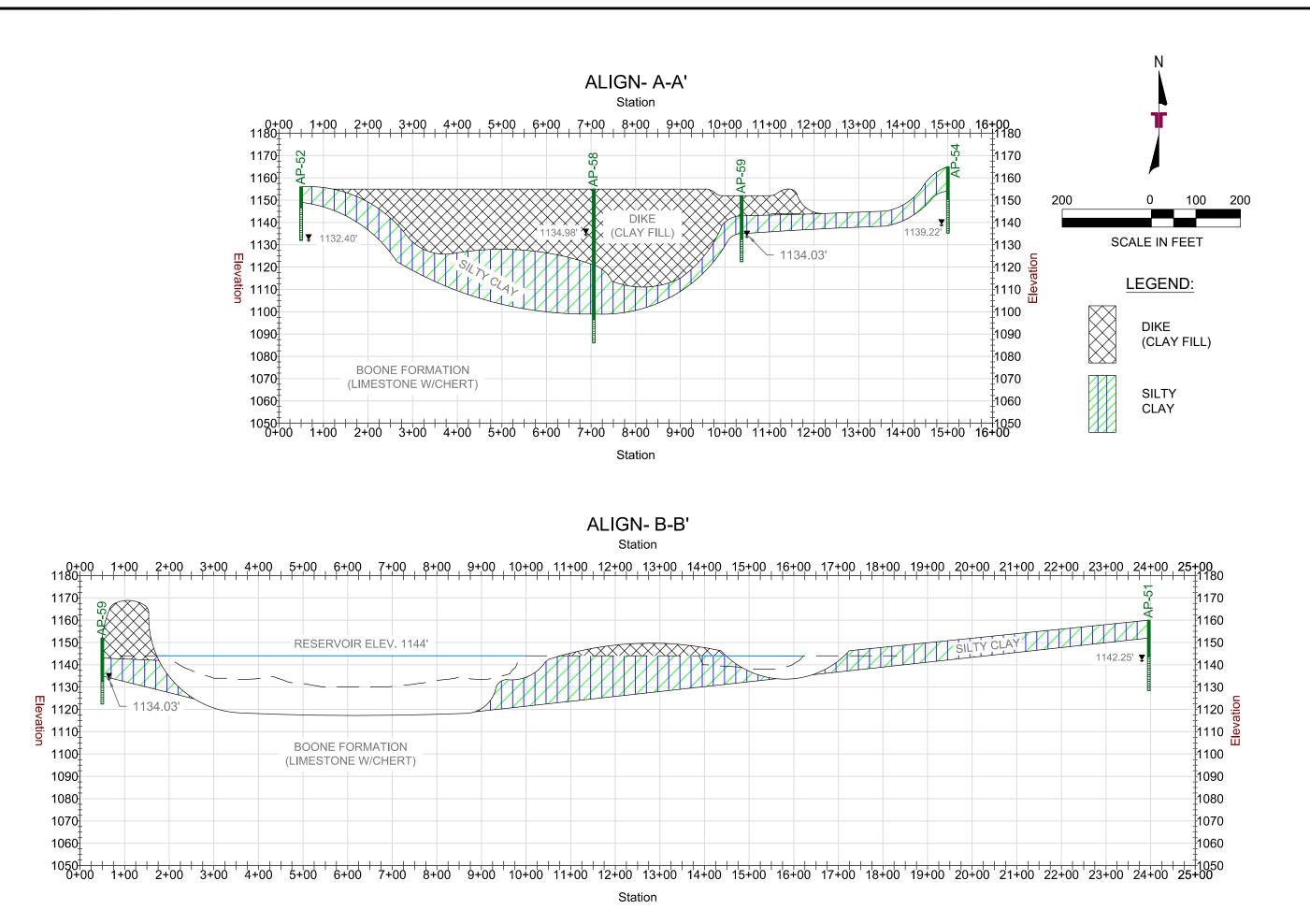



Figur	ntec	Geosy		
	sultants	con		
] ∠	June 2024	Columbus, Ohio		









ATTACHMENT A Geologic Cross Sections

REV. DATE BY DESCRIPTION	TION		CROSS SECTION LOCATION MAP	SHEET 1
			GROUNDWATER MONITORING NETWORK EVALUATION	DESIGNED BY: TLB DRAWN BY: SRE
		Consulting Engineers and Scientists	AMERICAN ELECTRIC POWER	APPVD. BY: DCM SCALE: SEE BARSCALE DATE: 10-17-2017
		BRYANT, AR 72022	SWEPCO FLINT CREEK POWER PLANT BOTTPONDOM ASH	
		PH. (501) 847-9292 FAX. (501) 847-9210	GENTRY ARKANSAS	ARKANSAS SHEET NO.: 1 OF 2

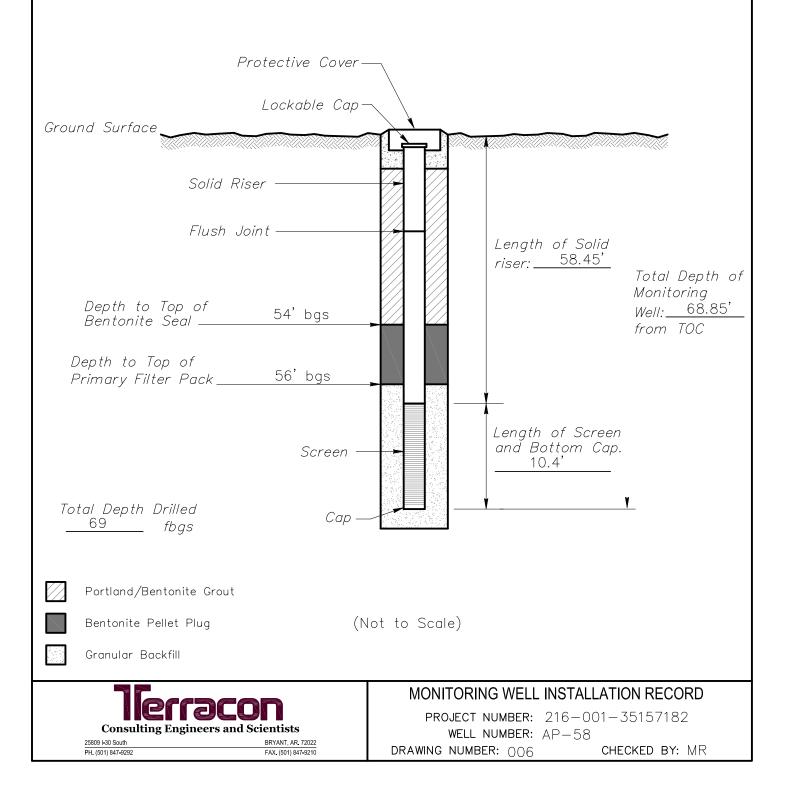
SHEET 2	DESIGNED BY: TLB		APPVD. BT: DOW SCALE: SEE BARSCALE		JOB NO. 216-001-35157124	ACAD NO. 001	SHEET NO.: 2 OF 2
CROSS SECTION A-A' & B-B'		GROUNDWATER MONITORING NETWORK EVALUATION				SWEPCO FLINI CREEK POWER PLANI BUI I PUNDUM ASH	GENTRY ARKANSAS
				Consulting Engineers and Scientists		BRYANI, AR 72022	PH. (501) 847-9292 FAX. (501) 847-9210
DESCRIPTION							
DE							

ATTACHMENT B AP-58, AP-58A, and AP-59 Boring Logs and Well Construction Diagrams

	Terracon	F	IEL	DE	BORI	NG L	.OG
	Consulting Engineers and Scientists	BORING N	10.:	AP-58		PAGE: 1 of 2	2
25809 I-30 PH. (501)		TOTAL DE			EET BELOV		SURFACE (BGS)
	NT: AMERICAN ELECTRIC POWER		1			R WELL INSTAI	. ,
JOB	NO.: 216-001-35157182-002					ENGINEERING	
LOG	GED BY: ADAM HOOPER		DRILLE	R: GARY	(MOYERS		
DAT	E DRILLED: 2/16/2016		RIG TY	РЕ: СМЕ	75 BUGGY		
DRII	LING METHOD: HOLLOW STEM AUGER /AIF	R ROTARY					
SAM	PLING METHOD: 5' CONTINUOUS SAMPLER	R - LOGGED B		S			
Depth	N: N/A E: N/A G.S. ELEV	/. N/A	Litho.				
BĠS	DESCRIPTION		Symbol			Remarks	
0 -					Flush	n - mounted bo	pring
-	0'-15' <u>SILTY CLAY</u> - FILL brown and red, poor sample return						
5 — - -							
			 				
- 15 — - -	15'-56' <u>SILTY CLAY</u> red, moist zones at 30' - 40' and 45' - 50'						
20 — - -							
25 — - -							
- 30 — - - -							

Cd		FIELD BORING NO.: AP-58	BORING LOG PAGE: 2 of 2
25809 I-30 South PH. (501) 847-929		TOTAL DEPTH: 69	FEET BELOW GROUND SURFACE (BGS)
Depth BGS	DESCRIPTION	Litho. Symbol	Remarks
40 - 15' red 40 - 45 - 45 50 - 55 - 56' gra 60 - 65 - 4 65 - 45 65 - 4 65 - 4 6	tal Depth of Boring at 69' bgs		- 59' bgs logged by cuttings

MONITORING WELL INSTALLATION RECORD Job Name_FLINT CREEK – CCR WELL INSTALLATION _____ Well Number <u>AP-58</u> Job Number 35157182 Installation Date 2/16/2016 Location AEP-FLINT CREEK -GENTRY, AR. Datum Elevation <u>NA</u> ______Surface Elevation <u>NA</u>_____


Datum for Water Level Measurement______ Screen Diameter & Material <u>2" PVC</u> Slot Size <u>0.010</u>

 Riser Diameter & Material 2" PVC
 Borehole Diameter 8"

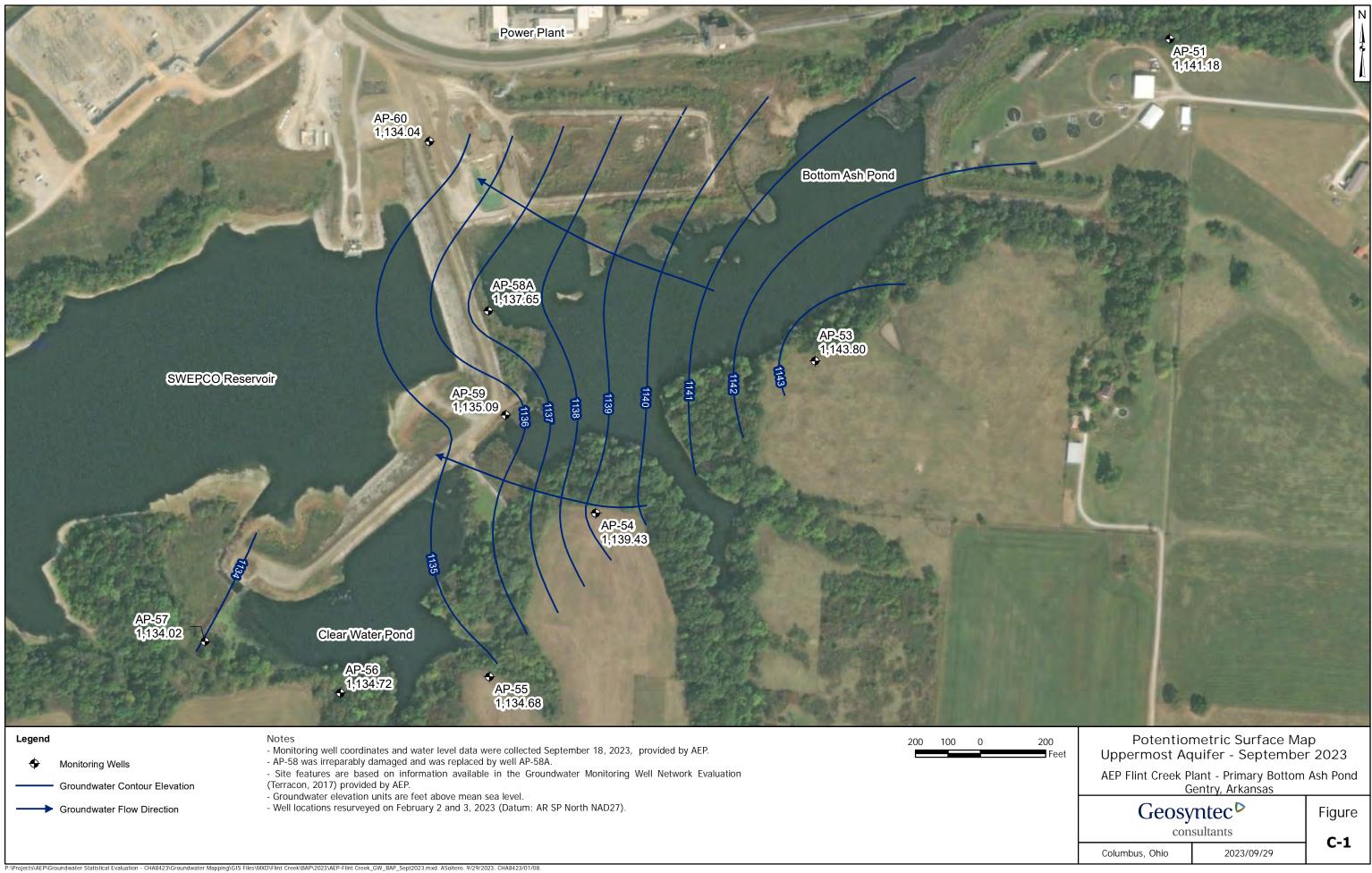
 Granular Backfill Material 16-30 SAND
 Terracon Representative ADAM 400

Torracon Ponrocontativo ADAM HOOPER

Granuic	IN DACKIIII MALEI	riai <u>- 10 - 50 -</u>	JAND		lerracon Re	presentative.	ADAM 1100	
Drillina	Method <u>HOLLOW</u>	STEM AUGE	R AND AIF	R ROTARY	Drilling	Contractor_	ANDERSON	ENGINEERING

Fierr a	acon	FI	EL	D BOR	ING LOG
		BORING N	0.:	AP-58A	PAGE: 1 of 2
25809 Interstate 30 South PH. (501) 847-9292	BRYANT, AR. 72022 FAX. (501) 847-9210	TOTAL DE	PTH: 71	.7' FEET BEL	OW GROUND SURFACE (BGS)
CLIENT: AMERICAN ELECTRIC POWER			PROJECT: FLINT CREEK - CCR WELL INSTALLATION		
JOB NO.: 216-001-35237104-001			DRILLING CO .: SUNBELT		
LOGGED BY: JOSH RAY			DRILLER: NEAL FARRAR AR License #C001451		
DATE DRILLED: 11/21/2022			RIG TYPE: CME 75 BUGGY		
DRILLING METHOD: HO	DLLOW STEM AUGER /AI	R ROTARY			
SAMPLING METHOD: 5' CONTINUOUS SAMPLER / AIR ROTARY					
Depth N: 707805.248 E: 1255854.857 G.S. ELEV. 1155.71			Litho.		
BGS DI	ESCRIPTION		Symbol		Remarks
0-0'-15' SILTY CLAY	- FILL				
brown and red, poc	r sample return		Z// 1////		
		1			
5 -			X Z		
		2			
		1			
10 —		,	ŹłŻ		
-			Z () / ,] / <i>Z</i> /		
	,	7	ÉTE		
15'-55' <u>SILTY CLA</u> red, moist zones at					
20 -		/			
-			i / i /		
25 —					
		[/			
- 30 -					
		ľ.			
		<pre>/</pre>			
			' /		

	ierracon	FIEL BORING NO.: AP	-58A PAGE: 2 of 2
25809 Inte PH. (501)	state 30 South BRYANT, AR. 72022 847-9292 FAX. (501) 847-9210	TOTAL DEPTH: 71.	7' FEET BELOW GROUND SURFACE (BGS
Depth BGS	DESCRIPTION	Litho. Symbol	Remarks
40 — - 40 — - 45 — - - 50 — - -	15'-55' <u>SILTY CLAY</u> red, moist zones at 40'		
	55'-70' <u>LIMESTONE</u> gray, crystalline		Groundwater encountered above bedrock, and rose to static level of 20.90' below TOC 55' - 70' bgs logged by cuttings, wet
60 — - - - 65 — - - -			
70	Total Depth of Boring at 71.7' bgs		
- 75 — - - -			


	INSTALLATION RECORD
Job Name <u>FLINT CREEK - CCR WELL INSTALLATION</u>	Well Number <u>AP-58A</u>
	11/21/2022 Location <u>AEP-FLINT CREEK-GENTRY</u> , AR.
	tum Surface Elevation NGVD29 Vertical Datum
Datum for Water Level Measurement <u>T.O.C.</u> Screen Diameter & Material <u>2" PVC</u>	
Riser Diameter & Material <u>2" PVC</u>	Siot Size <u>5.010</u> Borehole Diameter <u>8"</u>
	Terracon Representative JOSH RAY
Drilling Method HOLLOW STEM AUGER AND AIR ROTA	
5	5
- Lockable Casing - Vented Cap - Aluminum Well Protector	
Concrete Pad———	Stickup: <u>3'</u>
Ground Surface	
Solid Riser	
Flush Joint	
FIUSH JOINT	Length of Solid
	riser: <u>61.30'</u>
	Total Depth of Monitoring
Depth to Top of 56' bgs	<i>Well:</i> 74.70'
Bentonite Seal 30 bgs	From TOC
Depth to Top of Primary Filter Pack 58' bgs	
Primary Filter Pack58' bgs	
	Length of Screen
Screen —	and Bottom Cap. 10.4'
Total Depth Drilled 71.7" fbas Cap —	
fbgs	
Portland/Bentonite Grout	
Bentonite Pellet Plug (N	ot to Scale)
Granular Backfill	
	MONITORING WELL INSTALLATION RECORD
- Orracon	PROJECT NUMBER: 216-001-35237104
derracon	WELL NUMBER: AP-58A
	DRAWING NUMBER: 002 CHECKED BY: MR

Terracon	F	IEL	d Boi	RING LOG
Consulting Engineers and Scientists	BORING N	10.:	AP-59	PAGE: 1 of 1
25809 I-30 South BRYANT, AR. 72022 PH. (501) 847-9292 FAX. (501) 847-9210	TOTAL DE	:PTH: 30	FEET BE	ELOW GROUND SURFACE (BGS)
CLIENT: AMERICAN ELECTRIC POWER		PROJE	CT: FLINT CREEP	< - CCR WELL INSTALLATION
JOB NO.: 216-001-35157182-001		DRILLI	NG CO.: ANDER	SON ENGINEERING
LOGGED BY: ADAM HOOPER		DRILLE	R: GARY MOYER	RS
DATE DRILLED: 2/3/2016		RIG TY	PE: CME 75 BUG	GY
DRILLING METHOD: HOLLOW STEM AUGER /AI	R ROTARY	•		
SAMPLING METHOD: 5' CONTINUOUS SAMPLE	R - LOGGED E		SS	
Depth N: N/A E: N/A G.S. ELE	V. N/A	Litho.		
BGS DESCRIPTION		Symbol		Remarks
0 0'-8.5' <u>SILTY CLAY</u> - FILL red and brown				
5 – - - - - 8.5'-14.5' LIMESTONE and SILTY CLAY				
10 — hard while drilling - - -				
15 – 14.5'-17' <u>SILTY CLAY</u>				
- red			Moisture at tor	o of rock at 17' bgs
17'-30' <u>LIMESTONE</u> light gray, crystalline, thin fracture/void at	22' bgs			
20 -	Ű			
-	\bigtriangledown			
	<u> </u>		Water at 22' b	-
_			17' - 30' Logge	ed by cuttings
25				
_				
30 Total Depth of Boring at 30' bgs				

MONITORING WELL	INSTALLATION RECORD
Job Name <u>FLINT CREEK - CCR WELL INSTALLATION</u>	Well Number <u>AP-59</u> /4/2016 Location <u>AEP-FLINT CREEK -GENTRY, AR.</u>
Datum Elevation NA	Surface Elevation <u>NA</u>
Datum for Water Level Measurement <u>T.O.C.</u> Screen Diameter & Material <u>2" PVC</u>	
	Borehole Diameter <u>8"</u>
Drilling Method HOLLOW STEM AUGER AND AIR ROTA	
Lockable Casing -	
Vented Cap-	
Aluminum Well Protector –	
Ground Surface	Stickup: <u>3</u>
Ground Surface	
Solid Riser	
Flush Joint	
	Length of Solid riser: <u>19.89'</u>
	Total Depth of Monitoring
<i>Depth to Top of</i> <i>Bentonite Seal</i> 16' bgs	Well: <u>33.29'</u> from TOC
Depth to Top of	
Primary Filter Pack 18' bgs	
Screen —	Length of Screen and Bottom Cap.
	10.4'
Total Depth Drilled Cap —	
Portland/Bentonite Grout	
	ot to Scale)
Granular Backfill	
Terracon	MONITORING WELL INSTALLATION RECORD
Consulting Engineers and Scientists 25809 I-30 South BRYANT, AR. 72022	PROJECT NUMBER: 216-001-35157182 WELL NUMBER: AP-59
PH. (501) 847-9292 FAX. (501) 847-9210	DRAWING NUMBER: 005 CHECKED BY: MR

ATTACHMENT C

Potentiometric Surface Maps, Uppermost Aquifer September 2023 and December 2023 Map was previously provided in AEP. 2024. Annual Groundwater Monitoring Report - Southwestern Electric Power Company, Flint Creek Power Plant, Primary Bottom Ash CCR Management Unit. American Electric Power. January.

Map was previously provided in AEP. 2024. Annual Groundwater Monitoring Report - Southwestern Electric Power Company, Flint Creek Power Plant, Primary Bottom Ash CCR Management Unit. American Electric Power. January.

ATTACHMENT D Surface Water Samples Laboratory Analytical Report

Dolan Chemical Laboratory (DCL) 4001 Bixby Road	1			(Chai	in of	Custo	dy Rec	ord				
Groveport, Ohio 43125				Prog	ram:			n Residua	Is (CCR	()		_	
Michael Ohlinger (614-836-4184) Contacts: Dave Conover (614-836-4219)							ntact	_		For Lab Use Only: COC/Order #:			
Project Name: CCR Contact Name:	Analysis T	Analysis Turnaround Time (in Calendar Days)				250 mL bottle,	Three (six every 10th*)	1L+ 250 mL bottles,	40 mL Glass vial or 250 mL PTFE lined			Shipping	
Contact Phone:	(Routine (28 days for Monitoring Wells)						pH<2, HNO3	TL bottles,	Cool, 8-6C	bottle, HCL**, pH <z< th=""><th></th><th></th><th>confirmation sent to recipients below:</th></z<>			confirmation sent to recipients below:
Samplenist Nicole Morrall								1	CI, SO4, Alkalinity		and	a parameters	nmorrall@aep.com ipneigler@aep.com cmhubbell@aep.com
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Sampler(s) Initials	B, Ca, LI, Sb, As, Ba, Ba, Cd, Cr, Co, Pb, Mo, Se, TL and Na, K, Mg, Sr	Ra-226, Ka-228	TDS, F, CI and Br, Al	БH	dissolved Fo	Contains extra	Sample Specific Notes:
Low Volume Waste Outlet Combine!	2/25/20	13:03	G	GW	2	NM	X		X	—			< 4%
Bottom Ash Fond	2/25/20	13:14	G	W	2	NM	X		X				KY °C
BAP near Stop Log	2/25/20			W	2	MM		•	X	1			24.5
SWEPLD Lake	2/25/20	13:23	G	W	2	MM	X		X			0	<4°C
Field Blank	1/25/20	13:44	G	W	1	NOW	0		X				2400
Press and the last de last de U.S. S. U.S. S. U.S. C. L.	IN COLUMN			17.00	the state		4	4	1	2	F4		
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=8 * Six 1L Bottles must be collected for Radium for ** HCI must be Trace Metal Grade for Mercury and Special Instructions/QC Requirements & Comme	every 10th s alysis when s	ample.			iter in i								
Relipquished by: 0.0	Company:			Date/T	lime:	111:00	Received t	bly.		_			Date/Time:
Atid Monall Relinguished by:	AEP Company:	_	-	Date/		4.00	Received t						Date/Time:
Relinquished by:	Company:			Date/1	ime:		Received	n Laboratory	byc				Date/Time:

Form COC-84, AEP Chain of Custody (COC) Record for Coal Combustion Residual (CCR) Sampling - Dolan extra parameters, Rev. 3.1, 12/01/16

Form REP-703 Rev. 1, 11/2013

AMERICAN ELECTRIC POWER

Dolan Chemical Laboratory 4001 Bixby Road Groveport, OH 43125 T: 614-836-4221, Audinet 210-4221 F. 614-836-4168, Audinet 210-4168 http://aepenv/labs

Location: Flint Creek PS

Low Volume Waste Outlet Combined

Water Analysis

Report Date: 3/20/2020

Sample Number:	200633-001		Date Co	Date Collected:		020 13:03	Da	te Received: 2/26/2020
Parameter	Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.07	ug/L	J	0.1	0.02	JDB	03/02/2020 13:13	EPA 200.8-1994, Rev. 5.4
Arsenic, As	0.78	Ug/L		0.1	0.03	JDB	03/02/2020 13:13	EPA 200.8-1994, Rev. 5.4
Banum, Ba	118	ug/L		0.2	0.05	JDB	03/02/2020 13:13	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.02	ug/L	U	0.1	0.02	JDB	03/02/2020 13:13	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.01	ug/L	U	0.05	0.01	JDB	03/02/2020 13:13	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.460	ug/L		0.2	0.04	JDB	03/02/2020 13:13	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.127	Ug/L		0.05	0.02	JDB	03/02/2020 13:13	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.2	ug/L	J	0.2	0.05	JDB	03/02/2020 13:13	EPA 200.8-1994, Rev. 5.4
Malybdenum, Ma	2 63	ug/L		2	0.4	JDB	03/02/2020 13:13	EPA 200.8-1994, Rev. 5.4
Selenium, Se	0.4	ug/L		0.2	0.03	JDB	03/02/2020 13:13	EPA 200.8-1994. Rev. 5.4
Thallium. TI	< 0.1	ug/L	U	0.5	0.1	JOB	03/02/2020 13:13	EPA 200.8-1994, Rev. 5.4
Boron, B	0.076	mg/L		0.05	0.02	JDB	03/02/2020 13:13	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	35,1	mg/L		0.3	0.1	DAM	03/02/2020 12:20	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0 000381	mg/L		0.0002	0.00005	JDB	03/02/2020 13:13	EPA 200.8-1994, Rev. 5.4
Magnesium, Mg	2.83	mg/L		0,1	0.02	DAM	03/02/2020 12:20	EPA 200.7-1994, Rev. 4.4
Potassium, K	4.69	mg/L		1	0.2	DAM	03/02/2020 12:20	EPA 200.7-1994, Rev. 4.4
Sodium, Na	11.4	mg/L		0.5	0.1	DAM	03/02/2020 12:20	EPA 200.7-1994, Rev. 4.4
Strontium, Sr	0.175	mg/L		0.01	0.002	DAM	03/02/2020 12:20	EPA 200.7-1994, Rev. 4.4
Alkalinity, as CaCO3	102	mg/L		20	5	MGK	03/04/2020 12:10	SM 2320B-2011
Bromide, Br	< 0.04	mg/L	U	0.2	0.04	CRJ	02/27/2020 14:18	EPA 300.1-1997, Rev. 1.0
Chloride, Cl	7.92	mg/L		0.04	0.01	CRJ	02/27/2020 14:18	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.08	mg/L		0.06	0.01	CRJ	02/27/2020 14:18	EPA 300.1-1997, Rev. 1.0
Residue, Filterable, TD	183	mg/L		50	20	SDW	02/28/2020	SM 2540C-2011
Sulfate, SO4	17 8	mg/L		0,4	0.06	CRJ	02/27/2020 14:18	EPA 300.1-1997, Rev. 1 0

PH = 6.30

2/25/2020 13:03

ipn

Location: Flint Creek PS

Report Date: 3/20/2020

Bottom Ash Pond

Sample Number: 200633-002

Date Collected: 02/25/2020 13:15

Date Received: 2/26/2020

Parameter	Result	Units	Data Qual	RL	MOL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.11	ug/L		0.1	0.02	JDB	03/02/2020 13:18	EPA 200.8-1994, Rev. 5.4
Arsenic, As	1 03	ug/L		0.1	0.03	JDB	03/02/2020 13:18	EPA 200.8-1994, Rev. 5.4
Barium, Ba	199	ug/L		0.2	0.05	JDB	03/02/2020 13:18	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.02	ug/L	u	0.1	0.02	JDB	03/02/2020 13:18	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	0.03	ug/L	J	0.05	0.01	JDB	03/02/2020 13:18	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	2.98	ug/L		0.2	0.04	JDB	03/02/2020 13:18	EPA 200,8-1994, Rev. 5.4
Cobalt, Co	0,193	ug/L		0.05	0.02	JOB	03/02/2020 13:18	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0,275	ug/L		0.2	0.05	JDB	03/02/2020 13:18	EPA 200.8-1994, Rev. 5.4
Molybdenum, Mo	5.81	ug/L		2	0.4	JDB	03/02/2020 13:18	EPA 200.8-1994, Rev. 5.4
Selenium, Se	1.8	ug/L		0.2	0.03	JDB	03/02/2020 13:18	EPA 200.8-1994, Rev. 5.4
Thallium, TI	< 0.1	ug/L	U	0.5	0.1	JDB	03/02/2020 13:18	EPA 200.8-1994, Rev. 5.4
Boron, B	0.246	mg/L		0.05	0.02	JDB	03/02/2020 13:18	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	40.5	mg/L		0.3	0.1	DAM	03/02/2020 12:24	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0,00111	mg/L		0.0002	0.00005	JDB	03/02/2020 13:18	EPA 200.8-1994, Rev. 5.4
Magnesium, Mg	3.14	mg/L		0.1	0.02	DAM	03/02/2020 12:24	EPA 200.7-1994, Rev. 4.4
Potassium, K	5.61	mg/L		1	0.2	DAM	03/02/2020 12:24	EPA 200 7-1994, Rev. 4.4
Sodium, Na	22.7	mg/L		0.5	0.1	DAM	03/02/2020 12:24	EPA 200.7-1994, Rev. 4.4
Strontium, Sr	0,498	mg/L		0.01	0.002	DAM	03/02/2020 12:24	EPA 200.7-1994, Rev. 4.4
Alkalinity, as CaCO3	116	mg/L		20	5	MGK	03/04/2020 12:10	SM 2320B-2011
Bromide, Br	< 0.04	mg/L	U	0.2	0.04	CRJ	02/27/2020 13:18	EPA 300.1-1997, Rev. 1.0
Chloride, Cl	11.0	mg/L		0.04	0.01	CRJ	02/27/2020 13:18	EPA 300.1-1997, Rev. 1.0
Fluoride, F	0.18	mg/L		0.06	0.01	CRJ	02/27/2020 13:18	EPA 300.1-1997, Rev. 1.0
Residue, Filterable, TDS	217	mg/L		50	20	SDW	02/28/2020	SM 2540C-2011
Sulfate, SO4	39.5	mg/L		0.4	0.06	CRJ	02/27/2020 13:18	EPA 300.1-1997, Rev. 1.0

pH= 8.70 2/25/2020 13:14 ipn

Location: Flint Creek PS

Report Date: 3/20/2020

BAP Near Stop Log

Sample Number: 200633-003

Date Collected: 02/25/2020 13:29

Date Received: 2/26/2020

Parameter	Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Antimony, Sb	0.07	ug/L	j.	01	0.02	JDB	03/02/2020 13:22	EPA 200.8-1994, Rev. 5.4
Arsenic, As	0.71	ug/L		0.1	0.03	JDB	03/02/2020 13:22	EPA 200.8-1994, Rev. 5.4
Barium, Ba	79.5	ug/L		0.2	0.05	JDB	03/02/2020 13:22	EPA 200.8-1994, Rev. 5.4
Beryllium, Be	< 0.02	ug/L	U	0.1	0.02	JDB	03/02/2020 13:22	EPA 200.8-1994, Rev. 5.4
Cadmium, Cd	< 0.01	ug/L	U	0.05	0.01	JDB	03/02/2020 13:22	EPA 200.8-1994, Rev. 5.4
Chromium, Cr	0.1	ug/L	J	0.2	0.04	JDB	03/02/2020 13:22	EPA 200.8-1994, Rev. 5.4
Cobalt, Co	0.056	ug/L		0.05	0.02	JDB	03/02/2020 13:22	EPA 200.8-1994, Rev. 5.4
Lead, Pb	0.06	ug/L	J	0.2	0.05	JDB	03/02/2020 13:22	EPA 200.8-1994, Rev. 5.4
Molybdenum, Ma	1	ug/L	J.	2	0.4	JDB	03/02/2020 13:22	EPA 200.8-1994. Rev. 5.4
Selenium, Se	0.3	ug/L		0.2	0.03	JDB	03/02/2020 13:22	EPA 200.8-1994, Rev. 5.4
Thallium, TI	< 0.1	ug/L	U	0.5	0.1	JDB	03/02/2020 13:22	EPA 200.8-1994, Rev. 5.4
Boron, B	0.068	mg/L		0.05	0.02	JOB	03/02/2020 13:22	EPA 200.8-1994, Rev. 5.4
Calcium, Ca	34.4	mg/L		0.3	0.1	DAM	03/02/2020 12:27	EPA 200.7-1994, Rev. 4.4
Lithium, Li	0.000205	mg/L		0.0002	0.00005	JDB	03/02/2020 13:22	EPA 200.8-1994, Rev. 5.4
Magnesium, Mg	2.75	mg/L		0.1	0.02	DAM	03/02/2020 12:27	EPA 200.7-1994, Rev. 4.4
Potassium, K	4.87	mg/L		1	0.2	DAM	03/02/2020 12:27	EPA 200.7-1994, Rev. 4.4
Sodium, Na	11.7	mg/L		0.5	0.1	DAM	03/02/2020 12:27	EPA 200.7-1994, Rev. 4.4
Strontium, Sr	0.147	mg/L		0.01	0,002	DAM	03/02/2020 12:27	EPA 200.7-1994, Rev. 4.4
Alkalinity, as CaCO3	101	mg/L		20	5	MGK	03/04/2020 12:10	SM 2320B-2011
Bromide, Br	< 0.04	mg/L	U	0.2	0.04	CRJ	02/27/2020 13:44	EPA 300.1-1997, Rev. 1.0
Chloride, Cl	7.92	mg/L		0.04	0.01	CRJ	02/27/2020 13:44	EPA 300.1-1997, Rev. 1.0
Fluoride, F		mg/L		0.06	0.01	CRJ	02/27/2020 13:44	EPA 300.1-1997, Rev. 1.0
Residue, Filterable, TDS	155	mg/L		50	20	SDW	02/28/2020	SM 2540C-2011
Sulfate, SO4	16.2	mg/L		0.4	0.06	CRJ	02/27/2020 13:44	EPA 300.1-1997, Rev. 1.0

H= 7.23 2/25/2020 13:29

IPN

PH= 8 31 2/25/2020 13:23 ipn

Location: Flint Creek PS

Report Date: 3/20/2020

Date Received: 2/26/2020

Swepco Lake SWEPCO Lake

Sample Number: 200633-004

Date Collected: 02/25/2020 13:23

Parameter	Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method	
Antimony, Sb	0.08	ug/L	J	0.1	0.02	JDB	03/02/2020 13:25	EPA 200.8-1994, Rev. 5.4	7
Arsenic, As	0.70	ug/L		0.1	0.03	JDB	03/02/2020 13:25	EPA 200.8-1994, Rev. 5,4	
Barium, Ba	113	ug/L		0,2	0.05	JDB	03/02/2020 13:25	EPA 200.8-1994, Rev. 5.4	
Beryllium, Be	< 0.02	Ug/L	U	0.1	0.02	JDB	03/02/2020 13:25	EPA 200.8-1994, Rev. 5.4	
Cadmium, Cd	0.01	ug/L	J	0.05	0.01	JDB	03/02/2020 13:25	EPA 200.8-1994, Rev. 5.4	
Chromium, Cr	0.619	ug/L		0.2	0.04	JDB	03/02/2020 13:25	EPA 200.8-1994, Rev. 5.4	
Cobalt, Co	0.144	ug/L		0.05	0.02	JDB	03/02/2020 13:25	EPA 200.8-1994, Rev. 5.4	
Lead, Pb	0.1	ug/L	J	0.2	0.05	JOB	03/02/2020 13:25	EPA 200,8-1994, Rev. 5.4	
Molybdenum, Mo	2	ug/L	J	2	0.4	JDB	03/02/2020 13:25	EPA 200.8-1994, Rev. 5.4	
Selenium, Se	0.7	ug/L		0.2	0.03	JDB	03/02/2020 13:25	EPA 200.8-1994, Rev. 5.4	
Thallium, Ti	< 0.1	ug/L	U	0.5	0.1	JDB	03/02/2020 13:25	EPA 200 8-1994, Rev. 5.4	
Boron, B	0.102	mg/L		0.05	0.02	JDB	03/02/2020 13:25	EPA 200.8-1994, Rev. 5.4	
Calcium, Ca	38.0	mg/L		0.3	0.1	DAM	03/02/2020 12:40	EPA 200.7-1994, Rev. 4.4	
Lithlum, Li	0.000527	mg/L		0.0002	0.00005	JDB	03/02/2020 13:25	EPA 200.8-1994, Rev. 5.4	
Magnesium, Mg	3,04	mg/L		0.1	0.02	DAM	03/02/2020 12:40	EPA 200.7-1994, Rev. 4.4	
Potassium, K	4,94	mg/L		1	0.2	DAM	03/02/2020 12:40	EPA 200.7-1994, Rev. 4.4	
Sodium, Na	20.7	mg/L		0.5	0.1	DAM	03/02/2020 12:40	EPA 200.7-1994, Rev. 4.4	
Strontium, Sr	0.224	mg/L		0.01	0.002	DAM	03/02/2020 12:40	EPA 200,7-1994, Rev. 4.4	
Alkalinity, as CaCO3	99.8	mg/L		20	5	MGK	03/04/2020 12:10	SM 2320B-2011	
Bromide, Br	< 0.04	mg/L	U	0.2	0.04	CRJ	02/27/2020 15:34	EPA 300.1-1997, Rev. 1.0	
Chloride, Cl	11.7	mg/L		0.04	0.01	CRJ	02/27/2020 15:34	EPA 300.1-1997, Rev. 1.0	
Fluoride, F	0.12	mg/L		0.06	0.01	CR.J	02/27/2020 15:34	EPA 300.1-1997, Rev 1.0	
Residue, Filterable, TDS	206	mg/L		50	20	SDW	02/28/2020	SM 2540C-2011	
Sulfate, SO4	35.0	mg/L		0.4	0.06	CRJ	02/27/2020 15:34	EPA 300.1-1997, Rev. 1.0	

Field Blank

Sample Number: 200633-005

Date Collected: 02/25/2020 13:44

Date Received: 2/26/2020

Parameter	Result	Units	Data Qual	RL	MDL	Analysis By	Analysis Date/Time	Method
Alkalinity, as CaCO3	< 5	mg/L	U	20	5	MGK	03/04/2020 12:10	SM 2320B-2011
Bromide, Br	< 0.04	mg/L	U	0.2	0.04	CRJ	02/27/2020 15:09	EPA 300.1-1997, Rev. 1.0
Chloride, Cl	< 0.01	mg/L	u	0.04	0.01	CRJ	02/27/2020 15:09	EPA 300.1-1997, Rev. 1.0
Fluoride, F	< 0.01	mg/L	U	0.06	0.01	CRJ	02/27/2020 15:09	EPA 300.1-1997, Rev. 1.0
Residue, Filterable, TDS	< 20	mg/L	U	50	20	SDW	02/28/2020	SM 2540C-2011
Sulfate, SO4	< 0.06	mg/L	U	0.4	0.06	CRJ	02/27/2020 15:09	EPA 300.1-1997, Rev. 1.0

Location: Flint Creek PS

Report Date: 3/20/2020

U: Analyte was analyzed and not detected at or above adjusted Method Detection Limit J: Analyte was positively identified, though the quantitation was below Reporting Limit.

Mulail 2. Ollay

Michael Ohlinger, Chemist Email msohlinger@aep.com Tel. Fax 614-836-4168 Audinet 8-210-

THIS TEST REPORT RELATES ONLY TO THE ITEMS TESTED AND SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT WRITTEN APPROVAL OF THE LABORATORY. ALL TEST RESULTS MEET ALL OF THE REQUIREMENTS OF THE ACCREDITING AUTHORITY, UNLESS OTHERWISE NOTED.

ATTACHMENT E Certification by a Qualified Professional Engineer

CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

I certify that the above described alternative source demonstration is appropriate for evaluating the groundwater monitoring data for the Flint Creek Primary Bottom Ash Pond CCR management area and that the requirements of 40 CFR 257.94(e)(2) have been met.

Beth Ann Gross Printed Name of Licensed Professional Engineer

Beth am Geors

Signature

Geosyntec Consultants 2039 Centre Pointe Blvd, Suite 103 Tallahassee, Florida 32308

> Arkansas Firm Certificate of Authorization No. 52 Exp. 12/31/2024

9864 License Number

Arkansas Licensing State <u>June/28/2024</u> Date

